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Abstract. A procedure for the analysis of state spaces is called symbolic if it manipu-
lates not individual states, but sets of states that are represented by constraints. Such a
procedure can be used for the analysis of infinite state spaces, provided termination is
guaranteed. We present symbolic procedures, and corresponding termination criteria,
for the solution of infinite-state games, which occur in the control and modular verifi-
cation of infinite-state systems. To characterize the termination of symbolic procedures
for solving infinite-state games, we classify these game structures into four increasingly
restrictive categories:

1. Class 1 consists of infinite-state structures for which all safety and reachability
games can be solved.

2. Class 2 consists of infinite-state structures for which all ω-regular games can be
solved.

3. Class 3 consists of infinite-state structures for which all nested positive boolean
combinations of ω-regular games can be solved.

4. Class 4 consists of infinite-state structures for which all nested boolean combina-
tions of ω-regular games can be solved.

We give a structural characterization for each class, using equivalence relations on

the state spaces of games which range from game versions of trace equivalence to a

game version of bisimilarity. We provide infinite-state examples for all four classes of

games from control problems for hybrid systems. We conclude by presenting symbolic

algorithms for the synthesis of winning strategies (“controller synthesis”) for infinite-

state games with arbitrary ω-regular objectives, and prove termination over all class-2

structures. This settles, in particular, the symbolic controller synthesis problem for

rectangular hybrid systems.

1 Introduction

While algorithmic methods (“model checking”) were originally invented for the
analysis of finite-state systems, much recent interest has concerned the applica-
tion of such methods to infinite-state systems. There are two kinds of approaches.
Approaches of the first kind reduce an infinite-state system to an “equivalent”
finite-state system, and then explore the resulting finite state space (e.g., the
region-graph method for timed automata [2]). We call these approaches reduc-
tionist. Approaches of the second kind explore the infinite state space directly, by
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manipulating constraints that may represent infinite state sets (e.g., the clock-
zone method for timed automata [12]). We call these approaches symbolic. While
perhaps optimal in theoretical complexity, reductionist approaches usually ex-
perience state explosion, and are typically outperformed in practice by symbolic
approaches. In fact, the state-space partition induced by the execution of a
symbolic method is often much coarser than the partition corresponding to the
“equivalent” finite-state system. As they operate on infinite sets of states and
constraints, the main concern with symbolic approaches is termination. We refer
to procedures that may or may not terminate as semi-algorithms.

The control and modular verification of systems can be studied as games
played on state spaces, where the players represent controller vs. plant, or indi-
vidual processes (see, e.g., [3]). The control and modular verification of infinite-
state systems, accordingly, give rise to infinite-state games. In this paper, we
present symbolic semi-algorithms for solving two-player concurrent games on
infinite state spaces, and for synthesizing the corresponding winning strategies.
A concurrent game is played in rounds. In each round, both players simultane-
ously and independently choose moves, and the choice of moves determines a
set of possible next states (games in which the players take turns are a special
case [3]). We consider ω-regular as well as nested winning conditions, such as
“Player 1 has a strategy to reach an observable p from which player 2 cannot
reach an observable q.” We establish a set of criteria for the termination of the
semi-algorithms, leading to a classification of infinite-state games.

Symbolic methods for games are based on the controllable precondition op-
erator CPrei, for i = 1, 2 [3]: for a set σ of states, CPrei(σ) contains those states
from which player i can force the game into σ in a single round by choosing an ap-
propriate move. We show that termination of CPrei-based semi-algorithms can
be studied by reasoning about various equivalence relations on the states of an
infinite game structure, ranging from two-player versions of trace equivalence to
a two-player version of bisimilarity. First, we argue that the semi-algorithms for
solving games with specific winning conditions can be seen as instances of generic
closure semi-algorithms, which refine a partition of the state space by applying
the CPrei operators together with various boolean operators (such as set union,
intersection, and difference). Hence, if the closure semi-algorithm terminates, so
do the semi-algorithms for solving the corresponding games. Second, we show
that the closure semi-algorithms terminate exactly when certain equivalence re-
lations on the infinite state space have finite index. Thus, to obtain symbolic
decision procedures for infinite-state games, it suffices that the corresponding
equivalence relations have finite index.

Accordingly, we propose a classification of infinite-state game structures, de-
pending on which equivalence relations have finite index. The classification par-
allels the classification of infinite-state transition systems presented in [11]. The
first class of infinite-state game structures are those with finite i-bounded-reach
equivalence quotients, for i = 1, 2: two states are i-bounded-reach equivalent if
from either state, player i can force the game to the same observables in the same
number of rounds. On these infinite-state structures, we can symbolically solve

2



games with safety and reachability objectives, by iterating CPrei a finite number
of times. Game structures of the second class have finite i-trace equivalence quo-
tients: state s is i-trace contained by state t if for every player-i strategy from s,
there is a player-i strategy from t such that every possible outcome of the game
(i.e., sequence of observables) from t is also a possible outcome from s (this is the
player-i alternating trace containment of [4]). On these infinite-state structures,
we can symbolically solve all games with ω-regular winning conditions, by appro-
priately iterating CPrei, set union, and restricted intersection with observables.
Game structures of the third class have finite i-similarity (or alternating similar-
ity [4]) quotients, which permits symbolic model checking for all negation-free
properties of the game calculus, a fixpoint logic with CPrei, union, and (un-
restricted) intersection operators. Finally, the fourth class contains the game
structures with finite i-bisimilarity (or alternating bisimilarity [4]) quotients.
They permit symbolic model checking for the full game calculus (with nega-
tion). Examples of infinite-state games from all four classes can be drawn from
real-time and hybrid systems: networks of timed games, rectangular games [10],
2D rectangular games, and timed games [15] fall into the classes 1 to 4, in that
order.

The termination criteria for solving games are insufficient if we wish to syn-
thesize the corresponding winning strategies, which is important in control ap-
plications [18]. This is because for different states in CPrei(σ), player i may
have to choose different moves to force the game into σ. However, if the set of
possible moves is finite, then this problem can be overcome. We show how win-
ning strategies can be synthesized symbolically over all class-2 game structures
(finite i-trace equivalence) for all ω-regular winning conditions. Previously, sym-
bolic infinite-state controller synthesis has been solved only for the special case of
timed games [15], which fall into the more restrictive class 4 (finite i-bisimilarity).
In particular, as an instance of our results, we obtain symbolic algorithms also
for the control and controller synthesis of rectangular hybrid systems, a problem
that was left open in [10] (where a reductionist solution is given). These sym-
bolic algorithms can be executed directly by symbolic model checkers for hybrid
systems, such as HyTech [9].

2 Symbolic Game Structures

A (two-player) game structure1 G = (S,A, Γ1, Γ2, δ, P, p·q) consists of a (possibly
infinite) set S of states, a finite set A of actions, two action assignments Γ1, Γ2 :
S → 2A \ ∅ which define for each state nonempty sets of actions available to
player 1 and player 2, a partial transition function δ : S × A × A → S which
associates with each state s and each pair of actions a1 ∈ Γ1(s) and a2 ∈ Γ2(s)
a successor state, a finite set P of observables, and an observation function
p·q : P → 2S which associates with each observable a set of states. We require
that for each observable p ∈ P , there is a complementary observable p ∈ P
such that ppq = S\ppq. Intuitively, at state s, player 1 chooses an action a1

1 The multiple-player case is an immediate generalization.
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from Γ1(s) and, simultaneously and independently, player 2 chooses an action
a2 from Γ2(s). Then, the game proceeds to δ(s, a1, a2).

Given two states s, t ∈ S and actions a1 ∈ Γ1(s) and a2 ∈ Γ2(s), the state
δ(s, a1, a2) is called the (a1, a2)-successor of s. A source-s run of the game struc-
ture G is an infinite sequence s0(a0, b0)s1(a1, b1)s2 . . . of alternating states and
action pairs such that s0 = s and for all j ≥ 0, the state sj+1 is the (aj , bj)-
successor of sj. A source-s trace of G is an infinite sequence P0P1P2 . . . of sets
of observables for which there is a source-s run s0(a0, b0)s1(a1, b1) . . . such that
Pj = {p ∈ P | sj ∈ ppq} for all j ≥ 0. A strategy of player i, for i = 1, 2,
is a function fi : S+ → 2A such that ∅ ( fi(w · s) ⊆ Γi(s) for every state
sequence w ∈ S∗ and every state s ∈ S. Let f1 and f2 be a pair of strategies
for player 1 and player 2. The outcome Lf1,f2

(s) from state s ∈ S of strategies
f1 and f2 is a subset of the source-s runs of G: a run s0(a0, b0)s1(a1, b1)s2 . . .
belongs to Lf1,f2

(s) if s0 = s and for all j ≥ 0, we have aj ∈ f1(s0s1 · · · sj)
and bj ∈ f2(s0s1 · · · sj) and sj+1 = δ(sj , aj , bj). We write Lf1,f2

(s) for the set of
source-s traces that correspond to runs in Lf1,f2

(s).

2.1 Region algebras for game structures

A symbolic theory for the game structure G consists of a (possibly infinite) set
R of regions together with a function p·q : R → 2S which maps each region σ
to the (possibly infinite) set of states represented by σ, such that the following
four conditions hold:

1. Each observable is a region; that is, P ⊆ R. Furthermore, the function p·q
agrees on P with the definition of G. There are regions True,False ∈ R such
that pTrueq = S and pFalseq = ∅.

2. For each pair σ, τ ∈ R of regions, there are regions And(σ, τ) ∈ R, Or(σ, τ) ∈
R, and Diff (σ, τ) ∈ R such that pAnd(σ, τ)q = pσq∩pτq, pOr(σ, τ)q = pσq∪
pτq, and pDiff (σ, τ)q = pσq\pτq. Furthermore, the functions And ,Or ,Diff :
R×R → R are computable.

3. For each region σ ∈ R and each pair a, b ∈ A of actions, there is a region
Prea,b(σ) ∈ R such that pPrea,b(σ)q = {s ∈ S | a ∈ Γ1(s) and b ∈
Γ2(s) and δ(s, a, b) ∈ pσq}. Furthermore, the function Pre : R × A × A →
R is computable. Using boolean operations and Pre, we can compute the
functions CPreI : R → R on regions, for I = 1, 2, {1, 2}, such that

pCPre1(σ)q = {s ∈ S | ∃a ∈ Γ1(s). ∀b ∈ Γ2(s). δ(s, a, b) ∈ pσq};
pCPre2(σ)q = {s ∈ S | ∃a ∈ Γ2(s). ∀b ∈ Γ1(s). δ(s, b, a) ∈ pσq};
pCPre{1,2}(σ)q = {s ∈ S | ∃a ∈ Γ1(s). ∃b ∈ Γ2(s). δ(s, a, b) ∈ pσq}.

In particular, the region CPre1(σ) represents the states from which player 1
can force the game in one step into the region σ, no matter which action
player 2 chooses. The region CPre{1,2}(σ) represents the states from which
the two players can collaborate to force the game in one step into σ.

4. All emptiness and membership questions about regions can be decided; that
is, there are computable functions Empty : R → B and Member : S ×R→ B

such that (a) Empty(σ) iff pσq = ∅, and (b) Member (s, σ) iff s ∈ pσq.
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The tuple (R,P,And ,Or ,Diff ,Pre,Empty) is called a region algebra for G. A
symbolic semi-algorithm on game structures takes as input a region algebra for
a game structure G and generates, starting from the observables P and con-
stants True, False, regions in R by repeatedly applying the operations And , Or ,
Diff , Pre, and Empty .

Example 1. Consider the symbolic semi-algorithm Reach1:

T0 := p; for j = 0, 1, 2, . . . do Tj+1 := Or(Tj ,CPre1(Tj)) until Tj+1 ⊆ Tj

which computes, for an observable p ∈ P , the region CPre∗
1(p) of states

from which player 1 can force the game in some number of steps into
a p-state. The termination test T ⊆ T ′ is decided by checking that
Empty(And(T,Diff (True, T ′))). While each individual operation is computable,
depending on G, the iteration of operations may or may not terminate. ⊓⊔

2.2 Equivalences on game structures

State equivalences. A state equivalence ∼= is a family of relations which con-
tains for each game structure G an equivalence relation ∼=G on the states of G.
The ∼=-equivalence problem for a class C of game structures asks, given two
states s and t of a game structure G from the class C, whether s ∼=G t. The
state equivalence ∼= is as coarse as the state equivalence ∼=′ if s ∼=G t im-
plies s ∼=′

G t for all game structures G. The equivalence ∼= is coarser than ∼=′

if ∼= is as coarse as ∼=′, but ∼=′ is not as coarse as ∼=. Given a game structure
G = (S,A, Γ1, Γ2, δ, P, p·q) and a state equivalence ∼=, the quotient structure is
the game structure G/∼= = (S/∼=, A, Γ1, Γ2, δ/∼=, P, p·q/∼=), where G/∼= is the set of
equivalence classes of ∼=G, and τ ∈ δ/∼=(σ, a1, a2) if there is a state s ∈ σ and a
state t ∈ τ such that t = δ(s, a1, a2), and σ ∈ ppq/∼= if there is a state s ∈ σ such
that s ∈ ppq. The quotient construction is of particular interest to us when it
transforms an infinite-state structure G into a finite-state structure G/∼=.

Simulation-based equivalences. A binary relation � ⊆ S × S is a 1-
simulation2 if s � t implies the following two conditions:

(1) For each observable p ∈ P , if s ∈ ppq, then t ∈ ppq.
(2.1) For each a1 ∈ Γ1(s), there is a2 ∈ Γ1(t) such that for all b2 ∈ Γ2(t)

there is b1 ∈ Γ2(s) with δ(s, a1, b1) � δ(t, a2, b2).

By exchanging the subscripts 1 and 2 in condition (2.1), we obtain condi-
tion (2.2). The relation � is a 2-simulation if s � t implies the dual conditions
(1) and (2.2). The relation � is a {1, 2}-simulation if s � t implies all three con-
ditions (1), (2.1), and (2.2). For I = 1, 2, {1, 2}, the state s is I-simulated by t, in
symbols s �S

I t, if there is an I-simulation � such that s � t. We write s ∼=S
I t if

both s �S
I t and t �S

I s. The state equivalence ∼=S
I is called I-similarity. We note

that two states may be both 1-similar and 2-similar, but not {1, 2}-similar (see
Figure 1). A binary relation ∼= ⊆ S × S is an I-bisimulation if ∼= is a symmetric
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Fig. 1. The states s and t are both 1-similar and 2-similar (hence 1-trace and 2-trace
equivalent), but not equivalent with respect to all dgµ formulas (hence not {1, 2}-
similar).

I-simulation. We define s ∼=B
I t if there is an I-bisimulation ∼= such that s ∼= t.

The state equivalence ∼=B
I is called I-bisimilarity.

Trace-based equivalences. A binary relation � ⊆ S × S is a 1-trace contain-
ment3 if s � t implies that for all strategies f1 of player 1, there exists a strategy
g1 of player 1 such that for all strategies g2 of player 2, there exists a strategy
f2 of player 2 such that

(3) Lg1,g2
(t) ⊆ Lf1,f2

(s).

Given a trace ξ = P0P1P2 . . . and an observation p ∈ P , let bnd(ξ, p) be the
smallest j ≥ 0 such that p ∈ Pj , and undefined if no such j exists. The relation
� is a 1-bounded-reach containment if condition (3) is replaced by

(4) for every trace ξ ∈ Lg1,g2
(t) and observation p ∈ P , if bnd(ξ, p) is

defined, then there is a trace ξ′ ∈ Lf1,f2
(s) with bnd(ξ′, p) = bnd(ξ, p).

We define s �L
1 t (respectively, s �R

1 t) if there is a 1-trace containment (re-
spectively, 1-bounded-reach containment) � such that s � t. We write s ∼=L

1 t if
both s �L

1 t and t �L
1 s, and s ∼=R

1 t if both s �R
1 t and t �R

1 s. The state equiv-
alences ∼=L

1 and ∼=R
1 are called 1-trace equivalence and 1-bounded-reach equiva-

lence, respectively. The 1-bounded-reach equivalence characterizes termination
of reachability questions on a game structure: it can be shown that the symbolic
semi-algorithm Reach1 terminates on a region algebra of G for all observables
p ∈ P iff the 1-bounded-reach equivalence of G has finite index.

The expected relationships between these state equivalences hold. For ex-
ample, 1-bounded-reach equivalence is coarser than 1-trace equivalence, which
is coarser than 1-similarity, which is coarser than 1-bisimilarity [4]. Also, stan-
dard trace equivalence (respectively, similarity; bisimilarity), as interpreted on
the transition structure that underlies G, is coarser than 1-trace equivalence
(respectively, 1-similarity; 1-bisimilarity) [4].

2 This is the alternating simulation of [4].
3 This is the alternating trace containment of [4].
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2.3 Fixpoint calculi for game structures

State logics. A state logic Φ is a logic whose formulas are interpreted over
the states of game structures; that is, for every Φ-formula ϕ and every game
structure G, there is a set [[ϕ]]G of states of G which satisfy ϕ. The Φ model-
checking problem for a class C of game structures asks, given a Φ-formula ϕ
and a state s of a game structure G from the class C, whether s ∈ [[ϕ]]G. Two
formulas ϕ and ψ of state logics are equivalent if [[ϕ]]G = [[ψ]]G for all game
structures G. The state logic Φ is as expressive as the state logic Φ′ if for every
Φ′-formula ϕ, there is a Φ-formula ψ which is equivalent to ϕ. The logic Φ is more
expressive than Φ′ if Φ is as expressive as Φ′, but Φ′ is not as expressive as Φ.
Every state logic Φ induces a state equivalence, denoted ∼=Φ: for all states s and t
of a game structure G, define s ∼=Φ t if for all Φ-formulas ϕ, we have s ∈ [[ϕ]]G iff
t ∈ [[ϕ]]G. The state logic Φ admits abstraction if for every Φ-formula ϕ and every
game structure G, we have [[ϕ]]G =

⋃

{σ | σ ∈ [[ϕ]]G/
∼=

Φ
}; that is, a state s of G

satisfies an Φ-formula ϕ iff the ∼=Φ equivalence class of s satisfies ϕ in the quotient
structure. Consequently, if Φ admits abstraction, then every Φ model-checking
question on a game structure G can be reduced to an Φ model-checking question
on the induced quotient structure G/∼=Φ . Below, we shall repeatedly prove the
Φ model-checking problem for a class C to be decidable by observing that for
every game structure G from C, the quotient structure G/∼=Φ has finitely many
states and can be constructed effectively.

Example 2. Given an observation p ∈ P , let 3p be the set of traces ξ such that
bnd(ξ, p) is defined; that is, p occurs in ξ. The controllability formula 〈〈1〉〉3p is
true at the states from which player 1 has a strategy to control the game to reach
a p-state; that is, there is a strategy f1 of player 1 such that for all strategies f2 of
player 2, we have Lf1,f2

(s) ⊆ 3p. Both safety and reachability control problems
can be expressed as boolean combinations of controllability formulas. The semi-
algorithm Reach1 of Example 1 provides a symbolic model-checking procedure
for controllability formulas. From the characterization of Section 2.2 we conclude
that the model-checking problem for controllability formulas is decidable for all
game structures that have symbolic theories and 1-bounded-reach equivalences
with finite index. An example of infinite-state game structures with symbolic
theories and finite 1-bounded-reach equivalences are networks of timed games, a
two-player version of networks of timed automata [1]. ⊓⊔

Game calculus. The formulas are generated by the grammar

ϕ ::= p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈I〉〉© ϕ | |[I]|© ϕ | (µx : ϕ) | (νx : ϕ),

for constants p from some set Π , variables x from some set X , and teams I =
1, 2, {1, 2}. LetG = (S,A, Γ1, Γ2, δ, P, p·q) be a game structure whose observables
include all constants; that is, Π ⊆ P . Let E : X → 2S be a mapping from the
variables to sets of states. We write E [x 7→ ρ] for the mapping that agrees with
E on all variables, except that x ∈ X is mapped to ρ ⊆ S. Given G and E , every
formula ϕ defines a set [[ϕ]]G,E ⊆ S of states:
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[[p]]G,E = ppq;
[[¬p]]G,E = ppq;
[[x]]G,E = E(x);
[[ϕ1

{

∨
∧

}

ϕ2]]G,E = [[ϕ1]]G,E

{

∪
∩

}

[[ϕ2]]G,E ;

[[
{〈〈1〉〉

|[1]|

}

© ϕ]]G,E = {s ∈ S |
{∃a∈Γ1(s). ∀b∈Γ2(s).
∀a∈Γ1(s). ∃b∈Γ2(s).

}

δ(s, a, b) ∈ [[ϕ]]G,E};

[[
{〈〈1,2〉〉

|[1,2]|

}

© ϕ]]G,E = {s ∈ S |
{∃a∈Γ1(s). ∃b∈Γ2(s).
∀a∈Γ1(s). ∀b∈Γ2(s).

}

δ(s, a, b) ∈ [[ϕ]]G,E};

[[
{

µ
ν

}

x : ϕ]]G,E =
{

∩
∪

}

{ρ ⊆ S | ρ = [[ϕ]]G,E[x 7→ρ]}.

Note that the team operator 〈〈1, 2〉〉© corresponds to the existential next opera-
tor ∃©, as interpreted on the transition structure that underlies G. If we restrict
ourselves to the closed formulas, then we obtain a state logic, called game calcu-
lus4 and denoted gµ: define [[ϕ]]G as [[ϕ]]G,E for any E . The player-1 fragment of
gµ, which restricts all teams to I = 1, is called the 1-game calculus and denoted
1-gµ. The fragment {1, 2}-gµ, which restricts all teams to I = {1, 2}, is the
standard µ-calculus [14].

Proposition 1. The state equivalence induced by gµ (respectively, 1-gµ) is
{1, 2}-bisimilarity (respectively, 1-bisimilarity).

It can be shown that the game calculus gµ admits abstraction. The definition of
gµ naturally suggests a model-checking method over finite-state game structures,
where each fixpoint can be computed by successive approximation. The symbolic
semi-algorithm ModelCheck of Figure 2 applies this method to infinite-state game
structures. Suppose that the input given to ModelCheck is the region algebra of
a game structure G, the gµ-formula ϕ, and any mapping E : X → 2R from the
variables to sets of regions. Then for each recursive call of ModelCheck, each Tj ,
for j ≥ 0, is a region from R, and each recursive call returns a region from R.
Furthermore, if it terminates, then ModelCheck returns a region [ϕ]E such that
[ϕ]E = [[ϕ]]G,E , where E(x) =

⋃

{pσq | σ ∈ E(x)} for all x ∈ X . In particular, if
ϕ is closed, then a state s of G satisfies ϕ iff Member (s, [ϕ]E).

Negation-free game calculus. The formulas of the negation-free game calcu-
lus, denoted ngµ, are the boolean combinations of gµ-formulas generated by the
grammar

ϕ ::= p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈I〉〉© ϕ | (µx : ϕ) | (νx : ϕ).

No negations are permitted in the scope of team operators, all of which have
the form 〈〈I〉〉, except in front of observables. Consequently, team operators can
be nested only if they have the same force (either 〈〈〉〉 or |[]| force). The player-1
fragment of ngµ, which restricts all teams to I = 1, is called the negation-free
1-game calculus and denoted 1-ngµ. The fragment {1, 2}-ngµ, which restricts
all teams to I = {1, 2}, is equivalent to the boolean combinations of existential
and universal µ-calculus formulas, which include ∃Ctl and ∀Ctl.

Proposition 2. The state equivalence induced by ngµ (respectively, 1-ngµ) is
{1, 2}-similarity (respectively, 1-similarity).

4 This is the alternating-time µ-calculus of [3].
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Symbolic semi-algorithm ModelCheck

Input: a region algebra (R, P,And ,Or , Diff ,Pre, Empty), a formula ϕ ∈ gµ,
and a mapping E with domain X.

Output: [ϕ]E :=
if ϕ = p then return p;
if ϕ = ¬p then return p;
if ϕ = x then return E(x);
if ϕ = (ϕ1 ∨ ϕ2) then return Or([ϕ1]E , [ϕ2]E);
if ϕ = (ϕ1 ∧ ϕ2) then return And([ϕ1]E , [ϕ2]E)
if ϕ = 〈〈I〉〉© ϕ′ then return CPreI([ϕ

′]E);
if ϕ = |[I ]|© ϕ′ then return Diff (True,CPreI(Diff (True, [ϕ′]E)));
if ϕ = (µx : ϕ′) then

T0 := False;
for j = 0, 1, 2, . . . do Tj+1 := [ϕ′]E[x 7→Tj ] until Tj+1 ⊆ Tj ;
return Tj ;

if ϕ = (νx : ϕ′) then

T0 := True;
for j = 0, 1, 2, . . . do Tj+1 := [ϕ′]E[x 7→Tj ] until Tj+1 ⊇ Tj ;
return Tj .

Fig. 2. Model checking.

Deterministic game calculus. The formulas of the deterministic game cal-
culus, denoted dgµ, are the boolean combinations of gµ-formulas generated by
the grammar

ϕ ::= p | ¬p | x | ϕ ∨ ϕ | p ∧ ϕ | 〈〈I〉〉© ϕ | (µx : ϕ) | (νx : ϕ).

Note that in deterministic formulas, one argument of each conjunction is an
observable. The player-1 fragment of dgµ, which restricts all teams to I = 1,
is called the deterministic 1-game calculus and denoted 1-dgµ. The fragment
{1, 2}-dgµ, which restricts all teams to I = {1, 2}, corresponds to the boolean
combinations of existential and universal ω-regular trace properties [11], which
include Ltl. We can characterize the expressive power of 1-dgµ similarly. Let
1-gω be the state logic that consists of all formulas of the form 〈〈1〉〉K, where K
is an ω-regular expression with constants from Π [19]. We identify K with the
set of infinite words over the alphabet 2Π that satisfy K. Let G be a game struc-
ture whose observables contain Π . A state s of G is in [[〈〈1〉〉K]]G if player 1 has
a strategy f1 such that for all strategies f2 of player 2, we have Lf1,f2

(s) ⊆ K.
Given a formula ϕ of 1-dgµ, we can inductively construct an ω-regular expres-
sion Kϕ such that 〈〈1〉〉Kϕ and ϕ are equivalent [8]. In Section 4, we will show
conversely that every 1-gω formula can be translated into an equivalent formula
of 1-dgµ.

Theorem 1. The state logics 1-dgµ and 1-gω are equally expressive.

Corollary 1. The state equivalence induced by 1-dgµ is 1-trace equivalence.

9



It is an open problem to characterize the state equivalence induced by the full
deterministic game calculus dgµ, which is strictly finer than the intersection of
∼=L

1 and ∼=L
2 (see Figure 1).

3 Three Symbolic Semi-algorithms on Game Structures

We define three closure semi-algorithms, and we characterize their termination
in terms of three state equivalences. The three closure semi-algorithms compute
regions that are also computed by the symbolic semi-algorithm ModelCheck on
certain inputs. Thus, the closure semi-algorithms enable us to study the termina-
tion of ModelCheck on classes of input structures and input formulas. They enable
us to separate termination concerns from partial-correctness concerns, such as
the solution of Ltl games using ModelCheck. In particular, partial-correctness
arguments can often follow the corresponding proofs for finite-state games.

3.1 Observation refinement

The symbolic semi-algorithm OR, called observation refinement, on a region
algebra starts from the finite set T0 := P of observables and generates inductively
the finite sets of regions

Tj+1 = Tj ∪ {CPre1(σ),CPre2(σ),CPre{1,2}(σ) | σ ∈ Tj}
∪ {Or(σ, τ) | σ, τ ∈ Tj} ∪ {And(σ, p) | σ ∈ Tj and p ∈ P}

for j ≥ 0. Note that OR applies only a restricted form of the And operation: one
argument is always an observable. Let pT q denote the set {pσq | σ ∈ T }. The
semi-algorithm OR terminates iff there is a j such that pTj+1q ⊆ pTjq. Termi-
nation can be decided as follows: for each region σ ∈ Tj+1 we check that there is
a region τ ∈ Tj such that both Empty(Diff (σ, τ)) and Empty(Diff (τ, σ)). The
symbolic semi-algorithm OR1 closes P under the operations CPre1, union, and
intersection with observables (but not under CPre2 and CPre{1,2}). If we close P
under CPre{1,2} and intersection with observables, then the result characterizes
trace equivalence on the underlying transition structure [11]. Suppose that the
input given to OR1 is the region algebra of a game structure G. It can be seen
by induction that for all j ≥ 0, every region in Tj, as computed by OR1, repre-
sents a ∼=

1-dgµ
G -block (i.e., a union of equivalence classes). Thus, if ∼=

1-dgµ
G has

finite index, then OR1 terminates. Conversely, suppose that OR1 terminates with
pTj+1q ⊆ pTjq. It can be shown that if two states are not ∼=

1−-dgµ
G -equivalent,

then there is a region in Tj which contains one state but not the other. This
implies that ∼=

1-dgµ
G has finite index.

Theorem 2. The symbolic semi-algorithm OR1 terminates on the region algebra
of a game structure G iff the 1-trace equivalence of G has finite index.

All regions generated by the symbolic semi-algorithm ModelCheck for input
formulas from 1-dgµ are also generated by the observation-refinement semi-
algorithm OR1. Therefore, if OR1 terminates, so does ModelCheck on inputs
from 1-dgµ.

10



Corollary 2. The model-checking problems for 1-dgµ and 1-gω are decidable
on all game structures that have symbolic theories and 1-trace equivalences with
finite index.

The rectangular games [10] are a class of infinite-state game structures with
symbolic theories and finite 1-trace equivalences. While in [10] rectangular hybrid
games are solved by translation to timed games, which is impractical, the results
of this section and Section 4 suggest a direct symbolic semi-algorithm for solving
rectangular games, which is guaranteed to terminate. Such an algorithm has been
implemented in the tool HyTech.

3.2 Intersection refinement

The symbolic semi-algorithm IR, called intersection refinement, on a region al-
gebra starts from the finite set T0 := P of observables and generates inductively
the finite sets of regions

Tj+1 = Tj ∪ {CPre1(σ),CPre2(σ),CPre{1,2}(σ) | σ ∈ Tj}
∪ {Or(σ, τ) | σ, τ ∈ Tj} ∪ {And(σ, τ) | σ, τ ∈ Tj}

for j ≥ 0. The semi-algorithm IR terminates iff there is a j such that pTj+1q ⊆
pTjq. The symbolic semi-algorithm IR1 closes P under the operations CPre1,
union, and intersection. If we close P under CPre{1,2}, union, and intersec-
tion, then the result characterizes similarity on the underlying transition struc-
ture [11]. Suppose that the input given to IR1 is the region algebra of a game
structure G. For j ≥ 0 and a state s of G, define Simj(s) =

⋂

{pσq | σ ∈
Tj and s ∈ pσq}, where the set Tj of regions is computed by IR1. By induction it
is easy to check that for all j ≥ 0, if t 1-simulates s, then t ∈ Simj(s). Thus, ev-
ery region in Tj represents a block of the 1-similarity for G. Conversely, suppose
that IR1 terminates with pTj+1q ⊆ pTjq. From the definition of 1-simulations,
it follows that if t ∈ Simj(s), then t 1-simulates s.

Theorem 3. The symbolic semi-algorithm IR (respectively, IR1) terminates on
the region algebra of a game structure G iff the {1, 2}-similarity (respectively,
1-similarity) of G has finite index.

Corollary 3. The model-checking problem for ngµ (respectively, 1-ngµ) is de-
cidable on all game structures that have symbolic theories and {1, 2}-similarity
(respectively, 1-similarity) equivalences with finite index.

An example of infinite-state game structures with symbolic theories and finite
{1, 2}-similarity equivalences are the 2-dimensional rectangular games [10].

3.3 Partition refinement

The symbolic semi-algorithm PR, called partition refinement, on a region algebra
starts from the finite set T0 := P of observables and generates inductively the
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finite sets of regions

Tj+1 = Tj ∪ {CPre1(σ),CPre2(σ),CPre{1,2}(σ) | σ ∈ Tj}
∪ {Or(σ, τ) | σ, τ ∈ Tj} ∪ {And(σ, τ) | σ, τ ∈ Tj}
∪ {Diff (σ, τ) | σ, τ ∈ Tj}

for j ≥ 0. The semi-algorithm PR terminates iff there is a j such that pTj+1q ⊆
pTjq. The symbolic semi-algorithm PR1 closes P under CPre1 and the boolean
operations union, intersection, and set difference. If we close P under CPre{1,2}

and all boolean operations, then the result characterizes bisimilarity on the un-
derlying transition structure [5, 13]. The following is shown similar to the analysis
of intersection refinement.

Theorem 4. The symbolic semi-algorithm PR (respectively, PR1) terminates on
the region algebra of a game structure G iff the {1, 2}-bisimilarity (respectively,
1-bisimilarity) of G has finite index.

Corollary 4. The model-checking problem for gµ (respectively, 1-gµ) is decid-
able on all game structures that have symbolic theories and {1, 2}-bisimilarity
(respectively, 1-bisimilarity) equivalences with finite index.

An example of infinite-state game structures with symbolic theories and finite
{1, 2}-bisimilarity equivalences are the timed games [15].

4 Symbolic Controller Synthesis

We present symbolic semi-algorithms for solving the ω-regular control and con-
trol synthesis problems, and we provide conditions for the termination of these
semi-algorithms. Consider a game structure G and an ω-regular expression K
whose constants are observables of G. Player 1 can control the state s of G w.r.t.
K if there exists a strategy f1 of player 1 such that for every strategy f2 of
player 2, we have Lf1,f2

(s) ⊆ K. In this case, we say that the strategy f1 is a
control strategy for K from s. The ω-regular control problem asks, given G and
K, which states of G can be controlled w.r.t. K. The ω-regular control synthesis
problem asks, in addition, for the construction of the control strategy.

Following [7], we use deterministic Rabin-chain automata (also called parity
automata) for encoding the ω-regular property K. Deterministic Rabin-chain
automata can encode all ω-regular properties [17], and they lead to compact
gµ formulas for solving the corresponding control problems.5 A Rabin-chain
automaton of index n is a tuple C = (Q,Q0, ∆, Ψ, ℓ, Ω), where Q is a finite set of
states, Q0 ⊆ Q is the set of initial states, ∆ : Q→ 2Q is the transition relation, Ψ
is the input alphabet, ℓ : Q→ Ψ is a state labeling, and Ω : Q→ {0, . . . , n−1} is

5 The solution of the ω-regular control problem on game structures requires deter-
ministic ω-automata (see, e.g., [19]), whereas nondeterministic (and hence Büchi)
ω-automata suffice for the ω-regular verification problem on the underlying transi-
tion structures, as in [11].
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the acceptance condition. An execution of C on the infinite wordw0w1w2 . . . ∈ Ψω

is an infinite sequence e = q0q1q2 . . . of states such that q0 ∈ Q0 and for all
j ≥ 0, both ℓ(qj) = wj and qj+1 ∈ ∆(qj). Let inf(e) denote the set of states
that occur infinitely often along e. The execution e is accepting if the maximum
index in the set {Ω(q) | q ∈ inf(e)} is even. The automaton accepts the input
word w if it has an accepting execution on w. The language of C is the set
L(C) = {w ∈ Ψω | C accepts w}. The automaton C is deterministic and total if
(1a) for all states q′, q′′ ∈ Q0, if q′ 6= q′′, then ℓ(q′) 6= ℓ(q′′); (1b) for all input
letters ψ ∈ Ψ , there is a state q′ ∈ Q0 such that ℓ(q′) = ψ; (2a) for all states
q ∈ Q and q′, q′′ ∈ ∆(q), if q′ 6= q′′, then ℓ(q′) 6= ℓ(q′′); (2b) for all states q ∈ Q
and input letters ψ ∈ Ψ , there is a state q′ ∈ ∆(q) such that ℓ(q′) = ψ. If C is
deterministic and total, then we write ∆(q, ψ) for the unique state q′ ∈ ∆(q)
with ℓ(q′) = ψ.

Let G = (S,A, Γ1, Γ2, δ, P, p·q) be a game structure and C =
(Q,Q0, ∆, Ψ, ℓ, Ω) a Rabin-chain automaton of index n such that Ψ ⊆ 2P . To
solve the ω-regular control problem for G and C, we first construct a 1-dgµ
formula χ′ that computes the controllable states of the game structure C × G,
obtained by taking the synchronous product between C and G. From χ′, we con-
struct a 1-dgµ formula χ that solves the ω-regular control problem directly on G.
The product game structure C×G = (S′, A, Γ ′

1, Γ
′
2, δ

′, (Q×P )∪{c0, . . . , cn−1},
p·q′) is defined as follows. For a state s ∈ S, let Ps = {p ∈ P | s ∈ ppq} be the set
of observables at s. Define S′ = {(q, s) ∈ Q×S | ℓ(q) = Ps}, with Γ ′

i (q, s) = Γi(s)
for i = 1, 2, and δ′((q, s), a1, a2) = (∆(q, Pδ(s,a1,a2)), δ(s, a1, a2)). Furthermore,
p(q, p)q′ = {(q, s) | s ∈ ppq}, and pciq

′ = {(q, s) | Ω(q) = i} for all 0 ≤ i < n.
Given a symbolic theory for G with the set R of regions, we define a symbolic
theory for C × G using as regions all functions of the form R′: Q → R, with
pR′

q =
⋃

q∈Q{(q, s) | s ∈ pR′(q)q}. From this representation, it is clear that the
operations CPreI for I = 1, 2, {1, 2}, And , Or , Diff , Empty , and Member are
computable.

We give the formula χ′ in equational form; it is straightforward to convert
it to a formula of 1-dgµ by unrolling the equations and binding variables with
µ or ν fixpoints. The formula χ′ is composed of n blocks B′

0, . . . , B
′
n−1; block

B′
0 is the innermost, and block B′

n−1 the outermost. The block B′
0 is a ν-block,

and consists of the single equation x0 =
∨n−1

j=0 (cj ∧ 〈〈1〉〉© xj). For 1 ≤ i < n,
the block B′

i is a µ-block if i is odd, a ν-block if i is even, and consists of the
single equation xi = xi−1. The output variable is xn−1. From the construction,
it follows that player 1 can control a state s of G w.r.t. C iff (q, s) ∈ [[χ′]]C×G

for the unique q ∈ Q0 such that (q, s) ∈ S′. The formula χ mimics on G the
evaluation of χ′ on C×G. It contains for each variable xi of χ′, for 0 ≤ i < n, the
set {xq

i | q ∈ Q} of variables: the value of xq
i at s keeps track of the value of xi at

(q, s). The formula χ is composed of n blocks B0, . . . , Bn−1. For 0 ≤ i < n, the
block Bi consists of the set {eq

i | q ∈ Q} of equations. The equation eq
i is derived

by replacing in the equation of block B′
i on the l.h.s. the variable xi with xq

i , and
by replacing on the r.h.s. cj with true if Ω(q) = j and false otherwise, and by
replacing 〈〈1〉〉©xj with 〈〈1〉〉©

∨

r∈∆(q) x
r
j ; the r.h.s. is then conjuncted with the
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Fig. 3. Game structure on which OR1 terminates, but CR1 does not.
(Player 2 has only one move enabled at each state.)

formula (
∧

p∈ℓ(q) p) ∧ (
∧

p∈P\ℓ(q) ¬p), which characterizes the observables of q.

The block Bn−1 contains the additional equation xout =
∨

q∈Q0
xq

n−1, which
defines the output variable xout. Then, player 1 can control a state s of G w.r.t.
C iff s ∈ [[χ]]G.

Lemma. Each 1-gω formula can be translated into an equivalent 1-dgµ formula.

To solve the ω-regular control synthesis problem, assume that the semi-algorithm
OR1 terminates, let U be the resulting finite set of regions that define 1-trace
equivalence classes for C × G, and let U ′ be the regions that define unions of
regions from U .While computing χ′, we can determine a region strategy f̂ : U →
U ′ for the product structure C × G following the algorithm for finite games [7,
20]. When the game is in pσq, for a region σ ∈ U , player 1 must choose an action

that forces the game into pf̂(σ)q. Note that pσq ⊆ pCPre1(f̂(σ))q for all σ ∈ U

(if σ cannot be controlled, set f̂(σ) = True). From the region strategy f̂ , we
can obtain a memoryless strategy f : Q×S → 2A for C ×G by recovering which
actions player 1 can choose at each state to force the game from pσq to pf̂(σ)q.
To this end, we define the function Pre1: R×A→ R such that

pPrea
1(σ)q = {s ∈ S | a ∈ Γ1(s) ∧ ∀b ∈ Γ2(s). δ(s, a, b) ∈ pσq}

for all a ∈ A and σ ∈ R.6 For σ ∈ U and a ∈ A, let σa = Prea
1(f̂(σ)). Then

pσq ⊆ p
⋃

a∈A σaq, because there is always at least one controlling action. If the
game is at state (q, s) ∈ pσq for a region σ ∈ U , define f(q, s) = {a ∈ A | (q, s) ∈
pσaq}. Unlike a control strategy for C × G, a control strategy for G may need
memory [6, 16]. We can construct such a strategy f ′ as follows. As the game
goes on, the strategy f ′ feeds the observables of the visited states to a copy of
the Rabin chain automaton C, remembering the current state of the automaton.
Upon reaching a state s, player 1 chooses an action in f(q, s), where q is the
current state of the automaton.

Theorem 5. The ω-regular control synthesis problem can be solved on all game
structures that have symbolic theories and 1-trace equivalences with finite index.

Using the above construction, control strategies can be obtained symbolically.
The construction uses the function Pre1 to split the regions computed by the

6 Note that the function Pre1 can be computed from Pre using boolean operations.
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semi-algorithm OR1. However, we do not use Pre1 to refine the region algebra
into an algebra that is closed with respect to Pre1. In fact, even if the semi-
algorithm OR1 terminates, a refinement based on Pre1 may not. More precisely,
let CR1 be the semi-algorithm obtained from OR1 by replacing CPre1 with Pre1.
As the example of Figure 3 demonstrates, there are game structures on which
OR1 terminates, but CR1 does not. The construction given above uses Pre1 only
once to refine the regions returned by OR1, thus avoiding the problem.
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