
From Verification to Control:

Dynamic Programs for Omega-regular Objectives∗

Luca de Alfaro Thomas A. Henzinger Rupak Majumdar

Electrical Engineering and Computer Sciences, University of California, Berkeley

{dealfaro,tah,rupak}@eecs.berkeley.edu

Abstract. Dynamic programs, or fixpoint itera-
tion schemes, are useful for solving many problems
on state spaces, including model checking on Kripke
structures (“verification”), computing shortest paths
on weighted graphs (“optimization”), computing the
value of games played on game graphs (“control”). For
Kripke structures, a rich fixpoint theory is available
in the form of the µ-calculus. Yet few connections
have been made between different interpretations of
fixpoint algorithms. We study the question of when
a particular fixpoint iteration scheme ϕ for verifying
an ω-regular property Ψ on a Kripke structure can
be used also for solving a two-player game on a game
graph with winning objective Ψ. We provide a suf-
ficient and necessary criterion for the answer to be
affirmative in the form of an extremal-model theorem

for games : under a game interpretation, the dynamic
program ϕ solves the game with objective Ψ if and
only if both (1) under an existential interpretation on
Kripke structures, ϕ is equivalent to ∃Ψ, and (2) un-
der a universal interpretation on Kripke structures, ϕ
is equivalent to ∀Ψ. In other words, ϕ is correct on
all two-player game graphs iff it is correct on all ex-
tremal game graphs, where one or the other player has
no choice of moves. The theorem generalizes to quan-
titative interpretations, where it connects two-player
games with costs to weighted graphs.

While the standard translations from ω-regular
properties to the µ-calculus violate (1) or (2), we give
a translation that satisfies both conditions. Our con-
struction, therefore, yields fixpoint iteration schemes
that can be uniformly applied on Kripke structures,
weighted graphs, game graphs, and game graphs with
costs, in order to meet or optimize a given ω-regular
objective.

∗This research was supported in part by the DARPA SEC

grant F33615-C-98-3614, the MARCO GSRC grant 98-DT-660,

the AFOSR MURI grant F49620-00-1-0327, the NSF Theory

grant CCR-9988172, and the NSF ITR grant CCR-0085949.

1 Introduction

If Ψ is a property of a Kripke structure, then every µ-
calculus formula ϕ that is equivalent to Ψ prescribes
an algorithm for model checking Ψ. This is because
the µ-calculus formula ϕ can be computed by itera-
tive fixpoint approximation. Indeed, the µ-calculus
has been called the “assembly language” for model
checking.

In control, we are given a two-player game struc-
ture and an objective, and we wish to find out if
player 1 (the “controller”) has a strategy such that
for all strategies of player 2 (the “plant”) the out-
come of the game meets the objective. If the out-
come of a game is an infinite sequence of states, then
objectives are naturally specified as ω-regular prop-
erties [15]. A simple but important objective is the
reachability property 3T , for a set T of states, which
asserts that player 1 wins if it can direct the game
into the target set T , while player 2 wins if it can
prevent the game from entering T forever. We write
〈〈1〉〉3T for the reachability game with target T for
player 1. A dynamic program for solving the reach-
ability game can be viewed as evaluating a fixpoint
equation, namely,

〈〈1〉〉3T = µx.(T ∨ 1Pre(x)),

where 1Pre(T) is the set of states from which player 1
can force the game into T in a single step. It is not
difficult to see that this fixpoint equation is identical
to the µ-calculus expression for model checking the
reachability property ∃3T , namely,

∃3T = µx.(T ∨ EPre(x)), (1)

except for the use of the predecessor operator EPre in
place of 1Pre, where EPre(T) is the set of states that
have a successor in T .

For every ω-regular property Ψ, it is well-known
how to construct an equivalent µ-calculus formula ϕ

1

[7, 4], which can then be used to model check ∃Ψ,
i.e., to compute the set of states from which there is a
path satisfying Ψ. Now suppose we want to solve the
control problem with objective Ψ. The question we
set out to answer in this paper is whether ϕ is of any
use for this purpose; more specifically, if we simply
replace all EPre operators in ϕ by 1Pre operators,
do we obtain an algorithm for solving the game with
objective Ψ, i.e., for computing the set of states from
which player 1 can ensure that Ψ holds?

In general, the answer is negative. Consider the
co-Büchi property 32T , which asserts that, eventu-
ally, the target T is reached and never left again. The
Emerson-Lei translation [7] yields the equivalent µ-
calculus formula

∃32T = µx.(EPre(x) ∨ (νy.EPre(y) ∧ T)). (2)

The Dam translation [4] gives

∃32T = µx.(EPre(x)∨(T∧EPre(νy.(T∧EPre(y))))),
(3)

and Bhat-Cleaveland [2] produce the same result. But
neither of these formulas give the correct solution for
games. To see this, consider the following game on the
state space {s1, s2, s3}. At s1, player 2 can play two
moves: one of them keeps the game in s1, the other
takes the game to s2. At s2, player 1 can play two
moves: one of them keeps the game in s2, the other
takes the game to s3. Once in s3, the game remains
in s3 forever. The target set is T = {s1, s3}. Then,
〈〈1〉〉32T = {s1, s2, s3}. However, both equations (2)
and (3) denote the smaller set {s2, s3} when EPre is
replaced by 1Pre.

We present an extremal-model theorem which says
that the fixpoint formula ϕ over 1Pre solves the game
with ω-regular objective Ψ if and only if both of the
following conditions are met:

E The EPre version of ϕ is equivalent to the exis-
tential property ∃Ψ.

A The APre version of ϕ is equivalent to the uni-
versal property ∀Ψ. (Here, APre(T) is the set
of states all of whose successors lie in T , and ∀Ψ
holds at a state if all paths from the state sat-
isfy Ψ.)

In other words, for a fixpoint formula ϕ to solve the
game with ω-regular objective Ψ, it is not only neces-
sary but also sufficient that ϕ coincides with Ψ under
the two extremal, non-game interpretations. In the co-
Büchi example, while the expressions (2) and (3) sat-
isfy condition E of the extremal-model theorem, they
violate condition A. By contrast, in the reachability

example, the expression (1) meets also condition A,
because

∀3T = µx.(T ∨ APre(x)).

We show constructively that for every ω-regular ob-
jective Ψ there is indeed a fixpoint formula ϕ which
meets both conditions of the extremal-model theorem.
The construction is based on the determinization of
ω-automata [12, 13], and on the translation from al-
ternating ω-automata to µ-calculus [5]. In particular,
for the co-Büchi property we obtain

〈〈1〉〉32T = µx.νy.(1Pre(x) ∨ (1Pre(y) ∧ T)). (4)

The reader may check that both

∃32T = µx.νy.(EPre(x)∨ (EPre(y)∧ T)),
∀32T = µx.νy.(APre(x)∨ (APre(y)∧T)).

In general, our translation provides optimal algo-
rithms for solving games with ω-regular objectives; in
particular, if the objective is given by a formula Ψ of
linear temporal logic, then the resulting algorithm has
a 2EXPTIME complexity in the length of Ψ [11].

Our results also shed light on a related question:
given a “verification” µ-calculus formula ϕv that uses
only the predecessor operator EPre, what is the rela-
tion between ϕv and its “control” version ϕc, obtained
by replacing EPre with 1Pre? From [6] we know that
if ϕv is deterministic, i.e., if every conjunction in ϕv

has at least one constant argument, then ϕv speci-
fies an ω-regular language; that is, ϕv is equivalent
to ∃Ψ for some ω-regular property Ψ. We introduce
the syntactic class of strongly deterministic µ-calculus
formulas, a subclass of the deterministic formulas, and
we show that if ϕv is strongly deterministic, then ϕv

solves the verification problem for specification ∃Ψ iff
ϕc solves the control problem for objective Ψ. This
correspondence does not hold in general for determin-
istic formulas.

We extend the connection between verification and
control also to quantitative properties. Consider a
graph with nonnegative edge weights, which repre-
sent costs. By defining an appropriate quantitative
predecessor operator PreR, the dynamic program for
reachability, µx.(T ∨ PreR(x)), computes the cost of
the shortest path to the target T . Similarly, consider
a game whose moves incur costs. Then again, for a
suitable quantitative predecessor operator 1PreR, the
dynamic program µx.(T∨1PreR(x)) computes the real
value of the game, which is defined as the minimal
cost for player 1 to reach the target T (or infinity, if
player 1 has no strategy to reach T). For general ω-
regular objectives, we define the cost of the infinite

outcome of a game as the cost of the shortest (possi-
bly finite) prefix that is a witness to the objective. We
show that the extremal-model theorem applies to this
quantitative setting also. This gives us dynamic pro-
grams for solving the real-valued games with respect
to all ω-regular objectives. For example, equation (4)
with 1Pre replaced by 1PreR specifies a dynamic pro-
gram for the quantitative co-Büchi game, whose value
is the minimal cost for player 1 to reach and stay inside
the target T (this cost is infinite unless player 1 can
enforce an infinite sequence of moves all but finitely
many of which have cost 0).

2 Reachability and Safety

We define our setting, and in doing so, review some
well-known results about iterative solutions for sim-
ple verification, optimization, and control problems,
where the objective is to reach or avoid a given set of
states (expending minimal cost).

2.1 Game structures

We define game structures over a global set A of ac-

tions, and a global set P of propositions. A (two-
player) game structure G = (S,Γ1,Γ2, δ, 〈·〉) (over A
and P) consists of a finite set S of states, two action
assignments Γ1,Γ2: S → 2A \ ∅ which define for each
state two nonempty, finite sets of actions available to
player 1 and player 2, respectively, a transition func-

tion δ: S×A×A→ S which associates with each state
s and each pair of actions a ∈ Γ1(s) and b ∈ Γ2(s) a
successor state, a weight function w: S×A×A→ R≥0

which associates with each state s and each pair of ac-
tions a ∈ Γ1(s) and b ∈ Γ2(s) a nonnegative real, and
a proposition assignment 〈·〉: S → 2P which defines
for each state s a finite set 〈s〉 ⊆ P of propositions that
are true in s. Intuitively, at state s, player 1 chooses an
action a from Γ1(s) and, simultaneously and indepen-
dently, player 2 chooses an action b from Γ2(s). Then,
the game proceeds to the successor state δ(s, a, b). The
nonnegative real w(s, a, b) represents the “cost” of the
transition δ(s, a, b) (if it is to be minimized), or a “re-
ward” (if it is to be maximized). Given a proposition
p ∈ P , a state s ∈ S is called a p-state iff p ∈ 〈s〉. If
S is not given explicitly, then we write SG to denote
the state space of the game structure G.

Game structures are “concurrent” [1]; they subsume
“turn-based” game structures (i.e., and-or graphs),
where in each state at most one of the two players has
a choice of actions. A special case of turn-based games
are the one-player structures. A one-player structure

is either a player-1 structure or a player-2 structure.
The game structure G is a player-1 structure if Γ2(s)
is a singleton for all states s ∈ S; and G is a player-2

structure if Γ1(s) is a singleton for all s ∈ S. In player-
1 structures, player 2 has no choices, and in player-
2 structures, player 1 has no choices. Every game
structure G defines an underlying transition structure

KG = (S,→, 〈·〉), where for all states s, t ∈ S, we have
s → t iff there exist actions a ∈ Γ1(s) and b ∈ Γ2(S)
such that δ(s, a, b) = t. Transition structures do not
distinguish between individual players.

Restrictions of game structures. A player-1 re-

striction of the game structure G = (S,Γ1,Γ2, δ, 〈·〉)
is a game structure of the form G1 = (S,Γ′

1,Γ2, δ, 〈·〉)
with Γ′

1(s) ⊆ Γ1(s) for all states s ∈ S. Symmetri-
cally, a player-2 restriction of G is a game structure
of the form G2 = (S,Γ1,Γ

′
2, δ, 〈·〉) with Γ′

2(s) ⊆ Γ2(s)
for all s ∈ S. In other words, for i = 1, 2, a player-
i restriction of a game structure restricts the action
choices that are available to player i.

Strategies and runs. Consider a game structure
G = (S,Γ1,Γ2, δ, 〈·〉). A player-i strategy, for i = 1, 2,
is a function ξi: S

+ → A that maps every nonempty,
finite sequence of states to an action available to
player i at the last state of the sequence; that is,
ξi(s ·s) ∈ Γi(s) for every state sequence s ∈ S∗ and ev-
ery state s ∈ S. Intuitively, ξi(s·s) indicates the choice
taken by player i according to strategy ξi if the current
state of the game is s, and the history of the game is s.
We write Ξi for the set of player-i strategies. We dis-
tinguish the following types of strategies. The strategy
ξi is memoryless if in every state s ∈ S, the choice of
player i depends only on s; that is, ξi(s · s) = ξi(s) for
all state sequences s ∈ S∗. The strategy ξi is finite-

memory if in every state s ∈ S, the choice of player i
depends only on s, and on a finite number of bits about
the history of the game; the formal definition is stan-
dard [5].

A run r of the game structure G is a nonempty,
finite or infinite sequence s0(a0, b0)s1(a1, b1)s2 . . . of
alternating states sj ∈ S and action pairs (aj , bj) ∈
Γ1(sj) × Γ2(sj) such that sj+1 = δ(sj , aj , bj) for all
j ≥ 0. The first state s0 is called the source of the run.
The weight of the run is w(r) = Σj≥0 w(sj , aj , bj);
the weight w(r) is either a real number, or infinity
(if the sum diverges). Let ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2

be a pair of strategies for player 1 and player 2, re-
spectively. The outcome Rξ1,ξ2

(s) from state s ∈ S

of the strategies ξ1 and ξ2 is a source-s infinite run
of G, namely, Rξ1,ξ2

(s) = s0(a0, b0)s1(a1, b1)s2 . . .
such that (1) s0 = s and (2) for all j ≥ 0, both
aj = ξ1(s0s1 · · · sj) and bj = ξ2(s0s1 · · · sj).

{

1PreG
B

2PreG
B

}

(f)(s) =

{

∃a ∈ Γ1(s).∀b ∈ Γ2(s)

∃b ∈ Γ2(s).∀a ∈ Γ1(s)

}

. f(δ(s, a, b)) (5)

{

EPreG
B

APreG
B

}

(f)(s) =

{

∃a ∈ Γ1(s).∃b ∈ Γ2(s)

∀a ∈ Γ1(s).∀b ∈ Γ2(s)

}

. f(δ(s, a, b)) (6)

Figure 1: Boolean game and transition predecessor operators

2.2 Single-step verification and control

Values and valuations. A value lattice is a complete
lattice (V,⊔,⊓,⊤,⊥) of values V with join ⊔, meet ⊓,
top element ⊤, and bottom element ⊥. Given u, v ∈
V , we write u ⊑ v iff u = u ⊓ v. Consider a game
structureG = (S,Γ1,Γ2, δ, 〈·〉). A valuation f forG on
the value lattice V is a function from states to values;
that is, f : S → V . The set [S → V] of valuations is
again a lattice, with the lattice operations (⊔,⊓,⊤,⊥)
defined pointwise; for example, for two valuations f1
and f2, we have (f1 ⊔ f2)(s) = f1(s) ⊔ f2(s) for all
states s ∈ S. If f : S → V is a valuation such that
f(s) ∈ {⊤,⊥} for all states s ∈ S, then by −f we
denote the “complementary” valuation with −f(s) =
⊤ if f(s) = ⊥, and −f(s) = ⊥ if f(s) = ⊤. For a set
T ⊆ S of states, we write [T]: S → V for the valuation
with [T](s) = ⊤ if s ∈ T , and [T](s) = ⊥ if s 6∈ T .
For a proposition p ∈ P , we write [p]: S → V for the
valuation with [p](s) = ⊤ if p ∈ 〈s〉, and [p](s) = ⊥ if
p 6∈ 〈s〉.

Predecessor operators. Let V be a value lat-
tice. Let Pre be a family of functions that contains,
for every game structure G, a strict (i.e., bottom-
preserving), monotone, and continuous function PreG:
[SG → V] → [SG → V]. The function family Pre

is a predecessor-1 operator on V if for every game
structure G, every player-1 restriction G1 of G, ev-
ery player-2 restriction G2 of G, and every valua-
tion f : SG → V , both PreG(f) ⊒ PreG1(f) and
PreG(f) ⊑ PreG2(f). Symmetrically, the function
family Pre is a predecessor-2 operator on V if for every
game structure G, every player-1 restriction G1 of G,
every player-2 restriction G2 of G, and every valuation
f : SG → V , we have both PreG(f) ⊑ PreG1(f) and
PreG(f) ⊒ PreG2(f). Intuitively, the more actions are
available to player 1 in a game structure, the “better”
(i.e., closer to top in the valuation lattice) the result
of applying a predecessor-1 operator to a valuation,
and the “worse” (i.e., closer to bottom) the result of
applying a predecessor-2 operator.

Example 1: boolean game structures (“con-

trol”). Consider the boolean value lattice VB =
(B,∨,∧,t, f), where truth t is the top element and
falsehood f is the bottom element. The valuations
for a game structure G on VB are called the boolean

valuations for G; they correspond to the subsets
of SG. Figure 1 defines the predecessor operators
1PreB and 2PreB, applied to a game structure G =
(S,Γ1,Γ2, δ, 〈·〉), boolean valuation f : S → B, and
state s ∈ S. For a set T ⊆ S of states, the boolean
valuation 1PreG

B
[T]: S → B of “controllable prede-

cessors” is true at the states from which player 1 can
force the game into T in a single step, no matter which
action player 2 chooses. The operator 2PreB behaves
symmetrically for player 2, and therefore solves the
control problem for the player-2 objective of reach-
ing the target set T in a single step. The operator
1PreB is a predecessor-1 operator on VB, and 2PreB is
a predecessor-2 operator.

Example 2: boolean transition structures
(“verification”). Consider again the boolean value
lattice VB. Figure 1 defines the predecessor operators
EPreB and APreB. For a set T ⊆ S of states, the
boolean valuation EPreG

B
[T]: S → B of “possible pre-

decessors” is true at the states that have some succes-
sor in T ; the boolean valuation APreG

B
[T]: S → B of

“unavoidable predecessors” is true at the states that
have all successors in T . For each game structure G,
the functions EPreG

B
and APreG

B
correspond to the

branching-time “next” operators ∃© and ∀©, respec-
tively, of temporal logic interpreted over the under-
lying transition structure KG. Therefore, EPreB and
APreB solve the verification problems with the specifi-
cations of possibly or certainly reaching the target set
T in a single step. The operators EPreB and APreB are
both predecessor-1 and predecessor-2 operators on VB.

Example 3: quantitative game structures (“op-
timal control”). Consider the quantitative value lat-

tice VR = (R≥0 ∪ {∞},min,max, 0,∞), where 0 is
the top element and ∞ is the bottom element. Intu-
itively, each value represents a cost, and the smaller
the cost, the “better.” In particular, u ⊑ v iff either
u, v ∈ R≥0 and u ≥ v, or u = ∞; that is, the lattice

{

1PreG
R

2PreG
R

}

(f)(s) =

{

mina∈Γ1(s) .maxb∈Γ2(s)

minb∈Γ2(s) .maxa∈Γ1(s)

}

. w(s, a, b) + f(δ(s, a, b)) (7)

{

EPreG
R

APreG
R

}

(f)(s) =

{

mina∈Γ1(s) .minb∈Γ2(s)

maxa∈Γ1(s) .maxb∈Γ2(s)

}

. w(s, a, b) + f(δ(s, a, b)) (8)

Figure 2: Quantitative game and transition predecessor operators

is based on the reverse ordering of the reals. The val-
uations for a game structure G on VR are called the
quantitative valuations for G; they are the functions
from SG to the interval [0,∞]. Figure 2 defines the
predecessor operators 1PreR and 2PreR, applied to a
game structure G = (S,Γ1,Γ2, δ, 〈·〉), quantitative val-
uation f : S → [0,∞], and state s ∈ S. For a set
T ⊆ S of states, the quantitative valuation 1PreG

R
[T]:

S → [0,∞] gives for each state the minimal cost for
player 1 of forcing the game into T in a single step
(if player 1 cannot force the game into T , then the
cost is ∞). The operator 2PreR behaves symmetri-
cally for player 2, and therefore solves the optimal-
control problem with the player-2 objective of reach-
ing the target set T in a single step at minimal cost.
The operator 1PreR is a predecessor-1 operator on VR,
and 2PreR is a predecessor-2 operator.

Example 4: quantitative transition structures
(“optimization”). Consider again the quantitative
value lattice VR. Figure 2 defines the predecessor op-
erators EPreR and APreR. For a set T ⊆ S of states,
the quantitative valuation EPreG

R
[T]: S → [0,∞]

gives for each state the weight of the minimal tran-
sition into T (or ∞, if no such transition exists), and
APreG

R
[T]: S → [0,∞] gives for each state the weight

of the maximal transition into T (or ∞, if some tran-
sition does not lead into T). These are the single-
step shortest-path and single-step longest-path prob-
lems on the underlying transition structure KG. The
operators EPreR and APreR are both predecessor-1
and predecessor-2 operators on VR.

2.3 Multi-step verification and control

Multi-step verification (“Can a target set be reached
in some number of steps?”), optimization (“What is
the shortest path to the target?”), and control prob-
lems (“Can one player force the game into the target,
in some number of steps, no matter what the other
player does?”) can be solved by iterating the single-
step solutions (“dynamic programming”). Here, we
exemplify the solutions for the goals of reachability

and safety; more general objectives will be dealt with
in Section 4. In the following, consider a game struc-
ture G = (S,Γ1,Γ2, δ, 〈·〉) and a proposition p ∈ P .

Reachability. We define 3p to be the set of mini-
mal finite runs of G that end in a p-state; that is, the
run s0(a0, b0)s1(a1, b1) . . . sm is in 3p iff (1) p ∈ 〈sm〉
and (2) for all 0 ≤ j < m, we have p 6∈ 〈sj〉. Figure 3
defines four boolean valuations in [S → B]. The valua-
tion 〈〈1〉〉G

B
3p is true at the states from which player 1

can control the game to reach a p-state; the valua-
tion 〈〈2〉〉G

B
3p is true at the states from which player 2

can control the game to reach a p-state; the valuation
∃G

B
3p is true at the states from which the two players

can collaborate to reach a p-state; the valuation ∀G
B

3p

is true at the states from which no matter what the
two players do, a p-state will be reached. The first two
valuations specify boolean games with the reachability
objective 3p for players 1 and 2, respectively; the last
two valuations specify the branching-time properties
∃3p and ∀3p on the underlying transition structures.

Figure 3 also defines the four corresponding quan-
titative valuations in [S → [0,∞]]; we use the con-
vention that the infimum of an empty set of nonneg-
ative reals is ∞, and the supremum is 0. The valu-
ation 〈〈1〉〉G

R
3p gives for each state the minimal cost

for player 1 to direct the game to a p-state (or ∞, if
player 1 cannot direct the game to a p-state); the val-
uation 〈〈2〉〉G

R
3p gives for each state the minimal cost

for player 2 to direct the game to a p-state; the val-
uation ∃G

R
3p gives for each state the minimal cost to

reach a p-state if both players collaborate; the valu-
ation ∀G

R
3p gives for each state the maximal reward

achievable, if both players collaborate, before a p-state
is reached. The first two valuations specify quantita-
tive games with the reachability objective 3p for play-
ers 1 and 2, respectively; the last two valuations spec-
ify shortest-path and longest-path problems on the un-
derlying transition structure.

The boolean and quantitative valuations for the
reachability objective 3p can be characterized by
least-fixpoint expressions on the corresponding valu-

{

〈〈1〉〉G
B

〈〈2〉〉G
B

}

(3p)(s) =

{

∃ξ1 ∈ Ξ1.∀ξ2 ∈ Ξ2

∃ξ2 ∈ Ξ2.∀ξ1 ∈ Ξ1

}

. (Rξ1,ξ2
(s) has a prefix in 3p) (9)

{

∃G
B

∀G
B

}

(3p)(s) =

{

∃ξ1 ∈ Ξ1.∃ξ2 ∈ Ξ2

∀ξ2 ∈ Ξ2.∀ξ1 ∈ Ξ1

}

. (Rξ1,ξ2
(s) has a prefix in 3p) (10)

{

〈〈1〉〉G
R

〈〈2〉〉G
R

}

(3p)(s) =

{

infξ1∈Ξ1
. supξ2∈Ξ2

infξ2∈Ξ2
. supξ1∈Ξ1

}

. {w(r) | r is a prefix of Rξ1,ξ2
(s) and r ∈ 3p} (11)

{

∃G
R

∀G
R

}

(3p)(s) =

{

infξ1∈Ξ1
. infξ2∈Ξ2

supξ2∈Ξ2
. supξ1∈Ξ1

}

. {w(r) | r is a prefix of Rξ1,ξ2
(s) and r ∈ 3p} (12)

Figure 3: Boolean and quantitative reachability games

ation lattice:

〈〈1〉〉GV 3p = µx. ([p] ⊔ 1PreG
V (x)), (13)

〈〈2〉〉GV 3p = µx. ([p] ⊔ 2PreG
V (x)), (14)

∃G
V 3p = µx. ([p] ⊔ EPreG

V (x)), (15)

∀G
V 3p = µx. ([p] ⊔ APreG

V (x)), (16)

where V ∈ {B,R}, and the variable x ranges over
the boolean valuations in [S → B] if V = B, and
over the quantitative valuations in [S → [0,∞]] if
V = R. In other words, a single fixpoint expression
(namely, “3p = µx.(p∨pre(x))”) suffices for the solu-
tion of boolean and quantitative verification and con-
trol problems, provided the pre-operator is interpreted
appropriately.

Fixpoint expressions prescribe algorithms. The so-
lutions to the fixpoint equations (13)–(16) can be com-
puted iteratively on the valuation lattice as the limit
of a sequence x0, x1, x2, . . . of valuations: let x0 = ⊥,
and for all k ≥ 0, let xk+1 = [p] ⊔ PreG

V (xk), where
Pre ∈ {1Pre, 2Pre,EPre,APre}. For our four exam-
ples, the iteration converges in a finite number of steps.
This is well-known in the case of boolean game struc-
tures and in the case of quantitative transition struc-
tures; finite convergence can be shown inductively also
for quantitative game structures.

Safety. The complement of a reachability objective
is a safety objective. We define 2p to be the set of
infinite runs of the game structure G that never leave
p-states; that is, the run s0(a0, b0)s1(a1, b1) . . . is in 2p

iff p ∈ 〈sj〉 for all j ≥ 0. Figure 4 defines the boolean
and quantitative valuations for the safety objective
2p. For example, the boolean valuation 〈〈1〉〉G

B
2p is

true at the states from which player 1 can control the
game to stay within p-states; the quantitative valua-
tion ∃G

R
2p gives for each state the minimal cost of an

infinite path that stays within p-states; the boolean

valuation ∀G
B

2p is true at the states from which p is
an invariant.

The boolean and quantitative valuations for the
safety objective 2p can be characterized by greatest-
fixpoint expressions on the corresponding valuation
lattice:

〈〈1〉〉GV 2p = νx. ([p] ⊓ 1PreG
V (x)), (21)

〈〈2〉〉GV 2p = νx. ([p] ⊓ 2PreG
V (x)), (22)

∃G
V 2p = νx. ([p] ⊓ EPreG

V (x)), (23)

∀G
V 2p = νx. ([p] ⊓ APreG

V (x)), (24)

where V ∈ {B,R}. The solutions to these fixpoint
equations can again be computed iteratively as the
limit of a sequence x0, x1, x2, . . . of valuations: let
x0 = ⊤, and for all k ≥ 0, let xk+1 = [p] ⊓ PreG

V (xk).
This iteration converges for boolean game structures
in a finite number of steps, but not necessarily for
quantitative game or transition structures, where con-
vergence may require ω many steps.

3 An Extremal Model Theorem

For verification problems, fixpoint solutions are known
for much richer objectives (“specifications”) than
reachability and safety, and a fixpoint theory —the
µ-calculus— is available for this purpose. In the
case of reachability and safety, the fixpoint expres-
sions we provided (namely, 3p = µx. (p ∨ pre(x)) and
2p = νx. (p ∧ pre(x))) solve both the verification and
control problems. This is not always the case: as we
pointed out in the introduction, there are fixpoint ex-
pressions that solve a verification problem over tran-
sition structures, but do not solve the corresponding
control problem over game structures. We now char-
acterize the fixpoint expressions that solve both verifi-

〈〈1〉〉G
B

(2p)(s) = ∃ξ1 ∈ Ξ1.∀ξ2 ∈ Ξ2. (Rξ1,ξ2
(s) ∈ 2p) (17)

{

∃G
B

∀G
B

}

(2p)(s) =

{

∃ξ1 ∈ Ξ1.∃ξ2 ∈ Ξ2

∀ξ2 ∈ Ξ2.∀ξ1 ∈ Ξ1

}

. (Rξ1,ξ2
(s) ∈ 2p) (18)

〈〈1〉〉G
R

(2p)(s) = inf
ξ1∈Ξ1

. sup
ξ2∈Ξ2

. {w(Rξ1,ξ2
(s)) | Rξ1,ξ2

(s) ∈ 2p} (19)

{

∃G
R

∀G
R

}

(2p)(s) =

{

infξ1∈Ξ1
. infξ2∈Ξ2

supξ2∈Ξ2
. supξ1∈Ξ1

}

. {w(Rξ1,ξ2
(s)) | Rξ1,ξ2

(s) ∈ 2p} (20)

Figure 4: Boolean and quantitative safety games

cation and control problems, provided the predecessor
operators are interpreted appropriately.

3.1 Linear temporal logic

Consider a game structure G = (S,Γ1,Γ2, δ, 〈·〉). We
express winning objectives for the infinite game played
on G by formulas of linear temporal logic (LTL). The
LTL formulas are generated by the grammar

Ψ ::= p | ¬Ψ | Ψ ∨ Ψ |©Ψ | ΨU Ψ,

where p ∈ P is a proposition,© is the “next” operator,
and U is the “until” operator. Additional constructs
such as 3Ψ = tUΨ and 2Ψ = ¬3¬Ψ can be defined
in the standard way. A trace π: ω → 2P is an infinite
sequence of sets of propositions. Every LTL formula
Ψ has a truth value on each trace. We write L(Ψ) for
the set of traces that satisfy Ψ; a formal definition of
L(Ψ) can be found in [9].

Boolean LTL games. Every infinite run r =
s0(a0, b0)s1(a1, b1)s2 . . . of the game structure G in-
duces a trace 〈r〉 = 〈s0〉〈s1〉〈s2〉 . . . Consider a state
s ∈ S and an LTL formula Ψ. We say that player 1

can control state s for objective Ψ in the game struc-

ture G if player 1 has a strategy ξ1 ∈ Ξ1 such that for
all strategies ξ2 ∈ Ξ2 of player 2, the trace induced
by the outcome of the game satisfies the formula Ψ;
that is, 〈Rξ1,ξ2

(s)〉 ∈ L(Ψ). A suitable strategy ξ1 is a
winning player-1 strategy for Ψ from s in G. We write
〈〈1〉〉G

B
Ψ: S → B for the boolean valuation that is true

at the states which can be controlled by player 1 for
Ψ in G; see Figure 5. The player-2 winning valuation
〈〈2〉〉G

B
Ψ is defined symmetrically. Figure 5 also defines

the boolean valuation ∃G
B

Ψ: S → B, which is true at
the states that satisfy the existential CTL∗ formula
∃Ψ in the underlying transition structure KG; and
the boolean valuation ∀G

B
Ψ: S → B, which is true at

the states that satisfy the universal CTL∗ formula ∀Ψ
in KG.

Quantitative LTL games. By 〈〈1〉〉G
R

Ψ we wish to
denote the minimal cost for player-1 to achieve the ob-
jective Ψ. Recall the previous section. In reachability
games, we compute the cost of winning as the weight
of a finite run that reaches the target, while in safety
games, the cost of winning is the weight of an infi-
nite run. This is because upon reaching the target, we
know that the reachability objective is satisfied, while
a safety objective can be witnessed only by the entire
infinite run generated by a game. We generalize this
principle to arbitrary LTL formulas by defining the
satisfaction index of a trace with respect to an LTL
formula. Given a trace π = π0π1π2 . . . and a nonnega-
tive integer k, the trace π′ = π′

0π
′
1π

′
2 . . . is a k-variant

of π iff πj = π′
j for all 0 ≤ j ≤ k. Let Λ(π, k) be

the set of k-variants of π. For a trace π and an LTL
formula Ψ, the satisfaction index κ(π,Ψ) is the small-
est integer k ≥ 0 such that Λ(π, k) ⊆ L(Ψ) if such
a k exists, and κ(π,Ψ) = ∞ otherwise. Intuitively,
κ(π,Ψ) the minimal number of steps after which we
can conclude that the trace π satisfies the formula Ψ.

For an infinite run r and a nonnegative integer k,
let r[0..k] be the the prefix of r that contains k states.
Given an LTL formula Ψ, the quantitative valuation
〈〈1〉〉G

R
Ψ: S → [0,∞] is formally defined in Figure 5.

For each state s ∈ S, we say that 〈〈1〉〉G
R

Ψ(s) is the
player-1 value of the game with objective Ψ at the state

s of the game structure G. A strategy ξ1 that attains
the infimum is an optimal player-1 strategy for Ψ from

s in G. The player-2 valuation 〈〈2〉〉G
R

Ψ is defined sym-
metrically. Figure 5 also defines the quantitative val-
uation ∃G

R
Ψ: S → [0,∞], which for each state s gives

the minimum cost necessary for determining that some
path from s in the underlying transition structure KG

satisfies Ψ (or ∞, if no such path exists). Dually, the
valuation ∀G

R
Ψ: S → [0,∞] gives for each state s the

maximal reward attainable along some path from s in
KG until Ψ can no longer be violated.

〈〈1〉〉G
B

Ψ(s) = ∃ξ1 ∈ Ξ1.∀ξ2 ∈ Ξ2. (〈Rξ1,ξ2
(s)〉 ∈ L(Ψ)) (25)

{

∃G
B

∀G
B

}

Ψ(s) =

{

∃ξ1 ∈ Ξ1.∃ξ2 ∈ Ξ2

∀ξ2 ∈ Ξ2.∀ξ1 ∈ Ξ1

}

. (〈Rξ1,ξ2
(s)〉 ∈ L(Ψ)) (26)

〈〈1〉〉G
R

Ψ(s) = inf
ξ1∈Ξ1

. sup
ξ2∈Ξ2

. {w(r[0..κ(〈r〉,Ψ)]) | r = Rξ1,ξ2
(s) and 〈r〉 ∈ L(Ψ)} (27)

{

∃G
R

∀G
R

}

Ψ(s) =

{

infξ1∈Ξ1
. infξ2∈Ξ2

supξ2∈Ξ2
. supξ1∈Ξ1

}

. {w(r[0..κ(〈r〉,Ψ)]) | r = Rξ1,ξ2
(s) and 〈r〉 ∈ L(Ψ)} (28)

Figure 5: Boolean and quantitative LTL games

3.2 Fixpoint calculi for games

We define a family of fixpoint logics on game struc-
tures. The fixpoint formulas are generated by the
grammar

ϕ ::= p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ |
pre1(ϕ) | pre2(ϕ) | µx. ϕ | νx. ϕ,

for propositions p ∈ P and variables x. A fixpoint
formula ϕ is a one-player formula if either it contains
no pre2-operator, or it contains no pre1-operator. In
the former case, ϕ is a player-1 formula; in the latter
case, a player-2 formula. Given a value lattice V , a
predecessor-1 operator Pre1 on V , and a predecessor-
2 operator Pre2 on V , the closed fixpoint formulas
form a logic on game structures: for every game struc-
ture G, every closed fixpoint formula ϕ(Pre1,Pre2)
specifies a valuation [[ϕ]]G: SG → V . The syntac-
tic operator pre1 is interpreted semantically as the
predecessor-1 operator Pre1, and pre2 is interpreted
as Pre2. To make the interpretation of the pre-
operators explicit, we sometimes write ϕ(Pre1,Pre2)
when naming a fixpoint formula. Then, ϕ(Pre ′

1,Pre ′
2)

describes the syntactically identical fixpoint formula,
with the pre1-operator interpreted as Pre ′

1, and pre2

interpreted as Pre ′
2. Likewise, the one-player formulas

have only a single predecessor operator as argument.

We now define the semantics of fixpoint formulas
formally. Let V be a value lattice V , let Pre1 be
a predecessor-1 operator on V , and let Pre2 be a
predecessor-2 operator on V . Let G be a game struc-
ture. A variable environment E forG is a function that
maps every variable x to a valuation in [SG → V]. We
write E [x 7→ f] for the function that agrees with E on
all variables, except that x is mapped to the valua-
tion f . Given V , Pre1, Pre2, G, and a variable envi-
ronment E for G, each fixpoint formula ϕ specifies a
valuation [[ϕ]]GE : SG → V , which is defined inductively
by the following equations:

[[p]]GE = [p]

[[¬p]]GE = −[p]

[[x]]GE = E(x)

[[ϕ1

{

∨

∧

}

ϕ2]]
G
E = [[ϕ1]]

G
E

{

⊔

⊓

}

[[ϕ2]]
G
E

[[
{

pre
1

pre
2

}

(ϕ)]]GE =
{

PreG

1

PreG

2

}

[[ϕ]]GE

[[
{

µ
ν

}

x. ϕ]]GE =
{

⊓

⊔

}

{f : SG → V | f = [[ϕ]]G
E[x 7→f]}

All right-hand-side (semantic) operations are per-
formed on the valuation lattice [SG → V]. If ϕ is
a closed formula, then [[ϕ]]G = [[ϕ]]GE for any variable
environment E .

Provided that the predecessor operators Pre1 and
Pre2 on V are computable, each formula ϕ(Pre1,Pre2)
prescribes a dynamic program for computing the val-
uation [[ϕ]]G over a game structure G by iterative ap-
proximation.

Example: mu-calculus. Choose the boolean value
lattice VB, and the predecessor operators Pre1 =
EPreB and Pre2 = APreB. The resulting logic on
game structures coincides is the µ-calculus [8] on the
underlying transition structures.

Example: boolean game calculus. Choose the
boolean value lattice VB, and the predecessor opera-
tors Pre1 = 1PreB and Pre2 = 2PreB. The result-
ing logic on game structures is the alternating-time
µ-calculus of [1]. The player-i fragment, for i = 1, 2,
is expressive enough to compute the winning states for
player i with respect to any LTL objective.

Example: quantitative game calculus. Choose
the quantitative value lattice VR, and the predeces-
sor operators Pre1 = 1PreR and Pre2 = 2PreR. The
resulting logic may be called the quantitative game

calculus. We shall see that the player-i fragment, for
i = 1, 2, is expressive enough to compute all player-i
values with respect to any LTL objective.

Example: quantitative mu-calculus. Choose the
quantitative value lattice VR, and the predecessor op-

erators Pre1 = EPreR and Pre2 = APreR. The result-
ing logic may be called the quantitative µ-calculus. It
can be used to compute, for example, the minimal and
maximal weights of paths that satisfy LTL formulas in
transition structures.

Monotonicity. The following monotonicity property
of fixpoint formulas will be useful.

Lemma 1 For every game structure G, every 1-

restriction G1 of G, every 2-restriction G2 of G, and

every player-1 fixpoint formula ϕ, we have [[ϕ]]G ⊒
[[ϕ]]G1 and [[ϕ]]G ⊑ [[ϕ]]G2 . A symmetrical result holds

for player-2 formulas.

Lean fixpoint formulas. We shall use fixpoint for-
mulas as algorithms for computing the values of LTL
games. The quantitative interpretation of a fixpoint
formula, however, does not take into account the sat-
isfaction index of the corresponding LTL formula, and
may compute the cost of a trace even beyond the sat-
isfaction index. For example, the LTL formula©t has
the satisfaction index 0, because every state has a suc-
cessor. Hence (∃G

R
© t)(s) = 0 for all game structures

G and states s ∈ SG. While ∃G
B
© t = [[EPreB(t)]]G

for all game structures G, if s ∈ SG is a state all of
whose outgoing transitions have positive weights, then
[[EPreR(t)]]G(s) > 0. This motivates the definition of
lean fixpoint formulas. A fixpoint formula ϕ is valid if
for every game structure G and every state s ∈ SG, we
have [[ϕ(1PreB, 2PreB)]]G(s) = t. A fixpoint formula
is lean if no valid subformula contains pre-operators.

From now on we will make heavy use of the following
convenient notation. If fG and gG are two families
of valuations, one each for every game structure G,
then we write f = g short for “fG = gG for all game
structures G.”

Lemma 2 Let Ψ be an LTL formula, and let ϕ be

a lean one-player fixpoint formula. Then ∃BΨ =
[[ϕ(EPreB)]] iff ∃RΨ = [[ϕ(EPreR)]], and ∀BΨ =
[[ϕ(APreB)]] iff ∀RΨ = [[ϕ(APreR)]].

3.3 From verification to control:
a semantic criterion

The following theorem characterizes the fixpoint for-
mulas that can be used for solving boolean as well as
quantitative games with LTL winning objectives. The
characterization reduces problems on two-player struc-
tures (control) and on quantitative structures (opti-
mization) to problems on boolean one-player struc-
tures (verification), which are well-understood.

Theorem 1 For every LTL formula Ψ and every lean

player-i fixpoint formula ϕ, where i = 1, 2, the follow-

ing four statements are equivalent:

• 〈〈i〉〉RΨ = [[ϕ(iPreR)]].

• 〈〈i〉〉BΨ = [[ϕ(iPreB)]].

• ∃RΨ = [[ϕ(EPreR)]] and ∀RΨ = [[ϕ(APreR)]].

• ∃BΨ = [[ϕ(EPreB)]] and ∀BΨ = [[ϕ(APreB)]].

The theorem can be stated equivalently as follows:

〈〈i〉〉G
R

Ψ = [[ϕ(iPreR)]]G for all game struc-
tures G iff 〈〈i〉〉G

B
Ψ = [[ϕ(iPreB)]]G for all one-

player structures G.

In other words, the fixpoint formula ϕ prescribes an
algorithm for computing the boolean or quantitative
values of games with the winning objective Ψ iff it does
so on all boolean, extremal game structures, where one
or the other player has no choice of actions.

Proof sketch. Clearly, a fixpoint formula ϕ that
solves games with objective Ψ also works over one-
player structures, which are special cases of games.
For the implication from one-player to game struc-
tures, we argue by contradiction. We start with the
boolean player-1 interpretation (the proof for player 2
is symmetric). First we notice that given a game
structure G for which the two valuations 〈〈1〉〉G

B
Ψ

and [[ϕ(1PreB)]]G differ, we can construct a turn-
based game structure G′ for which the valuations dif-
fer as well. There are two cases. If 〈〈1〉〉G

′

B
Ψ(s) <

[[ϕ(1PreB)]]G
′

(s) for some state s ∈ SG′

, then we fix a
finite-memory optimal strategy of player 2 and show
that in the resulting player-1 structure G1, there is a
state t such that (∃G1

B
Ψ)(t) < [[ϕ(EPreB)]]G1(t). Sim-

ilarly, if 〈〈1〉〉G
′

B
Ψ(s) > [[ϕ(1PreB)]]G

′

(s) for some state

s ∈ SG′

, then we fix a finite-memory optimal strategy
of player 1 and argue on the resulting player-2 struc-
ture. The proof for quantitative games follows by a
similar argument. Finally, we go from quantitative to
boolean structures using Lemma 2. 2

Suppose we are given an LTL formula Ψ. For ver-
ifying whether some path of a transition structure
KG satisfies Ψ, we can construct a µ-calculus formula
ϕ(EPreB) that is equivalent to ∃BΨ over all transition
structures, and check ϕ(EPreB) over KG; this is, in
fact, a symbolic model checking algorithm for LTL [3].
Now suppose that we want player 1 to control the
game structure G for the objective Ψ. Theorem 1 tells
us whether we can simply substitute the controllable
predecessor operator 1PreB for the µ-calculus prede-
cessor operator EPreB in the fixpoint formula ϕ: the
substitution works if and only if by substituting APreB

for EPreB in ϕ we obtain a formula that is equivalent
to the universal interpretation ∀BΨ of the LTL formula
over all transition structures.

To see that this property is not trivial (i.e., not
satisfied by every µ-calculus formula ϕ(EPreB) that
is equivalent to ∃BΨ), consider the co-Büchi formula
Ψ = 32p. Over transition structures, ∃32p is
equivalent to ∃3∃2p, which is equivalent to the µ-
calculus formula µx.(νy.(p ∧ EPreB(y)) ∨ EPreB(x));
indeed, this is the result of the standard transla-
tion from LTL to the µ-calculus for co-Büchi formu-
las [7, 4]. However, the corresponding game formula
µx.(νy.(p ∧ 1PreB(y)) ∨ 1PreB(x)) does not compute
the boolean valuation 〈〈1〉〉G

B
32p for all game struc-

tures G: the game structure given in the introduction
provides a counterexample. The criterion of Theo-
rem 1 fails, because over transition structures, ∀B32p

is not equivalent to ∀3∀2p, and therefore ∀BΨ is not
equivalent to µx.(νy.(p∧APreB(y))∨APreB(x)). This
is not surprising, given that the solution of ω-regular
games requires deterministic (and hence Rabin chain)
ω-automata [15], whereas nondeterministic (and hence
Büchi) ω-automata suffice for ω-regular verification.
The translations of [7, 4] from LTL to the µ-calculus go
via nondeterministic Büchi automata, and thus can-
not be used to solve ω-regular games.

The following theorem characterizes the cost of
checking the criterion given in Theorem 1. There is a
gap between the lower and upper bounds, which is due
to the gap between the best known lower and upper
bounds for the equivalence problem between an LTL
formula and a µ-calculus formula.

Theorem 2 Let Ψ be an LTL formula, and let ϕ

be a one-player fixpoint formula. The complexity of

checking whether ∃BΨ = [[ϕ]] is in 2EXPTIME and

PSPACE-hard in the size of Ψ, and in EXPTIME

in the size of ϕ. The complexity of checking whether

∀BΨ = [[ϕ]] is the same.

3.4 From verification to control:
a syntactic criterion

Not all fixpoint formulas correspond to verification
or control problems with respect to linear-time objec-
tives. This is always the case, however, for the deter-
ministic fixpoint formulas. The deterministic fixpoint
formulas are generated by the grammar

ϕ ::= p | ¬p | x | ϕ ∨ ϕ | p ∧ ϕ | ¬p ∧ ϕ |
pre1(ϕ) | pre2(ϕ) | µx. ϕ | νx. ϕ.

From [6] we know that if ϕ(EPreB) is a one-player de-
terministic fixpoint formula, then there is an ω-regular
language Θ such that ∃BΘ = [[ϕ(EPreB)]]. However,

the examples (2) and (3) in the introduction illustrate
that for such a formula ϕ(EPreB), in general it is not
the case that 〈〈1〉〉BΘ = [[ϕ(1PreB)]]. In other words,
the correspondence between the deterministic fixpoint
formula and the ω-regular language does not necessar-
ily carry over from verification to control. It is then
natural to ask what other conditions we need, in addi-
tion to determinism, for a one-player fixpoint formula
to have related meanings in verification and control.
We answer this question by introducing a subclass of
the deterministic formulas. A fixpoint formula ϕ is
strongly deterministic iff ϕ consists of a string of fix-
point quantifiers followed by a quantifier-free part ψ,
which is generated by the grammar

ψ ::= p | ¬p | ψ ∨ ψ | p ∧ ψ | ¬p ∧ ψ |
pre1(χ) | pre2(χ),

χ ::= x | χ ∨ χ.

Note that every strongly deterministic fixpoint for-
mula is lean. The following theorem shows that
the one-player strongly deterministic fixpoint formu-
las provide a syntactic class of fixpoint formulas for
which the criterion of Theorem 1 applies. In partic-
ular, it follows that for every LTL formula Ψ, every
one-player strongly deterministic fixpoint formula ϕ,
and i = 1, 2, we have 〈〈i〉〉RΨ = [[ϕ(iPreR)]].

Theorem 3 For every LTL formula Ψ and every one-

player strongly deterministic fixpoint formula ϕ, we

have ∃BΨ = [[ϕ(EPreB)]] iff ∀BΨ = [[ϕ(APreB)]].

Proof sketch. A strongly deterministic formula
starts with a quantifier prefix. In the sequence
µx1.νx2 . . . νx2k of alternating fixpoints, the “evalua-
tion order” is x2 ≻ x4 ≻ · · · ≻ x2k ≻ x2k−1 ≻ · · · ≻ x1

(this reflects the extension of the variables when the
expression is being evaluated). Using this evaluation
order, every one-player strongly deterministic fixpoint
formula ϕ(EPreB) can be brought into the normal

form µx1.νx2 . . . νx2k.(d0∨
∨2k

j=1(dj ∧EPreB(xj))), for
some k > 0 and some mutually exclusive boolean com-
binations d0, d1, . . . , d2k of propositions. The theorem
follows from the fact that this formula has essentially
the same structure as the solution formula of a Rabin-
chain game (cf. [5] and Section 4). 2

While the one-player strongly deterministic fixpoint
formulas obey strict syntactic conditions, the proof of
Theorem 3 shows that they suffice for solving all con-
trol problems with Rabin-chain objectives. In turn,
every ω-regular property can be specified by a de-
terministic Rabin-chain automaton [10, 15]. We can
therefore transform every control problem with an ω-
regular objective into a control problem with a Rabin-
chain objective that is to be solved on the automata-

theoretic product of the given game structure and a
Rabin-chain automaton. Hence, at the cost of possibly
enlarging the game structure, the one-player strongly
deterministic fixpoint formulas suffice for the solution
of games with arbitrary ω-regular objectives.

4 Dynamic Programs for LTL

We show that for every LTL formula Ψ we can con-
struct an equivalent fixpoint formula ϕΨ that meets
the criterion of Theorem 1. The formula ϕΨ has the
following properties: it solves both the verification
problem (on transition structures) for specification Ψ
and the control problem (on game structures) for ob-
jective Ψ, both under boolean and quantitative in-
terpretations. The construction of ϕΨ is optimal for
the boolean case, in that the 2EXPTIME complexity
of the resulting algorithm for solving boolean games
with LTL objectives matches the hardness of the prob-
lem [11].

4.1 (Co)Büchi and Rabin-chain games

The objective of a Büchi game is an LTL formula of
the form 23p, for a proposition p ∈ P , and the objec-
tive of a co-Büchi game is an LTL formula of the form
32p. For V = {B,R} and i = 1, 2, the Büchi and
co-Büchi valuations can be computed by the fixpoint
formulas

〈〈i〉〉V 23p = [[νy.µx.(iPreV (x) ∨ (p ∧ iPreV (y)))]],
〈〈i〉〉V 32p = [[µx.νy.(iPreV (x) ∨ (p ∧ iPreV (y)))]].

The objective a Rabin-chain game is an LTL formula
of the form Φ =

∨k−1
j=0 (23d2j ∧ ¬23d2j+1), where

k > 0 is called the index of Φ, and d0, . . . , d2k are
boolean combinations of propositions such that ∅ =
[d2k] ⊆ [d2k−1] ⊆ · · · ⊆ [d0] = SG for all game struc-
tures G. An alternative characterization of Rabin-
chain games with objective Φ can be obtained by
defining a family ΩG

Φ : SG → {0, 1, . . . , 2k − 1} of in-
dex functions, one for every game structure G, such
that ΩG

Φ(s) = j for all states s ∈ [dj] \ [dj+1]. Given
an infinite run r of G, let Inf (r) ⊆ SG be the set
of states that occur infinitely often along r, and let
MaxIndex (ΩΦ, r) = max{ΩG

Φ(s) | s ∈ Inf (r)} be the
largest index of such a state. Then, the run r satis-
fies the objective Φ iff MaxIndex (ΩΦ, r) is even. For
V ∈ B,R and i = 1, 2, the Rabin-chain valuation can
be computed by the fixpoint formula

〈〈i〉〉V Φ = [[λ2k−1x2k−1...µx1.νx0.
∨2k−1

j=0 (dj ∧¬dj+1 ∧ iPreV (xj))]],

where λj = ν if j is even, and λj = µ if j is odd
(cf. [5]). Note that the fixpoint solutions for Büchi,
co-Büchi, and Rabin-chain games are all one-player
strongly deterministic fixpoint formulas.

4.2 LTL games

Given an LTL formula Ψ, we construct a lean one-
player fixpoint formula ϕΨ such that

〈〈i〉〉V Ψ = [[ϕΨ(iPreV)]] (29)

for V ∈ {B,R} and i = 1, 2. Following [5, 10], our
construction is based on deterministic Rabin-chain au-
tomata (also called parity automata [14]). A Rabin-

chain automaton of index k over the input alphabet
2P is a tuple C = (Q,Q0,∆, 〈·〉,Ω), where Q is a fi-
nite set of states, Q0 ⊆ Q is the set of initial states, ∆:
Q→ 2Q is the transition relation, 〈·〉: Q→ 2P assigns
propositions to states, and Ω: Q → {0, . . . , 2k − 1} is
the acceptance condition. An execution of C from a
source state q0 ∈ Q is an infinite sequence q0q1q2 · · · of
automaton states such that qj+1 ∈ ∆(qj) for all j ≥ 0;
if q0 ∈ Q0, we say that the execution is initialized.

The execution e = q0q1q2 . . . is generated by the trace
〈e〉 = 〈q0〉〈q1〉〈q2〉 · · ·. The execution e is accepting if
MaxIndex (Ω, e) is even. The language L(C) is the set
of traces π such that C has an initialized accepting
execution e generated by π. The automaton C is de-

terministic and total if (1a) for all states q′, q′′ ∈ Q0, if
q′ 6= q′′, then 〈q′〉 6= 〈q′′〉; (1b) for all proposition sets
P ′ ⊆ P , there is a state q′ ∈ Q0 such that 〈q′〉 = P ′;
(2a) for all states q ∈ Q and q′, q′′ ∈ ∆(q), if q′ 6= q′′,
then 〈q′〉 6= 〈q′′〉; (2b) for all states q ∈ Q and all
proposition sets P ′ ⊆ P , there is a state q′ ∈ ∆(q)
such that 〈q′〉 = P ′. If C is deterministic and total,
then we write ∆(q, P ′) for the unique state q′ ∈ ∆(q)
with 〈q′〉 = P ′.

From the LTL formula Ψ, we construct a determinis-
tic, total Rabin-chain automaton CΨ such that L(Ψ) =
L(CΨ), by first building a nondeterministic Büchi au-
tomaton with the language L(Ψ) [16], and then deter-
minizing it [12, 13]. Let CΨ = (Q,Q0,∆, 〈·〉,Ω). In
order to obtain a lean fixpoint formula ϕΨ, we need
to compute the set F ⊆ Q of automaton states q such
that all executions with source q are accepting. To
this end, it suffices to compute the set Q \ F of states
q′ such that there is an execution e with source q′ and
MaxIndex (Ω′, e) is even, where Ω′ is the complemen-
tary acceptance condition with Ω′(q) = (2k−1)−Ω(q)
for all states q ∈ Q. This corresponds to checking the
nonemptiness of a Rabin-chain automaton [5].

We derive the fixpoint formula ϕΨ that satisfies
(29) in two steps. First, we build a fixpoint for-

mula ϕ′ that solves the game with objective Ψ on
the product structure G × C, for all game struc-
tures G. From ϕ′, we then construct the for-
mula ϕΨ that solves the game directly on G, for
all G. Consider an arbitrary game structure G =
(S,Γ1,Γ2, δ, 〈·〉). Define G × C = (S′,Γ′

1,Γ
′
2, δ

′, 〈·〉),
where S′ = {(s, q) ∈ S × Q | 〈s〉 = 〈q〉}, where
Γ′

i(s, q) = Γi(s) for i = 1, 2, where δ′((s, q), a1, a2) =
(δ(s, a1, a2),∆(q, 〈δ(s, a1, a2)〉)). Finally, for q 6∈ F

let 〈s, q〉 = 〈s〉 ∪ {cΩ(q)}, and for q ∈ F let 〈s, q〉 =
〈s〉 ∪ {f, cΩ(q)}, where f, c0, . . . , c2k−1 are new propo-
sitions.

We construct ϕ′ by proceeding similarly to [2]. We
give the fixpoint formula ϕ′ in equational form; it
can then be unfolded into a nested fixpoint formula
in the standard way. The formula ϕ′ is composed
of blocks B′

0, . . . , B
′
2k−1, where B′

0 is the innermost
block and B′

2k−1 the outermost block. The block
B′

0 is a ν-block which consists of the single equation
x0 = f ∨

∨2k−1
j=0 (cj ∧ pre1(xj))). For 0 < ℓ ≤ 2k − 1,

the block B′
ℓ is a µ-block if ℓ is odd, and a ν-block if

ℓ is even; in either case it consists of the single equa-
tion xℓ = xℓ−1. The output variable is x2k−1. Then,
(〈〈1〉〉G

B
Ψ)(s) = [[ϕ′(1PreB)]]G×C(s, q) for all states s ∈

S and for the unique q ∈ Q0 such that (s, q) ∈ S′.
The formula ϕΨ mimics on G the evaluation of ϕ′ on

G× C. For each variable xℓ of ϕ′, for 0 ≤ ℓ ≤ 2k − 1,
the formula ϕΨ contains the set {xq

ℓ | q ∈ Q} of
variables: the value of xq

ℓ at s keeps track of the
value of xℓ at (s, q). The formula ϕΨ is composed
of the blocks B0, . . . , B2k−1: for 0 ≤ ℓ ≤ 2k − 1, the
block Bℓ consists of the set {Eq

ℓ | q ∈ Q} of equa-
tions. The equation E

q
ℓ is derived from the equa-

tion for xℓ in ϕ′ by replacing the variable xℓ on
the left-hand side with the variable x

q
ℓ , by replac-

ing cj with t if Ω(q) = j and f otherwise, by re-
placing f with t if q ∈ F and f otherwise, and by
replacing pre1(xj) with pre1(

∨

q′∈∆(q) x
q′

j); the right-
hand side is then conjuncted with the propositions
in 〈q〉. The block B2k−1 contains the extra equation
xout =

∨

q∈Q0
x

q
2k−1, which defines the output vari-

able xout . Note that ϕΨ is independent of the game
structure G, and contains no propositions other than
those in Ψ.

Theorem 4 For every LTL formula Ψ and i = 1, 2,
we have 〈〈i〉〉BΨ = [[ϕΨ(iPreB)]]. Moreover, the fixpoint

formula ϕΨ is lean and its size is doubly exponential

in the size of Ψ.

Since ϕΨ is lean, by Theorem 1 it follows that
〈〈i〉〉RΨ = [[ϕΨ(iPreR)]]. The doubly exponential size
of ϕΨ is optimal, because boolean games with LTL
objectives are 2EXPTIME-hard [11].

References

[1] R. Alur, T.A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. In Proc. 38th Symp.

Foundations of Computer Science, pp. 100–109. IEEE
Computer Society, 1997.

[2] G. Bhat and R. Cleaveland. Efficient model checking
via the equational µ-calculus. In Proc. 11th Symp. Logic

in Computer Science, pp. 304–312. IEEE Computer So-
ciety, 1996.

[3] E.M. Clarke, O. Grumberg, and D.E. Long. Verifi-
cation tools for finite-state concurrent systems. In A

Decade of Concurrency: Reflections and Perspectives,
LNCS 803, pp. 124–175. Springer, 1994.

[4] M. Dam. CTL∗ and ECTL∗ as fragments of the modal
µ-calculus. Theoretical Computer Science, 126:77–96,
1994.

[5] E.A. Emerson and C. Jutla. Tree automata, mu-
calculus, and determinacy. In Proc. 32th Symp. Foun-

dations of Computer Science, pp. 368–377. IEEE Com-
puter Society, 1991.

[6] E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model
checking for fragments of µ-calculus. In CAV 93:

Computer-aided Verification, LNCS 697, pp. 385–396.
Springer, 1993.

[7] E.A. Emerson and C. Lei. Efficient model checking in
fragments of the propositional µ-calculus. In Proc. First

Symp. Logic in Computer Science, pp. 267–278. IEEE
Computer Society, 1986.

[8] D. Kozen. Results on the propositional µ-calculus.
Theoretical Computer Science, 27:333–354, 1983.

[9] Z. Manna and A. Pnueli. The Temporal Logic of Re-

active and Concurrent Systems: Specification. Springer,
1992.

[10] A.W. Mostowski. Regular expressions for infinite
trees and a standard form of automata. In Proc. 5th

Symp. Computation Theory, LNCS 208, pp. 157–168.
Springer, 1984.

[11] R. Rosner. Modular Synthesis of Reactive Systems.
PhD Thesis, Weizmann Institute of Science, Rehovot,
Israel, 1992.

[12] S. Safra. On the complexity of ω-automata. In Proc.

29th Symp. Foundations of Computer Science, pp. 319–
327. IEEE Computer Society, 1988.

[13] S. Safra. Exponential determinization for ω-automata
with strong-fairness acceptance condition. In Proc. 24th

Symp. Theory of Computing, pp. 275–282. ACM, 1992.

[14] W. Thomas. Automata on infinite objects. In Hand-

book of Theoretical Computer Science, vol. B, pp. 133–
191. Elsevier, 1990.

[15] W. Thomas. On the synthesis of strategies in infinite
games. In STACS 95: Theoretical Aspects of Computer

Science, LNCS 900, pp. 1–13. Springer, 1995.

[16] M.Y. Vardi and P. Wolper. Reasoning about infinite
computations. Information and Computation, 115:1–37,
1994.

