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1 Introduction

MOCHA is a growing interactive software environment for specification, simulation and verification of con-
current systems. The main objective of MOCHA is to exploit the modularity in the design structure during
model checking. It is intended as a vehicle for development of new verification algorithms and approaches.
MOCHA is available in two versions, CMOCHA (Version 1.0.1) and JMocCHA(Version 2.0). This paper de-
scribes IMOCHA (for an introduction to CMOCHA, see [2]). Like its predecessor, IMOCHA offers the following
capabilities:

e System specification in the language of REACTIVE MODULES. Reactive modules allow the formal
specification of heterogeneous systems with synchronous and asynchronous components. Reactive
Modules support modular and hierarchical structuring and reasoning

e System ezecution by randomized or manual trace generation. In the manual mode, the user may choose
at each step one of the possible next state of the system.

e Requirement verification by énvariant checking. MOCHA supports both symbolic and enumerative
search. The symbolic model checker is based on BDD engines developed by the UC Berkeley VIS
project.

e Implementation verification by checking trace containment between implementation and specification
modules. The check can be performed automatically if the specification module has no private vari-
ables, and otherwise, the user has to supply a witness module defining the refinement mapping. For
decomposing proofs, MOCHA supports an assume-guarantee principle.

JMOCHA is written in Java and uses native C-code BDD libraries from VIS. It provides the following im-
provements over CMOCHA:

e An updated graphical user interface written in Java that looks familiar to Windows/Java users: it has
a project window and a desktop, has a syntax directed editor, allows concurrent threads, can be easily
extended and debugged.

e A new simulator with a graphical user interface that displays traces in a message sequence chart (MSC)
fashion and shows the dependencies among variable updates.

e A proof manager for managing verification proofs such as assume-guarantee proofs.

e An enhanced enumerative checker for invariant checking as well as refinement checking with many new
optimizations like hierarchic reduction.
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e A new scripting language called SLANG for rapid and structured algorithm development. Slang provides
primitive functions for symbolic manipulation of transitions systems and states, and new symbolic
algorithms can be programmed by writing SLANG scripts.

The architecture of IMOCHA is shown in Figure 1 where the free bidirectional arrows denote user interaction
via the graphical user interface.
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Figure 1: JMOCHA tool architecture

The rest of the paper describes each of the above components. In Section 2 we introduce the specification
language reactive modules. In Section 3 we describe the graphical user interface. In Section 4 we describe
the simulator. In Section 5 we describe the checkers. In Section 7 we describe the scripting language.

2 The Modeling Language

The language REACTIVE MODULES [3] is a modeling and analysis language for heterogeneous concurrent
systems with synchronous and asynchronous components. As a modeling language it supports high level,
partial system descriptions, rapid prototyping and simulation. As an analysis language it allows specification
of requirements either in temporal logic or as abstract modules. Finally, as a language for concurrent systems,
it facilitates a modular description of the interactions among the components of a system.

The basic structuring units, or the molecules of a system, are reactive modules. The modules have
a well defined interface given by a set of external (or input) variables and a set of interface (or output)
variables. These variables are also called observable variables. A module may also have a set of private
variables. Variables are typed. The types supported are enumerated types, events, arrays and bitvectors.
New enumerated or array types may be introduced for convenience.

A module is built from atoms, each grouping together a set of controlled (interface or private) variables
with exclusive updating rights. Updating is defined by two nondeterministic guarded commands: an ini-
tialization command and an update command. In these commands unprimed variables, such as z, refer to
the old value of the corresponding variable, and primed variables, such as ', refer to the new value of the
corresponding variable. An atom is said to ewait another atom if its initialization or update commands refer
to primed variables that are controlled by the other atom.

The variables change their values over time in a sequence of rounds. The first round consists of the
execution of the initialization command of each atom in an order consistent with the await dependencies.



The subsequent rounds consist of the execution of the update command of each atom in an order consistent
with the await dependencies. A round of an atom is therefore a subround of the module. If no guard of
the update command is enabled, then the atom idles, i.e., the values of the variables do not change. If the
update command of an atom has a branch with a true guard and no updating action, then it may at any
time either take a transition or idle. Such an atom is called lazy. By using the keyword lazy, the idling
transition is implicitly added to an atom.

Reactive modules can be composed to build hierarchic reactive modules, if they have disjoint sets of
interface variables and their union of atom sets does not contain a circular await dependency. To facilitate
composition and enhance modularity, interface variables may be hidden and observable variables may be
renamed. For example, if M, M; and M, are appropriate modules, x is an interface, y is an external variable
of M and u,v are fresh variable names for M then Ms||M> is the composition of M; with Ms, hide z in M
is the module M with z hidden and M|[z,y := u,v] is the module M with z and y renamed by » and v.

For example, consider the specification of a village telephone system that, for simplicity, contains only 4
telephones. The specification consists of two modules: the first one models the environment, i.e., the users,
the second one models the system. The types below, define the states of the phones and the lines in the
telephone system. A line is either disconnected, drooping, or connected to one of the phones. A phone is
either on-hook or off-hook.

type connType is { disconn, connl, conn2, conn3, conn4, drooping }
type hookType is { on, off }

The module UserSpec is a very abstract model of the users. It nondeterministically toggles at most one
telephone between on-hook and off-hook.

module UserSpec is
interface h1,h2,h3,h4 : hookType;

lazy atom ToggleHook
controls hi,h2,h3,h4
reads hil,h2,h3,h4

init
[1 true -> h1’ := on; h2’ := on; h3’ := on; h4’ := on;
update
[J h1 = on => h1’ := off;
[J h1 = off -> hi1’ := on;
[1 h2 = on => h2’ := off;
[1 h2 = off => h2’ := on;
[J h3 = on -> h3’ := off;
[1 h3 = off -> h3’ := on;
[J h4 = on -> h4’ := off;
[1 h4 = off -> h4’ := on;

The specification module SystemSpec below, defines a telephone system that establishes and destroys con-
nections between communication partners. The extra variable p is used to select the partner pairs: p=0
means 1-4/2-3, p=1 means 1-3/2-4 and p=2 means 1-2/3-4. The atom Conn1 is defined as follows. If the
user hangs up, it sets c1 to disconnected. If the partner hangs up, it sets c1 to drooping. If the phone is
off-hook and disconnected, it checks the partner (selected by p) and tries to connect.

module SystemSpec is
interface c1,c2,¢3,c4 : connType; p : (0..2);
external hi,h2,h3,h4 : hookType;

atom selectPartner
controls p

init

[J true -> p’ := nondet;
update

[ true -> p’ := nondet;

atom Connl
controls cl



reads c1,c2,c3,c4,p
awaits hi1,h2,h3,h4,p

init
[1 true => c1’ := disconn;
update
[J (h1’ = on) -> c1’ := disconn;
[1 (c1 = conn2) & (h2’ = on) -> c1’ := drooping;
[J (c1 = conn3) & (h3’ = on) -> cl1’ := drooping;
[1 (c1 = conn4) & (h4’ = on) -> c1’ := drooping;
[J (ci=disconn) & (hl’=0ff) & (p=0) & (c4=disconn) & (h4’=off) -> cl’ := conn4;
[J (ci=disconn) & (h1’=off) & (p=1) & (c3=disconn) & (h3’=off) -> cl’ := conn3;
[J (ci=disconn) & (h1’=off) & (p=2) & (c2=disconn) & (h2’=off) -> cl’ := conn2;

The atoms Conn2 to Conn4 are not shown in this specification. They are specified in a similar way to
Connl.The line below defines the specification module Spec as the parallel composition of UserSpec and
SystemSpec.

module Spec is UserSpec || SystemSpec

3 The Graphical User Interface

Similarly to modern Windows or Java tools, the interaction between the user and JMOCHA is controlled by
a graphical user interface (GUI). The GUI consists of five menus, three tool bars, a desktop and a status
text panel. The menus are File, Edit, Simulate, Check and Options. The tool bars are associated with
File Edit, Simulate and Check. They contain buttons with intuitive icons that may be used as shortcuts
for the most frequently used menu items. One can drag the tool bars at any convenient place outside the
tool bars standard location.

The menu items and the tool bar buttons are activated/deactivated in a way consistent with the state
of the proof manager. This avoids undesired input and guides the user by telling him what are the avail-
able options. At the beginning only three buttons and correspondingly four menu items are active: Open
Project, New File, Open File and Exit. Clicking these buttons (menu items) one can use Mocha in an
editor and a project mode.

3.1 Mocha in Editor Mode

If one clicks NewFile or Open File then one may use Mocha as a syntax directed editor window for the
REACTIVE MODULES language. Both options also activate the other File menu and Edit menu items. One
may open more than one file and the labels associated to their windows allow to conveniently switch from
one window to another even if they maximized, as shown in Figure 2. One may edit the files by using the
menu items in the Edit menu or the associated toolbar. The edit action always takes place in the currently
selected editor frame (topmost frame). One can cut and paste from one editor window in another editor
window.

The editor windows highlight the REACTIVE MODULES keywords and comments. One can enable/disable
parsing on the fly by clicking the check box item Enable Parsing inside the sub menu Editor Options
of the top menu Options. In case of an error while typing, the first erroneous token is highlighted in red.
One can further enable a pop up window prompting the user with the allowed next tokens. Clicking on the
pop up options, the associated text is automatically inserted at the current cursor position. This allows not
only to correct almost all syntactic errors at typing but also to learn the REACTIVE MODULES language, as
shown in Figure 3. One may enable/disable the pop up mode by clicking the check box item Enable Pop
up inside the sub menu Editor Options of the top menu Options. The specifications of modules can be
imported from other files using the import command.

3.2 Mocha in Project Mode

To make it reasonably fast, the on-the-fly parser neither does expand any import declarations, nor does any
type-checking, nor does generate any code. Once one has edited and saved a tree of reactive modules files
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one may want to simulate and check them. For this purpose, one has to press the Open Project button or
the associated menu item inside the File menu and select the root reactive modules file.

In this case the proof manager expands all the import declarations and calls the parser and the type
checker on the expanded code. If there are no syntactic errors, it generates a proof context (or state) that
is displayed in a separate Project window that appears on the left hand side of the desktop, as shown in
Figure 4.
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Figure 4: Using MOCHA in project mode

In the project mode one may open and edit reactive modules files in the same way one does it in the edit
mode. Moreover, it enables the menu items Parse and Type Check inside the top menu Check. Clicking one
of these items, JIMOCHA parses and type checks the root file (and its associated imports) again and updates,
if there is no error, the project window. In case of error, the project window displays the last consistent
state. Note that before parsing or type checking all files opened in the desktop are automatically saved.
Note also that the Type Check option first invokes the parser to make sure that the code to be type checked
has no parsing errors

The project window displays the MOCHA proof context in a very convenient, tree notation. Each node
in the tree may be expanded or collapsed by clicking it. The proof context consists of several sub contexts:
types, modules, formulas and judgments. They are initially collected from the associated reactive mod-
ules files. When a module is selected, two buttons get highlighted: the reach and the run buttons. When
selecting a judgment two other buttons get selected: check and in case of refinement statements, decompose.
They are discussed later.

4 The Simulator

The behaviour of a reactive system may be visualized in a message sequence charts (MSC) like fashion by
using the simulator. Alternatively, one may view the graphical display as an intuitive visualization of the
ezecutions of a reactive module. In these executions, the values of the variables are displayed only when
they change. Clicking on the box displaying a value of a variable, shows what other variables (and their



values) contributed to the change. This information can be used for debugging or simply for understanding
in detail the behavior of the given reactive module description.
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Figure 5: The simulator

Starting the simulator, the user gets a simulation dialog that allows him to choose the level of simulation
(variable, atom or module) and what variables are to be displayed, as shown in Figure 5. For each, a vertical
line shows its evolution in time. The vertical lines are split into segments, each corresponding to a discrete
time unit or equivalently, to a round of the associated module.

The simulator can be used in a stand-alone fashion. One has two options to run the simulator in this
mode. One is to hand over the control to MOCHA(automatic simulation), the other is to control every
step by oneself (manual simulation). One can choose this option from the ‘Simulator’ menu. In automatic
simulation, when one clicks the simulation button and then the start button, MOCHA will take control of the
simulation. It will make the simulation proceed by choosing one state randomly out of all the possible next
states. One can stop the simulation temporarily by clicking the pause button or permanently by clicking the
stop button.
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Figure 6: Manual simulation



If one wants to control the step-by-step execution of a module, one needs to select manual simulation before
starting the simulation. After clicking a module, click the simulation start button. In manual simulation, at
each step the user is requested to choose one state from the set of possible next states, both for the module
and for its environment. Figure 6 shows an example of manual simulation. In the output window, one can
see many states beginning with grayed boxes. Clicking one of these grayed boxes selects the associated state
and the simulation proceeds one step. The simulation then proceeds in a similar way.

In the simulation output window, if one clicks any value box in a certain state, that box is inlined with a
red color and all the boxes it depended on to get this value are inlined in blue. Clicking the box again, hides
the above information. For example, in Figure 7, clicking the box labeled 11 = 1 of the last state, results in
inlining this box in red an the off and 11 = 0 boxes in blue.
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Using MOCHA’s checker, one can verify whether a given specification (judgement) is true. With an
exhaustive search, MOCHA might find a state where the judgement fails. In this case, the simulator, which
is integrated with the checker, will automatically provide a graphical sequence of states where the final state
fails the given judgement. Figure 7 shows an example. The last state is surrounded by a red border, meaning
that it violates the specified invariant.

5 The Invariant Checkers

JMocHA allows specification of requirements as alternating temporal logic (ATL) formulas. Currently how-
ever, it has a built in checker only for a restricted (but most common) class of ATL formulas, namely
invariants. A state (or transition) invariant is a predicate that is required to hold on all reachable states (or
transitions) of a reactive module. This is not a limitation because the user may define itself more powerful
checkers by using SLANG, as shown in Section 7.

For example, an invariant of the village telephone system specification, is the property that connections
are symmetric. The following formula specifies that if phone 1 is connected to 3, then phone 3 should be
connected to 1:

predicate Symml3 is (c1=3) | “(c3 = 1)
judgment J3 is Spec |= Symmi13

One may check this invariant either enumeratively or symbolically.

5.1 Enumerative Invariant Checking

The core of the enumerative search engine is a routine to compute the successors of a given state. It first
generates all possible values of the external variables. It then goes through each atom in the order consistent
with await-dependencies. For an atom, each guard in the guarded command is evaluated to check whether
it is enabled, and then actions corresponding to all enabled guards are executed. After all atoms have been
processed, all controlled variables are assigned to their new values, and the invariant predicate is checked



if it is satisfied by successor states. The invariant judgment is valid if the search engine has traversed all
reachable states.

We have implemented various features and optimizations in the JMOCHA enumerative search engine.
Some of them are listed below:

e For every transition, information about how the updated value of a variable depends upon the old/new
values of other variables is generated. This information can be visualized with the help of the simulator.

¢ Each state is stored as bit string to save space using compression.
e Unlatched (not read by any of the atoms) variables are not stored in the table.

e Event variables are not stored in the table (they are updated on the fly during computation of successor
states).

e Independent atoms are grouped together. Each group generates partial successor states. Successor
states are cross products of these partial states.

A wuser can check enumeratively whether an invariant holds in a module as follows. First he selects
Enumerative check in the Check options. Then he selects the judgment and clicks either the Check button
(the magnifying glass) in the toolbar or the Check menu item inside the Check menu, as shown in Figure
8. If the invariant is not satisfied, IMOCHA produces a counterexample execution along with its variable
dependency information in a simulator window.

g‘ilulocha: E xploiting Modularity in Model Checking

File Edit Simulate |Check Options
e O & | | Enumerative Check e
w STDONE CHEEK
% b.u_ “‘“up .L.l_.,;.__.:. s
QCheck stration of assume-guarantee rea
i :‘{§4 ct J2, and then decompose option.
@ (I modules mement. J2 will generate two subd
@ [T invariants LR ed by enumerative/symbolic checks
® (3 judgments Typecheck
@ J4 Shell ections are symmetric. E.g. if clf
& Jz W jipredicate Symml3 is (cl=3) | ~{c3 = 1)
@ J2
I I N judguent J3 is Imp |= Symml3
| [ Jo : ‘Ml Judquent J4 is Spec |= Symml3 :
|} D
|| Objects [Files | vtsam|

Type checking

Figure 8: Enumerative invariant checking in MOCHA

For modules which consist of only lazy atoms, IMOCHA provides a heuristic called hierarchical reduction to
reduce search space [4]. The basic idea is to merge several internal steps into one. If the module is composed
of independent submodules, the search space may be reduced by the heuristic.

5.2 Symbolic Invariant Checking

While the enumerative checker works directly on the internal representation generated by the parser, the
symbolic checker works on a multi valued decision diagram (MDD) encoding provided by the VIS C-package
from Berkeley [5]. MDDs are a generalization of binary decision diagrams (BDDs) to enumerated datatypes.
The checker consists of two components: a model generator and an invariant checker. The model generator



produces an MDD representation of the transition relation and of the set of initial states. The transition
relation is naturally partitioned by the atoms in a conjunctive form. The invariant checker uses an image
computation routine from VIS [8] that has a very efficient early quantification heuristic. Note that most of
the symbolic model checker is written in Java. However, it calls the VIS MDD routines that are written in
C, to construct and manipulate MDDs efficiently.

For example, if the default checker is the symbolic checker and the selected judgment for the village
telephone system example is J4, then clicking the check button starts the symbolic ckecker that produces
the result shown in Figure 9.
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Figure 9: Symbolic invariant checking in MOCHA

A main objective of this release of the symbolic model checker was to support bit vectors and arrays efficiently.
In particular, the efficient representation of non-constant references to components of compound data types
like bit vectors and arrays. For example, the occurrence of a variable i in a[i] is a non-constant reference
to an array a. We use enumeration (like the enumerative checker) to compute the values of non-constant
references and, additionally, of any closed expression (a closed expression is an expression with all variables
bound by a quantifier). Thus the model generator computes the actual values of each reference or closed
expression with respect to its quantifier pattern before constructing the MDD representation. Unquantified
variables in reference expressions are assumed to be universally quantified. Note that the model generator
keeps track of the instantiations of the variables to constrain the MDD representation.

6 The Refinement Checkers

Refinement checking gives users the possibility to verify if a module (the implementation) refines another
module (the specification). A module P refines module P’, denoted by P < P’, if the traces of P are
contained in the set of traces of P'. Due to the high computational complexity of checking trace containment,
the refinement checkers in JMOCHA check if the implementation module simulates the specifiction module
assuming that (1) the specification contains no private (or hidden) variable and (2) that all variables of
specification module appear in the implementation module as well. In this case, checking simulation relation
is reduced to checking transition invariant: first, the refinement checker checks that all the initial states of the
implementation module are contained in that of the specification module, and each reachable transition of of
the implementation satisfies the transition relation of the specification module. This can be done efficiently
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either symbolically or enumeratively. If there is an implementation execution which is not permitted by
specification, IMOCHA will reproduce the execution (along with the variable dependency information) in a
simulation window. The user can then change the design by examining the execution.

For example, an intended refinement of the module UserSpec is the module UserImp below. It makes
sure that a phone goes on-hook only if it is connected or drooping.

module UserImp is
external c1,c2,c3,c4 : connType;
interface h1,h2,h3,h4 : hookType;
lazy atom impToggleHook
controls h1l,h2,h3,h4
reads h1,h2,h3,h4,cl,c2,c3,c4

init

[1 true =-> hl’ := on; h2’ := on; h3’ := on; h4’ := on;
update

[1 h1 = on => h1l’ := off;

[J “(cl = disconn) -> hl’ := on;

[J h2 = on -> h2’ := off;

[1 “(c2 = disconn) =-> h2’ := on;

[J h3 = on -> h3’ := off;

[J “(c3 = disconn) -> h3’ := on;

[J h4 = on -> h4’ := off;

[1 “(c4 = disconn) =-> h4’:= on;

The intended refinement relation can be stated in JIMOCHA as below. It can be subsequently checked either
enumeratively or symbolicaly.

judgment J1 is UserImp < UserSpec

There are several ways to circumvent the simulation restrictions about the specification variables. For
example, one can make all private specification variables become interface variables. If a specification
variable is not included in the implementation module, a witness module can be built to assign values to
the variable. The witness is in turn composed with the implementation module and checked against the
specification [7, 6, 1]

6.1 Enumerative Refinement Checking

When an implementation module is checked against a specification, the enumerative search engine generates
all possible successor states of implementation, as described in the invariant checking algorithm. Similarly,
all successors of the specification are generated in the same way. It then projects all implementation states
to specification states and checks if the projections are included in the specification. The judgment is valid
if the search engine has traversed all reachable states of the implementation.

To perform the refinement checking, the user first selects the refinement judgment in the project window,
then chooses the Check menu. The enumerative search engine will report how many states have been visited.
The optimizations of enumerative invariant checking are also applied. In particular, IMOCHA uses different
algorithm to check lazy modules.

6.2 Symbolic Refinement Checking

In this case, checking simulation relation is reduced to checking transition invariant: first, the refinement
checker checks that all the initial states of the implementation module are contained in that of the specifi-
cation module, and each reachable transition of of the implementation satisfies the transition relation of the
specification module.

For example, the result of checking the refinement judgment J1 symbolically is shown in Figure 10.

6.3 Assume/Guarantee Reasoning

Consider the implementation module SystemImp (shown below) of the the village telephone system, where
the connections are hot-lines (1-2 and 3-4). The variable p has no role in this case. It is there just because
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Figure 10: Symbolic refinement checking in IMOCHA

the specification module SystemSpec cannot have private variables. The variables 11 and 12 are used for
the finite-state control of the hot-line 1 and respectively hot-line 2.

module SystemImp is
interface c1,c2,c3,c4 : connType; p : (0..2);
external h1,h2,h3,h4 : hookType;
private 11,12 : (0..7);

atom selectHotPartner
controls p
initupdate
[1 true -> p’ := 2;

atom Linel
controls cl,c2,11

reads 11
awaits hil,h2
init
[1 true -> c1’ := disconn; c2’:= disconn; 11’:=0;
update
[J (11=0) & (hl’=off) -> 11’:=1;
[1 (11=0) & (h2’=off) =-> 11°’:=2;
[1 (11=1) & (h1l’=on) -> 11°’:=0;
[1 (11=2) & (h2’=on) -> 11’:=0;
[1 (11=1) & (h2’=0ff) -> cl’:=conn2; c2’:=connl; 11°’:=3;
[1 (11=2) & (h1’=0ff) -> cl’:=conn2; c2’:=connl; 11°’:=3;
[0 (11=3) & (h1’=on) -> cl1’:=disconn; c2’:=drooping; 11’:=4;
[J (11=3) & (h2’=on) -> c2’:=disconn; c1’:=drooping; 11°’:=5;
[1 (11=4) & (h2’=on) => c2’:=disconn; 11’:=0;
[J (11=5) & (h1’=on) -> cl’:=disconn; 11’:=0;
[1 (11=4) & (hl’=ocff) =-> 11’:= 6;
[ (11=5) & (h2’=0ff) -> 11°’:=7;
[1 (11=6) & (hl’=on) -> 11’:=4;
[1 (11=7) & (h2’=on) -> 11’:=5;
[1 (11=6) & (h2’=on) -> 11’:=1; c2’:=disconn;
[ (11=7) & (hi’=on) =-> 11°’:=2; cl1’:=disconn;
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For example, for the first line, 11=0 models the idle situation, 11=1 models the situation where the phone
1 is off-hook and waiting for phone 2, 11=2 models the situation where the phone 2 is off-hook and waiting
for phone 1, 11=3 models the situation where the phones 1 and 2 are connected, 11=4 models the situation
where the phone 1 is on-hook and phone 2 is drooping, 11=5 models the situation where the phone 2 is
on-hook and phone 1 is drooping, 11=6 models the situation where the phone 1 goes off-hook while phone
2 is drooping, 11=7 models the situation where the phone 2 goes off-hook while phone 1 is drooping. The
line 12 is used in a similar way for the second hot-line.

The lines below define the specification module Spec and the implementation module Imp as the parallel
composition of UserSpec and SystemSpec and respectively of User Imp and SystemImp. The implementation
module SystemImp is not a refinement of SystemSpec for any environment. It is easy to verify that JO does
not hold. As a consequence, one may not use compositional reasoning, to prove that Imp refines Spec as
stated in judgment J2. But this judgment is indeed true, because SystemImpl refines SystemSpec in the
more restrictive contexts given by the user modules.

module Spec is UserSpec || SystemSpec
module Imp is UserImp || SystemImp

judgment JO is SystemImp < SystemSpec
judgment J1 is UserImp < UserSpec
judgment J2 is Imp < Spec

In this case, one may either try to prove the judgment J2 directly, but this will involve a quite large state
space, or use the following assume-guarantee rule [3, 7]: if Pi||Py < P and Pj||P; < P, then it follows that
P, ||P, < P{||Pj, where Py, Py, P] and Pj are reactive modules.

Given a refinement judgment, the proof manager (or prover) of IMOCHA can suggest as many decompo-
sitions as possible according to a built in database of proof rules that includes the above assume-guarantee
rule. Once a decomposition is selected, the additional proof obligations will be added to the proof manager
as new proof judgments, and they will be displayed in the judgment browser. The user can then discharge
each of these proof obligations by invoking the refinement checker as usual.

For example, as shown in Figure 11, one may select J2 in the project window, and then click decompose
button (magnifying glass over a cube) in the tool bar or the check menu. This will pop up a window with
two decomposition rules. The first rule is intended for the symbolic checker. In has unconstrained external
variables. The second rules is intended for the enumerative checker. In this case it is better to constrain the
external variables. Choosing the first assume-guarantee rule, the two subgoals of the rule J20 and J21 are
automatically inserted in the project window. Both are easily proved by the symbolic checker.

7 The Scripting Language SLANG

SLANG is a Scripting LANGuage for the verification of reactive modules, designed with the goals of rapid
prototyping of verification algorithms, and automation of verification tasks. SLANG is a structured imperative
language with run-time type checking; upon request, IMOCHA provides a window for the interactive input
and execution of SLANG commands. In addition to the usual datatypes, such as integers, strings, and
arrays, SLANG provides access to the datatypes specific to IMOCHA, including module expressions, logical
expressions (among which invariants), MDDs, and module variables. The set of predefined operators of SLANG
includes the usual arithmetic, logical, and string operators. In addition, SLANG provides several predefined
functions that implement various model-checking tasks. For example, if P is a module expression and ¢ is
a region expression, then the function create mdd (P, ¢) returns the MDD that defines the states satisfying
¢ on the state-space of P. For MDDs ®, ®;, ®,, and for a module P, the available functions include the
following ones:

e and(®y, Py), or (P, P5), not (®) compute the corresponding boolean functions on the MDDs;

e equal (P, Ps) returns 1 (for true) if the MDDs ®; and - are equal, and 0 (false) otherwise;
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Figure 11: The proof manager and Assume/guarantee reasoning in JMOCHA
e init _reg(P) returns the MDD representing the initial states of P;

e pre(P, ®) and post(P, ®) compute the MDDs representing the successor and predecessor states of
the set of states represented by .

Other functions include functions for checking invariants and refinement relations. The usual control con-
structs are available in SLANG, such as if-then-else and while loops. New functions can be defined using
the def construct: for example, def f(x) { returns (x+1); } defines the increment-by-1 function f. In
SLANG, functions are first-order objects, and they can be passed as arguments, assigned, and returned as
results: higher-order functions can be straightforwardly written in SLANG. Complex definitions can be read
from a file using the source (filename) command, which parses and iterprets the commands present in the
specified file. As an example of the capabilities of SLANG, the following function backforth_invcheck (M,
phi) checks whether the module M implements the invariant phi, by using a mix of forward reachability
from the initial condition, and backward reachability from the complement of the invariant.

def backforth_invcheck (M, phi) {

R_back := zeroMdd;
R_forw := zeroMdd;
NR_back := not(phi);
NR_forw := init_reg(M);

while ( tequal (R_back, NR_back)
&& 'equal (R_forw, NR_forw)
%&& empty (and (NR_forw, NR_back))) {

R_forw = NR_forw;
NR_forw := or (NR_forw, post (M, NR_forw));

R_back := NR_back;
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NR_back := or (NR_back, pre (M, NR_back));
}

return (empty (and (NR_forw, NR_back))); }

The constant zeroMdd represents an MDD with empty truth-set. The function returns 1 (¢rue) if module M
satisfies invariant phi, and 0 (false) otherwise.
. Mocha: Exploiting Modularity in Model Checking HE=lE3 I
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Figure 12: Using SLANG for backwards-and-forwards reachability analysis

In the screenshot of Figure 12, this function is applied to the verification of the invariant Symm13 of module
Spec. The definition of the function is in the file /tmp/local/backforth.slang, that is sourced into
SLANG. Next, the MDD invariant is created from the expression Symm13, and the invariant is checked using
the function backforth_invcheck.
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