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Abstract. An open system is a system whose behavior is jointly deter-
mined by its internal structure, and by the input it receives from the
environment. To solve control and verification problems, open systems
have often been modeled as games between the system and the environ-
ment; we argue that the game view of open systems should be extended
also to the definitions of system refinement and composition.

We give a symmetrical interpretation to games between system and envi-
ronment: the moves of the system represent the outputs that the system
can generate (the output guarantees), and symmetrically, the moves of
the environment represent the inputs that the system can accept (the
input assumptions). We argue in favor of defining refinement of open
systems in terms of alternating simulation, which is the relation between
games that plays the same role of simulation between transition systems.
Alternating simulation captures the principle that a component refines
another if it has weaker input assumptions, and stronger output guar-
antees. Furthermore, we argue in favor of a notion of composition that
accounts for the compatibility between input assumptions and output
guarantees, and that enables the synthesis of new input guarantees for
the composed system. These game-theoretical notions of refinement and
compatibility are related to the type-theoretical notions of subtyping and
type compatibility, and give rise to an expressive modeling framework for
component-based design and verification.

1 Introduction

A basic distinction in concurrency theory is that between closed and open sys-

tems. The behavior of a closed system is completely determined by its internal
structure, and it cannot be influenced by the environment. In contrast, the be-
havior of open systems is jointly determined by their internal structure, and by
the inputs received from the environment. Open models can be used to analyze
systems that maintain an ongoing interaction with their environment (or reactive

systems [27, 28]), such as embedded systems and control systems. Moreover, open
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models can be used to study the individual components of larger designs, whose
behavior usually depends on the inputs they receive from other components.

Closed systems are naturally modeled in terms of transition systems [23].
A transition system consists in a set of system states, and in a set of transi-
tions among the states. Whenever multiple transitions are available from a state,
one of them is selected nondeterministically: this nondeterminism can be used
to represent uncertainty, or freedom of implementation, in the system model.
Games generalize transition systems by providing a model for multiple indepen-
dent sources of nondeterminism. Each source of nondeterminism is represented
as a player, whose possible moves correspond to the nondeterministic choices
available to the source. In particular, two-player games have proven to be an
expressive model for open systems, enabling the distinction between the nonde-
terministic choices that originate within the system (such as the choice among
possible outputs), and the choices that originate in its environment (such as the
choice of inputs to the system). Game models have been widely used to analyze
and solve control problems for open systems [1, 32, 33]. The game view has also
been used in the specification and verification of the interaction between com-
ponents, and of the interaction between components and their environment [24,
16, 19].

We argue that games constitute a natural model for open systems, and we
argue that not only control and verification, but also refinement and compo-

sition of open systems should be phrased in game-theoretic terms [14, 15]. In
other words, we argue in favor of adopting games as the mathematical structure
underlying open system models, and in favor of phrasing all notions related to
open system — from composition, to refinement, to specification and verification
— in terms of games between two players: Input (representing the environment)
and Output (representing the system). The two players specify the behavior of
the system: the moves of Input correspond to inputs it can receive from the envi-
ronment, the moves of Output correspond to the outputs it can produce. Using
games, rather than transition systems, in the definitions of refinement and com-
position, enables to keep distinct, and treat differently, the roles of inputs and
outputs. In composition, game models can account for the causal relationship be-
tween outputs and inputs, and can distinguish between the situation in which a
component produces fewer outputs than another can accept as inputs — which
indicates compatibility — and the situation in which a component generates
more outputs than another can accept as input — which indicates incompatibil-
ity. Refinement of transition systems is defined as behavior containment: roughly,
all nondeterministic choices of the implementation must be possible (and thus
permitted) also in the specification. In games, on the other hand, the natural
notion of refinement is alternating refinement [8]: when the two players are Input
and Output, alternating refinement holds when the implementation can accept
more input behaviors, and produce fewer output behaviors, than the specifica-
tion. Thus, games provide a notion of compatibility between system components,
and a notion of refinement that preserves this compatibility. This leads to an uni-
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Fig. 1. Refinement of game models. We denote input actions with question marks, and
output actions with exclamation marks.

form framework for the study of control, verification, component-based design,
and implementation of open systems.

This paper is divided in two parts. In the first part, consisting of Sections 2,
3, and 4, we outline our informal arguments in favor of the adoption of game
models for open systems. In the second part, consisting of Sections 5, 6, and 7, we
illustrate the approach by presenting a simple, concrete game model for untimed
asynchronous systems, derived from [14].

2 Overview: Refinement

The notion of refinement aims at capturing the relation between an abstract
model of a component, and a more detailed model, or between a model express-
ing a specification, and a model describing an implementation. The definitions
of transition-system refinement equate refinement to behavior containment: all
the behaviors of the implementation (or of the detailed model) must be also
behaviors of the specification (or of the abstract model). In particular, refine-
ment is commonly defined as trace inclusion, or simulation [30]. This definition
is well-suited to closed systems, which are not influenced by their environment:
roughly, the definition ensures that if all the behaviors of the specification model
are “correct”, so are all behaviors of the implementation. In particular, if the
specification satisfies a property expressed in linear-time temporal logic [27] or
ACTL [12], so does the implementation.

For open systems, however, behavior containment is a somewhat unsatisfac-
tory definition of refinement, as it requires also that all the input behaviors of the
implementation are a subset of those of the specification. Informally, this would
mean that the implementation would be able to accept fewer input behaviors
than the specification. As an example, consider the system models depicted in
Figure 1. The model Q represents a system that can accept an input a, to which
it replies with output b. The model P represents a system that can accept both
input a, to which it replies again with output b, and also input c, to which it
replies with output d. Clearly, if we need a component with the functionality of
Q, and we are given P instead, we can just use P , disregarding its additional



input. In other words, P should count as a correct implementation of Q. How-
ever, neither Q simulates P , nor is the language of P a subset of the language
of Q: indeed, exactly the opposite holds.

Defining refinement of open systems as behavior containment is also at vari-
ance with the notion of subtyping in type theory: there, a functional type
τ : σi → σo is a subtype of τ ′ : σ′

i → σ′
o (written τ � τ ′) if τ accepts more

inputs (σ′
i � σi) and produces fewer outputs (σo � σ′

o) [31]. Subtyping is thus
contravariant with respect to inputs and outputs, in contrast with simulation,
which is covariant. This suggests to replace simulation, or trace containment,
with a notion that is contravariant with respect to inputs and outputs. Similarly
to subtyping, the notion should encode the intuition that when P refines Q,
then:

1. P accepts at least as many input behaviors as Q does, so that we can use P

whenever we used Q without causing an (input) incompatibility;
2. moreover, when P and Q are subjected to the same input behavior, P should

produce a subset of the output behaviors of Q.

If we model each of P and Q as a two-player game between a player Input (re-
sponsible of the input nondeterminism) and a player Output (responsible of the
output nondeterminism), then these requirements are captured by the notions
of game refinement proposed in [8], namely, alternating trace containment and
alternating simulation. Alternating simulation is a relation between the states
of P and the states of Q such that, at related states, all the outputs that can
be generated by P can also be generated by Q, and all the inputs that can be
accepted by Q can be accepted by P ; moreover, corresponding inputs and out-
puts lead to states of P and Q that are again related. In this paper, we adopt
alternating simulation as the notion of refinement between open systems.

Figure 2 illustrates two game models that are related by alternating simula-
tion. Model Netw represents a very simple component of a network stack (n),
that interacts with a user level (u) and a transport layer (t). An action of the
form n.u.a indicates that an action a is sent from n to u (and is therefore an out-
put of n). The model represents a component that, upon receiving a command
to send a packet (input action u.n.send), invokes the transport layer (output
action n.t.send). If the transport layer succeeds in sending the packet, it informs
the network layer (input t.n.ack), and the network layer returns success (output
n.u.success) to the upper layer. Otherwise, if the transport layer fails (input
t.n.nack), the network layer invokes the transport layer at least one more time,
and then reports success or failure (output n.u.fail) to the upper layer. The
model NcompPlus is similar, except that if the transport layer fails during a re-
quest n.u.send, the network layer tries exactly once more to send the packet, and
reports then failure or success. Moreover, in addition to u.n.send, NcompPlus

accepts also another input u.n.fast, that specifies that only one attempt should
be made at delivering the packet. Success of this additional service is reported
by the output n.u.fastsucc.

Intuitively, the module NcompPlus is a proper implementation of Netw . Un-
der the same inputs, NcompPlus produces a subset of the behaviors (retrying
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Fig. 2. Refinement of game models.

transmission exactly once, rather than at least once); NcompPlus also can per-
form an additional service, which does not prevent us from using NcompPlus
in place of Netw . Indeed, the corresponding states of Netw and NcompPlus are
related by alternating simulation. On the other hand, there is obviously no sim-
ulation relation (in either direction) between Netw and NcompPlus .

3 Overview: Composition

In transition systems, the presence of a single notion of nondeterminism is re-
flected in the definition of composition, where input and output transitions are
treated in the same fashion. In the process algebras CCS [29], CSP [22] and
ACP [9], composition is defined as conjunction: a shared action can occur in a
composite system only if it can occur in all the components. Thus, the choice of
which output to produce, and the choice of which input to accept, are governed
by a single source nondeterminism, and two processes, when composed, “cooper-
ate” to effect a transition that is possible for both. Composition as conjunction
leads to a flexible modeling paradigm, in which composition can be used both to



add new components to a system, and to constrain already present components
to a subset of their behaviors [22].
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Fig. 3. Causality and compatibility.

Composition as conjunction, however, does not capture the cause-effect re-
lationship between outputs and inputs. For instance, this approach does not
distinguish between the situation of Figure 3(a), where a system P that pro-
duces some outputs is composed with a system Q that can accept a superset of
those inputs, and the situation of Figure 3(b), where a system Q that produces
some outputs is composed with a system P that can accept only a subset of those
outputs. In both cases, only the shared action a and b can occur. In Figure 3(a),
this agrees with the notion of causality: since the output c! cannot occur, the
action c does not occur in the composition. In Figure 3(b), however, the fact
that input c? cannot be accepted by P causes Q never to emit c!, reversing the
intuitive causal dependency of inputs on outputs.

To restore the causal dependency of inputs on outputs, several modeling lan-
guages, such as I/O Automata [25], SMV [13], and Reactive Modules [7] stipulate
that systems must be able to accept all possible inputs: this is the so-called in-

put enabled approach to composition. While this approach restores input/output
causality, it does so at the cost of removing the ability to express which inputs
are allowed: input-enabled models constrain (and thus model) output behavior
only.

Game models, such as interface theories [14, 15] restore causality by stipulat-
ing that output choice takes the precedence over input choice, and by introducing
a notion of compatibility. The choice of outputs is independent from the set of
acceptable inputs: if a system chooses an output that cannot be accepted as
input by another system, an incompatibility occurs. Precisely, a state s of a sys-
tem P is compatible with a state t of a system Q if (i) all outputs that can be
generated by P at s, and that are in the input language of Q, can be accepted
at t, and symmetrically, (ii) all outputs that can be generated by Q at t, and
that are in the input language of P , can be accepted at s. For instance, the two
states of Figure 3(a) are compatible, while the two states of Figure 3(a) are not.
Such incompatibilities between states are, however, a local notion: even if two
component models P and Q have states that are pairwise incompatible, they



may still be compatible with one another. In fact, each of P and Q imposes
some requirements on the environment, through the specification of the inputs
it can accept. Hence, when composing P and Q, the interesting question is not
whether P and Q work together correctly in all environments (not even P and
Q in isolation do so), but rather, whether there is some environment in which
they can work correctly together. This question can be cast, and answered, in
game-theoretic terms by considering again a game between the Input and Out-
put players. The models P and Q are compatible if Input has a winning strategy
that ensures that local incompatibilities never arise; all such winning strategies
form in turn the allowed input behaviors for P‖Q. Thus, the input behaviors
allowed by P‖Q correspond exactly to the environment behaviors that ensure
that P and Q work together correctly.

This approach to compatibility and composition is illustrated by the following
example [14]. Consider the model Ncomp (Figure 4(b)), representing again a
network layer that, when asked to send a packet, uses an underlying transport
packet that makes at most two attempts at sending the packet. Assume that
this network model is composed with an upper layer Ucomp (Figure 4(a)) that
tries to send a packet, and expects a successful result. In the composition, the
two states denoted by (*) will be incompatible: in fact, at one state component
Ncomp generates the output n.u.fail, which cannot be accepted as input at the
other state. Hence, in the automata product of Ncomp and Ucomp (Figure 4(c)),
the corresponding state is locally incompatible. Nevertheless, the Input player
has a strategy to avoid entering the incompatible state, that consists in never
providing the t.n.nack transition leading to it. The composition Ncomp‖Ucomp,
depicted in Figure 4(d), consists of the states and edges that can be traversed
when Input avoids all local incompatibilities.

The proposed notions of compatibility and refinement preserve substitutiv-

ity of refinement: if a component model P refines Q, or P � Q, and if Q is
compatible with a component model R, then also P is compatible with R.

We note that, as was the case for refinement, also the above notion of com-
patibility (and composition) for game models has close parallels in type theory.
When a type τ : ρ → σ is composed with τ ′ : ρ′ → σ′ to form τ ′ ◦ τ , the (func-
tional) composition τ ′ ◦ τ satisfies type compatibility if σ � ρ′, that is, if σ is
a subtype of ρ′. If σ and ρ′ are simple sets of values, this requirement amounts
to σ ⊆ ρ′: type compatibility means that the possible outputs σ are a subset of
the accepted inputs ρ′. With game models such as game theories, however, we
go one step beyond, exploiting the fact that we have a representation of τ as a
function τ : ρ 7→ σ, rather than as a type ρ → σ. When σ 6⊆ ρ′, we can thus
generate the weakest (the largest, in terms of sets) ρ̃ such that ρ̃ ⊆ ρ, and such
that τ , when restricted to the domain ρ̃, has an image that is a subset of ρ′ (that
is, τ(ρ̃) � ρ′).
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4 Discussion

4.1 Open Systems as Games

In summary, we argue in this paper for an approach to the modeling of open
systems guided by the following principles:

1. Distinguish Input and Output nondeterminism. Input and output
nondeterminism are kept separate, and they are modeled as the actions of
two players, Input and Output.

2. Refinement as alternating simulation. A system model P refines a sys-
tem model Q if there is a relation between their state spaces such that, at
related states, every move of Input of Q can be performed in P , and every
move of Output in Q can also be done in P ; moreover, the transition caused
by corresponding moves leads again to related states.

3. Composition as Input/Output game. The composition of two compo-
nents P and Q is defined in terms of two notions: a notion of local compatibil-
ity, and a game between the Input and Output players. Local compatibility
captures causality: when a shared output is chosen, it should also be accepted
as an input. The game between Input and Output is used to synthesize global
input assumptions that guarantee local compatibility. If these input assump-
tions are satisfiable, then P and Q are said to be compatible, and the input
assumptions are used to constrain P‖Q.

There are many models of computation: for instance, composition can be syn-
chronous or asynchronous, and the systems can be untimed, or real-time. Cor-
respondingly, there is no single notion of game model, but rather, game models
have been proposed for each of the settings. These models have been called inter-

face theories, due to their ability to capture the input/output interaction among
components; interface theories have been presented for untimed asynchronous
[14] and synchronous [15, 10] models, as well as for real-time models [17] and for
modeling resource requirements [11]. In the remainder of the paper, we illustrate
in more detail the game approach to the modeling of open systems by presenting
in detail interface automata, an asynchronous untimed model that is very similar
to the one presented in [14].

4.2 Related Work

Most, if not all, of the individual ideas on which game models are based had
been introduced earlier in the literature. The idea of specifying independent
constraints for input and output behavior is present in trace theories [18], and
indeed in the untimed, asynchronous case our game composition is essentially
the composition of prefix-closed trace structures, followed by a normal-form re-
duction. The notion of conformation in trace theories is also closely related to
our notion of refinement: P conforms to Q if P accepts more inputs (has fewer
failure traces) and produces fewer outputs (has fewer successful traces) than Q.
Alternating simulation (and alternating trace containment) was introduced later,



in [8], and trace theories do not formulate conformation in terms of alternating
simulation. The distinction between internal and external choice is present in
many modeling languages, an early example being CSP [22]. All the algorithms
used in untimed game models are standard. Refinement is based on alternating
simulation [8]. Composition involves a compatibility check that can be solved as
an instance of controller synthesis [1, 32–34].

Thus, the novelty in the outlined game-based approach to open systems sys-
tems is not in any isolated algorithmic aspect, but rather in the recognition that
refinement, composition, verification, and synthesis can be homogeneously cast
as game relations and problems. In many respects, the work on game semantics
for programming languages [3, 5, 6] and process algebras [2, 4] achieves a similar
realization that games provide a unified model for interaction, and indeed game
semantics are very close in spirit to our interface models. The main difference is
that in game semantics the definitions take strategies as the central object, while
the emphasis in interface theories has been on automata-like models. Moreover,
the difference in application areas (programming languages vs. untimed, or real-
time systems) motivates differences in the mathematical setup that mask the
underlying similarity of the two approaches.

4.3 On Modeling Open Systems as Transition Systems

In light of the differences between the transition-system and game models of
open systems, one may ask why the limitations of the transition-system approach
have not been a greater drawback in practice. Broadly, the answer is that input-
enabled formalisms, while preventing the specification of input constraints, are
adequate for answering many verification questions, and verification, rather than
design, has been the main application of formal methods.

Specifically, the chief advantage of the game-based approach in composition
is the ability to define input constraints, and the availability of a notion of com-
patibility. These notions are helpful in the component-based design of systems,
where it is important to encode not only a component’s behavior, but also its
input assumptions, in order to replace or refine components while respecting
the design assumptions of the other components. These notions are however less
central when the goal is to construct a model of an existing system and to verify,
once all components have been composed, that it satisfies a specification.

With respect to refinement, we note first that in many cases the covariant
definition of refinement (trace inclusion or simulation) was often applied to input-
enabled systems, such as I/O Automata [25] and Reactive Modules [7]. For these
models, since there are no constraints on input behavior, the requirements about
refinement of input behavior are vacuous. Hence, a definition that essentially
refers to output behavior only is satisfactory. The inability to encode directly
input assumptions, however, leads to a pitfall in the straightforward application
of refinement checking. Often, a refinement P � Q between an input-enabled
implementation P and a specification Q does not hold, because we ask P to
exhibit output behaviors allowed by Q under all inputs, including possibly in-
puts that are known not to occur in the intended usage of P , and under which



the behavior of P was not given any consideration during design. Usually, this
situation is described by saying that more environment assumptions are needed
in order to prove P � Q. Models that are not required to be input enabled can
capture input assumptions directly. In an input-enabled model, however, these
input assumptions can only be captured by writing a separate model E for the
environment, and by composing this model with P : the goal becomes thus to
prove E‖P � Q. This approach has been very effective in practice, and it has
been extended to enable the compositional verification of refinement relations
[21, 20]. However, we observe that E‖P is now a closed system, since all inputs
of P are provided by E: hence, in this approach refinement is checked essentially
between a closed implementation and a specification. Thus, the success in ap-
plying a covariant notion of refinement to open systems can be explained by the
fact that the notion has been mostly applied either to systems with trivial input
behavior (such as input-enabled systems), or to closed systems (such as systems
composed with their environment assumptions).

5 Interface Automata

To illustrate concretely the ideas of the previous sections, we now present in
detail interface automata, a game model for asynchronous systems derived from
[14]. Essentially, an interface automaton is a deterministic labeled transition
system in which the labels correspond to input and output actions; the “game”
aspect is only evident in the definitions of refinement and composition, given in
the next sections. The formal definition is as follows.

Definition 1 (interface automaton). An interface automaton P =
〈SP , sinit

P ,AI
P ,AO

P , Γ I
P , Γ O

P , δP 〉 consists of the following components:

– SP is a set of states.
– sinit

P ⊆ SP is the set of initial states. We require that sinit
P contains at most

one state. If sinit
P = ∅, then P is called empty.

– AI
P and AO

P are mutually disjoint sets of input and output actions. We denote
by AP = AI

P ∪ AO
P the set of all actions.

– Γ I
P : SP 7→ 2A

I

P assigns to each state s ∈ SP a (possibly empty) set of

input moves, and Γ O
P : SP 7→ 2A

O

P assigns to each state s ∈ SP a (possibly
empty) set of output moves. The input moves represent the actions that can
be accepted at s, and the output moves represent the actions that can be
generated at s. For s ∈ SP , we denote by ΓP (s) = Γ I

P (s) ∪ Γ O
P (s) the set of

all actions at s.
– δP : SP × (AI

P ∪AO
P ) 7→ SP is a transition function that associates with each

state s ∈ SP and action a ∈ AP a destination state δP (s, a) ∈ SP .

In the following, we refer to the components of an interface automaton P by SP ,
sinit

P , AI
P , AO

P , Γ I
P , Γ O

P , and δP . The set AI
P \ Γ I

P (s) of illegal inputs at a state
s ∈ SP consists of the input actions of P that cannot be accepted at s. Non-
empty interface automata have a single initial state; empty interface automata



arise when incompatible automata are composed, as we will see in Section 7. We
say that P is closed if AI

P = ∅; otherwise, we say that P is open.

A strategy restricts the set of input or output moves that can be played; as is
common for games, strategies (and thus the restrictions) can in general depend
on the past.

Definition 2 (strategy). An input (resp. output) strategy for P is a mapping

πI : S+

P 7→ 2A
I

P (resp., a mapping πO : S+

P 7→ 2A
O

P ) such that, for all s ∈ SP and
all σ ∈ S∗

P , we have πI(σ s) ⊆ Γ I
P (s) (resp. πO(σ s) ⊆ Γ O

P (s)). We denote by ΠI
P

and ΠO
P the set of input and output strategies of P , respectively.

An input and an output strategy jointly determine a set of traces in S+

P : at each
step, if the input strategy proposes a set BI of actions, and the output strategy
proposes a set BO, an action from BI ∪BO is selected nondeterministically. Since
our definitions of compatibility and composition do not require the consideration
of progress properties, we define the outcomes of strategies in terms of finite
traces.

Definition 3 (outcomes). Given a state s ∈ SP , an input stragegy πI ∈ ΠI
P

and an output strategy πO ∈ ΠO
P , the set OutcomesP (s, πI , πO) ⊆ S+

P is the
smallest set defined inductively by the following clauses:

– s ∈ OutcomesP (s, πI , πO);

– if σ t ∈ OutcomesP (s, πI , πO) for σ ∈ S+

P and t ∈ SP , then for all a ∈
πI (σ t) ∪ πO(σ t) we have σ t δP (s, a) ∈ OutcomesP (s, πI , πO).

We say that a state s ∈ SP occurs in a trace σ ∈ S+

P , written (by abuse of
notation) s ∈ σ, if σ = s0s1s2 · · · sk with si = s for some 0 ≤ i ≤ k. A state
s ∈ SP is reachable in P if there is a sequence of states s0, s1, . . . , sn with
s0 ∈ sinit

P , sn = s, and such that for all 0 ≤ k < n there is ak ∈ ΓP (sk) such
that δP (sk, ak) = sk+1.

Action naming. A useful convention for action names consists in assuming a
fixed set U of components, and a fixed set N of signal names (these sets need
not be finite). Then, an action consists in a triple 〈U, V, a〉, where U ∈ U is the
component that can generate the action as output, V ∈ U is the component that
can accept the action as input, and a ∈ N is a name used to distinguish this
particular action from all other actions that correspond to communication from
U to V . An interface automaton models a set of components. If this convention
is adopted, then an interface automaton P that models a set of components
V ⊆ U has set of input actions AI

P = (U \ V)×V ×N and set of output actions
AO

P = V × U × N . This convention enables the drawing of interface automata
omitting the explicit mention of their sets of input and output actions. The
automata in Figures 2 and 4 have been drawn using this convention, using a dot
“.” to separate the components of the triples, and using n and u as the names
for the network and user components.



Discussion

An interface automaton represents in a joint fashion both the input behavior of
a component (which input sequences can be accepted), and the output behavior
of the component (which output sequences can be generated). One may wonder
whether the same information could be represented by two separate models,
one describing only the input behavior, the other only the output behavior, and
whether it would be possible to use already established formalisms to encode
these two models.

The answer is, trivially, affirmative. It is easy to see that all the information
contained in an interface automaton P could be encoded by a pair of I/O au-
tomata PI and PO, where the automaton PO is input-enabled, and describes only
the output behavior, and the automaton PI is “output-universal” (the symmet-
rical notion of input-enabled), and describes only input behavior. Precisely, we
let Γ I

PO
(s) = AI

P , and symmetrically, Γ O
PI

(s) = AO
P for all s ∈ SP ; the transition

function δP is extended arbitrarily for these new actions, yielding δPO
and δPI

.
All other components of PO and PI coincide with their corresponding component
in P . Then, it is immediate to see that all information in P can be reconstructed
by considering the synchronous composition of PI and PO . It is also clear that
PO is an I/O automaton [26], and PI is essentially an I/O automaton, except
that the roles of inputs and outputs are exchanged.

Indeed, the difference between game models, such as interface automata, and
transition system models, such as I/O automata, does not lie in the particular
syntax chosen for representing a model, but rather, in how the operations on the
models, such as refinement and composition, are defined.

6 Refinement

Refinement of interface automata is defined in terms of alternating simulation,
which is the extension of the classical notion of simulation to games [8]. Infor-
mally, an alternating simulation ρ ⊆ SP × SQ from P to Q is a relation such
that, whenever (s, t) ∈ ρ, then all input moves of s can be simulated by t, and
conversely, all output moves of t can be simulated by s. The definition is as
follows.

Definition 4 (alternating simulation). An alternating simulation relation ρ

from P to Q is a relation ρ ⊆ SP × SQ such that, for all 〈s, t〉 ∈ ρ and all
a ∈ Γ I

Q(t) ∪ Γ O
P (s) we have:

Γ I
Q(t) ⊆ Γ I

P (s) Γ O
P (s) ⊆ Γ O

Q (t) 〈δP (s, a), δP (t, a)〉 ∈ ρ

Refinement is defined as the existence of an alternating simulation between initial
states.

Definition 5 (refinement). An interface automaton P refines an interface
automaton Q, written P � Q, if the following conditions hold:



1. AI
P ⊆ AI

Q;

2. AO
P ⊆ AO

Q;

3. there is an alternating refinement relation ρ from P to Q, a state s ∈ sinit
P ,

and a state u ∈ sinit
Q such that 〈s, u〉 ∈ ρ.

The third condition states that there is an alternating simulation relation from
P to Q that relates the initial state of P to that of Q. The first condition,
together with the third, ensures that if two states s and t are related by an
alternating simulation, then the illegal inputs at s are a subset of those at t. The
third condition ensures that P does not have any extra output, compared to Q,
that could clash with outputs of other components in a design. As we will see in
Section 7, these conditions ensure that if Q is compatible with R, and P � Q,
then P is compatible with R.

Conditions 1 and 2 state that Q must establish a reserved name space, AI
Q

and AO
Q, trough which the implementations of Q are constrained to communicate

with the rest of the system. We remark that if the action naming convention of
Section 5 is followed, and if P and Q both model the same set of components,
then the conditions 1 and 2 are guaranteed to hold.

In addition to refinement, we can introduce a notion of equivalence based on
alternating bisimulation. In our asynchronous setting, alternating bisimulation
is defines as follows.

Definition 6 (alternating bisimulation). An alternating bisimulation rela-

tion ρ between P and Q is a relation ρ ⊆ SP × SQ such that, for all (s, t) ∈ ρ,
we have:

Γ I
Q(t) = Γ I

P (s) Γ O
P (s) = Γ O

Q (t)

and for all a ∈ Γ I
Q(t) ∪ Γ O

P (s),

(δP (s, a), δP (t, a)) ∈ ρ

Thus, in our asynchronous setting, alternating bisimulation coincides with usual
bisimulation, with the additional requirement that input actions can be related
only to input actions, and output actions only to output actions. We say that
two interfaces are bi-equivalent if they have the same sets of input and output
actions, and if their initial states are bisimilar.

Definition 7 (bi-equivalence). Two interface automata P and Q are bi-

equivalent, written P ' Q, if the following conditions hold:

1. AI
P = AI

Q and AO
P = AO

Q;

2. there is an alternating bisimulation relation ρ between P and Q, a state
s ∈ sinit

P , and a state u ∈ sinit
Q such that 〈s, u〉 ∈ ρ.

The following theorem summarizes the main properties of refinement and bi-
equivalence.



Theorem 1 (properties of refinement and bi-equivalence). The following

assertions hold:

1. Refinement is reflexive and transitive.

2. Bi-equivalence is an equivalence relation: it is reflexive, symmetrical, and

transitive.

3. Bi-equivalence implies refinement.

An immediate corollary of this theorem is that bi-equivalent interface automata
can be substituted while preserving refinement.

Corollary 1. The following assertions hold for all interface automata P , Q,

and R:

1. P ' Q and P � R implies Q � R;

2. P ' Q and R � P implies R � Q.

7 Composition

Two interface automata are composable if they do not share output actions.

Definition 8. Two interface automata P and Q are composable if AO
P ∩AO

Q = ∅.

We define the composition of interface automata in two stages, first defining the
product automaton P ⊗Q of two composable interface automata P and Q, and
then explaining how to construct the composition P‖Q from this product.

7.1 Product

In the product automaton P ⊗ Q, the interface automata P and Q synchro-
nize their shared actions AP ∩ AQ, and they interleave asynchronously all
other actions. Thus, the product of interface automata is similar to the com-
position of I/O automata [26], except that since interface automata need not
be input enabled, there is no guarantee that a shared output action per-
formed by one interface automaton will be part of the product. We denote
by Shrd(P, Q) = AP ∩ AQ the shared actions of P and Q, and we denote by
Prv(P, Q) = (AP ∪AQ)\Shrd(P, Q) all other actions. Among the shared actions,
we let the communication actions be Comm(P, Q) = (AO

P ∩ AI
Q) ∪ (AO

P ∩ AI
Q).

The set of states of the product is SP⊗Q = SP ×SQ. An input move a is available
at a state 〈s, t〉 of P ⊗ Q if it is available at s or t, and if a is not a communi-
cation action. An output move a is available at 〈s, t〉 if one of the following two
conditions hold:

– a is not shared, and the output move a is available at s or at t;



– a is a communication action, and it occurs at s as an output move and at t

as an input move, or vice versa, at t as an output move and at s as an input
move.

The precise definition is as follows.

Definition 9 (interface automata product). If P and Q are composable
interface automata, their product P ⊗ Q is the interface automaton defined by:

SP⊗Q = SP × SQ

sinit
P⊗Q = sinit

P × sinit
Q

AI
P⊗Q = (AI

P ∪ AI
Q) \ Comm(P, Q)

AO
P⊗Q = AO

P ∪AO
Q

and, for all 〈s, t〉 ∈ SP × SQ,

Γ I
P⊗Q(〈s, t〉) =

[

(

Γ I
P (s) ∪ Γ I

Q(t)
)

∩ Prv(P, Q)
]

∪
(

Γ I
P (s) ∩ Γ I

Q(t)
)

,

Γ O
P⊗Q(〈s, t〉) =

[

(

Γ O
P (s) ∪ Γ O

Q (t)
)

∩ Prv(P, Q)
]

∪
[

(

ΓP (s) ∩ ΓQ(t)
)

∩ Comm(P, Q)
]

,

and, for all a ∈ AP⊗Q,

δP⊗Q(〈s, t〉) =











〈δP (s, a), δQ(t, a)〉 if a ∈ AP ∩ AQ;

〈δP (s, a), t〉 if a ∈ AP \ AQ;

〈s, δQ(t, a)〉 if a ∈ AQ \ AP .

As an example, the product of the interface automata Ucomp (Figure 4(a)) and
Netw (Figure 4(b)) is depicted in Figure 4(c).

7.2 Composition

Since interface automata, differently from I/O automata, need not be input
enabled, there may states in P ⊗Q where a communication action can be output
by one of P or Q, but cannot be accepted as input by the other. These states
correspond to local incompatibilities between P and Q.

Definition 10 (locally incompatible states). The set Incmp(P, Q) of locally
incompatible states of two interface automata P and Q consists of all pairs of
states 〈s, t〉 ∈ SP × SQ for which one of the following two conditions holds:

1. there is a ∈ Γ O
P (s) ∩ Comm(P, Q) such that a 6∈ Γ I

Q(t),

2. there is a ∈ Γ O
Q (t) ∩ Comm(P, Q) such that a 6∈ Γ I

P (s).



In the product between Ucomp and Netw , there is one state that corresponds
to a local incompatibility; the state is depicted as shaded in Figure 4(c).

If P ⊗ Q is closed then the presence of locally incompatible states indicates
that P and Q are not compatible: in fact, P ⊗Q would be able to reach a locally
incompatible state regardless of the environment. If P ⊗Q is open, on the other
hand, there might be an input strategy that avoids all local incompatibilities.
The states from which there environment can prevent reaching Incmp(P, Q) are
called usable, emphasizing the fact that there is some way (some environment)
to use them without giving rise to incompatibilities.

Definition 11 (usable states). A state u ∈ SP⊗Q is usable in P ⊗ Q with
respect to Incmp(P, Q) if there is πI ∈ ΠI

P⊗Q such that, for all πO ∈ ΠO
P⊗Q, all

σ ∈ OutcomesP⊗Q(u, πI , πO), and all w ∈ Incmp(P, Q), we have w 6∈ σ.

In our case, the best input strategy to avoid locally incompatible states consists
in restricting the sets of input actions to empty sets, since this minimizes the
set of states that can be reached. Hence, we can give the following alternative
characterization of the set of usable states.

Theorem 2. A state u ∈ SP⊗Q is usable in P ⊗Q with respect to Incmp(P, Q)
iff there is no path u0, u1, . . . , un ∈ S∗

P⊗Q with u0 = u, un ∈ Incmp(P, Q), and

such that for all 0 ≤ k < n, there is ak ∈ Γ O
P⊗Q(uk) with δ(uk, ak) = uk+1.

We remark that this simple characterization of usable states — as the states
that cannot reach local incompatibilities if no input actions are received —
is a peculiarity of our choice of models for interfaces, rather than a general
characteristic of interface theories. The simple characterization is due essentially
to the weak expressive power of interface automata, and precisely, to the fact
that in the absence of fairness, interface automata can express only what the
environment can do (which input actions it can generate), but not what it must

do. Consequently, the best input strategy consists in doing nothing.
The composition P‖Q is obtained by restricting P ⊗Q to its usably reachable

states, that is, to the states that can be reached from the initial state under an
input strategy that avoids all locally incompatible states.

Definition 12 (usably reachable states). A state u ∈ SP⊗Q is usably reach-

able in P ⊗ Q with respect to Incmp(P, Q) if there is πI ∈ ΠI
P⊗Q such that:

– for all initial states v ∈ sinit
P⊗Q, all output strategies πO ∈ ΠO

P⊗Q, all outcomes

σ ∈ OutcomesP⊗Q(v, πI , πO), and all w ∈ Incmp(P, Q), we have w 6∈ σ;
– there is an initial state v ∈ sinit

P⊗Q, an output strategy πO ∈ ΠO
P⊗Q, and an

outcome σ ∈ OutcomesP⊗Q(v, πI , πO) such that u ∈ σ.

Alternatively, usably reachable states can be defined as the states that are reach-
able from the initial state of P ⊗ Q by visiting only usable states.

Theorem 3. A state u of P ⊗ Q is usably reachable in P ⊗ Q with respect to

Incmp(P, Q) iff there is a sequence of states u0, u1, . . . , un ∈ S+

P⊗Q with u0 ∈

sinit
P⊗Q and un = u, and such that, for 0 ≤ k ≤ n, we have:



1. the state uk is usable in P ⊗ Q with respect to Incmp(P, Q);

2. there is ak ∈ ΓP⊗Q(uk) such that δ(uk, ak) = uk+1.

The composition P‖Q is obtained from the product P ⊗ Q by restricting the
latter to its usably reachable states.

Definition 13 (composition). Given two composable interface automata P

and Q, let T be the set of usably reachable states of the product P ⊗ Q with
respect to Incmp(P, Q). The composition P‖Q of P and Q is the interface au-
tomaton defined by:

SP‖Q = T

sinit
P‖Q = sinit

P⊗Q ∩ T

AI
P‖Q = AI

P⊗Q

AO
P‖Q = AO

P⊗Q

and, for all u ∈ T ,

Γ I
P‖Q(u) = {a ∈ Γ I

P⊗Q(u) | δP⊗Q(u, a) ∈ T}

Γ O
P‖Q(u) = Γ O

P⊗Q(u)

and, for all a ∈ ΓP‖Q(u),

δP‖Q(u, a) =

{

δP⊗Q(u, a) if δP⊗Q(u, a) ∈ T ;

arbitrary otherwise.

The composition between Ucomp and Netw (Figures 4(a) and 4(b)) is depicted
in Figure 4(d).

7.3 Compatibility

We say that P and Q are compatible if their composition is non-empty.

Definition 14 (compatibility). Two composable interface automata P and
Q are compatible iff sinit

P‖Q 6= ∅.

The following alternative characterization of compatibility can be used to achieve
efficient compatibility checking algorithms, in view of Theorem 2.

Theorem 4. Two composable interface automata P and Q are compatible iff

they are non-empty and 〈s, t〉, where s ∈ sinit
P and t ∈ sinit

Q , is usable in P ⊗ Q

with respect to Incmp(P, Q).

We now make precise the observation that the composition P‖Q consists exactly
of the states of the product P ⊗ Q that are reachable when P ⊗ Q is in an
environment that avoids all local incompatibilities Incmp(P, Q). First, we define
a proper environment to be an interface automaton E that closes P ⊗ Q, and
that prevents all local incompatibilities from being reached.



Definition 15 (proper environment). Let P and Q be two composable in-
terface automata. A proper environment for P and Q is an interface automaton
E such that the following conditions hold:

1. E is non-empty: sinit
E 6= ∅;

2. E is composable with P ⊗ Q;

3. (P ⊗ Q) ⊗ E is closed;

4. for all u ∈ Incmp(P, Q) and all v ∈ SE , the state 〈u, v〉 is not reachable in
(P ⊗ Q) ⊗ E.

The composition P‖Q consists of the states of P ⊗ Q that are reachable under
a proper environment, justifying our Definitions 11, 12, and 13.

Theorem 5. Let P and Q be two composable interface automata. For all u ∈
SP⊗Q, we have u ∈ SP‖Q iff there is a proper environment E for P and Q and

a state v ∈ SE such that 〈u, v〉 is reachable in (P ⊗ Q) ⊗ E.

The following immediate corollary justifies, in retrospect, our definition of com-
patibilty.

Corollary 2. Two composable interface automata P and Q are compatible iff
there is a proper environment for P and Q.

7.4 Properties of Composition

The following theorem states that composition of interface automata is commu-
tative and associative, modulo bi-equivalence.

Theorem 6 (commutativity and associativity of composition). For all
interface automata P , Q, and R, if P and Q are composable, and if R is com-

posable with P ⊗ R, the following relations hold:

P‖Q ' Q‖P, (P‖Q)‖R ' P‖(Q‖R).

The following theorem states that refinement is compositional: if we refine one
components of a composite system, we obtain a refinement of the global system.

Theorem 7 (compositionality of refinement). For all interface automata

P , Q, and R, we have that if P � Q, and if Q and R are composable, then also
P and R are composable, and P‖R � Q‖R.

As a simple corollary of this theorem, we have that compatibility is preserved
when we refine components in a design.

Corollary 3 (refinement preserves compatibility, or substitutivity of
refinement). For all interface automata P , Q, and R, if Q and R are compat-
ible, and if P � Q, then also P and R are compatible.



The relevance of this theorem lies in the fact that it justifies the use of interface
automata as a formalism for specifying how components should interact in a
design. Once a high-level design is drafted, consisting of the compatible interface
automata Q1, . . . , Qn, we can refine each automaton Qi into an implementation
Pi, for 1 ≤ i ≤ n, and obtain an implemented system P1‖ · · · ‖Pn in which
all components are again compatible. Hence, the abstract interface automata
Q1, . . . , Qn provide a specification that, if followed, guarantees compatibility of
the implementations in a design [15].
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