
Timed Interfaces
⋆

In Proc. of EMSOFT 2002: Second International Workshop on Embedded Software,

Lectures Notes in Computer Science, Springer-Verlag, 2002.

Luca de Alfaro1, Thomas A. Henzinger2, and Mariëlle Stoelinga1

1 Computer Engineering, University of California, Santa Cruz
{luca,marielle}@soe.ucsc.edu

2 EECS, University of California, Berkeley
tah@eecs.berkeley.edu

Abstract. We present a theory of timed interfaces, which is capable of
specifying both the timing of the inputs a component expects from the
environment, and the timing of the outputs it can produce. Two timed
interfaces are compatible if there is a way to use them together such
that their timing expectations are met. Our theory provides algorithms
for checking the compatibility between two interfaces and for deriving
the composite interface; the theory can thus be viewed as a type system
for real-time interaction. Technically, a timed interface is encoded as a
timed game between two players, representing the inputs and outputs of
the component. The algorithms for compatibility checking and interface
composition are thus derived from algorithms for solving timed games.

1 Introduction

A formal notion of component interfaces provides a way to describe the in-
teraction between components, and to verify the compatibility between com-
ponents automatically. Traditional type systems capture only the data dimen-
sion of interfaces (“what are the value constraints on data communicated be-
tween components?”). We have developed an approach, called interface theories

[dAH01a,dAH01b], which can be viewed as a behavioral type system that also
captures the protocol dimension of interfaces (“what are the temporal ordering
constraints on communication events between components?”). This paper ex-
tends this formalism to capture, in addition, the timing dimension of interfaces
(“what are the real-time constraints on communication events between compo-
nents?”). This permits, for example, the specification and compatibility check
of component interactions based on time-outs. Timed interfaces support the
component-based design of real-time systems in the following ways:

Component interface specification. A component is an open system that
expects inputs and provides outputs to the environment. An interface specifies
how a component interacts with its environment, by describing both the assump-
tions made by the component on the inputs and the guarantees provided by the

⋆ This research was supported in part by the NSF CAREER award CCR-0132780, the
NSF grant CCR-9988172 the AFOSR MURI grant F49620-00-1-0327, the DARPA
PCES grant F33615-00-C-1693, the MARCO GSRC grant 98-DT-660, and the ONR
grant N00014-02-1-0671.

component on the outputs. Timed interfaces can refer to the timing of the input
and output events. An interface is well-formed as long as there is some environ-
ment that satisfies the input assumptions made by the component; otherwise,
the component would not be usable in any design.

Interface compatibility checking. When two components are composed, we
can check that the components satisfy each other’s assumptions. Since the result
of composition is generally still an open system, it may depend on the environ-
ment whether or not this is the case. Two interfaces are compatible if their
composition is well-formed, i.e., if there exists an environment that makes them
work together. The composition yields a new interface for the composite sys-
tem that specifies the derived input assumptions required to make the original
components working together, as well as the resulting output guarantees.

An (untimed or timed) interface is naturally modeled as a game between two
players, Output and Input. Player Output represents the component: the moves
of Output represent the possible outputs that the component may generate (the
output guarantees); player Input represents the environment: the moves of In-
put represent the the inputs that the system accepts from the environment (the
input assumptions). For instance, a functional type D 7→ D′ in a programming
language is an interface that corresponds to a one-shot game. The Input player
provides inputs that can be accepted (values in D) and the Output player pro-
vides outputs that can be generated (values in D′). If the sets of legal inputs
and possible outputs can change dynamically over time, then the interface is
naturally modeled as an iterative game played on a set of states [Abr96], where
the moves —i.e., the acceptable inputs and possible outputs— may depend on
the state of the system. Such an interface is well-formed if the Input player has a
winning strategy in the game, i.e., the environment can meet all input assump-
tions. For timed interfaces, we need the additional well-formedness condition
that a player must not achieve its goal by blocking time forever.

The game-theoretic view of interfaces becomes most apparent in their com-
position. When two interfaces are composed, the combined interface may contain
error states. These occur when one component interface can generate an output
that is not a legal input for the other component interface, showing that the first
component violates an input assumption of the second. In addition, our timed
games give rise to time errors, where one of the players cannot let time pass.
Two interfaces are compatible if there is a way for the Input player, who chooses
the inputs of the composite interface, to avoid all errors. If so, then there exists
an environment of the combined system which makes both components satisfy
each other’s input assumptions.

Different theories of timed interfaces arise depending on the details of how
timed games are defined. For example, communication can be through actions
or shared variables, and composition can be synchronous or asynchronous. The
main contribution of this paper does not lie in such details of the formalism
(which may be changed), but in the notion of interface of a real-time component
as a timed game. This notion sets our interfaces apart from the type systems for
protocols of [RR01,CRR02], from message-sequence charts [RGG96], and from

2

traditional models for timed systems such as timed automata [AD94,MMT91].
Many models are unable to express input assumptions and postulate that a
component must work in all environments; this is the input-enabled approach
of, e.g., [AH97,SGSAL98]. Models that can encode input assumptions, such as
process algebras, often phrase the compatibility question as a graph (rather
than game) question, in which input and output play the same role: two com-
ponents are considered compatible if they cannot reach a deadlock [RR01]. In
our game-based approach, input and ouput play dual roles: two components are
compatible if there is some input behavior such that, for all output behaviors,
no incompatibility arises. This notion captures the idea that an interface can be
useful as long as it can be used in some design. In this, interfaces are close to
types in programming languages, to trace theory [Dil88], and to the semantics
of interaction [Abr96].

2 Timed Interfaces as Timed Games: Preview

In a timed interface, the Input and Output players have two kinds of moves:
immediate moves, which represent events sent or received by the interface, and
timed moves, that consist in an amount of time that the players propose to spend
idle. We assume a time domain T; suitable choices for T are the nonnegative
reals IR≥0, or the nonnegative integers IN. The successor state is determined as
follows. When Input chooses tI ∈ T and Output chooses tO ∈ T, the global time
will advance by min{tI , tO}; if a player chooses an immediate move and the other
a timed move, the immediate move prevails; if both players choose immediate
moves, one of them occurs nondeterministically [MPS95,AMPS98].

Only game outcomes along which global time diverges are physically mean-
ingful. Obviously, each player is capable of blocking the progress of time by
playing a sequence of timed moves whose summation converges (so-called Zeno
behavior). To rule out such behavior, we require a well-formedness criterion,
which states that at all reachable states, each player can ensure that time pro-
gresses unless the other player blocks its progress. The composition of timed in-
terfaces may give rise to two kinds of error states: immediate error states, where
one interface emits an output that cannot be accepted by the other, and time

error states, where the well-formedness criterion is violated. Two interfaces are
compatible if there is a strategy for Input in the combined interface that avoids
all errors. The composite interface is obtained by restricting the input moves
(i.e., the accepted environments) such that the error states are not entered.

We illustrate these concepts through a simple example from scheduling. The
interfaces are modeled as timed interface automata. This is a syntax derived from
timed automata [AD94]. However, the syntax is interpreted as a (timed) game,
rather than as a (timed) transition system. In particular, timed automata use
invariants for specifying an upper bound for the advancement of time at a loca-
tion. Timed interface automata have two kinds of invariants: input invariants,
which specify upper bounds for the timed moves played by Input, and output

invariants, which specify upper bounds for the timed moves played by Output.

3

js!

x = 10 x := 0

jf?

js!

p0 p1

InvO : x≤10

6 ≤ x ≤ 8

jf?

InvI : x≤8

(a) Caller .

y = 4
y := 0

mf!

Inv
O : y≤4

mf!

ms?Inv
O : y=0

q0

q1 q2

q3

ms?

jf!

js?

jf !

js?

(b) Job.

Inv
O : y=0

Inv I : x≤8

Inv
O : y≤4 js!

jf !

mf!

ms?(p1, q3)

x = 10
x := 0

js!

Inv
O : x≤10

(p0, q0)

(p1, q1)

InvI : x≤8

jf !

ms?

y := 0

mf!
y = 4
y := 0

Inv I : x≤8

(p1, q2)

6 ≤ x ≤ 8

(c) Caller ⊗ Job.

InvI : 6≤x≤8

Inv
O : y=0

mf!
y = 4
y := 0

(p1, q3)

(p1, q2)

js!

jf !

mf!

ms?

Inv
O : y≤4

InvI : 2≤x−y≤4

6 ≤ x ≤ 8

jf !

y := 0

ms?

2≤x≤4

x = 10
x := 0

js!

Inv
O : x≤10

(p0, q0)

(p1, q1)

InvI : x≤4

(d) Caller‖Job.

Fig. 1: Timed interface automata for periodic job scheduling.

Example: scheduling a periodic job. The timed interface automaton Caller

shown in Figure 1(a) represents an application that activates a periodic job every
10 seconds. Each time the job is activated, it must terminate between 6 and 8
seconds. The clock x measures the time elapsed since the last activation of the
job. At the initial location p0, the Output player can play any timed move ∆ such
that ∆+x ≤ 10, that is, it can advance time only up to the point where x = 10.
Once x = 10, in order not to block progress of time, Output must eventually
play the move js (job start); i.e., the ouput invariant x ≤ 10 expresses a deadline
for the occurrence of the js action. Since the input invariant associated with p0

is always true, the Input player can play any ∆ ∈ T (to reduce clutter, invariants
that are always true are omitted from the figures). The move js resets x to 0,
ensuring that x counts the time from the start of a periodic job activation.

At location p1, Output can play arbitrary timed moves, since the output
invariant is true. The input invariant x ≤ 8 prevents the Input player from
advancing time beyond x = 8. So, to let time progress, Input must play the
move jf (job finished) somewhere between 6 ≤ x ≤ 8. In particular, x ≤ 8 is a
deadline for the reception of action jf .

Composition. The timed interface automaton Caller can be composed with
the timed interface automaton Job, which models the interface of the job to be

4

executed. The job starts when the input move js (job start) is received; the job
then waits for the input move ms (machine start) from a scheduler. Once ms

is received, the job executes for 4 seconds (clock y keeps track of the execution
time), after which it first indicates to the scheduler that the machine is no longer
used (output move mf , machine finished), and then finishes (output move jf ,
job finished). Note how, at state q2, the input invariant is true, indicating that
Input can play any timed move, while the output invariant is y ≤ 4, indicating
that Output can let time progress only until y = 4. Again, to avoid blocking the
progress of time, Output must eventually play the move mf . Similarly, Output
is forced to play jf at state q3.

To compute the composition Caller ‖ Job, we first compute their product
Caller ⊗ Job, shown in Figure 1(c), which represents the joint behavior arising
from Caller and Job. Moves synchronize in multi-way, broadcast fashion: the
synchronization between corresponding input and output moves gives rise to an
output move. To compute the composition Caller‖Job from Caller ⊗ Job, note
that the product contains error states: at location (p1, q3), if err3 : ¬(6 ≤ x ≤ 8)
holds, then interface Job can generate the output jf , which cannot be accepted
by Caller . However, the Input player can avoid the error states by choosing the
timing of the input ms . To see this, note that at location (p2, q1) the set of
uncontrollable states from which Input cannot avoid reaching the error states is
described by the predicate uncontr2 : ∃∆ ∈ T.(y+∆ = 4∧¬(6 ≤ x+∆ ≤ 8)), or
after simplification, uncontr2 : ¬(2 ≤ x−y ≤ 4). Hence, we conjoin 2 ≤ x−y ≤ 4
to the input invariant of (p2, q1), which yields 2 ≤ x− y ≤ 4∧x ≤ 8 as the input
invariant in Caller‖Job (see Figure 1(d)). We simpify this to 2 ≤ x − y ≤ 4,
because the states where x > 8 cannot be reached: from y ≤ 4 (the output
invariant) and x − y ≤ 4 (a portion of the input invariant) follows x ≤ 8.

Now, to avoid entering uncontrollable states at location (p1, q2) we have to
restrict the time during which the input move ms can be received: the most
liberal restriction consists in requiring 2 ≤ x ≤ 4, which is added to enabling
condition of ms . Finally, consider the location (p1, q1), whose input invariant is
x ≤ 8. To ensure progress of time beyond x = 8, Input must eventually play
the move ms. However, this move is available only when 2 ≤ x ≤ 4. Thus, if
x > 4, the Input player does not have a strategy that ensures that time diverges
unless blocked by the Output player. Therefore, x > 4 indicates time error states,
which are ruled out by strenghtening the input invariant to x ≤ 4. Notice how the
composition of timed interfaces effects the composition of timing requirements:
the requirement of Caller that the job must be completed between 6 and 8
seconds gives rise to the requirement for the scheduler that the machine is started
between 2 and 4 seconds after the job start.

3 Timed Interfaces as Timed Games: Definitions

We model interfaces as timed games between two players, Input and Output,
abbreviated I and O.

5

Definition 1 (timed interfaces) A timed interface is a tuple P =
(SP , sinit

P ,ActsI
P ,ActsO

P , ρI
P , ρO

P) consisting of the following components.

– SP is a set of states.

– sinit
P ∈ SP is the initial state.

– ActsI
P and ActsO

P are sets of immediate input and output actions, respec-
tively. These sets must be disjoint from each other, and disjoint from the
time domain T. We denote by ActsP = ActsI

P ∪ ActsO
P the set of all im-

mediate actions, by Γ I
P = ActsI

P ∪ T the set of all input actions, and by
Γ O
P = ActsO

P ∪ T the set of all output actions. The elements in T are timed

actions.
– ρI

P ⊆ SP ×Γ I
P ×SP is the input transition relation, and ρO

P ⊆ SP ×Γ O
P ×SP

is the output transition relation. We often write an element (s, α, s′) of a

transition relation as s
α
−→ s′, and call it a step. Given a state s ∈ SP and

a player γ ∈ {I, O}, the set of moves of player γ at s is Γ
γ
P(s) = {α ∈ Γ

γ
P |

∃s′ ∈ SP .(s
α
−→ s′) ∈ ρ

γ
P}.

We require the transition relations to be deterministic: for γ ∈ {I, O}, if
(s, a, s′) ∈ ρ

γ
P and (s, a, s′′) ∈ ρ

γ
P , then s′ = s′′. Furthermore, we require time

determinism for time steps over both relations: for all ∆ ∈ T, if (s, ∆, s′) ∈ ρI
P

and (s, ∆, s′′) ∈ ρO
P , then s′ = s′′. Time steps of duration 0 do not leave the

state: for γ ∈ {I, O}, if (s, 0, s′) ∈ ρ
γ
P , then s = s′. We also require Wang’s

Axiom [Yi90]: for all ∆, ∆′ ∈ T with ∆′ ≤ ∆, we have (s, ∆, s′′) ∈ ρ
γ
P iff there

is a state s′ such that both (s, ∆′, s′) ∈ ρ
γ
P and (s′, ∆ − ∆′, s′′) ∈ ρ

γ
P . Finally, if

there are any immediate actions available to a player in a state, then also the
timed action 0 is available: for γ ∈ {I, O}, if Γ

γ
P(s) 6= ∅, then (s, 0, s) ∈ ρ

γ
P .

The game proceeds as follows. At a state s ∈ SP , Input chooses a move from
Γ I
P(s), and Output chooses a move from Γ O

P (s). If no moves are available for a
player, that player will automatically lose the game. If two moves are played,
then these determine both the successor state and the player bl that is blamed

for having played first; assigning the blame is important in establishing whether
a player is blocking the progress of time [AH97]. The following definition is
asymmetric: when Input and Output play the same timed move, the Output
player is blamed. As we will illustrate later, this asymmetry is necessary to
capture the cause-effect relationship between outputs and inputs.

Definition 2 (move outcomes) For all states s ∈ SP and moves αI ∈ Γ I
P(s)

and αO ∈ Γ O
P (s), the outcome δP(s, αI , αO) of αI and αO at s is the set of triples

(α, s′, bl) such that (s
α
−→ s′) ∈ ρI

P ∪ ρO
P , and α ∈ Γ I

P ∪ Γ O
P and bl ∈ {I, O} are

obtained as follows.

– If αI , αO ∈ T, then α = min{αI , αO}. Moreover, bl = I if αI < αO, and
bl = O otherwise.

– If αI ∈ ActsP and αO ∈ T, then α = αI and bl = I.
– If αO ∈ ActsP and αI ∈ T, then α = αO and bl = O.
– If αI , αO ∈ ActsP , then either α = αI and bl = I, or α = αO and bl = O.

6

As usual, the players choose their moves according to strategies that may depend
on the history of the game. Our strategies are partial functions, rather than total
ones, because the sets of moves available to the players at a state can be empty.
Furthermore, if both players choose immediate actions, then the outcome is
nondeterministic. Consequently, the possible outcomes of two strategies form a
set of finite and infinite sequences. A state is reachable in the game if it can be
reached by some outcome of some input and output strategies.

Definition 3 (strategy outcomes) A strategy for player γ ∈ {I, O} is a
partial function πγ : S∗

P →̆Γ
γ
P that associates, with every finite sequence of states

s ∈ S∗
P whose final state is s, a move πγ(s) ∈ Γ

γ
P(s) provided that Γ

γ
P(s) 6=

∅; otherwise πγ(s) is undefined. Let ΠI
P be the set of strategies for player I,

and let ΠO
P be the set of strategies for player O. Given a state s ∈ SP , an

input strategy πI ∈ ΠI
P , and an output strategy πO ∈ ΠO

P , the set of outcomes

δ̂P(s, πI , πO) of πI and πO from s consists of all finite and infinite sequences
σ = (s0, bl0), α1, (s1, bl1), α2, (s2, bl2), . . . such that (1) s0 = s; (2) bl0 ∈ {I, O};
(3) if |σ| < ∞, then σ ends in a pair (sk, blk) such that Γ I

P(sk) = ∅ or Γ O
P (sk) = ∅;

and (4) for all n < |σ|, we have (αn+1, sn+1, bln+1) ∈ δP(sn, πI(σ0:n), πO(σ0:n)),
where σ0:n denotes the prefix (s0, bl0), α1, . . . , (sn, bln) of σ with length n.

A state s ∈ SP is reachable in P if there are two strategies πI ∈ ΠI
P and

πO ∈ ΠO
P , and k ≥ 0, such that s = sk for some outcome (s0, bl0), a1, (s1, bl1),

a2, (s2, bl2), . . . ∈ δ̂P(sinit
P , πI , πO).

3.1 Well-formedness of timed interfaces

A timed interface is well-formed if from every reachable state (i) Input has a
strategy such that either time diverges, or Output is always to blame beyond
some point; and (ii) symmetrically, Output has a strategy such that either time
diverges, or Input is always to blame beyond some point. To give the precise
definitions, let time(α) = α for α ∈ T, and time(α) = 0 otherwise.

Definition 4 (time divergence and time blocking) Let σ = (s0, bl0), α1,

(s1, bl1), α2, (s2, bl2), . . . be an outcome of a game in P . We define σ |= t div if the

accumulated time in σ is infinite, that is,
∑|σ|

k=1 time(αk) = ∞. For γ ∈ {I, O},
we define σ |= blameγ if either σ is finite and Γ

γ
P(s) = ∅ for σ’s last state s, or σ

is infinite and there is a k ≥ 0 such that bl i = γ for all i > k. For a set U ⊆ SP

of states, we define σ |= 2U if sk ∈ U for all k ≥ 0.

A state of a timed interface P is live in a set U of states if both players have
strategies to stay forever in U and let time advance, unless the other player
can be blamed for blocking the progress of time. Again, the game is not played
symmetrically: Input can choose its strategy after Output, which shows that the
game is turn-based (first Ouput chooses its move, then Input does).

Definition 5 (live states and well-formedness) Let U ⊆ SP be a set of
states. A state s ∈ SP is I-live in U if Input can win the game with goal (t div ∨

7

blameO)∧2U ; that is, if for all strategies πO ∈ ΠO
P there is a strategy πI ∈ ΠI

P

such that σ |= (t div ∨blameO)∧2U for all outcomes σ ∈ δ̂P(s, πI , πO). A state
s ∈ SP is O-live in U if Output can win the game with goal (t div∨blame I)∧2U ;
that is, if there is a strategy πO ∈ ΠO

P such that for all strategies πI ∈ ΠI
P and

outcomes σ ∈ δ̂P(s, πI , πO), we have σ |= (t div ∨ blameI)∧2U . A state s ∈ SP

is live in U if it is both I-live and O-live in U .
The timed interface P is well-formed in U if all reachable states of P are live

in U . The timed interface P is well-formed if it is well-formed in SP .

In particular, for all reachable states s of a well-formed timed interface P , both
Γ I
P(s) 6= ∅ and Γ O

P (s) 6= ∅. Only well-formed timed interfaces represent valid
interface specifications. For this reason, we will only define the composition of
well-formed timed interfaces.

3.2 Product and composition of timed interfaces

Two timed interfaces P and Q are composable if ActsO
P ∩ActsO

Q = ∅. The shared

actions of P and Q are given by shared(P ,Q) = ActsP ∩ActsQ. For two compos-
able timed interfaces P and Q, their composition P‖Q is computed in two steps:
first, we form the product P ⊗ Q together with the set i-errors(P ,Q) of imme-
diate error states; then, P‖Q is obtained by strengthening the input invariants
of P ⊗Q to make it well-formed in SP⊗Q \ i-errors(P ,Q). The product P ⊗Q
represents the joint behavior of P and Q, in which P and Q synchronize on the
input timed moves, on the output timed moves, and on the shared actions, and
behave independently otherwise.

Definition 6 (product) Given two composable timed interfaces P1 and P2,
the product P1 ⊗P2 is the timed interface that consists of the following compo-
nents.

– SP1⊗P2
= SP1

× SP2
, and sinit

P1⊗P2
= (sinit

P1
, sinit

P2
).

– ActsI
P1⊗P2

= ActsI
P1

∪ ActsI
P2

\ shared(P1,P2), and ActsO
P1⊗P2

= ActsO
P1

∪

ActsO
P2

.

– ρI
P1⊗P2

is the set of transitions (s1, s2)
α
−→ (s′1, s

′
2) such that for i = 1, 2: if

α ∈ Γ I
Pi

, then (si
α
−→ s′i) ∈ ρI

Pi
; otherwise (si

0
−→ s′i) ∈ ρI

Pi
.

– ρO
P1⊗P2

is the set of transitions (s1, s2)
α
−→ (s′1, s

′
2) such that for i = 1, 2: if

α ∈ Γ O
Pi

, then (si
α
−→ s′i) ∈ ρO

Pi
; if α ∈ ActsI

Pi
, then (si

α
−→ s′i) ∈ ρI

Pi
; and

otherwise (si
0
−→ s′i) ∈ ρI

Pi
.

A state of the product is an immediate error state if one of the interfaces can
produce an output that the other one cannot accept. A state of the product is a
time error state if it is not live once we remove the immediate error states. The
composition of two timed interfaces is obtained by pruning from the product all
input transitions that start from or lead to a time error state.

8

a!

O : ∆ = 0

I : ∆ = 0

(a) P1 ⊗ P2

a!
I : ∆ = 0

t0

(b) P1

a?
O : ∆ = 0

(c) P2

Fig. 2: Timed interfaces illustrating why well-formedness is needed.

Definition 7 (error states) Let P and Q be two well-formed and composable
timed interfaces.

– Immediate error states. We say that a state (s, t) ∈ SP⊗Q is an immediate

error state if there is an action α ∈ shared(P ,Q) such that (s
α
−→ s′) ∈ ρO

P for

some state s′, but (t
α
−→ t′) 6∈ ρI

Q for all states t′, or such that (t
α
−→ t′) ∈ ρO

Q

for some t′, but (s
α
−→ s′) 6∈ ρI

P for all s′. We denote by i-errors(P ,Q) ⊆
SP⊗Q the set of immediate error states.

– Time error states. We say that a state (s, t) ∈ SP⊗Q is a time error state if
(s, t) is reachable in P ⊗Q, but it is not I-live in SP⊗Q \ i-errors(P ,Q). We
denote by t-errors(P ,Q) ⊆ SP⊗Q the set of time error states.

Note that the reachable immediate error states are a subset of the time error
states. The composition P‖Q is obtained by restricting the input behavior of
P ⊗ Q to avoid all time error states. We restrict the input behavior only, leav-
ing the output behavior unchanged, because when composing interfaces we can
strengthen their input assumptions to ensure that no incompatibility arises, but
we cannot modify their output behavior.

Definition 8 (compatibility and composition) Let P and Q be two well-
formed and composable timed interfaces. The interfaces P and Q are compatible

if (sinit
P , sinit

Q) 6∈ t-errors(P ,Q). If P and Q are compatible, then the composition
P‖Q is defined by restricting the input transition relation, so that no error
states are entered. Formally, abbreviating U = SP⊗Q \ t-errors(P ,Q), we define
ρI
P‖Q = ρI

P⊗Q ∩ (U × ActsI
P⊗Q × U); all other components of P‖Q are defined

as in P ⊗Q.

3.3 Discussion

Well-formedness. The composition of timed interfaces that are not well-
formed may yield undesirable results, and hence is not defined in our theory.
To illustrate this point, consider the interfaces in Figure 2. The time steps are
represented as follows: for player γ ∈ {I, O}, if state s has label γ : ∆ = 0, then
only the time step (s, 0, s) is available for γ; if s has no γ-label, then all time steps
(s, ∆, s) with ∆ ∈ T are available for γ at s. In interface P1, there is no deadline
associated with the immediate move a: Output can play it at any time, or not
at all. Similarly, P2 does not associate a deadline to a: Input can play it at any

9

a!

(a) P3

a?

c?

c?s0

O:∆=0

a?

(b) P4

a!

c?

c?

a!

t0

O:∆=0

(c) P3 ⊗P4

a!
O:∆=0

(d) (P3 ‖ P4) ‖ Q

a?
O:∆=0

(e) P3 ‖ Q

Fig. 3: Timed interfaces illustrating why two transition relations are needed.

time, or not at all. Note that P2 is not well-formed. This is because Output can
only play the timed move 0 at state t0, so t0 is not O-live: if Input also plays the
timed move 0, Output can neither let time diverge, nor blame Input. Consider
now the product P1 ⊗ P2. The product specifies that the output move a must

be played at time 0, even though no such deadline for a was present at P1 or
P2. The problem, intuitively, is that the deadline of 0 for Output in P2 does not
apply to any output move. When an unrelated output move becomes present,
such as a in P1 ⊗ P2, the deadline is improperly transferred to the move. The
well-formness condition requires that a player has a deadline only if it also has an
action that can satisfy the deadline, thus preventing such “deadline transfers.”

Two transition relations. If we use a single transition relation, rather than
one for Input and one for Output, then both players would share the same timed
moves at a state. The following example shows that, if we do so, the composition
of interfaces may again introduce timing requirements that are not present in
the component interfaces. In particular, composition may not be associative.
Consider the timed interfaces P3 and P4 in Figure 3, where the timing constraints
apply to both Input and Output moves. The interfaces P3 and P4 are compatible.
In state s0, the interface P4 has to take an input action at time 0. This input
need not be provided by P3, because P3 is not forced to take its a! action.
Nevertheless, P3 and P4 work together in an environment that provides a c!
action at time 0. Now consider the product P3 ⊗ P4 in Figure 3(c); note that
P3⊗P4 = P3 ‖ P4, because the product is well-formed. The composition P3 ‖ P4

specifies that, if c is not received at 0, then output a is produced at time 0. As
a result, P3 ‖ P4 also works in environments that never provide a c input. More
formally, let Q be the interface that has an output move c, which can never be
taken. Then (P3 ‖ P4) and Q are compatible. However, P4 ‖ Q (Figure 3(e))
and P3 are not compatible. Hence, the compatibility of P3, P4, and Q depends
on the order in which they are composed.

Game asymmetry. This example uses the timed interface automata notation
as in Section 2, to be introduced formally in the next section. Consider the

10

InvI : x ≺ 1

InvO : x ≺ 1

a!

(a) A

a!
InvO : x ≺ 1

(b) A1

InvI : x ≺ 1
a?

(c) A2

Fig. 4: Timed interfaces illustrating why O is blamed and why I plays second.

automata A, A1, and A2 in Figure 4, where ≺∈ {<,≤}. Note that A = A⊗A2.
Since A1 provides an output a within the deadline required by A2, the automata
A1 and A2 should be compatible, and A should be well-formed. Consider first
the case when ≺ is ≤. If Input is blamed when it plays the same time move
as Output, then A is not well-formed. In fact, Output can play the strategy of
advancing time until x = 1, and thereafter always play timed move 0. Input
cannot let time progress, nor can it blame Output. Hence, any state (s0, x) with
x ≤ 1 is not I-live, and A is not well-formed. Consider now the case when ≺ is <.
If Input cannot play second, then for each strategy πI of Input, there is a strategy
πO for Output that plays later, i.e., a strategy πO such that πI(s) < πO(s) < 1
for all histories s. Then the outcome of this strategy neither is time divergent
nor does it blame O. If, on the other hand, I plays second, then it can win the
game by playing later than O.

4 Timed Interface Automata

Timed interfaces provide a finite representation for timed games and serve as
a basis on which the algorithms for compatibility checking and composition
operate. Their syntax recalls that of timed automata [AD94]. In particular, timed
interface automata use clock variables in order to keep track of the amount of
time elapsed. The value of these variables can be reset to 0 when immediate
actions occur, and otherwise increase with unit rate. Let X be a set of variables
over the time domain T. A clock condition over X is a boolean combination of
formulas of the form x ≺ c or x − y ≺ c, where c is an integer, x, y ∈ X, and ≺
is either of < or ≤. We denote the set of all clock conditions over X by Ξ[X].

Definition 9 (timed interface automata) A timed interface automaton (or
TIA) is a tuple A = (QA, qinit

A ,XA,ActsI
A,ActsO

A, InvI
A, InvO

A, ρA) consisting of
the following components.

– QA is a finite set of locations.

– qinit
A ∈ QA is the initial location.

– XA is a finite set of clocks.

– ActsI
A and ActsO

A are finite and disjoint sets of input and output actions,
respectively. Let ActsA = ActsI

A ∪ ActsO
A denote the set of all actions of A.

– InvI
A: QA 7→ Ξ[XA] maps each location of A to its input invariant.

– InvO
A: QA 7→ Ξ[XA] maps each location of A to its output invariant.

11

– ρA ⊆ QA × Ξ[XA] × ActsA × 2XA × QA is the transition relation. For
(q, g, a, r, q′) ∈ ρA, the locations q and q′ are the source and destination
of the transition, g ∈ Ξ[XA] is a guard on the clock values that specifies
when the transition can be taken, a ∈ ActsA is an action labeling the transi-
tion, and r ⊆ XA is a set of clocks that are reset by the transition. We require
the transition relation to be deterministic: for all q ∈ QA and a ∈ ActsA,
there is at most one tuple of the form (q, g, a, r, q′) with (q, g, a, r, q′) ∈ ρA.

A valuation over a set X of clock variables is a function v: X 7→ T. We write 0X

for the valuation that assigns 0 to all clocks in X , and V(X) for the set of all
valuations over X. Given a valuation v ∈ V(X), we write v + ∆ for the valuation
defined by (v + ∆)(x) = v(x) + ∆ for all x ∈ X . Given a set r ⊆ X of clocks,
we write v[r := 0] for the valuation that maps x to 0 if x ∈ r, and otherwise to
v(x). Given a clock condition ϕ ∈ Ξ[X], we write v |= ϕ if ϕ is true under the
valuation v. For r ⊆ X , we write ϕ[r := 0] for the condition obtained from ϕ by
replacing every x ∈ r by 0; obviously, v[r := 0] |= ϕ iff v |= ϕ[r := 0].

Definition 10 (timed interfaces induced by TIA) The TIA A is nonempty

if 0XA
|= InvI

A(qinit
A)∧InvO

A(qinit
A). A nonempty TIA A induces a timed interface

P = [[A]] that has the state set SP = {〈p, v〉 | p ∈ QA, v ∈ V(XA)} and the initial
state sinit

P = 〈qinit
A , 0XA

〉. The actions are ActsI
P = ActsI

A and ActsO
P = ActsO

A.

For γ ∈ {I, O} the transition relations of P are defined by (〈p, v〉
α
−→ 〈p′, v′〉) ∈ ρ

γ
P

if either (1) α ∈ T, p = p′, v′ = v + α, and for all 0 ≤ ∆′ ≤ α, we have
v+∆′ |= Inv

γ
A(p); or (2) α ∈ Acts

γ
A, and there is a tuple (p, g, α, r, p′) ∈ ρA with

v |= Inv
γ
A(p) ∧ g, v′ = v[r := 0], and v′ |= Inv

γ
A(p′).

The TIA A is well-formed if it is nonempty and the corresponding timed
interface [[A]] is well-formed.

4.1 Product and composition of timed interface automata

Two TIAs A and B are composable if ActsO
A ∩ActsO

B = ∅ and XA ∩XB = ∅; their
shared actions are shared(A,B) = ActsA ∩ActsB.

Definition 11 (product) For two composable TIAs A1 and A2, the product

A1 ⊗A2 is the TIA that consists of the following components.

– QA1⊗A2
= QA1

× QA2
, and qinit

A1⊗A2
= (qinit

A1
, qinit

A2
).

– XA1⊗A2
= XA1

∪ XA2
.

– ActsI
A1⊗A2

= ActsI
A1

∪ActsI
A2

\ shared(A1,A2), and ActsO
A1⊗A2

= ActsO
A1

∪

ActsO
A2

.

– InvI
A1⊗A2

(p, q) = InvI
A1

(p) ∧ InvI
A2

(q) and InvO
A1⊗A2

(p, q) = InvO
A1

(p) ∧

InvO
A2

(q).
– ρA1⊗A2

is the set of transitions ((q1, q2), g1 ∧ g2, a, r1 ∪ r2, (q
′
1, q

′
2)) such that,

for i = 1, 2: if a ∈ ActsAi
, then (qi, gi, a, ri, q

′
i) is a transition in ρAi

; otherwise
qi = q′i, gi = true, and ri = ∅.

12

Theorem 1 For nonempty and composable TIAs A and B, we have [[A⊗B]] =
[[A]] ⊗ [[B]].

A location labeling for a TIA A is a function ξ: QA 7→ Ξ[XA] that associates with
each location p of A a condition ξ(p) over the clocks in XA. The location labeling
ξ defines the state set [[ξ]]A = {〈p, v〉 ∈ S[[A]] | v |= ξ(p)} of the corresponding
timed interface. We denote by I-liveA(ξ) the location labeling that defines the set
[[I-liveA(ξ)]]A of I-live states in [[ξ]]A. By computing [[I-liveA(ξ)]]A as the solution
of a game on the region graph (see Section 4.2), we will see that the I-live states
are indeed definable by clock conditions. To define the composition on TIAs, we
also need the following enabling conditions. For γ ∈ {I, O}, a location q ∈ QA,
and an action a ∈ Acts

γ
A, let enab

γ
A(q, a) be Inv

γ
A(q) ∧ g ∧ Inv

γ
A(q′)[r := 0] if

there is a transition (q, g, a, r, q′) ∈ ρA; otherwise let enab
γ
A(q, a) be false. Given

two composable TIAs A and B, the states of [[A ⊗ B]] that are not immediate
error states can be defined by the location labeling okA⊗B that associates with
each product location (p, q) ∈ QA⊗B the clock condition

∧

a∈ActsO

A
∩ActsI

B

(enabO
A(p, a) → enabI

B(q, a)) ∧
∧

a∈ActsO

B
∩ActsI

A

(enabO
B (q, a) → enabI

A(p, a)).

Definition 12 (compatibility and composition) Two well-formed and com-
posable TIAs A and B are compatible if the corresponding timed interface [[A]]
and [[B]] are compatible. The composition A‖B is obtained from the product
A ⊗ B by replacing the input invariants Inv I

A⊗B with the location labeling
I-liveA⊗B(okA⊗B).

Theorem 2 Two well-formed and composable TIAs A and B are compatible iff

the composition A‖B is nonempty. Moreover, if A and B are compatible, then

[[A‖B]] = [[A]]‖[[B]], and A‖B is well-formed.

The following theorem states that composition is associative up to the equiva-
lence ≡, which for TIAs A and B is defined by A ≡ B if ρI

[[A]] ∩(Reach([[A]]) ×

ActsI
[[A]]×S[[A]]) = ρI

[[B]] ∩(Reach([[B]])×ActsI
[[B]]×S[[B]]) and all other components

of [[A]] and [[B]] are the same. Here, Reach(P) denotes the set of reachable states
of the timed interface P .

Theorem 3 If A, B, and C are well-formed and pairwise composable TIAs,

then (A‖B)‖C ≡ A‖(B‖C).

4.2 Algorithms for composition and well-formedness checking

Live states. Before presenting the algorithms for checking well-formedness and
computing composition, we show that, given a location labeling ξ, we can com-
pute the labeling I-liveA(ξ) that defines the set of states in A where I can win
the game on A with goal (t div ∨ blameO) ∧ 2[[ξ]]A.

13

Inv
O : x≤1

q0

InvI : x≤1

tick!
x = 1

q1

tick!
x = 1
x := 0

To use existing algorithms, we first transform this game into
an equivalent one with an ω-regular goal [Tho90]. Consider the
TIA TickO shown on the right, where the action tick and
the clock x are fresh. Thus, TickO observes the progress of
time, and visits location q1 every time unit. In particular, time
diverges iff q1 is visited infinitely often. Hence, Input can win in
[[A]] the game with goal (t div ∨ blameO)∧2[[ξ]]A iff Input can
win in [[A⊗TickO]] the game with goal (blameO∨23q1)∧2[[ξ]]A. On the enlarged
state space S[[A⊗TickO]] × {I, O}, where the states record the blame, this latter
goal can be rewritten as the ω-regular goal ϕI : (32(bl = O) ∨ 23q1) ∧ 2[[ξ]]A.
The game with goal ϕI can be solved using the algorithms of [EJ91,dAHM01],
which use a controllable predecessor operator IPre . Given a timed interface P
and a set U of states, IPreP(U) yields all states in which Input can in one
move force the game into U . Formally, IPreP(U) contains all states s ∈ SP

such that ∀αO ∈ Γ O
P (s). ∃αI ∈ Γ I

P(s). δP (s, αI , αO) ⊆ U . The set winI of states
in S[[A⊗TickO]] × {I, O} where Input can win the game with goal ϕI can be
characterized by [EJ91]

winI = νZ.µY.νX.
[
ξ ∧

[
(q0 ∧ bl=O ∧ IPreP(X))∨

(q0 ∧ bl=I ∧ IPreP(Y)) ∨ (q1 ∧ IPreP(Z))
]]

.

for P = [[A ⊗ TickO]]. One can define the region graph of a TIA as for
timed automata [AD94]. Since the operation IPre is computable on the region
graph [MPS95], the expression above suggests a symbolic fixpoint algorithm. The
result winI can be expressed as a location labeling ζ on A. We then obtain the
desired labeling I-liveA(ξ) by letting I-liveA(ξ)(p) = ∃x.∃bl .(ζ(p, q0) ∨ ζ(p, q1)).

Well-formedness. The following theorem shows that, to check the well-
formedness of a TIA A, we need to compute the location labelings Reach(A),
I-liveA(TrueA), and O-liveA(TrueA). Here, Reach(A) is the location labeling
that defines the set [[Reach(A)]]A of reachable states of [[A]], and O-liveA(ξ) is
the labeling that defines the set of O-live states in [[ξ]]A, and TrueA denotes the
labeling that assigns true to each location. The set [[Reach(A)]]A is definable from
clock conditions, because it can be computed on the region graph in the same
way as the reachable states of a timed automaton can be computed [AD94].
Since [[O-liveA(ξ)]]A, for a location labeling ξ, can be computed similarly to
[[I-liveA(ξ)]]A, it is also definable by clock conditions.

Theorem 4 A TIA A is well-formed iff for all locations p ∈ QA the implica-

tion Reach(A)(p) → (I-liveA(TrueA)(p) ∧ O-liveA(TrueA)(p)) is valid.

Composition. The composition of two well-formed and composable TIAs A
and B can be obtained from their product by replacing the input invariants
InvI

A⊗B with the location labeling I-liveA⊗B(okA⊗B) (Definition 12). Then their
compatibility can be decided by checking whether their composition is empty
(Theorem 2).

14

References

[Abr96] S. Abramsky. Semantics of interaction. In Trees in Algebra and Programming,
volume 1059 of Lect. Notes in Comp. Sci., page 1. Springer, 1996.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.
[AH97] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In Con-

currency Theory, volume 1243 of Lect. Notes in Comp. Sci., pages 74–88. Springer,
1997.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symp. System Structure and Control, pages 469–
474. Elsevier, 1998.

[CRR02] S. Chaki, S.K. Rajamani, and J. Rehof. Types as models: Model checking
message-passing programs. In Proc. Symp. Principles of Programming Languages,
pages 45–57. ACM, 2002.

[dAH01a] L. de Alfaro and T.A. Henzinger. Interface automata. In Proc. Symp.

Foundations of Software Engineering, pages 109–120. ACM, 2001.
[dAH01b] L. de Alfaro and T.A. Henzinger. Interface theories for component-based

design. In Embedded Software, volume 2211 of Lect. Notes in Comp. Sci., pages
148–165. Springer, 2001.

[dAHM01] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms for
infinite-state games. In Concurrency Theory, volume 2154 of Lect. Notes in Comp.

Sci., pages 536–550. Springer, 2001.
[Dil88] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-

Independent Circuits. MIT Press, 1988.
[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus, and determinacy.

In Proc. Symp. Foundations of Computer Science, pages 368–377. IEEE Computer
Society, 1991.

[MMT91] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In
Concurrency Theory, volume 527 of Lect. Notes in Comp. Sci., pages 408–423.
Springer, 1991.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In Theoretical Aspects of Computer Science, volume 900 of Lect.

Notes in Comp. Sci., pages 229–242. Springer, 1995.
[RGG96] E. Rudolph, P. Graubmann, and J. Gabowski. Tutorial on message sequence

charts. Computer Networks and ISDN Systems–SDL and MSC, 28:1629–1641,
1996.

[RR01] S.K. Rajamani and J. Rehof. A behavioral module system for the pi-calculus.
In Static Analysis Symposium, volume 2126 of Lect. Notes in Comp. Sci., pages
375–394. Springer, 2001.

[SGSAL98] R. Segala, G. Gawlick, J. Søgaard-Andersen, and N. Lynch. Liveness in
timed and untimed systems. Information and Computation, 141:119–171, 1998.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, ed., Handbook

of Theoretical Computer Science, volume B, pages 135–191. Elsevier, 1990.
[Yi90] Wang Yi. Real-time behaviour of asynchronous agents. In Concurrency Theory,

volume 458 of Lect. Notes in Comp. Sci., pages 502–520. Springer, 1990.

15

