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Abstract. We extend the basic system relations of trace inclusion, trace equiva-
lence, simulation, and bisimulation to a quantitative setting in which propositions
are interpreted not as boolean values, but as real values in the interval

�
0 � 1 � . Trace

inclusion and equivalence give rise to asymmetrical and symmetrical linear dis-
tances, while simulation and bisimulation give rise to asymmetrical and symmet-
rical branching distances. We study the relationships among these distances, and
we provide a full logical characterization of the distances in terms of quantitative
versions of LTL and µ-calculus. We show that, while trace inclusion (resp. equiv-
alence) coincides with simulation (resp. bisimulation) for deterministic boolean
transition systems, linear and branching distances do not coincide for determinis-
tic quantitative transition systems. Finally, we provide algorithms for computing
the distances, together with matching lower and upper complexity bounds.

1 Introduction

Quantitative transition systems extend the usual transition systems, by interpreting propo-
sitions as numbers in [0,1], rather than as truth values. Quantitative transition systems
arise in a wide range of contexts. They provide models for optimization problems,
where the propositions can be interpreted as rewards, costs, or as the use of resources
such as power and memory. They also provide models for discrete-time samplings of
continuous systems, where the propositions represent the values of continuous vari-
ables at discrete instants of time. We extend the classical relations of trace inclusion,
trace equivalence, simulation, and bisimulation to a quantitative setting, by defining
linear and branching distances1. Considering distances, rather than relations, is partic-
ularly useful in the quantitative setting, as it leads to a theory of system approximations
[5, 16, 1], enabling the quantification of how closely a concrete system implements a
specification.

We define two families of distances: linear distances, which generalize trace in-
clusion and equivalence, and branching distances, which generalize (bi)simulation. We
relate these distances to the quantitative version of the two well-known specification
languages LTL and µ-calculus, showing that the distances measure to what extent the
logic can tell one system from the other.

Our starting point for linear distances is the distance � σ � ρ � ∞ between two traces
σ and ρ , which measures the supremum of the difference in predicate valuations at

�
This research was supported in part by the NSF CAREER grant CCR-0132780, the NSF grant
CCR-0234690, and the ONR grant N00014-02-1-0671.

1 In this paper, we use the term “distance” in a generic way, applying it to quantities that are
traditionally called pseudo-metrics and quasi-pseudo-metrics [7].
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corresponding positions of σ and ρ . To lift this trace distance to a distance over states,
we define lds � s � t ��� supσ � Tr � s � infρ � Tr � t � � σ � ρ � ∞, where Tr � s � and Tr � t � are the set of

traces from s and t, respectively. The distance lds � s � t � is asymmetrical, and is a quanti-
tative extension of trace containment: if lds � s � t ��� b, then for all traces σ from s, there
is a trace ρ from t such that � σ � ρ � ∞ 	 b. In particular, Tr � s ��
 Tr � t � iff lds � s � t ��� 0.
We define a symmetrical version of this distance by lds � s � t ��� max 
 lds � s � t ��� lds � t � s ��� ,
yielding a distance that generalizes trace equivalence; thus, lds � s � t � is the Hausdorff
distance between Tr � s � and Tr � t � .

We relate the linear distance to the logic QLTL, a quantitative version of LTL [12].
When interpreted on a quantitative transition system, QLTL formulas yield a real value
in the interval [0,1]. The formula “next p” returns the (quantitative) value of p in the
next step of a trace, while “eventually p” seeks the maximum value attained by p
throughout the trace. The logical connectives “and” and “or” are interpreted as “min”
and “max”, and “not x” is interpreted as 1 � x. Furthermore, QLTL has a bounded dif-
ference operator ��� , defined as x ��� y � max 
 x � y � 0 � .

In the boolean setting, for a relation to characterize a logic, two states must be re-
lated if and only if all formulas from the logic have the same truth value on them. In the
quantitative framework, we can achieve a finer characterization: in addition to relating
those states that formulas cannot distinguish, we can also measure to what extent the
logic can tell one state from the other. We show that the linear distances provide such
a measure for QLTL: for all states s � t we have lds � s � t ��� supϕ � QLTL � ϕ � s � � ϕ � t � � and
lds � s � t ��� supϕ � QLTL

� ϕ � s � � � ϕ � t ��� . We investigate what syntactic fragment of QLTL

is necessary for such a characterization, showing in particular that the fragment must
include the operator � � , in line with the results of [5, 11]. We also consider linear dis-
tances based on the asymmetric trace distance � σ ��� ρ � ∞ for traces σ and ρ . Intuitively,
if � σ ��� ρ � ∞ � b, then all predicate valuations along ρ are no more than b below the
corresponding valuations in σ . Such asymmetrical distances are useful in optimization
and control problems, where it is desired to approximate a given quantity from above
or below. We show that these distances are characterized by the positive fragment of
QLTL, in which all propositions occur with positive polarity.

We then study the branching distances that are the analogous of simulation and
bisimulation on quantitative systems. A state s simulates a state t via R if the pro-
position valuations at s and t coincide, and if every successor of s is related via R
to some successor of t. We generalize simulation to a distance bdAs over states. If
bdAs � s � t ��� b, then � s � t � ∞ � b, and every successor of s can be matched by a suc-
cessor of t within bdAs-distance b. In a similar fashion, we can define a distance bdSs

that is a quantitative analogous of bisimulation; such a distance has been studied in
[5, 16]. We relate these distances to QMU, a quantitative fixpoint calculus that es-
sentially coincides with the µ–calculus of [2], and is related to the calculi of [9, 3]
(see also [8, 13]). In particular, we show that bdSs � s � t ��� supϕ � QMU �ϕ � s � � ϕ � t � � and

bdAs � s � t ��� supϕ ��� QMU
� ϕ � s � ��� ϕ � t ��� , where � QMU is the fragment of QMU in which

only existential predecessor operators occur. Similarly, starting from the asymmetrical
state distance � s � � t � ∞, we obtain branching distances that are characterized by the cor-
responding positive fragments of QMU. As before, these characterizations require the
presence of the � � operator in the calculus.
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We relate linear and branching distances, showing that just as simulation implies
trace containment, so the branching distances are greater than or equal to the corre-
sponding linear distances. However, while trace inclusion (resp. equivalence) coincides
with simulation (resp. bisimulation) for deterministic boolean transition systems, we
show that linear and branching distances do not coincide for deterministic quantitative
transition systems. Finally, we present algorithms for computing linear and branching
distances over quantitative transition systems. We show that the problem of comput-
ing the linear distances is PSPACE-complete, and it remains PSPACE-complete even
over deterministic systems, showing once more that determinism plays a lesser role in
quantitative transition systems. The branching distances can be computed in polynomial
time using standard fixpoint algorithms [2].

We also present our results in a discounted version, in which distances occurring
i steps in the future are multiplied by α i, where α is a discount factor in � 0 � 1 � . This
discounted setting is common in the theory of games (see e.g. [6]) and optimal control
(see e.g. [4]), and it leads to robust theories of quantitative systems [2].

2 Preliminaries

For two numbers x � y ��� 0 � 1 � , we write x � y � max � x � y � , x � y � min � x � y � , x � y � 1 �� x � y � and x � � y � 0 � � x � y � . We lift the operators � and � , and the relations � , 	 to
functions via their pointwise extensions. Given a function d : X 2 �	 IR 
 0, we denote by
Zero � d ��� 
 � x � y ��� X2 � d � x � y ��� 0 � its zero set.

Quantitative transition systems. A quantitative transition system (QTS) � � � S � τ � Σ �
� � � � consists of a set S of states, a transition relation τ 
 S 
 S, a finite set Σ of propo-
sitions, and a function � � � : S 	 � Σ 	 � 0 � 1 � � which assigns to each state s � S and pro-
position r � Σ a value � s � � r � . For a state s � S, we write τ � s � for 
 t � S � � s � t ��� τ � .
We require that � is finite-branching and non-blocking: for all s � S, the set τ � s � is
finite and non-empty. We call a function u : Σ 	 � 0 � 1 � a Σ -valuation, and we denote by�

the set of all Σ -valuations. A QTS � is boolean if for all s � S and all r � Σ , we
have � s � � r ��� 
 0 � 1 � . A QTS � is deterministic if for all states s � S and t � t ��� τ � s � with
t �� t � , there is r � Σ such that � t � � r ������ t � � � r � . When discussing algorithmic complexity,
we assume that values x ��� 0 � 1 � are encoded as fixed-point binary numbers, and we
denote by � x � b the number of bits their encoding. We define the size of a (finite) QTS
� � � S � τ � Σ ��� � � � by � � � � ∑s � S ∑r � Σ � � s � � r � � b � ∑s � S � τ � s � � .
Paths and traces. Given a set A and a sequence π � a0a1a2 ��� � � Aω , we write πi for
the i-th element ai of π , and we write π i � aiai � 1ai � 2 � � � for the (infinite) suffix of π
starting from πi. A path of � is an infinite sequence π � s0s1s2 � ��� of states such that� si � si � 1 ��� τ for all i � IN. Given a state s � S, we write Pts � s � for the set of all paths
starting in s. A Σ -trace is an infinite sequence σ � u0u1u2 � ��� � � ω ; we call a Σ -trace
simply a trace when Σ is clear from the context. Every path π of � induces a Σ -trace
� π � ��� π0 ��� π1 ��� π2 � � ��� ; we write Tr � s � � 
�� π � � π � Pts � s ��� for the set of traces from s � S.

We define simulation, bisimulation, and trace containment for QTS as usual. Specif-
ically, for a QTS � � � S � τ � Σ ��� � � � , the simulation relation � sim (resp. the bisimulation
relation � bis) is the largest relation R 
 S 
 S such that, for all sRt, the following con-
ditions (i) and (ii) (resp. (i), (ii), and (iii)) hold: (i) � s � � � t � ; (ii) for all s �!� τ � s � , there
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is t � � τ � t � with s � Rt � ; (iii) for all t � � τ � t � , there is s � � τ � s � with s � Rt � . For s � t � S, we
write s

�
tr t if Tr � s ��
 Tr � t � , and s � tr t if Tr � s ��� Tr � t � .

Directed metrics and pseudometrics. A directed metric on X is a function d : X 

X 	 IR 
 0 that satisfies d � x � x ��� 0 for all x � X and the triangle inequality: d � x � z � 	
d � x � y � � d � y � z � for all x � y � z � X . A pseudometric d is a directed metric that is sym-
metric, i.e. d � x � y ��� d � y � x � for all x � y � X . Given a directed metric, we denote by d̄ its
symmetrization, defined by d̄ � s � t ��� d � s � t � � d � t � s � .

We develop our definitions in terms of directed metrics. Given a directed metric
d on X and a mapping q : X 	 � 0 � 1 � , the “directed” bound d � x � y ��� q � x � � � q � y � for
all x � y � X immediately yields the “symmetrical” bound d̄ � x � y ��� � q � x � � q � y � � for
all x � y � X . Hence, we focus on directed metrics and directed bounds, deriving the
symmetrical results through the above observation.

3 Linear Distances and Logics

Throughout this paper, unless specifically noted, we consider a fixed a QTS � �� S � τ � Σ ��� � � � . The propositional distance between two states measures the maximum dif-
ference in their proposition evaluations.

Definition 1 (propositional distance) We define the propositional distance pd :
� 2 	

� 0 � 1 � , for all u � v � � , as pd � u � v ��� maxr � Σ
� u � r � ��� v � r ��� .

For ease of notation, we will write pd � s � t � for pd � � s � ��� t � � . For u � v � � we have � u � v ���
Zero � pd � iff u � r � � v � r � for all r � Σ , and � u � v � � Zero � pd � iff u � r � 	 v � r � for all r � Σ .
The definition of trace distance discounts the propositional distance at positions i of the
trace by multiplying it by α i, for α � � 0 � 1 � .
Definition 2 (trace distance) We define the trace distance tdα :

� ω 	 � 0 � 1 � by let-
ting, for σ � ρ � � ω and α � � 0 � 1 � , tdα

� σ � ρ ��� supi � IN α ipd � σi � ρi � .
For α � 1, the definitions reduce to the classical notions of trace distance: td1

� σ � ρ ���
� σ ��� ρ � ∞, and td1

� σ � ρ � � � σ � ρ � ∞. We note that tdα is a generalization of the Cantor
metric, which equals td1 � 2. Intuitively, td (resp. td) 2 corresponds to implication (resp.
equivalence) along all the trace. Indeed, lifting 	 and � to traces in a pointwise way, for
all σ � ρ � � ω and α � � 0 � 1 � we have that � σ � ρ ��� Zero � tdα � iff σ � ρ , and � σ � ρ ���
Zero � tdα � iff σ 	 ρ . The linear distances are obtained by lifting trace distances to the
set of all outgoing traces in two states, as in the Hausdorff distance.

Definition 3 (linear distance) We define the two linear distances lda and lds over S
as follows, for s � t � S and α ��� 0 � 1 � :

lda
α
� s � t ��� sup

σ � Tr � s � inf
ρ � Tr � t � tdα

� σ � ρ � lds
α
� s � t ��� sup

σ � Tr � s � inf
ρ � Tr � t � tdα

� σ � ρ �

One can easily check that, for all α � � 0 � 1 � , the functions lda
α , lds

α are directed
metrics and lda

α , lds
α are pseudometrics. Intuitively, the distance lds is a quantitative

2 When discussing properties that are independent of the discount factor, we sometimes omit the
α subscript from distance names.

4



u1

r � 1

r � 0u0

r � 1r � 0

r � 0

t1 t2

t0

s1

r � 0

r � 0s0

Fig. 1. A QTS showing the difference between lda
α , lds

α , lda
α , and lds

α .

extension of trace containment: for s � t � S, the distance lds � s � t � measures how closely
(in a quantitative sense) can a trace from t simulate a trace from s. The symmetrization
of lds is lds, which is related to trace equivalence. The following result makes this
observation precise.

Theorem 1 For all α � � 0 � 1 � , we have
�

tr � Zero � lds
α � and � tr � Zero � lds

α � .
We will see that the valuation of QLTL formulas at s and t can differ by at most ld s � s � t � ,
and similarly, the valuation of any QLTL formula at t is at most lds � s � t � below the
valuation at s. For α � 1, the distances lda and lda have the following intuitive char-
acterization. For a trace σ � � ω and c � IR, denote by σ ��� c the trace defined by� σ ��� c � k � r ��� σk

� r � ��� c for all k � � and r � Σ : in other words, σ ��� c is obtained from
σ by decreasing all proposition valuations by c. For all s � t � S, if lda

1
� s � t ��� c then for

every trace σ from s there is a trace ρ from t such that ρ � σ � � c. This means that
lda

1
� s � t � is a “positive” version of trace containment: for each trace σ of s, the goal of a

trace ρ from t is not that of being close to σ , but rather, that of not being below σ � � c.
This version of trace containment will preserve within c the valuation of QLTL formu-
las with only positive occurrences of propositions (called positive QLTL formulas). The
relations among linear distances are summarized by the following theorem.

Theorem 2 The relations in Figure 4(a) hold for all α � � 0 � 1 � . Moreover, for α � � 0 � 1 �
the inequalities cannot be replaced by equalities.

Proof. The inequalities are immediate. For α � � 0 � 1 � and the QTS in Figure 1, we have

lda
α
� s0 � t0 ��� 0 lda

α
� t0 � u0 ��� 0 lda

α
� u0 � t0 ��� 0

lds
α
� s0 � t0 ��� 0 lds

α
� t0 � u0 ��� α lds

α
� u0 � t0 ��� 0

lda
α
� s0 � t0 ��� α lda

α
� t0 � u0 ��� 0 lda

α
� u0 � t0 ��� 0

lds
α
� s0 � t0 ��� α lds

α
� t0 � u0 ��� α lds

α
� u0 � t0 ��� α

Thus, we have an example where lda
α �� lds

α , lda
α �� lda

α , lds
α �� lds

α , lda
α �� lds

α , and
neither lds

α 	 lda
α nor lds

α � lda
α .

3.1 Quantitative Linear-Time Temporal Logic

The linear distances introduced above are closely connected to a quantitative exten-
sion of linear-time temporal logic which we call quantitative linear-time temporal logic
(QLTL). The logic QLTL includes quantitative versions of the temporal operators and
logic connectives. Following [5], QLTL also has a “threshold” operator, enabling the
comparison of a formula against a constant in the interval � 0 � 1 � . The QLTL formulas
over Σ are generated by the following grammar:

ϕ :: � r � ϕ � ϕ � ϕ � ϕ ��� ϕ � c � ϕ � c � � ϕ � α ϕ � � α ϕ � � αϕ � � α ϕ
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Here r � Σ is a proposition, c � � 0 � 1 � a constant and α � � 0 � 1 � a discount factor. A
formula ϕ assigns a value � � ϕ � � � ρ ��� � 0 � 1 � to each trace σ 
 � ω .

� � r � � � σ � � σ0
� r �

� � � ϕ � � � σ � � 1 � � � ϕ � � � σ �
� � c � ϕ � � � σ � � c � � � ϕ � � � σ �
� � c ��� ϕ � � � σ � � c ��� � � ϕ � � � σ �
� � α ϕ � � � σ � � α � � � ϕ � � � σ 1 �
� � � α ϕ � � � σ � � 1 � α � α � � � ϕ � � � σ 1 �

� � ϕ1 � ϕ2 � � � σ ��� � � ϕ1 � � � σ � � � � ϕ2 � � � σ �
� � ϕ1 � ϕ2 � � � σ ��� � � ϕ1 � � � σ � � � � ϕ2 � � � σ �
� � � αϕ � � � σ � � sup 
 α i � � � ϕ � � � σ i � � i � 0 �
� � � α ϕ � � � σ � � inf 
 1 � α i � � 1 � � � ϕ � � � σ i � � � i � 0 �

A QLTL formula ϕ assings a real value � � ϕ � � � s � � � 0 � 1 � to each state s of a given
an QTS, according to the rule3 � � ϕ � � � s � � sup 
�� � ϕ � � � ρ � � ρ � Tr � s ����� Thanks to the
equivalences � α ϕ � � α � ϕ , �

� c � ϕ � � ��� 1 � c � � � ϕ � , � � c � � ϕ � � ��� 1 � c ��� ϕ � ,
�
� �

αϕ � � �
α � ϕ , and the classical dualities between � , � , µ , and ν , the syntax of

QLTL allows negations to be pushed to the atomic propositions without affecting the
value of a formula. For α � � 0 � 1 � , we denote by QLTLα the set of formulas containing
only discount factors smaller than or equal to α . All QLTL operators are positive, with
the exception of � and c ��� for c � � 0 � 1 � , which are negative. We say that a QLTL for-
mula is positive if all propositions occur with positive polarity, that is, within an even
number of negative operators; we denote by QLTL �α the positive fragment of QLTLα .
Furthermore, for ops 
 
 � � � � � � ��� � ��� � , we denote by QLTLα

� ops � the set of for-
mulas which only contain boolean connectives and operators in ops. We denote by
QLTL �α � ops � the restrictions of these sets to positive formulas. Notice that for α � 1,

α and � α coincide with the usual operator of LTL. Thus, if we forbid the use of
� and � � and we take all discount factors to be 1, the semantics of QLTL on boolean
systems coincides with the one of LTL.

3.2 Logical Characterization of Linear Distances

Linear distances provide a bound for the difference in valuation of QLTL formulas. We
begin by relating distances and logics over traces.

Lemma 1 For all α � � 0 � 1 � and all traces σ � ρ � � ω , the following holds.

For all ϕ � QLTL �α : tdα
� σ � ρ � � � � ϕ � � � σ � ��� � � ϕ � � � ρ � ;

For all ϕ � QLTLα : tdα
� σ � ρ � � � � � ϕ � � � σ � � � � ϕ � � � ρ � � �

The following theorem uses the linear distances to provide the desired bounds for QLTL.

Theorem 3 For all α � � 0 � 1 � and s � t � S, we have:

For all ϕ � QLTL �α : lda
α
� s � t � � � � ϕ � � � s � � � � � ϕ � � � t � and lda

α
� s � t � � � � � ϕ � � � s � � � � ϕ � � � t � � �

For all ϕ � QLTLα : lds
α
� s � t � � � � ϕ � � � s � � � � � ϕ � � � t � and lds

α
� s � t � � � � � ϕ � � � s � � � � ϕ � � � t � � �

3 We chose to give the existential interpretation of QLTL. Obviously, the minimum value of ϕ
from s is obtained by one minus the maximum value of � ϕ in s.
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s

r � 0
s3

s1 r � 0 � 2

s2

r � 0 � 8
r � 0

t3

t1 r � 0 � 2

r � 0 � 8

t
r � 0 � 6 t2 r � 0 � 4

Fig. 2. QLTL cannot distinguish between s and t.

The results for lds and lds are the quantitative analogous of the standard connection be-
tween trace containment and trace equivalence, and LTL. For instance, the result about
lds states that, if lds

α
� s � t ��� c, then for every QLTL formula ϕ and every trace σ from s,

there is a trace ρ from t such that � � ϕ � � � ρ � � � � ϕ � � � σ � � c.
The following theorem states that the linear distances can be characterized by a

syntactic subset of the logics that includes only the and � operators, in addition to
boolean connectives. Together with Theorem 3, this result constitutes a full characteri-
zation of linear distances in terms of QLTL.

Theorem 4 For all α � � 0 � 1 � and s � t � S,

lda
α
� s � t ��� sup

ϕ � QLTL
�
α � �

� � � � ϕ � �
� s � ��� � � ϕ � � � t � lda

α
� s � t ��� sup

ϕ � QLTL
�
α � �

� � � � � ϕ � �
� s � � � � ϕ � � � t � �

lds
α
� s � t ��� sup

ϕ � QLTLα � �
� � � � ϕ � �

� s � � � � � ϕ � � � t � lds
α
� s � t ��� sup

ϕ � QLTLα � �
� � � � � ϕ � �

� s � � � � ϕ � � � t � �

The next result shows that the operator � is indeed necessary to obtain such a charac-
terization ( is also trivially necessary). This result is reminiscent of a result by [5] for
Markov systems.

Theorem 5 There is a finite QTS and two states s and t such that, for all α � � 0 � 1 � ,
lds

α
� s � t ��� lds

α
� s � t ��� 0, and supϕ � QLTLα � � � � ���
	 � � � � ϕ � �

� s � � � � ϕ � � � t � � � 0.

As an example, consider the QTS in Figure 2, and assume α � 1. It holds that lds
α
� s � t � �

lds
α
� s � t � � 0 � 2. A suitable formula for distinguishing s and t is ϕ : � � 0 � 6 � � r � � � 0 � 4 �

r ��� ; we have ϕ � s ��� 1 and ϕ � t ��� 0 � 8. On the other hand, it can be proved by induction
on the structure of the formula that, if � and � � are not used, there is no QLTL formula
that distinguishes between s and t.

3.3 Computing the Linear Distance

Given a finite QTS � � � S � τ � Σ ��� � � � we wish to compute ldx
α
� s0 � t0 � , for all s0 � t0 � S,

all x � 
 a � s � , and all α � � 0 � 1 � (the case α � 0 is trivial). We describe the compu-
tation of lda, as the computation of lds is analogous. We can read the definition of
lda as a two-player game. Player 1 chooses a path π � s0s1s2 ��� � from s0; Player 2
chooses a path π � � t0t1t2 ��� � from t0; the goal of Player 1 (resp. Player 2) is to max-
imize (resp. minimize) supk αkpd � πk � π �k � . The game is played with partial informa-
tion: after s0 ��� � sn, Player 1 must choose sn � 1 without knowledge4 of t0 ��� � tn. Such

4 Indeed, if the game were played with total information, we would obtain the branching dis-
tances of the next section.
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a game can be solved via a variation of subset construction [14]. The key idea is to
associate with each final state sn of a finite path s0s1 � ��� sn chosen by Player 1, all fi-
nal states tn of finite paths t0t1 ��� � tn chosen by Player 2, each labeled by the distance
v � s0 � � � sn � t0 � ��� tn ��� max0 � k � n αk � npd � sk � tk � .

From � , we construct another QTS � � � � S � � τ � � 
 r � ��� � � � � , having set of states S � �
S 
 2S ��� . If α � 1 we can take � � 
 pd � s � t � � s � t � S � , so that � � � 	 � S � 2. For α � � 0 � 1 � ,
we take � � 
 pd � s � t ��� αk � s � t � S � k � �

� pd � s � t � 	 αk �	� 
 1 � , so that � � � 	 � S � 2 �

logα min 
 pd � s � t � � s � t � S � pd � s � t � � 0 ��� � 1. The transition relation τ � consists of all

pairs ��
 s � C ��� 
 s � � C ����� such that s � � τ � s � and C � � 
 
 t � � v ��� � � 
 t � v � � C � t � � τ � t � � v � �� v � α � pd � s � � t � � ��� 1 � . Note that only Player 1 has a choice of moves in this game,
since the moves of Player 2 are accounted for by the subset construction. Finally, the
interpretation � � � � is given by � 
 s � C ��� � � r ��� min 
 v � 
 t � v ��� C � , so that r indicates the
minimum distance achievable by Player 2 while trying to match a path to 
 s � C � chosen
by Player 1. The goal of the game, for Player 1, consists in reaching a state of � � with
the highest possible (discounted) value or r. Thus, for all s � t � S, we have ldx

α
� s � t � �

� � � � α r � ����� ��
 s � 
 
 t � pd � s � t ��������� , where the right-hand side is to be computed on � � . This
expression can be evaluated by a depth-first traversal of the state space of � � , noting
that no state of � � needs to be visited twice, as subsequent visits do not increase the
value of

�
α r.

Theorem 6 For all x � 
 a � s � , the following assertions hold:
1. Computing ldx

α for α � � 0 � 1 � and QTS � is PSPACE-complete in � � � � �α � b.
2. Computing ldx

α for α � � 0 � 1 � and deterministic QTS � is PSPACE-complete in

� � � � �α � b.
3. Computing ldx

α for α � � 0 � 1 � and boolean, deterministic QTS � is in time O � � � � 4 � .
The upper complexity bound for part 1 comes from the above algorithm; the lower
bound comes from a reduction from the corresponding result for trace inclusion [15].
Part 2 states that, unlike in the boolean case, the problem remains PSPACE-complete
even for deterministic QTSs. This result is proved by a reduction to the nondeterministic
case: by introducing perturbations in the valuations, we can tranform a nondeterminis-
tic QTS into a deterministic one; for appropriately small perturbations, the distances
computed on the derived deterministic QTS enable the determination of the distances
over the nondeterministic QTS. Finally, part 3 is a consequence of Theorems 13 and 12.

4 Branching Distances and Logics

Definition 4 (branching distances) Consider the following four equations involving
the function d : S2 	 � 0 � 1 � and the parameter α � � 0 � 1 � .

� Aa � d � s � t ��� pd � s � t � � α � max
s � � τ � s � min

t � � τ � t � d
� s � � t � �

� As � d � s � t ��� pd � s � t � � α � max
s � � τ � s � min

t � � τ � t � d
� s � � t � �

� Sa � d � s � t ��� pd � s � t � � α � max
s � � τ � s � min

t � � τ � t � d
� s � � t � � � α � max

t � � τ � t � min
s � � τ � s � d

� s � � t � �
� Ss � d � s � t ��� pd � s � t � � α � max

s � � τ � s � min
t � � τ � t � d

� s � � t � � � α � max
t � � τ � t � min

s � � τ � s � d
� s � � t � �
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For x � 
 Aa � As � Sa � Ss � , we define the branching distance bdx
α as the smallest function

d : S2 	 � 0 � 1 � satisfying the equation � x � .
The distance bdSs is related to the metrics of [5, 16, 2]. Clearly bdSs � bdSs, so we
obtain three symmetrical versions bdAa, bdAs, and bdSa. For all α ��� 0 � 1 � , the functions
bdAa

α , bdAs
α , and bdSa

α are directed metrics, and the functions bdSs
α , bdAa

α , bdAs
α , and bdSa

α
are pseudometrics.

For α � � 0 � 1 � , bdAs
α characterizes similarity and bdSs

α characterizes bisimilarity.

Theorem 7 For all α � � 0 � 1 � , we have � sim � Zero � bdAs
α � and � bis � Zero � bdSs

α � .
The distance bdAa corresponds to a variant of simulation where, if bdAa

1
� s � t � � 0 (that is,

if s is related to t), then � s � 	 � t � . This notion is the quantitative equivalent of a boolean
notion of simulation proposed in [10] for the preservation of positive ACTL formulas,
that is, ACTL formulas where all propositions occur with positive polarity. Indeed, The-
orem 8 states that a similar characterization holds for bdAa in the quantitative setting.
Just as similarity in both directions does not imply bisimulation, bdAs can be strictly
smaller than bdSs, and bdAa can be strictly smaller than bdSa.

Theorem 8 The relations in Figure 4(b) hold for all QTS and for all α � � 0 � 1 � . For
α � � 0 � 1 � , no other inequalities hold on all QTSs.

4.1 Quantitative µ-Calculus

We define quantitative µ-calculus after [2]. Given a set of variables X and a set of
atomic propositions Σ , the formulas of the quantitative µ-calculus are generated by the
grammar

ϕ :: � r � x � ϕ � ϕ � ϕ � ϕ ��� ϕ � c � ϕ � c � � ϕ �� α ϕ � � � α ϕ ��� α ϕ ��� � α ϕ � µx � ϕ � νx � ϕ

for propositions r � Σ , variables x � X , and discount factors α � � 0 � 1 � . Denoting by� � � S 	 � 0 � 1 � � , a (variable) interpretation is a function � : X 	 �
. Given an in-

terpretation � , a variable x � X and a function f � � , we denote by � � x : � f � the
interpretation � � such that � � � x ��� f and, for all y �� x, � � � y � ��� � y � . Given a QTS and
an interpretation � , every formula ϕ of the quantitative µ-calculus defines a valuation
� � ϕ � ��� : S 	 � 0 � 1 � :
� � r � � � � s � � � s � � r �
� � x � ��� ��� � x �
� � ϕ1 � ϕ2 � � � � � � ϕ1 � � � ��� � ϕ2 � � �
� � ϕ1 � ϕ2 � ��� � � � ϕ1 � ��� ��� � ϕ2 � ���
� � � ϕ � ��� � s � � 1 � � � ϕ � ��� � s �
� � c � ϕ � � � s � � c � � � ϕ � � � s �
� � c ��� ϕ � � � s � � c ��� � � ϕ � � � s �

� � � α ϕ � � � � s � � α � maxs � � τ � s � � � ϕ � � � � s � �
� � � � α ϕ � ��� � s � � 1 � α � α � maxs � � τ � s � � � ϕ � ��� � s � �
� � � α ϕ � � � � s � � α � mins � � τ � s � � � ϕ � � � � s � �
� � � � α ϕ � ��� � s � � 1 � α � α � mins � � τ � s � � � ϕ � ��� � s � �
� � µx � ϕ � ��� � inf 
 f � � � f � � � ϕ � � �
	 x: � f � �
� � νx � ϕ � � � � sup 
 f � � � f ��� � ϕ � � �
	 x: � f � � �

The existence of the required fixpoints is guaranteed by the monotonicity and continuity
of all operators. If ϕ is closed, we write � � ϕ � � for � � ϕ � � � . A formula is positive if all atomic
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propositions occur in the scope of an even number of negations. For all α � � 0 � 1 � , we
call CLMUCALCα the set of closed µ–calculus formulas where all discount factors are
smaller than or equal to α and CLMUCALC �α the subset of CLMUCALCα that only
contains positive formulas. We denote by � CLMUCALCα , � CLMUCALC �α the respec-
tive subsets with no occurrences of � . For ops 
 
 � � � � � � ��� � ��� � µ � ν � � � � � , we de-
note by CLMUCALCα

� ops � the set of formulas that only contain boolean connectives
and operators in ops. Notice that, if we omit the operators � and ��� and we take all
discount factors to be 1, then the semantics of the quantitative µ-calculus on boolean
systems coincides with the one of the classical µ-calculus.

4.2 Logical Characterizations of Branching Distances

The following result shows that the branching distances provide bounds for the corre-
sponding fragments of the µ-calculus.

Theorem 9 For all QTSs, states s and t, and α � � 0 � 1 � , we have

for all ϕ � � CLMUCALC �α bdAa
α

� s � t � � � � ϕ � � � s � ��� � � ϕ � � � t �
for all ϕ � � CLMUCALCα bdAs

α
� s � t � � � � ϕ � � � s � ��� � � ϕ � � � t �

for all ϕ � CLMUCALC �α bdSa
α
� s � t � � � � ϕ � � � s � � � � � ϕ � � � t �

for all ϕ � CLMUCALCα bdSs
α
� s � t � � � � � ϕ � � � s � � � � ϕ � � � t � �

As noted before, each bound of the form d � s � t � � � � ϕ � � � s � � � � � ϕ � � � t � , trivially leads to a
bound of the form d � s � t � � � � � ϕ � � � s � � � � ϕ � � � t � � . The bounds are tight, and the following
theorem identifies which fragments of quantitative µ-calculus suffice for characterizing
each branching distance.

Theorem 10 For all QTSs, states s and t, and α � � 0 � 1 � , we have

bdAa
α
� s � t ��� supϕ � CLMUCALC

�
α ��� � � � � � � � ϕ � �

� s � ��� � � ϕ � � � t ���
bdAs

α
� s � t ��� supϕ � CLMUCALCα ��� � � � � � � � ϕ � �

� s � ��� � � ϕ � � � t ���
bdSa

α
� s � t ��� supϕ � CLMUCALC

�
α ��� � � � � �

� � � � ϕ � � � s � ��� � � ϕ � � � t � �
bdSs

α
� s � t ��� supϕ � CLMUCALCα ��� � � � � �

� � � � ϕ � � � s � � � � � ϕ � � � t � �
The next result shows that the operator � (or ��� ), which is not present in the ordinary
µ-calculus, is necessary to characterize the branching distances. This parallels a result
of [5] for a metric related to bdSs on labeled Markov chains, and a result of [11] for
Markov decision processes and games.

Theorem 11 There is a finite QTS and two states s and t such that, for all α � � 0 � 1 � ,
bdSs

α
� s � t ��� bdAs

α
� s � t ��� 0 and for all ϕ � CLMUCALC that do not contain � and ��� ,

we have � � ϕ � � � s ��� � � ϕ � � � t � .
Proof (sketch). Consider again the QTS in Figure 2 and take α � 1. Then bdSs � s � t ���
bdAs � s � t � � 0 � 2. Theorem 5 states that formulas from QLTL � � � � are not sufficient for
distinguishing s from t. Compared to QLTL, the µ–calculus allows to specify branching
formulas and take fixpoints of expressions. However, in the example here, these capa-
bilities do not help, since, starting from s or t, the only branching points occurs in the
first state.
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Fig. 3. Linear versus branching distances on a deterministic QTS.
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Fig. 4. Relations between distances, where f � g means f � g. In (c), the dotted arrows collapse
to equality for boolean, deterministic QTSs.

4.3 Computing the branching distances

Given a finite QTS � � � S � τ � Σ ��� � � � a rational number α � � 0 � 1 � , and x � 
 Ss � Sa � As � Aa � ,
we can compute bdx

α
� s � t � for all states s � t � S by computing in an iterative fashion the

fixpoints of Definition 4. For instance, bdAa
α can be computed by letting d0 � s � t ��� 0 for

all s � t � S and, for k � IN, by letting dk � 1 � s � t � � pd � s � t � � α � maxs � � τ � s � mint � � τ � t � dk � s � � t � � ,
for all s � t � S. Then bdx

α � limk � ∞ dk, and it can be shown that this and the other com-
putations terminate in at most � S � 2 iterations. This gives the following complexity result.

Theorem 12 Computing bdx
α for x � 
 Ss � Sa � As � Aa � , α � � 0 � 1 � and a QTS � can be

done in time O � � � � 4 � .

5 Comparing the Linear and Branching Distances

Just as similarity implies trace inclusion, we have both lda 	 bdAa and lds 	 bdAs; just
as bisimilarity implies trace equivalence, we have lds 	 bdSs and lda 	 bdSa. Moreover,
in the non-quantitative setting, trace inclusion (resp. trace equivalence) coincides with
(bi-)similarity on deterministic systems. This result generalizes to distances over QTSs
that are both deterministic and boolean, but not to distances over QTSs that are just
deterministic.

Theorem 13 The following properties hold.
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1. The relations in Figure 4(c) hold for all α � � 0 � 1 � . Moreover, for α � � 0 � 1 � , the
inequalities cannot be replaced by equalities.

2. For all boolean, deterministic QTSs, all α � � 0 � 1 � , we have

lda
α � bdAa

α lds
α � bdAs

α lda
α � bdAa

α lds
α � bdAs

α �

These equalities need not to hold for non-boolean, deterministic QTSs.

To see that on deterministic, non-boolean QTSs, the linear distances between states can
be strictly smaller than the corresponding branching ones, consider the QTS in Figure 3.
We assume that α � 1

2 ; a similar example works if α 	 1
2 . Then lda

α
� s � t ��� lds

α
� s � t ���

lda
α
� s � t ��� lds

α
� s � t ��� 1

2 α , while bdAa
α
� s � t ��� bdAs

α
� s � t ��� bdAa

α
� s � t ��� bdAs

α
� s � t ��� α2.
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