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ABSTRACT
We consider two-player games played for an infinite number
of rounds, with ω-regular winning conditions. The games
may be concurrent, in that the players choose their moves
simultaneously and independently, and probabilistic, in that
the moves determine a probability distribution for the suc-
cessor state. We introduce quantitative game µ-calculus, and
we show that the maximal probability of winning such games
can be expressed as the fixpoint formulas in this calculus.
We develop the arguments both for deterministic and for
probabilistic concurrent games; as a special case, we solve
probabilistic turn-based games with ω-regular winning con-
ditions, which was also open. We also characterize the opti-
mality, and the memory requirements, of the winning strate-
gies. In particular, we show that while memoryless strategies
suffice for winning games with safety and reachability con-
ditions, Büchi conditions require the use of strategies with
infinite memory. The existence of optimal strategies, as op-
posed to ε-optimal, is only guaranteed in games with safety
winning conditions.

1. INTRODUCTION
We consider two-player games played on finite state spaces

for an infinite number of rounds. In each round, depending
on the current state of the game, the moves of one or both
players determine the next state [25]; we consider games
in which the set of available moves is finite. Such games
offer a model for systems composed of interacting compo-
nents, and they have been studied under a wide range of
winning conditions. The winning conditions are often cod-
ified by associating a reward with each state and choice of
moves, and by studying the maximal discounted, total, or
average reward that player 1 can obtain in such a game; a
survey of algorithms for solving games with respect to such
winning conditions is e.g. [24, 10]. Here, we consider win-
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ning conditions consisting in ω-regular automata acceptance
conditions defined over the state space of the game [2, 11,
26]. Given a game with an ω-regular winning condition and
a starting state s, we study the maximal probability with
which player 1 can ensure that the condition holds from s;
we call this maximal probability the value of the game at s
for player 1. The determinacy result of [17] ensures that, at
all states and for all ω-regular winning conditions, the value
of the game for player 1 is equal to one minus the value of
the game with complementary condition for player 2.

We distinguish between turn-based and concurrent games,
and between deterministic and probabilistic games. Systems
in which the interaction between the components is asyn-
chronous give rise to turn-based games, where in each round
only one of the two players can choose among several moves.
On the other hand, synchronous interaction leads to concur-
rent games, where in each round both players can choose si-
multaneously and independently among several moves. The
games are deterministic if the current state and the moves
uniquely determine the successor state, and are probabilistic
if the current state and the moves determine a probability
distribution for the successor state. For any ω-regular win-
ning condition, the value of a deterministic turn-based game
at a state is either 0 or 1; moreover, player 1 can achieve this
value by playing according to a deterministic strategy, that
select a move based on the current state and on the history
of the game [2, 11]. In contrast, the value of a concurrent
game at a state may be strictly between 0 and 1; further-
more, achieving this value may require the use of randomized
strategies, that select not a move, but a probability distri-
bution over moves. To see this, consider the concurrent
game MatchOneBit. The game starts at state s0, where
both players simultaneously and independently choose a bit
(0 or 1); if the bits match, the game proceeds to state swin ,
otherwise, it proceeds to state slose . Once at swin (resp.
slose) the state is confined there forever. Consider the safety
condition 2{s0, swin}, requiring that slose is not entered. For
every deterministic strategy of player 1, player 2 has another
(complementary) deterministic strategy that ensures a tran-
sition to slose ; hence, if player 1 could only use deterministic
strategies, he would win with probability 0. However, if
player 1 uses a randomized strategy that chooses both bits
at random with uniform probability, then the game enters
state swin with probability 1/2, regardless of the strategy of
player 2; indeed, the value of the game at s0 is 1/2.

The value of deterministic turn-based games with ω-
regular winning conditions can be computed with the al-
gorithms of [2, 11, 8, 26]. The algorithms of [8] are based
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on the use of game µ-calculus, obtained by replacing the
predecessor operator Pre of classical µ-calculus [14] by the
controllable predecessor operator Cpre: for a set of states U ,
the set Cpre(U) consists of the states from which player 1
can force the game into U in one step. A richer version of
game µ-calculus was used in [6] to provide qualitative solu-
tions for concurrent probabilistic games with ω-regular con-
ditions. There, multi-argument predecessor operators are
used to compute the set of states from which player 1 can
win with probability 1, or arbitrarily close to 1.

We introduce quantitative game µ-calculus, and use it to
provide a uniform framework for understanding and solv-
ing concurrent games with ω-regular winning conditions. In
quantitative game µ-calculus, sets of states are replaced by
functions from states to the interval [0, 1], and the control-
lable predecessor operator Cpre is replaced by a quantitative
version Ppre. Given a function f from states to the inter-
val [0, 1], the function g = Ppre(f) associates with each
state the maximal expected value of f that player 1 can
ensure in one step. The operator Ppre can be evaluated
using results about matrix games [29, 23]. Related quanti-
tative predecessor operators for one-player structures were
considered in [13, 20, 12, 18]. We show that the values
of concurrent games with ω-regular conditions can be ob-
tained simply by replacing Cpre by Ppre in the solutions
of [8]. The result is surprising because concurrent games
differ from turn-based deterministic games in several fun-
damental respects. First, concurrent games require in gen-
eral the use of randomized strategies, as remarked above.
Second, even for the simple winning condition of reachabil-
ity, optimal strategies may not exist: one can only guar-
antee the existence of ε-optimal strategies for all ε > 0
[9]. Third, whereas finite-memory strategies suffice for win-
ning deterministic turn-based games, in concurrent games
both ε-optimal strategies, and optimal strategies if they ex-
ist, may need an infinite amount of memory [6]. Fourth,
the standard recursive structure of proofs for deterministic
turn-based games [19, 26] breaks down, as both players can
choose a distribution over moves at each state.

We develop the arguments both for deterministic and for
probabilistic concurrent games. Hence, as a special case we
solve probabilistic turn-based games with ω-regular winning
conditions, which was also an open problem. The quantita-
tive game µ-calculus solution formulas provide the value also
of games with countable, rather than finite, state space. We
also characterize the optimality, and the memory require-
ments, of the winning strategies. In particular, we show
that while memoryless strategies suffice for winning games
with safety and reachability conditions, Büchi and Rabin-
chain conditions require the use of strategies with infinite
memory. The existence of optimal strategies, as opposed to
ε-optimal, is only guaranteed in games with safety winning
conditons.

As remarked by [8] in the context of deterministic turn-
based games, the use of µ-calculus for solving games helps
in the formulation of the correctness arguments. In order to
argue the correctness of a solution formula, we need to show
that player 1 has an optimal (or ε-optimal) strategy that
realizes the value given by the formula, and that player 2
has a “spoiling” strategy that is optimal (or ε-optimal) for
the game with the complementary condition. Since the op-
erator Ppre in the solution formula refers to player 1, an
optimal strategy for player 1 can be constructed from the

fixpoint of the formula. On the other hand, the derivation
of spoiling strategies for player 2 is not immediate: indeed,
even for games with safety or reachability conditions, the
standard argument involves the consideration of discounted
versions of the games (see, e.g., [10]). In contrast, by writ-
ing the solution formula in game µ-calculus, we place the
burden of the argument on the syntactic complementation
of the solution formula. Specifically, for a winning condition
Ψ, we characterize the maximal probabilities of winning the
game by a µ-calculus formula φ, and from φ we construct
an optimal (or ε-optimal) strategy for player 1. The syn-
tactic complement ¬φ of φ gives the maximal probabilities
for player 2 to win the dual game with condition ¬Ψ. From
¬φ, we can again construct an optimal (or ε-optimal) strat-
egy for player 2 for the game with condition ¬Ψ. The two
constructions are enough to conclude the correctness of our
solution formulas.

The iterative interpretation of quantitative game µ-
calculus leads to algorithms for the computation of approx-
imate solutions. By representing value functions symbol-
ically, these algorithms may be used for the approximate
analysis of games with very large state spaces [3, 7]. Unfor-
tunately, except for safety and reachability conditions, the
alternance of least and greatest fixpoint operators in the so-
lution formulas leads to approximation schemes that do not
converge monotonically to the value of a game. This situ-
ation contrasts with the one for Markov decision processes,
where monotonically-converging approximation schemes are
available, and where the maximal winning probability can
be computed in polynomial time by reduction to linear pro-
gramming [5]. We show that this discrepancy is no accident,
since the basic device for solving Markov decision processes
with ω-regular conditions, viz., a reduction to reachability,
fails for games.

2. CONCURRENT GAMES
For a countable set A, a probability distribution on A is a

function p : A 7→ [0, 1] such that
P

a∈A p(a) = 1. We denote
the set of probability distributions on A by D(A). A (two-
player) concurrent game structure G = 〈S,Moves , Γ1, Γ2, p〉
consists of the following components:

• A finite state space S.

• A finite set Moves of moves.

• Two move assignments Γ1, Γ2 : S 7→ 2Moves \ ∅. For
i ∈ {1, 2}, assignment Γi associates with each state
s ∈ S the non-empty set Γi(s) ⊆ Moves of moves
available to player i at state s.

• A probabilistic transition function p, that gives the
probability p(t | s, a1, a2) of a transition from s to t for
all s, t ∈ S and all moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s).

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s),
and simultaneously and independently player 2 chooses a
move a2 ∈ Γ2(s). The game then proceeds to the successor
state t with probability p(t | s, a1, a2), for all t ∈ S. We as-
sume that the players act non-cooperatively, i.e., each player
chooses her strategy independently and secretly from the
other player, and is only interested in maximizing her own
reward. A path of G is an infinite sequence s = s0, s1, s2, . . .
of states in S such that for all k ≥ 0, there are moves
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ak
1 ∈ Γ1(sk) and ak

2 ∈ Γ2(sk) with p(sk+1 | sk, ak
1 , ak

2) > 0.
We denote by Ω the set of all paths.

We distinguish the following special classes of concurrent
game structures.

• A concurrent game structure G is deterministic if for
all s ∈ S and all a1 ∈ Γ1(s), a2 ∈ Γ2(s), there is a
t ∈ S such that p(t | s, a1, a2) = 1.

• A concurrent game structure G is turn-based if at every
state at most one player can choose among multiple
moves; that is, if for every state s ∈ S there exists at
most one i ∈ {1, 2} with |Γi(s)| > 1.

For brevity, we refer to concurrent turn-based game struc-
tures simply as turn-based game structures.

2.1 Randomized strategies
A strategy for player i ∈ {1, 2} is a mapping πi : S+ 7→

D(Moves) that associates with every nonempty finite se-
quence σ ∈ S+ of states, representing the past history of
the game, a probability distribution π1(σ) used to select
the next move. Thus, the choice of the next move can be
history-dependent and randomized. The strategy πi can
prescribe only moves that are available to player i; that is,
for all sequences σ ∈ S∗ and states s ∈ S, we require that
πi(σs)(a) > 0 iff a ∈ Γi(s). We denote by Πi the set of
all strategies for player i ∈ {1, 2}. A strategy π is deter-
ministic if for all σ ∈ S+ there exists a ∈ Moves such that
π(σ)(a) = 1. Thus, deterministic strategies are equivalent
to functions S+ 7→ Moves . A strategy π is finite-memory if
the distribution chosen at every state s ∈ S depends only on
s itself, and on a finite number of bits of information about
the past history of the game. A strategy π is memoryless if
π(σs) = π(s) for all s ∈ S and all σ ∈ S∗.

Once the starting state s and the strategies π1 and π2

for the two players have been chosen, the game is reduced
to an ordinary stochastic process. Hence, the probabilities
of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths1. For an event A ⊆ Ω, we denote by
Prπ1,π2

s (A) the probability that a path belongs to A when
the game starts from s and the players use the strategies
π1 and π2. Similarly, for a measurable function f that as-
sociates a number in IR ∪ {∞} with each path, we denote
by Eπ1,π2

s {f} the expected value of f when the game starts
from s and the strategies π1 and π2 are used. We denote
by Θi the random variable representing the i-th state of a
path; formally, Θi is a variable that assumes value si on the
path s0, s1, s2, . . ..

2.2 Winning conditions
Given a concurrent game structure G =

〈S,Moves , Γ1, Γ2, p〉, we consider winning conditions
expressed by linear-time temporal logic (LTL) formulas,
whose atomic propositions correspond to subsets of the
set S of states [16]. We focus on winning conditions that
correspond to safety or reachability properties, as well as
winning conditions that correspond to the accepting criteria
of Büchi, co-Büchi, and Rabin-chain automata [21, 8]. We
call games with such winning conditions safety, reachability,
Büchi, co-Büchi, and Rabin-chain games, respectively. The

1To be precise, we should define events as measurable sets of
paths sharing the same initial state. However, our (slightly)
improper definition leads to more concise notation.

ability to solve games with Rabin-chain conditions suffices
for solving games with arbitrary LTL (or ω-regular) winning
conditions: in fact, it suffices to encode the ω-regular con-
dition as a deterministic Rabin-chain automaton, solving
then the game consisting of the synchronous product of the
original game with the Rabin-chain automaton [21, 26].

Given an LTL winning condition Ψ, by abuse of notation
we denote equally by Ψ the set of paths s ∈ Ω that satisfy
Ψ; this set is measurable for any choice of strategies for the
two players [28]. Hence, the probability that a path satisfies
Ψ starting from state s ∈ S under strategies π1, π2 for the
two players is Prπ1,π2

s (Ψ). Given a state s ∈ S and a win-
ning condition Ψ, we are interested in finding the maximal
probability with which player i ∈ {1, 2} can ensure that Ψ
holds from s. We call such probability the value of the game
Ψ at s for player i ∈ {1, 2}. This value for player 1 is given
by the function 〈1〉Ψ : S 7→ [0, 1], defined for all s ∈ S by

〈1〉Ψ(s) = sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2

s (Ψ).

The value for player 2 is given by the function 〈2〉Ψ, defined
symmetrically. Concurrent games satisfy a quantitative ver-
sion of determinacy [17], stating that for all LTL conditions
Ψ and all s ∈ S, we have

〈1〉Ψ(s) = 1 − 〈2〉¬Ψ(s).

A strategy π1 for player 1 is optimal if for all s ∈ S we have

inf
π2∈Π2

Prπ1,π2

s = 〈1〉Ψ(s).

For ε > 0, a strategy π1 for player 1 is ε-optimal if for all
s ∈ S we have

inf
π2∈Π2

Prπ1,π2

s ≥ 〈1〉Ψ(s) − ε.

Note that the quantitative determinacy of concurrent games
is equivalent to the existence of ε-optimal strategies for all
ε > 0 at all states s ∈ S. For the special case of determin-
istic turn-based games, it is known that the value of any
ω-regular game at a state is either 0 or 1, and finite-memory
deterministic optimal strategies always exist; the value of
the game can be computed with the algorithms of [2, 11, 8].

2.3 Predecessor operators
Let F be the space of all functions S 7→ [0, 1] that map

states into the interval [0, 1]. Given two functions f, g ∈ F ,
we write f > g (resp. f ≥ g) if f(s) > g(s) (resp. f(s) ≥
g(s)) at all s ∈ S, and we define f ∧ g and f ∨ g by

(f ∧ g)(s) = min {f(s), g(s)}

(f ∨ g)(s) = max {f(s), g(s)}

for all s ∈ S. We denote by 0 and 1 the constant functions
that map all states into 0 and 1, respectively. For all f ∈ F ,
we denote by 1 − f the function defined by (1 − f)(s) =
1 − f(s) for all s ∈ S. Given a subset Q ⊆ S of states, by
abuse of notation we denote also by Q the indicator function
of Q, defined by Q(s) = 1 if s ∈ Q and Q(s) = 0 otherwise.
We denote by ¬Q = S\Q the complement of the subset Q in
S, and again we denote equally by ¬Q the indicator function
of ¬Q. We denote by FI ⊆ F the set of indicator functions.
The quantitative predecessor operators Ppre1, Ppre2 : F 7→
F are defined for every f ∈ F by

Ppre1(f)(s) = sup
π1∈Π1

inf
π2∈Π2

Eπ1,π2

s {f(Θ1)}
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and symmetrically for Ppre2. Intuitively, the value
Pprei(f)(s) is the maximum expectation for the next value
of f that player i ∈ {1, 2} can achieve. Given f ∈ F and
i ∈ {1, 2}, the function Pprei(f) can be computed by solving
the following matrix game at each s ∈ S:

Ppre1(f)(s) = val1
h

X

t∈S

f(t)p(t | s, a1, a2)
i

a1∈Γ1(s),a2∈Γ2(s)

The existence of solutions to the above matrix games, and
the existence of optimal randomized strategies for players
1 and 2, is guaranteed by the minmax theorem [29]. The
matrix games may be solved using traditional linear pro-
gramming algorithms (see, e.g., [23]). From properties of
matrix games we have the following facts. For i ∈ {1, 2}, the
operator Pprei is monotonic and continuous, that is, for all
f, g ∈ F , if f ≥ g then Pprei(f) ≥ Pprei(g); and for all f1 ≤
f2 ≤ . . . in F , we have limn Pprei(fn) = Pprei(limn fn).
Moreover, the operators Ppre1 and Ppre2 are dual: for all
f ∈ F , we have Ppre1(f) = 1 − Ppre2(1 − f).

2.4 Quantitative gameµ-calculus
We write the solutions of games with respect to ω-regular

winning conditions in quantitative game µ-calculus. The for-
mulas of the quantitative game µ-calculus are generated by
the grammar

φ ::= Q | x | φ ∨ φ | φ ∧ φ | Ppre1(φ) | Ppre2(φ)

| µx.φ | νx.φ, (1)

for proposition Q ⊆ S and variables x from some fixed
set X. Hence, as for LTL, the propositions of quantita-
tive µ-calculus formulas correspond to subsets of states of
the game. As usual, a formula φ is closed if every variable
x in φ occurs in the scope of a fixpoint quantifier µx or νx.

Let E : X 7→ F be a variable valuation that associates
a function E(x) ∈ F with each variable x ∈ X. We write
E [x 7→ f ] for the valuation that agrees with E on all vari-
ables, except that x ∈ X is mapped to f ∈ F . Given a val-
uation E , every formula φ of quantitative game µ-calculus
defines a function [[φ]]E ∈ F :

[[f ]]E = f

[[x]]E = E(x)

[[Ppre1(φ)]]E = Ppre1([[φ]]E )

[[Ppre2(φ)]]E = Ppre2([[φ]]E )

[[φ1

˘∨
∧

¯

φ2]]E = ([[φ1]]E
˘∨
∧

¯

[[φ2]]E )

[[
˘

µ

ν

¯

x.φ]]E =
˘

sup
inf

¯

{f ∈ F | f = [[φ]]E[x 7→f ]}.

The existence and uniqueness of the above fixpoints for the
µ and ν operators is a consequence of the monotonicity and
continuity of all the operators, and in particular of Ppre1 and
Ppre2. As usual, the fixpoints can be evaluated in an itera-
tive fashion: we have [[µx.φ]]E = limn→∞ xn, where x0 = 0,
and xn+1 = [[φ]]E[x 7→xn ] for n ≥ 0. Similarly, for the greatest
fixpoint operator ν we have [[νx.φ]]E = limn→∞ xn, where
x0 = 1, and xn+1 = [[φ]]E[x 7→xn ] for n ≥ 0. A quantitative
game µ-calculus formula suggests a way to implement ap-
proximation algorithms for large state spaces, using a subset
F ′ ⊆ F of base functions that have compact representations
[1, 4, 7]. We note that the solution algorithms presented in
this paper apply also to games with countable (rather than
finite) state space and finite set of moves (see Theorem 4); in

this case, however, the iterative evaluation of the fixpoints
needs to be based on transfinite induction.

The quantitative game µ-calculus defined by (1) suffices
for writing the solution formulas of games with ω-regular
winning conditions. In some intermediate lemmas, however,
we use with slight abuse of notation an extended version
of the calculus, in which we have one symbol f for every
function f ∈ F . Obviously, such functions are interpreted
as themselves: for all valuations E , we have [[f ]]E = f .

2.5 Complementation and correctness
We solve concurrent games with LTL winning condition

Ψ by providing a quantitative game µ-calculus formula φ
such that 〈1〉Ψ = [[φ]]. To prove this equality, we exploit
the complementation of µ-calculus expressions. The com-
plement of a closed µ-calculus formula φ is a formula ¬φ
such that 1 − [[φ]] = [[¬φ]]; the complement can be obtained
by recursively applying the following transformations, which
rely on the duality of Ppre1 and Ppre2:

¬Q ⇒ S \ Q

¬¬φ ⇒ φ

¬(Ppre1(φ)) ⇒ Ppre2(¬φ)

¬(φ1

˘∨
∧

¯

φ2) ⇒ (¬φ1)
˘∧
∨

¯

(¬φ2)

¬
˘

µ

ν

¯

x.φ ⇒
˘

ν

µ

¯

x.¬φ[¬x/x]

where φ[¬x/x] denotes the result of replacing x with ¬x in
φ. Note that since the formula φ is closed, by applying the
above transformations to ¬φ we obtain again a formula of
the syntactic form (1). In fact, the above transformations
push the ¬ operator to the leaves of the syntax tree (1),
which consist either in subsets Q ⊆ S or in variables x ∈ X.
The subsets are simply complemented. Since φ is closed,
each variable x ∈ X in φ appears in the scope of a µx or
νx quantifier; the transformation rules for µ and ν, together
with the rule for double negation elimination, ensure that
once all transformations have been applied, no ¬ operator
remains as prefix to a variable.

Our proofs of 〈1〉Ψ = [[φ]] consist in two steps.

• First, from φ we construct for all ε > 0 a strategy πε
1

for player 1 that ensures winning with probability at
least [[φ]] − ε, proving [[φ]] ≥ 〈1〉Ψ.

• Second, we complement φ, and we consider the win-
ning condition ¬Ψ. From ¬φ we construct for all ε > 0
a strategy πε

2 that enables player 2 to win the game
with goal ¬Ψ with probability at least [[¬φ]] − ε; this
shows [[¬φ]] ≥ 〈2〉¬Ψ, or equivalently [[φ]] ≤ 〈1〉Ψ.

Even in the cases where solution formulas for concurrent
games are known, such as for the reachability winning con-
dition (see [10], Chapter 4.4), this approach yields simpler
arguments than the classical one, where the ε-optimal strate-
gies for both players have to be constructed from the solu-
tion formula φ for player 1 alone, and where it is usually
necessary to consider discounted versions of the games.

3. REACHABILITY AND SAFETY GAMES
Concurrent reachability and safety games can be solved

by reducing them to positive stochastic games [27, 10]. We
present the solution algorithms, reformulating them in quan-
titative game µ-calculus. As mentioned above, by relying on
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the complementation of quantitative game µ-calculus, we are
able to prove the correctness of the solutions without resort-
ing to the consideration of discounted versions of the same
games.

A concurrent reachability game consists in a concurrent
game structure G = 〈S,Moves , Γ1, Γ2, p〉 together with a
winning condition 3U , where U ⊆ S. Intuitively, the win-
ning condition consists in reaching the subset U of states.
The solution of such a reachability game is given by

〈1〉3U = [[µx.(U ∨ Ppre1(x))]]. (2)

This solution can be computed iteratively as the limit
〈1〉3U = limk→∞ xk, where x0 = 0 and xk+1 = U ∨
Ppre1(xk) for k ≥ 0. This iteration scheme gives an approx-
imation scheme to solve the reachability game. In Markov
decision processes, one can reduce the reachability question
to a linear programming problem which can then be solved
exactly. This gives an alternative to value iteration. Unfor-
tunately, for concurrent games we cannot reduce the prob-
lem to linear programming, because the maximal probabil-
ity of winning in a game where all probabilities are rationals
may still be irrational (see e.g. [24]).

Example 1. Consider a concurrent game with three
states s, t, and u, and winning condition 3{u}. The tran-
sition relation is as follows: from state t, player 1 has
two choices a1 and b1, and player 2 the choices a2 and
b2. The transition probabilities are: Pr(u|t, a1, a2) = 1

2
,

Pr(t|t, a1, a2) = 1
2
, Pr(u|t, b1, a2) = Pr(u|t, a1, b2) = 0,

Pr(s|t, b1, a2) = Pr(s|t, a1, b2) = 1, Pr(u|t, b1, b2) = 3
4
, and

Pr(t|t, b1, b2) = 1
4
. The states s and u are absorbing: the

game never leaves s or u once it reaches these states. The
maximal probability of winning the game 3{u} is given by
the least fixpoint of x = Ppre1(x)∨ {u}; for state t, we have

x(t) = −3+2
√

6
5

.

To prove (2), we show separately the two inequalities

〈1〉3U ≥ [[µx.(U ∨ Ppre1(x))]]

〈1〉3U ≤ [[µx.(U ∨ Ppre1(x))]].

The first inequality is a consequence of the following lemma;
the second inequality, as mentioned in Section 2.5, will follow
from results on safety games.

Lemma 1. Let w = [[µx.(U ∨ Ppre1(x))]]. For all ε > 0

player 1 has a strategy πε
1 such that Pr

πε
1

,π2

s (3U) > w(s)−ε
for all π2 ∈ Π2 and all s ∈ S.

The proof follows a classical argument (see, e.g., [9, 10]).
For n ≥ 0, consider the n-step version of the game, whose
winning condition 3nU requires reaching U in at most n
steps. Let also x0 = 0 and xn+1 = U ∨Ppre1(xn) for n ≥ 0.
By induction on n, we can show that 〈1〉3nU ≥ xn for all
n ≥ 0. The result then follows from w = limn→∞ xn, and
from the fact that 3nU implies 3U for all n ≥ 0.

A concurrent safety game consists in a concurrent game
structure G = 〈S,Moves , Γ1, Γ2, p〉 together with a winning
condition 2U , where U ⊆ S. Intuitively, the winning condi-
tion consists in staying forever in the subset U of states.
The complement of the reachability condition 3U is the
safety condition 2¬U , and the complement of the quan-
titative game µ-calculus formula µx.(U ∨ Ppre1(x)) is

νx.(¬U ∧ Ppre2(x)),

where ¬U is an abbreviation for S \ U . We will show that
the solution of concurrent safety games is given by

〈1〉2U = [[νx.(U ∧ Ppre1(x))]], (3)

which is dual to (2). To this end, we prove the following
lemma.

Lemma 2. Let w = [[νx.(U ∧ Ppre1(x))]]. Player 1 has
a strategy π1 such that Prπ1,π2

s (2U) ≥ w(s) for all π2 ∈ Π2

and all s ∈ S.

The lemma can be proved using standard arguments about
positive reward games [10]. We present here a more direct
proof, that will lead to the arguments for Büchi and co-Büchi
games.

Proof. Let π1 be a strategy for player 1 that at all s ∈ U
plays according to an optimal distribution of the matrix
game corresponding to Ppre1(w)(s), and at all s ∈ S \ U
plays arbitrarily. Fix a state s0 ∈ S and an arbitrary strat-
egy π2 ∈ Π2. The process {Hn}n≥0 defined by Hn = w(Θn)

is a submartingale [30]: in fact, from w(s) = Ppre1(w)(s)
for s ∈ U and from the choice of π1 follows that

Eπ1,π2

s0
{Hn+1 | H0, H1, . . . , Hn} ≥ Hn

for all n ≥ 0. Hence, we have Eπ1,π2
s0

{Hn} ≥ H0 = w(s0).
Moreover, since w(s) ≤ 1 at all s ∈ S, by inspection we
have Eπ1,π2

s0
{Hn} ≤ Prπ1,π2

s0
(2nU), where 2nU is the event

of staying in U for at least n steps. Combining these two
inequalities we obtain w(s0) ≤ Prπ1,π2

s0
(2nU), and the result

follows from Prπ1,π2
s0

(2U) = limn→∞ Prπ1,π2
s0

(2nU).

The following theorem summarizes the properties of con-
current reachability and safety games.

Theorem 1. The following assertions hold.

1. Concurrent reachability and safety games can be solved
according to (2) and (3).

2. Concurrent reachability games have memoryless ε-
optimal strategies; there are deterministic concurrent
reachability games without optimal strategies. Turn-
based reachability games always have deterministic and
memoryless optimal strategies.

3. Concurrent safety games have memoryless opti-
mal strategies; there are deterministic concurrent
safety games without memoryless deterministic opti-
mal strategies. Turn-based safety games always have
deterministic and memoryless optimal strategies.

Part 1 is classical [9, 10], except for the notation; the result
also follows from the combination of Lemmas 1 and 2. The
existence of memoryless ε-optimal strategies for concurrent
reachability games follows from [22]. The existence of de-
terministic concurrent reachability games without optimal
strategies is demonstrated by Example 2 below, adapted
from [9, 15]. The existence of optimal strategies for con-
current safety games is classical; it also follows from the
proof of Lemma 2. The existence of deterministic concur-
rent safety games without optimal deterministic strategies
is demonstrated by the game MatchOneBit described in
the introduction. The results for turn-based games follow
from results on perfect-information games; see e.g. [10].
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Example 2. Consider a concurrent game with S =
{s, t, u}; the only state where players can choose among
more than one move is s. We have Γ1(s) = {a, b}, and
Γ2(s) = {c, d}. The game has a deterministic transition
function: p(s | s, a, c) = p(t | s, a, d) = p(t | s, b, c) = p(u |
s, b, d) = 1, all other transition probabilities are 0. We have
〈1〉3{t}(s) = 1. In fact, player 1 can play moves a and b
with probability 1− ε and ε respectively to ensure a winning
probability of (1 − ε) from s, for ε > 0. However, player 1
has no optimal strategy: if he decides to play move b at the
nth round, player 2 can play move d at the n-th round, so
that the probability of reaching t is always less than 1.

4. BÜCHI AND CO-B ÜCHI GAMES
A concurrent Büchi game consists in a concurrent game

structure G = 〈S,Moves , Γ1, Γ2, p〉 together with a winning
condition 23U , where U ⊆ S. Intuitively, the winning con-
dition consists in visiting the subset U of states infinitely
often. The solution of a concurrent Büchi game is given by

〈1〉23U = [[νy.µx.((¬U∧Ppre1(x))∨(U∧Ppre1(y)))]] . (4)

The proof of (4) is based on two lemmas. The first lemma
generalizes the result about concurrent reachability games.
Given a function g ∈ F and a subset U of states, we
let g(3U) be the function that associates with each path
s0, s1, s2, . . . the value g(si), for i = min {k | sk ∈ U} < ∞,
and the value 0 if sk 6∈ U for all k ≥ 0. Hence, g(3U) is the
value of g at the state where the path first enters U , if such
a state exists, and is 0 otherwise. The following lemma can
be proved similarly to Lemma 1.

Lemma 3. For g ∈ F and U ⊆ S, let

w = [[µx.((¬U ∧ Ppre1(x)) ∨ (U ∧ g))]].

Then, for all ε > 0 player 1 has a strategy πε
1 that ensures

E
πε
1

,π2

s {g(3U)} ≥ w(s) − ε at all s ∈ S.

We call the above game a g(3U)-game; the strategy πε
1 is an

ε-optimal strategy for it. The following lemma shows that
the fixpoint (4) is a lower bound for the maximal probabil-
ity of winning a concurrent Büchi game. The upper-bound
result will follow from results on concurrent co-Büchi games.

Lemma 4. Let

w = [[νy.µx.((¬U ∧ Ppre1(x)) ∨ (U ∧ Ppre1(y)))]].

For all ε > 0 player 1 has a strategy πε
1 such that

Pr
πε
1

,π2

s (23U) > w(s) − ε for all π2 ∈ Π2 and all s ∈ S.

Proof. From ε, construct a positive sequence {εi}i≥0

with
P∞

i=0 εi < ε. The strategy πε
1 is as follows. In S \U the

strategy πε
1 initially coincides with a ε0-optimal strategy for

the game w(3U). Upon reaching U , the strategy πε
1 plays

according to an optimal distribution of the matrix game
corresponding Ppre1(w), until U is left. In the following
¬U -phase, πε

1 coincides with a ε1-optimal strategy for the
game w(3U); and so forth. Fix a state s0 ∈ S and a strat-
egy π2 ∈ Π2. Define the process {Hn}n≥0, where Hn is the
value of w at the n-th visit of U . From Lemma 3 and from
the construction of πε

1, we have E
πε

1
,π2

s0
{H1} ≥ w(s0) − ε0,

and for n ≥ 0,

E
πε

1
,π2

s0
{Hn+1 | H1, H2, . . . , Hn} ≥ Hn − εn.

By induction, this leads to

E
πε

1
,π2

s0
{Hn+1} ≥ w(s0) −

Pn

i=0 εi

for all n ≥ 0. Denoting by [23]nU the event of visiting U

at least n times, we have Pr
πε
1

,π2

s0
([23]nU) ≥ E

πε
1

,π2

s0
{Hn}.

Combining these two results we obtain

Pr
πε

1
,π2

s0
([23]nU) ≥ w(s0) − ε,

and the result then follows from

lim
n→∞

Pr
πε

1
,π2

s0
([23]nU) = Pr

πε

1
,π2

s0
(23U).

A concurrent co-Büchi game consists in a concurrent game
structure G = 〈S,Moves , Γ1, Γ2, p〉 together with a winning
condition 32U , where U ⊆ S. Intuitively, the winning con-
dition consists in eventually staying forever in the subset U
of states. The solution of a concurrent co-Büchi game is
given by

〈1〉32U = [[µx.νy.((¬U∧Ppre1(x))∨(U∧Ppre1(y)))]] . (5)

Again, the proof of the above fixpoint equation is based on
two lemmas. Let [2U ] be the function that associates with
each path value 1 if the path always stays in U , and value 0
otherwise. The first lemma generalizes Lemma 2.

Lemma 5. For g ∈ F and U ⊆ S, let

w = [[νy.((U ∧ Ppre1(y)) ∨ (¬U ∧ g))]].

Then the strategy π1 of player 1 that plays at each
s ∈ S according to an optimal distribution of the
matrix game corresponding to Ppre1(w)(s) is such that
Eπ1,π2

s {[2U ] + g(3¬U)} ≥ w for all s ∈ S and π2 ∈ Π2.

The proof is similar to that of Lemma 2. The following
lemma shows that the fixpoint of (4) is a lower bound for
the maximal probability of winning the concurrent co-Büchi
game.

Lemma 6. Let

w = [[µx.νy.((¬U ∧ Ppre1(x)) ∨ (U ∧ Ppre1(y)))]].

For all ε > 0 player 1 has a strategy πε
1 such that

Pr
πε

1
,π2

s (32U) > w(s) for all π2 ∈ Π2 and all s ∈ S.

Proof. Denote by [32U ]n the event of visiting ¬U at
most n times. Let x0 = 0, and for n > 0,

xn = [[νy.((¬U ∧ Ppre1(xn−1)) ∨ (U ∧ Ppre1(y)))]].

By induction on n ≥ 0, we show that player 1 has a strategy

πn
1 such that Pr

πn
1

,π2

s ([32U ]n) ≥ xn(s) for all s ∈ S and
all π2 ∈ Π2; the result will then follow by taking the limit
n → ∞. The base case is trivial. For n > 0, the strategy
πn

1 plays according to an optimal distribution of the matrix
game corresponding to Ppre1(xn) as long as U is not left.
At the first visit to ¬U , the strategy πn

1 plays one round
according to an optimal distribution of the matrix game
corresponding to Ppre1(xn−1), and switches thereafter to
the strategy πn−1

1 . By definition of πn
1 , from the previous

lemma we have

Pr
πn
1

,π2

s ([32U ]n) ≥ Pr
πn
1

,π2

s (2U) + E
πn
1

,π2

s {xn−1(3¬U)}

≥ xn.
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The following theorem summarizes the results about con-
current Büchi and co-Büchi games.

Theorem 2. The following assertions hold.

1. Concurrent Büchi and co-Büchi games can be solved
according to (4) and (5).

2. There are deterministic concurrent Büchi games with-
out optimal strategies, and without finite-memory ε-
optimal strategies. Turn-based Büchi games always
have deterministic and memoryless optimal strategies.

3. There are deterministic concurrent co-Büchi games
without optimal strategies. Turn-based co-Büchi games
always have deterministic and memoryless optimal
strategies.

Part 1 follows from Lemmas 4 and 6, and from quantitative
game µ-calculus complementation. Part 2 follows from the
lack of optimal strategies for reachability (see Example 2),
and from the fact that Büchi games are equivalent to iterated
reachability games (see [6] for an example). Part 3 is a
consequence of the lack of optimal strategies for concurrent
reachability games.

5. RABIN-CHAIN GAMES
A concurrent Rabin-chain game consists in a concurrent

game structure G = 〈S,Moves , Γ1, Γ2, p〉 together with a
winning condition

R =

k−1
_

i=0

(23U2i ∧ ¬23U2i+1) ,

where k > 0 and ∅ = U2k ⊆ U2k−1 ⊆ U2k−2 ⊆ · · · ⊆ U0 = S.
A more intuitive characterization of this winning condition
can be obtained by defining, for 0 ≤ i ≤ 2k − 1, the set Ci

of states of color i by Ci = Ui \ Ui+1. The total number of
colors is N = 2k. Given a path s, let Infi(s) ⊆ S be the set
of states that occur infinitely often along s, and let

MaxCol(s) = max {i ∈ {0, . . . , N − 1} | Ci ∩ Infi(s) 6= ∅}

be the largest color appearing along the path. Then,

R = {s ∈ Ω | MaxCol(s) is even}.

The solution 〈1〉R for a Rabin-chain condition with N colors
is given by

〈1〉R = [[λN−1xN−1. . . . µx1.νx0.(

N−1
_

i=0

(Ci∧Ppre1(xi)))]] (6)

where λn = ν if n is even, and λn = µ if n is odd (com-
pare with [8]). The proof of (6) is based on the follow-
ing inductive decomposition, inspired by the one of [8].

We denote by C≤n =
Sn

i=0 Ci (resp. C>n =
SN−1

i=n+1 Ci and

C<n =
Sn−1

i=0 Ci) the set of states colored by colors less than
or equal to n (resp., greater than n, and smaller than n).
Let z ∈ F , and for n ≥ 0 define Jn by J−1(z) = z, and

Jn(z) = λnx.Jn−1((Cn ∧ Ppre1(x)) ∨ (C>n ∧ z)).

We can show by induction on n that [[Jn(z)]] is the function
that gives the maximal expectation of either winning the
concurrent Rabin-chain game while visiting only states in
C≤n, or of the value z(3C>n) if C≤n is exited. Denote

by [R ∧ 2C≤n] the random function that has value 1 over
a path exactly when the path satisfies condition R while
visiting only states in C≤n. The lemma below makes this
statement precise.

Lemma 7. For all ε > 0, all z ∈ F, and all states s ∈ S,
there is a strategy π1 ∈ Π1 for player 1 such that for all
strategies π2 ∈ Π2 of player 2, we have

Eπ1,π2

s {[R ∧ 2C≤n] + z(3C>n)} ≥ [[Jn(z)]](s) − ε.

The proof of the lemma is similar to the proof of the lem-
mas for the Büchi and co-Büchi conditions; we sketch the
inductive step for n odd (i.e., λn = µ). From ε, construct a
positive sequence {εi}i≥0 with sum less than ε. Let x0 = 0,
and for k > 0, let

xk = [[Jn−1(Cn ∧ Ppre(xk−1) ∨ C>n ∧ z)]].

By induction on k, we show that player 1 has a strategy πk
1

such that

Prπ1,π2
s {[R ∧ 2C≤n] + z(3C>n)} ≥ xk(s) −

Pk

i=0 εk

for all s ∈ S and π2 ∈ Π2. The strategy πk
1 for player 1 for

player 1 coincides with an εk-optimal strategy in the game
Jn−1(Cn ∧ Ppre(xk−1) ∨ C>n ∧ z) while the game remains
in C<n; when Cn is hit for the first time, it plays an opti-
mal strategy in the matrix game Ppre(xk−1), and thereafter
switches to the inductively constructed strategy πk−1

1 . Then

E
πk

1
,π2

s {[R ∧ 2C≤n] + z(3C>n)}

≥ [[Jn−1(Cn ∧ Ppre(xk−1) ∨ C>n ∧ z)]](s) −
Pk

i=0 εk

= xk(s) −
Pk

i=0 εk,

for all s ∈ S and π2 ∈ Π2, using the induction hypothesis
on xk−1, and the claim follows by taking k → ∞. A similar
argument works for n even (i.e., λn = ν). The value of the
game with condition R is then [[JN−1(0)]]. Both the lower
and the upper bounds for the value of the game follow from
the lemma, because Rabin-chain games are self-dual (the
complement of a concurrent Rabin-chain game is again a
concurrent Rabin-chain game). We can now summarize the
results for concurrent Rabin-chain games.

Theorem 3. The following assertions hold.

1. Concurrent Rabin-chain games can be solved according
to (6).

2. There are deterministic concurrent Rabin-chain games
without optimal strategies and without finite-memory
ε-optimal strategies. Turn-based Rabin-chain games
always have deterministic and memoryless optimal
strategies.

Finally, the next theorem states that if the state space
is countable, rather than finite, the quantitative game µ-
calculus solutions presented in this paper still define the
value of the game.

Theorem 4. Consider a concurrent game structure G =
〈S,Moves , Γ1, Γ2, p〉, where S is countable. Then, formulas
(2), (3), (4), (5), and (6) provide the solutions for concur-
rent reachability, safety, Büchi, co-Büchi, and Rabin-chain
games, respectively.
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Figure 1: A turn-based game that disproves the reduction to reachability. A label (a, b) of an edge (or of a
probabilistic bundle of edges) indicates that the edge is followed when player 1 chooses move a and player 2
chooses move b.

This theorem can be proved by the same arguments used for
finite concurrent games, using transfinite induction rather
than ordinary induction when arguing about the least and
greatest fixpoints of the calculus.

A comparison with Markov decision processes
A Markov decision process is a concurrent game structure
where |Γ2(s)| = 1 for all s ∈ S. In a Markov decision process,
the problem of computing the maximal probability of satis-
fying a Büchi, co-Büchi, or Rabin-chain condition Ψ can be
solved in polynomial time, by reducing it to the problem of
computing a maximal reachability probability [5]. From Ψ,
we can first compute the subset TΨ = {s ∈ S | 〈1〉Ψ(s) = 1}
of states where the maximal probability of Ψ is 1. Then,
we have 〈1〉Ψ = 〈1〉3TΨ, indicating that the maximal prob-
ability of satisfying Ψ is equal to the maximal probability
of reaching TΨ. In concurrent games, given a Büchi, co-
Büchi, or Rabin-chain condition Ψ, we can compute the set
TΨ with the algorithms of [6], setting TΨ = 〈〈1〉〉limitΨ. If
the equality 〈1〉Ψ = 〈1〉3TΨ held for concurrent games, it
would provide monotonic approximation schemes for com-
puting the value of the game (the problem would still not
be reducible to linear programming, since the values may
be irrational, as mentioned earlier). However, the following
example demonstrates that the equality does not hold for
games.

Example 3. Consider the turn-based game depicted in
Figure 1. Let U = {t1, t2, t4}, and consider the co-Büchi
winning condition 32U . The set of states R1 (resp. R2)
where player 1 (resp. 2) can ensure winning (resp. losing)
with probability 1 are given by

R1 = T32U = {s ∈ S | 〈1〉32U(s) = 1} = {t1}

R2 = {s ∈ S | 〈2〉23¬U(s) = 1} = {t4, t5}.

For i ∈ {1, 2}, the maximal probability for player i of reach-
ing Ri from outside Ri is zero: 〈1〉3R1(tk) = 0 for k 6= 1,
and 〈2〉3R2(tk) = 0 for k 6∈ {4, 5}. Nevertheless, we can
verify that 〈1〉32U(t2) = 2/3, and 〈1〉32U(t3) = 1/3.
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