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We consider two-player games played for an infinite number of rounds, with ω-regular

winning conditions. The games may be concurrent, in that the players choose their moves

simultaneously and independently, and probabilistic, in that the moves determine a prob-

ability distribution for the successor state. We introduce quantitative game µ-calculus,

and we show that the maximal probability of winning such games can be expressed as

the fixpoint formulas in this calculus. We develop the arguments both for deterministic

and for probabilistic concurrent games; as a special case, we solve probabilistic turn-based

games with ω-regular winning conditions, which was also open. We also characterize the

optimality, and the memory requirements, of the winning strategies. In particular, we

show that while memoryless strategies suffice for winning games with safety and reacha-

bility conditions, Büchi conditions require the use of strategies with infinite memory. The

existence of optimal strategies, as opposed to ε-optimal, is only guaranteed in games with

safety winning conditions.
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1. INTRODUCTION

We consider two-player games played on finite state spaces for an infinite num-
ber of rounds. In each round, depending on the current state of the game, the moves
of one or both players determine the next state [Sha53]; we consider games in which
the set of available moves is finite. Such games offer a model for systems composed
of interacting components, and they have been studied under a wide range of win-
ning conditions. The winning conditions are often codified by associating a reward
with each state and choice of moves, and by studying the maximal discounted, total,
or average reward that player 1 can obtain in such a game; a survey of algorithms
for solving games with respect to such winning conditions is e.g. [RF91, FV97].
Here, we consider winning conditions consisting in ω-regular automata acceptance

1An extended version of this paper appeared in the Journal of Computer and System Science

68, 2004, pp. 374–397, and a preliminary version appeared in the Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing (STOC 2001), pp. 675–683. This research was sup-
ported in part by the NSF CAREER Award CCR-0132780, the NSF grants CCR-9988172, CCR-
0225610 and CCR-0234690, the ONR grant N00014-02-1-0671, and the DARPA grant F33615-C-
98-3614.
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conditions defined over the state space of the game [BL69, GH82, Tho95]. Given
a game with an ω-regular winning condition and a starting state s, we study the
maximal probability with which player 1 can ensure that the condition holds from
s; we call this maximal probability the value of the game at s for player 1. The
determinacy result of [Mar98] ensures that, at all states and for all ω-regular win-
ning conditions, the value of the game for player 1 is equal to one minus the value
of the game with complementary condition for player 2.

We distinguish between turn-based and concurrent games, and between deter-
ministic and probabilistic games. Systems in which the interaction between the
components is asynchronous give rise to turn-based games, where in each round
only one of the two players can choose among several moves. On the other hand,
synchronous interaction leads to concurrent games, where in each round both play-
ers can choose simultaneously and independently among several moves. The games
are deterministic if the current state and the moves uniquely determine the suc-
cessor state, and are probabilistic if the current state and the moves determine a
probability distribution for the successor state. For any ω-regular winning con-
dition, the value of a deterministic turn-based game at a state is either 0 or 1;
moreover, player 1 can achieve this value by playing according to a deterministic
strategy, that select a move based on the current state and on the history of the
game [BL69, GH82]. In contrast, the value of a concurrent game at a state may
be strictly between 0 and 1; furthermore, achieving this value may require the use
of randomized strategies, that select not a move, but a probability distribution
over moves. To see this, consider the concurrent game MatchOneBit. The game
starts at state s0, where both players simultaneously and independently choose a bit
(0 or 1); if the bits match, the game proceeds to state swin , otherwise, it proceeds
to state slose . The states swin and slose are absorbing: if one of them is reached, the
game is confined there forever. Consider the safety condition 2{s0, swin}, requiring
that slose is not entered. For every deterministic strategy of player 1, player 2 has
another (complementary) deterministic strategy that ensures a transition to slose ;
hence, if player 1 could only use deterministic strategies, he would win with prob-
ability 0. However, if player 1 uses a randomized strategy that chooses both bits
at random with uniform probability, then the game enters state swin with proba-
bility 1/2, regardless of the strategy of player 2; indeed, the value of the game at
s0 is 1/2.

The value of deterministic turn-based games with ω-regular winning conditions
can be computed with the algorithms of [BL69, GH82, EJ91, Tho95]. The algo-
rithms of [EJ91] are based on the use of game µ-calculus, obtained by replacing
the predecessor operator Pre of classical µ-calculus [Koz83b] by the controllable
predecessor operator Cpre: for a set of states U , the set Cpre(U) consists of the
states from which player 1 can force the game into U in one step. A richer version of
game µ-calculus was used in [dAH00] to provide qualitative solutions for concurrent
probabilistic games with ω-regular conditions. There, multi-argument predecessor
operators are used to compute the set of states from which player 1 can win with
probability 1, or arbitrarily close to 1.

We introduce quantitative game µ-calculus, and use it to provide a uniform
framework for understanding and solving concurrent games with ω-regular winning
conditions. In quantitative game µ-calculus, sets of states are replaced by functions
from states to the interval [0, 1], and the controllable predecessor operator Cpre
is replaced by a quantitative version Ppre. Given a function f from states to the
interval [0, 1], the function g = Ppre(f) associates with each state the maximal
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expected value of f that player 1 can ensure in one step. The operator Ppre can
be evaluated using results about matrix games [vNM47, Owe95]. Related quantita-
tive predecessor operators for one-player or turn-based structures were considered
in [Koz83a, MMS96, HK97, McI98, MM01]. We show that the values of concur-
rent games with ω-regular conditions can be obtained simply by replacing Cpre
by Ppre in the solutions of [EJ91]. The result is surprising because concurrent
games differ from turn-based deterministic games in several fundamental respects.
First, concurrent games require in general the use of randomized strategies, as
remarked above. Second, even for the simple winning condition of reachability,
optimal strategies may not exist: one can only guarantee the existence of ε-optimal
strategies for all ε > 0 [Eve57]. Third, whereas finite-memory strategies suffice
for winning deterministic turn-based games, in concurrent games both ε-optimal
strategies, and optimal strategies if they exist, may need an infinite amount of
memory [dAH00]. Fourth, the standard recursive structure of proofs for determin-
istic turn-based games [McN93, Tho95] breaks down, as both players can choose a
distribution over moves at each state.

We develop the arguments both for deterministic and for probabilistic concur-
rent games. Hence, as a special case we solve probabilistic turn-based games with
ω-regular winning conditions, which was also an open problem. The quantitative
game µ-calculus solution formulas provide the value also of games with countable,
rather than finite, state space. We also characterize the optimality, and the memory
requirements, of the winning strategies. In particular, we show that while memo-
ryless strategies suffice for winning games with safety and reachability conditions,
Büchi and Rabin-chain conditions require the use of strategies with infinite memory.
The existence of optimal strategies, as opposed to ε-optimal, is only guaranteed in
games with safety winning conditions.

The solutions formulas we present in this paper also solve the model-checking
problem for the probabilistic temporal logics pCTL and pCTL* over concurrent
games. The logics pCTL and pCTL*, originally proposed over Markov chains
[ASB+95] and Markov decision processes [BdA95], can express the maximal and
minimal probability with which linear time temporal logic (LTL) formulas are sat-
isfied. These logics can be immediately generalized to concurrent games, by con-
sidering the maximal probability with which a player can ensure that the formula
holds. Since LTL formulas can be translated into deterministic Rabin-chain au-
tomata [Saf88, Saf92, VW94], our results characterize the validity of pCTL and
pCTL* formulas over concurrent games.

As remarked by [EJ91] in the context of deterministic turn-based games, the
use of µ-calculus for solving games helps in the formulation of the correctness ar-
guments. In order to argue the correctness of a solution formula, we need to show
that player 1 has an optimal (or ε-optimal) strategy that realizes the value given
by the formula, and that player 2 has a “spoiling” strategy that is optimal (or ε-
optimal) for the game with the complementary condition. Since the operator Ppre
in the solution formula refers to player 1, an optimal strategy for player 1 can be
constructed from the fixpoint of the formula. On the other hand, the derivation
of spoiling strategies for player 2 is not immediate: indeed, even for games with
safety or reachability conditions, the standard argument involves the consideration
of discounted versions of the games (see, e.g., [FV97]). In contrast, by writing
the solution formula in game µ-calculus, we place the burden of the argument on
the syntactic complementation of the solution formula. Specifically, for a winning
condition Ψ, we characterize the maximal probabilities of winning the game by a
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µ-calculus formula φ, and from φ we construct an optimal (or ε-optimal) strategy
for player 1. The syntactic complement ¬φ of φ gives the maximal probabilities
for player 2 to win the dual game with condition ¬Ψ. From ¬φ, we can again con-
struct an optimal (or ε-optimal) strategy for player 2 for the game with condition
¬Ψ. The two constructions are enough to conclude the correctness of our solution
formulas.

The iterative interpretation of quantitative game µ-calculus leads to algorithms
for the computation of approximate solutions. By representing value functions sym-
bolically, these algorithms may be used for the approximate analysis of games with
very large state spaces [BMCD90, dAKN+00]. Unfortunately, except for safety
and reachability conditions, the alternation of least and greatest fixpoint opera-
tors in the solution formulas leads to approximation schemes that do not converge
monotonically to the value of a game. This situation contrasts with the one for
Markov decision processes, where monotonically-converging approximation schemes
are available, and where the maximal winning probability can be computed in poly-
nomial time by reduction to linear programming [CY90]. We show that this dis-
crepancy is no accident, since the basic device for solving Markov decision processes
with ω-regular conditions, viz., a reduction to reachability, fails for games.

2. CONCURRENT GAMES

For a countable set A, a probability distribution on A is a function p : A 7→ [0, 1]
such that

∑

a∈A p(a) = 1. We denote the set of probability distributions on A by
D(A). A (two-player) concurrent game structure G = 〈S,Moves , Γ1, Γ2, p〉 consists
of the following components:

• A finite state space S.

• A finite set Moves of moves.

• Two move assignments Γ1, Γ2 : S 7→ 2Moves \ ∅. For i ∈ {1, 2}, assignment Γi

associates with each state s ∈ S the non-empty set Γi(s) ⊆ Moves of moves
available to player i at state s.

• A probabilistic transition function p, that gives the probability p(t | s, a1, a2)
of a transition from s to t for all s, t ∈ S and all moves a1 ∈ Γ1(s) and
a2 ∈ Γ2(s).

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and
independently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the
successor state t with probability p(t | s, a1, a2), for all t ∈ S. We assume that the
players act non-cooperatively, i.e., each player chooses her strategy independently
and secretly from the other player, and is only interested in maximizing her own
reward. A path of G is an infinite sequence s = s0, s1, s2, . . . of states in S such
that for all k ≥ 0, there are moves ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) with p(sk+1 |

sk, ak
1 , ak

2) > 0. We denote by Ω the set of all paths.
We distinguish the following special classes of concurrent game structures.

• A concurrent game structure G is deterministic if for all s ∈ S and all a1 ∈
Γ1(s), a2 ∈ Γ2(s), there is a t ∈ S such that p(t | s, a1, a2) = 1.
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• A concurrent game structure G is turn-based if at every state at most one
player can choose among multiple moves; that is, if for every state s ∈ S
there exists at most one i ∈ {1, 2} with |Γi(s)| > 1.

For brevity, we refer to concurrent turn-based game structures simply as turn-based
game structures.

2.1. Randomized strategies

A strategy for player i ∈ {1, 2} is a mapping πi : S+ 7→ D(Moves) that associates
with every nonempty finite sequence σ ∈ S+ of states, representing the past history
of the game, a probability distribution π1(σ) used to select the next move. Thus,
the choice of the next move can be history-dependent and randomized. The strategy
πi can prescribe only moves that are available to player i; that is, for all sequences
σ ∈ S∗ and states s ∈ S, we require that πi(σs)(a) > 0 iff a ∈ Γi(s). We denote
by Πi the set of all strategies for player i ∈ {1, 2}. A strategy π is deterministic if
for all σ ∈ S+ there exists a ∈ Moves such that π(σ)(a) = 1. Thus, deterministic
strategies are equivalent to functions S+ 7→ Moves . A strategy π is finite-memory
if the distribution chosen at every state s ∈ S depends only on s itself, and on a
finite number of bits of information about the past history of the game. A strategy
π is memoryless if π(σs) = π(s) for all s ∈ S and all σ ∈ S∗.

Once the starting state s and the strategies π1 and π2 for the two players have
been chosen, the game is reduced to an ordinary stochastic process. Hence, the
probabilities of events are uniquely defined, where an event A ⊆ Ω is a measurable
set of paths2. For an event A ⊆ Ω, we denote by Prπ1,π2

s (A) the probability that a
path belongs to A when the game starts from s and the players use the strategies π1

and π2. Similarly, for a measurable function f that associates a number in IR∪{∞}
with each path, we denote by Eπ1,π2

s {f} the expected value of f when the game
starts from s and the strategies π1 and π2 are used. We denote by Θi the random
variable representing the i-th state of a path; formally, Θi is a variable that assumes
value si on the path s0, s1, s2, . . ..

2.2. Winning conditions

Given a concurrent game structure G = 〈S,Moves , Γ1, Γ2, p〉, we consider win-
ning conditions expressed by linear-time temporal logic (LTL) formulas, whose
atomic propositions correspond to subsets of the set S of states [MP91]. We focus
on winning conditions that correspond to safety or reachability properties, as well
as winning conditions that correspond to the accepting criteria of Büchi, co-Büchi,
and Rabin-chain automata [Mos84, EJ91]. We call games with such winning con-
ditions safety, reachability, Büchi, co-Büchi, and Rabin-chain games, respectively.
The ability to solve games with Rabin-chain conditions suffices for solving games
with arbitrary LTL (or ω-regular) winning conditions: in fact, it suffices to en-
code the ω-regular condition as a deterministic Rabin-chain automaton, solving
then the game consisting of the synchronous product of the original game with the
Rabin-chain automaton [Mos84, Tho95].

Given an LTL winning condition Ψ, by abuse of notation we denote equally by
Ψ the set of paths s ∈ Ω that satisfy Ψ; this set is measurable for any choice of
strategies for the two players [Var85]. Hence, the probability that a path satisfies Ψ

2To be precise, we should define events as measurable sets of paths sharing the same initial

state. However, our (slightly) improper definition leads to more concise notation.
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starting from state s ∈ S under strategies π1, π2 for the two players is Prπ1,π2

s (Ψ).
Given a state s ∈ S and a winning condition Ψ, we are interested in finding the
maximal probability with which player i ∈ {1, 2} can ensure that Ψ holds from s.
We call such probability the value of the game Ψ at s for player i ∈ {1, 2}. This
value for player 1 is given by the function 〈1〉Ψ : S 7→ [0, 1], defined for all s ∈ S by

〈1〉Ψ(s) = sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2

s (Ψ).

The value for player 2 is given by the function 〈2〉Ψ, defined symmetrically. Con-
current games satisfy a quantitative version of determinacy [Mar98], stating that
for all LTL conditions Ψ and all s ∈ S, we have

〈1〉Ψ(s) = 1 − 〈2〉¬Ψ(s).

A strategy π1 for player 1 is optimal if for all s ∈ S we have

inf
π2∈Π2

Prπ1,π2

s = 〈1〉Ψ(s).

For ε > 0, a strategy π1 for player 1 is ε-optimal if for all s ∈ S we have

inf
π2∈Π2

Prπ1,π2

s ≥ 〈1〉Ψ(s) − ε.

We define optimal and ε-optimal strategies for player 2 symmetrically. Note that
the quantitative determinacy of concurrent games is equivalent to the existence of
ε-optimal strategies for both players for all ε > 0 at all states s ∈ S. For the
special case of deterministic turn-based games, it is known that the value of any
ω-regular game at a state is either 0 or 1, and finite-memory deterministic optimal
strategies always exist; the value of the game can be computed with the algorithms
of [BL69, GH82, EJ91].

2.3. Predecessor operators

Let F be the space of all functions S 7→ [0, 1] that map states into the interval
[0, 1]. Given two functions f, g ∈ F , we write f > g (resp. f ≥ g) if f(s) > g(s)
(resp. f(s) ≥ g(s)) at all s ∈ S, and we define f ∧ g and f ∨ g by

(f ∧ g)(s) = min {f(s), g(s)}
(f ∨ g)(s) = max {f(s), g(s)}

for all s ∈ S. For f, g ∈ F , we use the notation |f − g| = maxs∈S |f(s) − g(s)|.
We denote by 0 and 1 the constant functions that map all states into 0 and 1,
respectively. For all f ∈ F , we denote by 1−f the function defined by (1−f)(s) =
1 − f(s) for all s ∈ S. Given a subset Q ⊆ S of states, by abuse of notation we
denote also by Q the indicator function of Q, defined by Q(s) = 1 if s ∈ Q and
Q(s) = 0 otherwise. We denote by ¬Q = S \ Q the complement of the subset Q
in S, and again we denote equally by ¬Q the indicator function of ¬Q. We denote
by FI ⊆ F the set of indicator functions. The quantitative predecessor operators
Ppre1, Ppre2 : F 7→ F are defined for every f ∈ F by

Ppre1(f)(s) = sup
π1∈Π1

inf
π2∈Π2

Eπ1,π2

s {f(Θ1)}
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and symmetrically for Ppre2. Intuitively, the value Pprei(f)(s) is the maximum
expectation for the next value of f that player i ∈ {1, 2} can achieve. Given f ∈ F
and i ∈ {1, 2}, the function Pprei(f) can be computed by solving the following
matrix game at each s ∈ S:

Ppre1(f)(s) = val1

[

∑

t∈S

f(t)p(t | s, a1, a2)
]

a1∈Γ1(s),a2∈Γ2(s)
,

where val1A denotes the value obtained by player 1 in the matrix game A. The
existence of solutions to the above matrix games, and the existence of optimal
randomized strategies for players 1 and 2, is guaranteed by the minmax theorem
[vNM47]. The matrix games may be solved using traditional linear programming
algorithms (see, e.g., [Owe95]). From properties of matrix games we have the
following facts.

Proposition 1.

1. For i ∈ {1, 2}, the operator Pprei is monotonic and continuous, that is, for
all f, g ∈ F , if f ≥ g then Pprei(f) ≥ Pprei(g); and for all f1 ≤ f2 ≤ . . . in
F , we have limn Pprei(fn) = Pprei(limn fn).

2. For all f, g ∈ F and all i ∈ {1, 2}, we have |Pprei(f) − Pprei(g)| ≤ |f − g|.
3. The operators Ppre1 and Ppre2 are dual: for all f ∈ F , we have Ppre1(f) =

1− Ppre2(1− f).

2.4. Quantitative game µ-calculus

We write the solutions of games with respect to ω-regular winning conditions
in quantitative game µ-calculus. The formulas of the quantitative game µ-calculus
are generated by the grammar

φ ::= Q | x | φ ∨ φ | φ ∧ φ | Ppre1(φ) | Ppre2(φ) | µx.φ | νx.φ, (1)

for proposition Q ⊆ S and variables x from some fixed set X . Hence, as for LTL,
the propositions of quantitative µ-calculus formulas correspond to subsets of states
of the game. As usual, a formula φ is closed if every variable x in φ occurs in the
scope of a fixpoint quantifier µx or νx.

Let E : X 7→ F be a variable valuation that associates a function E(x) ∈ F with
each variable x ∈ X . We write E [x 7→ f ] for the valuation that agrees with E on
all variables, except that x ∈ X is mapped to f ∈ F . Given a valuation E , every
formula φ of quantitative game µ-calculus defines a function [[φ]]E ∈ F :

[[f ]]E = f

[[x]]E = E(x)

[[Ppre1(φ)]]E = Ppre1([[φ]]E )

[[Ppre2(φ)]]E = Ppre2([[φ]]E )

[[φ1

{

∨
∧

}

φ2]]E = ([[φ1]]E
{

∨
∧

}

[[φ2]]E)

[[
{

µ
ν

}

x.φ]]E =
{

sup
inf

}

{f ∈ F | f = [[φ]]E[x 7→f ]}.
The existence and uniqueness of the above fixpoints for the µ and ν operators is a
consequence of the monotonicity and continuity of all the operators, and in partic-
ular of Ppre1 and Ppre2. As usual, the fixpoints can be evaluated in an iterative
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fashion: we have [[µx.φ]]E = limn→∞ xn, where x0 = 0, and xn+1 = [[φ]]E[x 7→xn] for
n ≥ 0. Similarly, for the greatest fixpoint operator ν we have [[νx.φ]]E = limn→∞ xn,
where x0 = 1, and xn+1 = [[φ]]E[x 7→xn] for n ≥ 0. Moreover, for a closed µ-calculus
formula φ, the function [[φ]]E is independent of the valuation E , and hence we write
[[φ]] to denote [[φ]]E for some E . We note that the solution algorithms presented in
this paper apply also to games with countable (rather than finite) state space and
finite set of moves (see Theorem 4); in this case, however, the iterative evaluation
of the fixpoints needs to be based on transfinite induction.

The quantitative game µ-calculus defined by (1) suffices for writing the solution
formulas of games with ω-regular winning conditions. In intermediate lemmas and
proofs, however, we use with slight abuse of notation an extended version of the
calculus, in which we have one symbol f for every function f ∈ F . Obviously, such
functions are interpreted as themselves: for all valuations E , we have [[f ]]E = f .

2.5. Complementation and correctness

We solve concurrent games with LTL winning condition Ψ by providing a quan-
titative game µ-calculus formula φ such that 〈1〉Ψ = [[φ]]. To prove this equality, we
exploit the complementation of µ-calculus expressions. The complement of a closed
µ-calculus formula φ is a formula ¬φ such that 1 − [[φ]] = [[¬φ]]; the complement
can be obtained by recursively applying the following transformations, which rely
on the duality of Ppre1 and Ppre2:

¬Q ⇒ S \ Q

¬¬φ ⇒ φ

¬(Ppre1(φ)) ⇒ Ppre2(¬φ)

¬(Ppre2(φ)) ⇒ Ppre1(¬φ)

¬(φ1 ∨ φ2) ⇒ (¬φ1) ∧ (¬φ2)

¬(φ1 ∧ φ2) ⇒ (¬φ1) ∨ (¬φ2)

¬µx.φ ⇒ νx.¬φ[¬x/x]

¬νx.φ ⇒ µx.¬φ[¬x/x]

where φ[¬x/x] denotes the result of replacing every free occurrence of x in φ with
¬x. Note that given a closed formula φ defined by grammar (1), by applying the
above transformations to ¬φ we obtain again a closed formula defined by grammar
(1). In fact, the above transformations push the ¬ operator to the leaves of the
syntax tree (1), which consist either in subsets Q ⊆ S or in variables x ∈ X .
The subsets are simply complemented. Since φ is closed, each variable x ∈ X in
φ appears in the scope of a µx or νx quantifier; the transformation rules for µ
and ν, together with the rule for double negation elimination, ensure that once all
transformations have been applied, no ¬ operator remains as prefix to a variable.

Our proofs of 〈1〉Ψ = [[φ]] consist in two steps.

• First, from φ we construct for all ε > 0 a strategy πε
1 for player 1 that ensures

winning with probability at least [[φ]] − ε, proving [[φ]] ≥ 〈1〉Ψ.

• Second, we complement φ, and we consider the winning condition ¬Ψ. From
¬φ we construct for all ε > 0 a strategy πε

2 that enables player 2 to win the
game with goal ¬Ψ with probability at least [[¬φ]] − ε; this shows [[¬φ]] ≥
〈2〉¬Ψ, or equivalently [[φ]] ≤ 〈1〉Ψ.
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Even in the cases where solution formulas for concurrent games are known, such as
for the reachability winning condition (see e.g. [FV97], Chapter 4.4), this approach
yields simpler arguments than the classical one, where the ε-optimal strategies for
both players have to be constructed from the solution formula φ for player 1 alone,
and where it is usually necessary to consider discounted versions of the games.

3. REACHABILITY AND SAFETY GAMES

Concurrent reachability and safety games can be solved by reducing them to
positive stochastic games [TV87, FV97]. We present the solution algorithms, refor-
mulating them in quantitative game µ-calculus. As mentioned in the introduction,
by relying on the complementation of quantitative game µ-calculus, we are able
to prove the correctness of the solutions without resorting to the consideration of
discounted versions of the same games.

A concurrent reachability game consists of a concurrent game structure G =
〈S,Moves , Γ1, Γ2, p〉 together with a winning condition 3U , where U ⊆ S. In-
tuitively, the winning condition consists in reaching the subset U of states. The
solution of such a reachability game is given by

〈1〉3U = [[µx.(U ∨ Ppre1(x))]]. (2)

This solution can be computed iteratively as the limit 〈1〉3U = limk→∞ xk, where
x0 = 0 and xk+1 = U ∨ Ppre1(xk) for k ≥ 0. This iteration scheme gives an
approximation scheme to solve the reachability game. In Markov decision processes,
one can reduce the reachability question to a linear programming problem which can
then be solved exactly. This gives an alternative to value iteration. Unfortunately,
for concurrent games we cannot reduce the problem to linear programming, because
the maximal probability of winning in a game where all probabilities are rationals
may still be irrational (see e.g. [RF91]).

Example 1. Consider a concurrent game with three states s, t, and u, and
winning condition 3{u}. The transition relation is as follows: from state t, player 1
has two choices a1 and b1, and player 2 the choices a2 and b2. The transi-
tion probabilities are: Pr(u|t, a1, a2) = 1

2 , Pr(t|t, a1, a2) = 1
2 , Pr(u|t, b1, a2) =

Pr(u|t, a1, b2) = 0, Pr(s|t, b1, a2) = Pr(s|t, a1, b2) = 1, Pr(u|t, b1, b2) = 3
4 , and

Pr(t|t, b1, b2) = 1
4 . The states s and u are absorbing: the game never leaves s or u

once it reaches these states. The maximal probability of winning the game 3{u}
is given by the least fixpoint of x = Ppre1(x) ∨ {u}; for state t, we have

x(t) = val1

[ 1
2 + 1

2x(t) 0

0 3
4 + 1

4x(t)

]

which has the solution x(t) = (−3 + 2
√

6)/5.

To prove (2), we show separately the two inequalities

〈1〉3U ≥ [[µx.(U ∨ Ppre1(x))]]

〈1〉3U ≤ [[µx.(U ∨ Ppre1(x))]].

The first inequality is a consequence of the following lemma; the second inequality,
as mentioned in Section 2.5, will follow from results on safety games.
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Lemma 1. Let w = [[µx.(U ∨Ppre1(x))]]. For all ε > 0 player 1 has a strategy

πε
1 such that Prπε

1,π2

s (3U) > w(s) − ε for all π2 ∈ Π2 and all s ∈ S.

Proof. The proof follows a classical argument (see, e.g., [Eve57, FV97]). For n ≥
0, consider the n-step version of the game, whose winning condition 3nU requires
reaching U in at most n steps. We construct inductively a sequence {πn

1 }n≥0 of
strategies for player 1. Let x0 = 0 and xk+1 = U ∨ Ppre1(xk) for k ≥ 0. Strategy
π0

1 is chosen arbitrarily. For n ≥ 0 and s ∈ S, the distribution πn+1
1 (s) corresponds

to an optimal distribution over Γ1(s) in the matrix game for Ppre1(xn) at s. For
n ≥ 0, s ∈ S, and σ ∈ S+, we let πn+1

1 (sσ) = πn
1 (σ). We show by induction on n

that for all strategies π2 for player 2, and for all s ∈ S, we have Prπn

1 ,π2

s {3nU} ≥ xn.
For n = 0, the result is immediate; the result is also immediate for s ∈ U . For n ≥ 0
and s 6∈ U , we have

Pr
π

n+1

1
,π2

s {3n+1U} ≥
∑

t∈S

Pr
πn

1 ,π2[t]
t {3nU}Pr

π
n+1

1
,π2

s (Θ1 = t)

≥
∑

t∈S

xn(t) Pr
π

n+1

1
,π2

s (Θ1 = t)

≥ Ppre1(xn)(s) = xn+1(s),

where π2[t] is the strategy that behaves like π2 after a transition to t has oc-
curred. The lemma then follows from w = limn→∞ xn, and from the fact that

3nU implies 3U for all n ≥ 0. In fact, given any ε > 0, there is n > 0 such that
max {x(s) − xn(s) | s ∈ S} < ε. When player 1 uses strategy πn

1 we have, for all

strategies π2 of player 2, Prπn

1 ,π2(3U) ≥ Prπn

1 ,π2(3nU) ≥ xn ≥ w − ε.

A concurrent safety game consists of a concurrent game structure G =
〈S,Moves , Γ1, Γ2, p〉 together with a winning condition 2U , where U ⊆ S. In-
tuitively, the winning condition consists in staying forever in the subset U of states.
The complement of the reachability condition 3U is the safety condition 2¬U , and
the complement of the quantitative game µ-calculus formula µx.(U ∨ Ppre1(x)) is

νx.(¬U ∧ Ppre2(x)),

where ¬U is an abbreviation for S \U . We will show that the solution of concurrent
safety games is given by

〈1〉2U = [[νx.(U ∧ Ppre1(x))]], (3)

which is dual to (2). To this end, we prove the following lemma.

Lemma 2. Let w = [[νx.(U ∧Ppre1(x))]]. Player 1 has a strategy π1 such that
Prπ1,π2

s (2U) ≥ w(s) for all π2 ∈ Π2 and all s ∈ S.

The lemma can be proved using standard arguments about positive reward games
[FV97]. We present here a more direct proof, that will lead to the arguments for
Büchi and co-Büchi games.

Proof. Let π1 be a memoryless strategy for player 1 that at all s ∈ U
plays according to an optimal distribution of the matrix game corresponding to
Ppre1(w)(s), and at all s ∈ S \ U plays arbitrarily. Fix a state s0 ∈ S and an

10



arbitrary strategy π2 ∈ Π2. The process {Hn}n≥0 defined by Hn = w(Θn) is a
submartingale [Wil91]: in fact, from w(s) = Ppre1(w)(s) for s ∈ U and from the
optimality of π1 follows that

Eπ1,π2

s0
{Hn+1 | H0, H1, . . . , Hn} ≥ Hn

for all n ≥ 0. Hence, we have Eπ1,π2

s0
{Hn} ≥ H0 = w(s0). Moreover, since

w(s) ≤ 1 at all s ∈ S and w(s) = 0 at s ∈ S \ U , by inspection we have
Eπ1,π2

s0
{Hn} ≤ Prπ1,π2

s0
(2nU), where 2nU is the event of staying in U for at least n

steps. Combining these two inequalities we obtain w(s0) ≤ Prπ1,π2

s0
(2nU), and the

result follows from Prπ1,π2

s0
(2U) = limn→∞ Prπ1,π2

s0
(2nU).

The following theorem summarizes the properties of concurrent reachability and
safety games.

Theorem 1. The following assertions hold.

1. Concurrent reachability and safety games can be solved according to (2) and
(3).

2. Concurrent reachability games have memoryless ε-optimal strategies; there
are deterministic concurrent reachability games without optimal strategies.

3. Concurrent safety games have memoryless optimal strategies; there are deter-
ministic concurrent safety games without memoryless deterministic optimal
strategies.

Part 1 is classical [Eve57, FV97], except for the notation; the result also follows from
the combination of Lemmas 1 and 2. The existence of memoryless ε-optimal strate-
gies for concurrent reachability games follows from results on positive stochastic
games (see, e.g., [FV97], pp. 196). The proof of Lemma 1 constructs an ε-optimal
strategy for player 1, but the strategy is in general not memoryless. The exis-
tence of deterministic concurrent reachability games without optimal strategies is
demonstrated by Example 2 below, adapted from [Eve57, KS81]. The existence
of memoryless optimal strategies for concurrent safety games is classical; it also
follows from the proof of Lemma 2. The existence of deterministic concurrent
safety games without optimal deterministic strategies is demonstrated by the game
MatchOneBit described in the introduction: in fact, randomized strategies are
necessary for one-step matrix games [Owe95].

Example 2. Consider the following game, adapted from [Eve57, KS81] (see
also [dAHK98] for an intuitive interpretation of the game). The state space of the
game is S = {s, t, u}; the only state where players can choose among more than one
move is s. We have Γ1(s) = {a, b}, and Γ2(s) = {c, d}. The game has a deterministic
transition function: p(s | s, a, c) = p(t | s, a, d) = p(t | s, b, c) = p(u | s, b, d) = 1, all
other transition probabilities are 0. We have 〈1〉3{t}(s) = 1. In fact, player 1 can
play moves a and b with probability 1 − ε and ε respectively to ensure a winning
probability of (1− ε) from s, for ε > 0. However, player 1 has no optimal strategy:
if he decides to play move b at the nth round, player 2 can play move d at the n-th
round, so that the probability of reaching t is always less than 1.
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4. BÜCHI AND CO-BÜCHI GAMES

A concurrent Büchi game consists of a concurrent game structure G =
〈S,Moves , Γ1, Γ2, p〉 together with a winning condition 23U , where U ⊆ S. Intu-
itively, the winning condition consists in visiting the subset U of states infinitely
often. The solution of a concurrent Büchi game is given by

〈1〉23U = [[νy.µx.((¬U ∧ Ppre1(x)) ∨ (U ∧ Ppre1(y)))]] . (4)

The proof of (4) is based on two lemmas. The first lemma generalizes the result
about concurrent reachability games. Given a function g ∈ F and a subset U
of states, we let g(3U) be the random variable that associates with each path
s0, s1, s2, . . . the value g(si), for i = min {k | sk ∈ U} < ∞, and the value 0 if
sk 6∈ U for all k ≥ 0. Hence, g(3U) is the value of g at the state where the path
first enters U , if such a state exists, and is 0 otherwise. The following lemma can
be proved similarly to Lemma 1.

Lemma 3. For g ∈ F and U ⊆ S, let

w = [[µx.((¬U ∧ Ppre1(x)) ∨ (U ∧ g))]].

Then, for all ε > 0 player 1 has a strategy πε
1 that ensures Eπε

1,π2

s {g(3U)} ≥ w(s)−ε
at all s ∈ S.

We call the above game a g(3U)-game; the strategy πε
1 is an ε-optimal strategy

for it. The following lemma shows that the fixpoint (4) is a lower bound for the
maximal probability of winning a concurrent Büchi game. The upper-bound result
will follow from results on concurrent co-Büchi games.

Lemma 4. Let

w = [[νy.µx.((¬U ∧ Ppre1(x)) ∨ (U ∧ Ppre1(y)))]].

For all ε > 0 player 1 has a strategy πε
1 such that Prπε

1,π2

s (23U) > w(s) − ε for all
π2 ∈ Π2 and all s ∈ S.

Proof. From ε, construct a positive sequence {εi}i≥0 with
∑∞

i=0 εi < ε. The
strategy πε

1 is as follows. In S \ U the strategy πε
1 initially coincides with a ε0-

optimal strategy for the game w(3U). Upon reaching U , the strategy πε
1 plays

according to an optimal distribution of the matrix game corresponding Ppre1(w),
until U is left. In the following ¬U -phase, πε

1 coincides with a ε1-optimal strategy
for the game w(3U); and so forth. Fix a state s0 ∈ S and a strategy π2 ∈ Π2.
Define the process {Hn}n≥0, where Hn is the value of w at the n-th visit of U .

From Lemma 3 and from the construction of πε
1, we have Eπε

1,π2

s0
{H1} ≥ w(s0)− ε0,

and for n ≥ 0,
Eπε

1,π2

s0
{Hn+1 | H1, H2, . . . , Hn} ≥ Hn − εn.

By taking expectations on both sides, and by induction, this leads to

Eπε

1,π2

s0
{Hn+1} ≥ w(s0) −

∑n
i=0 εi

for all n ≥ 0. Denoting by [23]≥nU the event of visiting U at least n times, we

have Prπε

1,π2

s0
([23]≥nU) ≥ Eπε

1,π2

s0
{Hn}. Combining these two results we obtain

Prπε

1,π2

s0
([23]≥nU) ≥ w(s0) − ε,
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and the result then follows from

lim
n→∞

Prπε

1 ,π2

s0
([23]≥nU) = Prπε

1,π2

s0
(23U).

A concurrent co-Büchi game consists of a concurrent game structure G =
〈S,Moves , Γ1, Γ2, p〉 together with a winning condition 32U , where U ⊆ S. Intu-
itively, the winning condition consists in eventually staying forever in the subset U
of states. The solution of a concurrent co-Büchi game is given by

〈1〉32U = [[µx.νy.((¬U ∧ Ppre1(x)) ∨ (U ∧ Ppre1(y)))]] . (5)

Again, the proof of the above fixpoint equation is based on two lemmas. The first
lemma generalizes Lemma 2.

Lemma 5. For g ∈ F and U ⊆ S, let

w = [[νy.((U ∧ Ppre1(y)) ∨ (¬U ∧ g))]].

Then the strategy π1 of player 1 that plays at each s ∈ S according to an op-
timal distribution of the matrix game corresponding to Ppre1(w)(s) is such that
Prπ1,π2

s (2U) + Eπ1,π2

s {g(3¬U)} ≥ w for all s ∈ S and π2 ∈ Π2.

The proof is similar to that of Lemma 2. The following lemma shows that the fix-
point of (5) is a lower bound for the maximal probability of winning the concurrent
co-Büchi game.

Lemma 6. Let

w = [[µx.νy.((¬U ∧ Ppre1(x)) ∨ (U ∧ Ppre1(y)))]].

For all ε > 0 player 1 has a strategy πε
1 such that Prπε

1,π2

s (32U) ≥ w(s) − ε for all
π2 ∈ Π2 and all s ∈ S.

Proof. Denote by [32]≤nU the event of visiting ¬U at most n times. Let
x0 = 0, and for n > 0,

xn = [[νy.((¬U ∧ Ppre1(xn−1)) ∨ (U ∧ Ppre1(y)))]].

By induction on n ≥ 0, we show that player 1 has a strategy πn
1 such that

Prπn

1 ,π2

s ([32]≤nU) ≥ xn(s) for all s ∈ S and all π2 ∈ Π2. The base case is trivial.
For n > 0, the strategy πn

1 plays according to an optimal distribution of the matrix
game corresponding to Ppre1(xn) as long as U is not left. At the first visit to ¬U ,
the strategy πn

1 plays one round according to an optimal distribution of the matrix
game corresponding to Ppre1(xn−1), and switches thereafter to the strategy πn−1

1 .
By induction hypothesis, we have that

Pr
π

n−1

1
,π′

2

t ([32]≤n−1U) ≥ xn−1(t) (6)

for all strategies π′
2 of player 2 and all t ∈ S. By construction of πn

1 , together with
Lemma 5, we have

Prπn

1 ,π2

s (2U) + Eπn

1 ,π2

s {Ppre1(xn−1)(3¬U)} ≥ xn(s)
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which together with (6) yields

Prπn

1 ,π2

s (2U) + Eπn

1 ,π2

s

{

Ppre1

(

λt.Pr
π

n−1

1
,π′

2

t ([32]≤n−1U)
)

(3¬U)
}

≥ xn(s), (7)

for all π′
2, where λt.Pr

π
n−1

1
,π′

2

t ([32]≤n−1U) is the usual λ-calculus notation for the

function that maps each t ∈ S to Pr
π

n−1

1
,π′

2

t ([32]≤n−1U). Since πn−1
1 is the contin-

uation of π1 after the first ¬U -state is reached, and since we can take π′
2 to coincide

with the prosecution of π2 after that state is reached, from (7) we obtain

Prπn

1 ,π2

s ([32]≤nU) = Prπn

1 ,π2

s (2U) + Prπn

1 ,π2

s (U U (¬U ∧ [32]≤n−1U)) ≥ xn(s),

where and U are the next-time and until temporal operators [MP91], completing
the induction step. The lemma then follows by taking the limit n → ∞, noting
that limn→∞ xn = w and limn→∞[32]≤n = 32.

The following theorem summarizes the results about concurrent Büchi and co-
Büchi games.

Theorem 2. The following assertions hold.

1. Concurrent Büchi and co-Büchi games can be solved according to (4) and (5).

2. There are deterministic concurrent Büchi games without optimal strategies,
and without finite-memory ε-optimal strategies.

3. There are deterministic concurrent co-Büchi games without optimal strategies.

Part 1 follows from Lemmas 4 and 6, and from quantitative game µ-calculus com-
plementation. Part 2 follows from the lack of optimal strategies for reachability
(see Example 2), and from the fact that Büchi games are equivalent to iterated
reachability games (see [dAH00] for an example). Part 3 is a consequence of the
lack of optimal strategies for concurrent reachability games.

5. RABIN-CHAIN GAMES

A concurrent Rabin-chain game consists of a concurrent game structure G =
〈S,Moves , Γ1, Γ2, p〉 together with a winning condition

R =

k−1
∨

i=0

(23U2i ∧ ¬23U2i+1) ,

where k > 0 and ∅ = U2k ⊆ U2k−1 ⊆ U2k−2 ⊆ · · · ⊆ U0 = S. A more intuitive
characterization of this winning condition can be obtained by defining, for 0 ≤ i ≤
2k− 1, the set Ci of states of color i by Ci = Ui \Ui+1. The total number of colors
is N = 2k. Given a path s, let Infi(s) ⊆ S be the set of states that occur infinitely
often along s, and let

MaxCol(s) = max {i ∈ {0, . . . , N − 1} | Ci ∩ Infi(s) 6= ∅}

be the largest color appearing infinitely often along the path. Then,

R = {s ∈ Ω | MaxCol(s) is even}.
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The solution 〈1〉R for a Rabin-chain condition with N colors is given by

〈1〉R = [[ηN−1xN−1. . . . µx1.νx0.(

N−1
∨

i=0

(Ci ∧ Ppre1(xi)))]] (8)

where ηn = ν if n is even, and ηn = µ if n is odd (compare with [EJ91]). The proof of
(8) is based on the following inductive decomposition, inspired by the one of [EJ91].

We denote by C≤n =
⋃n

i=0 Ci (resp. C>n =
⋃N−1

i=n+1 Ci and C<n =
⋃n−1

i=0 Ci) the set
of states colored by colors less than or equal to n (resp., greater than n, and smaller
than n). Let z ∈ F , and for n ≥ 0 define Jn by J−1(z) = z, and

Jn(z) = ηnx.Jn−1((Cn ∧ Ppre1(x)) ∨ (C>n ∧ z)). (9)

We can show by induction on n that [[Jn(z)]] is the function that gives the maximal
expectation of either winning the concurrent Rabin-chain game while visiting only
states in C≤n, or of the value z(3C>n) if C≤n is exited. Denote by [R ∧ 2C≤n]
the random function that has value 1 over a path exactly when the path satisfies
condition R while visiting only states in C≤n. The lemma below makes the above
characterization of Jn precise.

Lemma 7. For all ε > 0, all n ∈ {0, . . . , N − 1}, all z ∈ F , and all states
s ∈ S, there is a strategy π1 ∈ Π1 for player 1 such that for all strategies π2 ∈ Π2

of player 2, we have

Eπ1,π2

s {[R∧ 2C≤n] + z(3C>n)} ≥ [[Jn(z)]](s) − ε.

Proof. To prove the result, we first note that for all −1 ≤ n ≤ N − 1, all z ∈ F ,
and all s ∈ C>n, we have

[[Jn(z)]](s) = z(s). (10)

This follows easily by unrolling (9) into

Jn(z) = ηnxn. . . . µx1.νx0.
(

(C>n ∧ z)∨ (Cn ∧Ppre1(xn)) ∨ · · · ∨ (C0 ∧Ppre1(x0))
)

and by noting that Jn(z) ∧ C>n = z ∧ C>n.
The lemma is proved by induction on n, for −1 ≤ n ≤ N − 1. The base case

for n = −1 follows from (10). Let ε0, ε1, ε2, . . . > 0 be such that
∑∞

k=0 εk < ε. For
0 ≤ n ≤ N − 1 there are two cases, depending on whether n is odd or even.

Case for n odd. If n is odd, we have ηn = µ. Let w0 = 0, and for k > 0, let

wk = [[Jn−1(Cn ∧ Ppre(wk−1) ∨ C>n ∧ z)]].

By induction on k, we show that for all k ≥ 0, player 1 has a strategy πk
1 such that

Eπk

1 ,π2

s {[R∧ 2C≤n] + z(3C>n)} ≥ wk(s) − ∑k
i=0 εi

for all s ∈ S and π2 ∈ Π2. The base case, for k = 0, is obvious. For k > 0,
the strategy πk

1 for player 1 coincides with an εk-optimal strategy in the game
Jn−1(Cn ∧ Ppre(wk−1) ∨ C>n ∧ z) while the game remains in C<n; when Cn is hit
for the first time, it plays an optimal strategy in the matrix game Ppre1(wk−1),
and thereafter switches to the inductively constructed strategy πk−1

1 . Define the
shorthand

W = [R∧ 2C≤n] + z(3C>n),

which represents winning while never leaving C≤n, or reaching C>n and getting
reward z. For all s ∈ S and π2 ∈ Π2, we have
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Eπk

1 ,π2

s {W}

≥







Jn−1





Cn ∧
(

λr.Eπk

1 [r],π2[r]
r {W}

)

∨
C>n ∧ z











 (s) − εk

≥

















Jn−1









Cn ∧
(

λr.
∑

t∈S

E
π

k−1

1
,π2[r,t]

t {W}Prπk

1 [r],π2[r]
r {Θ1 = t}

)

∨
C>n ∧ z

























(s) − εk

≥

















Jn−1









Cn ∧
(

λr.
∑

t∈S

(

wk−1
.− ∑k−1

i=0 εi

)

Prπk

1 [r],π2[r]
r {Θ1 = t}

)

∨
C>n ∧ z

























(s) − εk

≥
[[

Jn−1

(

Cn ∧ Ppre1

(

wk−1
.− ∑k−1

i=0 εi

)

∨ C>n ∧ z
)]]

(s) − εk

≥
[[

Jn−1

(

Cn ∧ Ppre1(wk−1) ∨ C>n ∧ z
)]]

(s) −
k

∑

i=0

εi

= wk(s) −
k

∑

i=0

εi,

where x
.− y = max {0, x − y}. The first inequality follows by induction on n,

and by a case analysis on the possible ways of leaving C<n. The strategies πk
1 [r]

and π2[r] behave like π1 and π2 after the path from s to r. The second inequality
follows then by an analysis of a single step from r. The strategy π2[r, t] is the
strategy that behaves as π2 after a path from s to r and t; by definition of πk

1 ,
we have πk

1 [r, t] = πk−1
1 . The third inequality follows by induction hypothesis on

k, remembering the definition of W . The fourth inequality follows by using the
definition of Ppre1, and the fifth inequality follows by pulling out the constant
from the Ppre1 and the expectation. This concludes the induction on k; the result
follows by taking k → ∞.

Case for n even. For even n, we have ηn = ν; let

w = [[νx.Jn−1(Cn ∧ Ppre1(x) ∨ C>n ∧ z)]].

From (10) we have that Cn ∧w = Cn ∧Ppre1(w): in other words, w and Ppre1(w)
are equal on Cn. We show that player 1 has a strategy π1 such that, for all s ∈ S
and all strategies π2 of player 2, we have

Eπ1,π2

s {W} ≥ w(s) − ε. (11)

We construct the strategy π1 as follows. In Cn, the strategy π1 plays according to
an optimal distribution for Ppre1(w). In C<n, the strategy π1 plays according to a
εk-optimal strategy for Jn−1(Cn ∧ Ppre1(w) ∨ C>n ∧ z), where k is the number of
previous entrances in Cn; this strategy is constructed by induction on n.

To show (11), we construct a sequence of random variables {Tk}k≥0 that con-
verges to W as k → ∞; intuitively, the index k represents the number of visits
to Cn. For A, B, C ⊆ S pairwise disjoint and k ≥ 0, we introduce the following
notation:
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• A∆<kB (resp. A∆kB, A∆≤kB) denotes the event of staying forever in A∪B,
and visiting B fewer than k times (resp. k times, no more than k times).

• For a function f : S 7→ [0, 1], the random variable f(A UkB) has value f(sk)
for paths having a prefix of the form σ0s0σ1s1 · · ·σksk, where for 0 ≤ i ≤ k
we have σi ∈ A∗ and si ∈ B, and has value 0 for paths that do not start with
a prefix of this form.

• For a function f : S 7→ [0, 1] and 1∈ {<,≤, =}, the random variable
f((A∆1kB) U C) has value f(t) for paths having a prefix of the form
σ0s0σ1s1 · · ·σjsjσj+1t, where j 1 k and where for 0 ≤ i ≤ j we have si ∈ Cn,
for 0 ≤ i ≤ j + 1 we have σi ∈ C<n, and where t ∈ C>n; the random variable
has value 0 for paths that do not start with a prefix of this form.

• For a function f : S 7→ [0, 1], the random variable f(A U B) has value f(t),
for paths having a prefix of the form σt with σ ∈ A∗ and t ∈ B, and has
value 0 for paths that do not start with a prefix of this form.

Finally, for k ≥ 0 we define the random variable Tk by:

Tk = [R∧ C<n∆<kCn] + w(C<n UkCn) + z((C<n∆<kCn) U C>n),

where for a predicate p, we denote by [p] the random variable that has value 1 on
the paths that satisfy p, and value 0 on the paths that do not satisfy p. We prove
that for all k ≥ 0 we have

Eπ1,π2

s {Tk} ≥ [[Jn−1(Cn ∧ w ∨ C>n ∧ z)]](s) −
k−1
∑

i=0

εi, (12)

for all strategies π2 of player 2 and all s ∈ S. Note that (11) follows from (12) by
taking k → ∞: in fact, limk→∞ Eπ1,π2

s {Tk} = W and Jn−1(Cn ∧w∨C>n ∧ z) = w.
To prove (12), we proceed by induction on k. The base case, for k = 0, follows from

T0 = [R∧ 2C<n] + w(C<n U Cn) + z(C<n U C>n)

= [R∧ 2C<n] + (w ∧ Cn ∨ z ∧ C>n)(3C≥n),

and from the induction hypothesis on n. As induction hypothesis, we assume that
(12) holds for k, or,

Eπ1,π2

s

{

[R∧C<n∆<kCn]+w(C<nUkCn)+z((C<n∆<kCn) U C>n)
}

≥ w(s)−
k−1
∑

i=0

εi.

(13)
Moreover, by construction of the strategy π1, for all strategies π′

2 of player 2 and
all t ∈ S we have that

E
πk

1 ,π′

2

t {[R∧ 2C<n] + w(C<n U Cn) + z(C<n U C>n)} ≥ w(t) − εk, (14)

where πk
1 is the strategy that coincides with π1 after any path that contains k visits

to Cn. Using the bound for w(t) provided by (14) for the term w(C<n UkCn) of
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(13), and taking into account the prefix C<n∆kCn that precedes state t in (13), we
obtain:

Eπ1,π2

s

{

[R∧ C<n∆<kCn] + z((C<n∆<kCn) U C>n) + [R∧ C<n UkCn]

+ w(C<n Uk+1Cn) + z((C<n∆kCn) U C>n)
}

≥ w(s) −
k

∑

i=0

εi,

and by gathering the terms,

Eπ1,π2

s

{

[R∧ C<n∆<k+1Cn] + w(C<n Uk+1Cn) + z((C<n∆<k+1Cn) U C>n)
}

≥ w(s) −
k

∑

i=0

εi,

which concludes the induction on k (compare with (13)). This proves (12), and
hence (11) and the lemma.

The value of the game with condition R is then [[JN−1(0)]]. Both the lower and the
upper bounds for the value of the game follow from the lemma, because Rabin-chain
games are self-dual (the complement of a concurrent Rabin-chain game is again a
concurrent Rabin-chain game). We can now summarize the results for concurrent
Rabin-chain games.

Theorem 3. The following assertions hold.

1. Concurrent Rabin-chain games can be solved according to (8).

2. There are deterministic concurrent Rabin-chain games without optimal strate-
gies and without finite-memory ε-optimal strategies.

Part 1 follows from Lemma 7. Again, the lack of optimal strategies, and of finite
memory ε-optimal strategies follows from the result proved for Büchi games (which
are special cases).

Finally, the next theorem states that if the state space is countable, rather than
finite, the quantitative game µ-calculus solutions presented in this paper still define
the value of the game.

Theorem 4. Consider a concurrent game structure G = 〈S,Moves , Γ1, Γ2, p〉,
where S is countable. Then, formulas (2), (3), (4), (5), and (8) provide the solu-
tions for concurrent reachability, safety, Büchi, co-Büchi, and Rabin-chain games,
respectively.

This theorem can be proved by the same arguments used for finite concurrent games,
using transfinite induction rather than ordinary induction when arguing about the
least and greatest fixpoints of the calculus.

6. ALGORITHMS

Example 1 shows that the value of a game can be irrational, hence the iterative
schemes may not terminate in general. Thus, in general, we can only hope for
ǫ-approximations of the value. We give an algorithm to estimate the value of a

18



Rabin-chain game to a given tolerance ǫ, that is, we give a decision procedure for
the question: given a game G, a state s of G, a Rabin-chain property ϕ, a rational
r ∈ [0, 1], and a rational tolerance ǫ > 0, is the value |[[ϕ]]G(s) − r| ≤ ǫ? The
algorithm is based on the observation that the value of a Rabin-chain game can be
expressed as an elementary formula in the theory of real closed fields, and uses a
decision procedure for the theory of reals with addition and multiplication [Tar51].
We start with some basic definitions.

An ordered field H is real-closed if no proper algebraic extension of H is ordered.
We denote by R the real-closed field (IR, +, ·, 0, 1,≤) of the reals with addition and
multiplication. An atomic formula is an expression of the form p > 0 or p = 0 where
p is a (possibly) multi-variate polynomial with integer coefficients. An elementary
formula is constructed from atomic formulas by the grammar

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∀x.ϕ,

where a is an atomic formula, ∧ denotes conjunction, ∨ denotes disjunction, ¬
denotes complementation, and ∃ and ∀ denote existential and universal quantifi-
cation respectively. The semantics of elementary formulas are given in a standard
way [CK90]. A variable x is free in the formula ϕ if it is not in the scope of a
quantifier ∃x or ∀x. An elementary sentence is a formula with no free variables. A
famous theorem of Tarski states that the theory of real-closed fields is decidable.

Theorem 5. [Tar51] The theory of real-closed fields in the language of ordered
fields is decidable.

We start with the following classical observation [Wey50] that the minmax value
can be written as an elementary formula in the theorey of ordered fields. We include
a proof for completeness.

Lemma 8. Let A = (aij) be a matrix with entries in the ordered field H. Then
the statement y = val1A can be written as an elementary formula over H.

Proof. Let A be an m × n matrix (that is, suppose player 1 has m moves and
player 2 has n moves). Then r = val1A iff there exists (x1, . . . , xm) ∈ Hm and
(y1, . . . , yn) ∈ Hn such that xi ≥ 0 for all i = 1, . . . , m and

∑m
i=1 xi = 1, and

similarly yi ≥ 0 for all i = 1, . . . , n and
∑n

i=1 yi = 1; and such that
∑m

i=1 aijxi ≥ r
for all j = 1, . . . , n and

∑n
i=1 aijyj ≤ r for all i = 1, . . . , m. This can be written as

an elementary formula over H .

Let ~y denote a vector of n variables y1, . . . , yn. For ∼∈ {=,≤,≥}, we write
~x ∼ ~y for the pointwise ordering, that is, if

∧

i xi ∼ yi. An immediate consequence
of Lemma 8 is the following.

Corollary 1. Let G be a concurrent game structure over the state space S.
Let f ∈ F . Then for any state s ∈ S, the statement ~y = Ppre1(f) can be written
an elementary formula over R with free variables in ~y. Let ~y and ~x be vectors of
n variables. Then ~y = Ppre1(~x) can be written as an elementary formula over R
with free variables in ~x and ~y.

We denote the ith coordinate of the vector ~y as yi, we denote the ith coordinate
of the vector Ppre1(~x) as Ppre1(~x)(i). Using the corollary, we can now express
solution formulas for reachability, safety, Büchi, co-Büchi, and Rabin-chain games
as elementary formulas in the theory of real-closed fields.
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Lemma 9. Let G be a concurrent game structure and s a state in G. Let Ψ be a
reachability, safety, Büchi, co-Büchi, or Rabin-chain condition, and let 〈1〉Ψ = [[ϕ]].
The statement ~y = [[ϕ]] can be written as an elementary formula in the theory of
real closed fields.

We start with reachability games. The solution of a reachability game is the
least solution of the fixpoint equation given by (2). Suppose the set of states is
S = {1, . . . , n}. We have n variables y1, . . . , yn corresponding to the n states.

∧

i∈U

yi = 1 ∧
∧

i6∈U

yi = Pre(~y)(i) ∧ ∀~x.
(

∧

i∈U

xi = 1 ∧
∧

i6∈U

xi = Pre(~x)(i)
)

⇒ ~y ≤ ~x

The first part of the formula (the first two conjuncts) states that ~y is a fixpoint, the
second part states that it is the least fixpoint. We now give the formula for Büchi
games. The formula states that the solution ~y of a Büchi game with goal 23U is
the largest solution of the equation system ~y = ~x, where ~x is the least solution to
the fixpoint equation ~x = (¬U ∧ Ppre1(~x)) ∨ (U ∧ Ppre1(~y)). Formally, we define
the formula in stages, as follows. Let

F0(~x, ~y) :=
∧

i∈U

xi = Ppre1(~y)(i) ∧
∧

i6∈U

xi = Ppre1(~x)(i)

F1(~y) := ∃~x.(~y = ~x) ∧ F0(~x, ~y) ∧ (∀~x′.F0(~x′, ~y) ⇒ ~x ≤ ~x′);

then
F1(~y) ∧ (∀~y′.F1(~y′) ⇒ ~y′ ≤ ~y)

gives an elementary formula with free variables ~y that denote the value of the
Büchi game from each state. Finally, we get the value of the game from state 1 by
existentially quantifying all free variables other than y1. The formulas for safety
and co-Büchi games are analogous.

The general formula for Rabin-chain games can be written similarly by unrolling
the fixpoints. For the formula ηN−1xN−1. . . . µx1.νx0.(

∨N−1
i=0 (Ci ∧ Ppre1(xi))) we

proceed inside out, starting at the innermost variable. Let

F0(~xN−1, . . . , ~x1) :=

N−1
∧

k=0

∧

i∈Ck

x0i = Ppre1(~xk)(i),

and for j ∈ {1, . . .N − 1}, let

Fj(~xN−1, . . . , ~xj) :=

∃~xj−1.(~xj = ~xj−1) ∧ (∀~x′
j−1.Fj−1(~xN−1, . . . , ~xj , ~x

′
j−1) ⇒ ~xj−1 ∼ ~x′

j−1)

where ∼ is ≤ if j − 1 is odd (corresponding to a least fixpoint), and ∼ is ≥ if j − 1
is even (corresponding to a greatest fixpoint). Finally, the solution formula is given
by

FN−1(~xN−1) ∧ (∀~x′
N−1.FN−1(~x

′
N−1) ⇒ ~xN−1 ∼ ~x′

N−1)

(in terms of the free variables ~xN−1) where ∼ is ≥ if N − 1 is even, and ∼ is ≤ if
N − 1 is odd. The size of the resulting formula is linear in n (the size of the state
space) and exponential in N (the number of colors).

An algorithm that approximates the value to within a tolerance ǫ is now obtained
by binary search. In particular, we first ask the question ∃y.y = [[ϕ]](s) ∧ y ≥ 1

2 .
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t4 t5
(⊥,⊥)
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(⊥,⊥)

(⊥, d)

(d,⊥)

1
2 1

2

1
2

1
2

t2 t3

(c,⊥)

FIG. 1: A game that disproves the reduction to reachability. A label (a, b) of an
edge (or of a probabilistic bundle of edges) indicates that the edge is followed when
player 1 chooses move a and player 2 chooses move b.

If the answer is yes, we continue the search in the subinterval [ 12 , 1], otherwise we
restrict to [0, 1

2 ]. In this way, after log 1
ǫ

steps, we can approximate the value to
within ǫ.

Note also that the characterization of the winning value as elementary formulas
over R is valid only if the state space is finite. In particular, for each real r ∈ [0, 1],
we can construct a reachability game G over a countable state space S, and a state
s ∈ S such that the value of the reachability game at s is r. This shows that for
countable games, the solution need not be algebraic. The game G is constructed as
follows. Write the binary expansion of r (for rational r, there are more than one
expansions, so choose any one arbitrarily). The players have no choice of moves
in the game: at each state, only one move is available to each player. In the kth
stage sk, player 1 has one move that takes the game to the k + 1st stage sk+1 with
probability 1

2 , and takes the game to tk with probability 1
2 . The state tk is winning

if the kth bit in the binary expansion is a 1, and tk is losing otherwise. Each tk
is a sink: once the game reaches tk, it cannot proceed to any other state. The
reachability objective U is to reach a tk that is winning. Clearly, 〈1〉3U(s1) = r.

7. DISCUSSION

The solution formulas for concurrent games that have been presented in this pa-
per lead to algorithms for the computation of approximate solutions of the games.
In the case of safety and reachability games, the solution formulas (2) and (3)
contain a single fixpoint operator. By computing these fixpoints in iterative fash-
ion, we obtain approximation schemes that converge monotonically to the solu-
tion. The speed of convergence of such schemes has not been characterized. On
the other hand, for Büchi, co-Büchi, and Rabin-chain games, the alternation of
fixpoint operators in the solution formulas yields approximation schemes that con-
tain nested iterations, and it is not known how to obtain monotonically converg-
ing approximation schemes. Specifically, from (8) the solution of a Rabin-chain
game with 2k colors has the fixpoint prefix µx2k−1.νx2k−2. . . . µx1.νx0. Denote by
w(n2k−1, n2k−2, . . . , n0) the approximation of (8) computed by approximating the
fixpoint ηxi by ni iterations, for i ∈ {0, . . . , 2k − 1}. It is not known how to select
a sequence

(n
(0)
2k−1, . . . , n

(0)
0 ), (n

(1)
2k−1, . . . , n

(1)
0 ), (n

(2)
2k−1, . . . , n

(2)
0 ), . . .
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such that for all i ∈ {0, . . . , 2k − 1} we have limj→∞ n
(j)
i = ∞, and such that

lim
j→∞

w(n
(j)
2k−1, . . . , n

(j)
0 ) = 〈1〉R

with monotonic convergence.
This situation is in contrast with the situation for Markov decision processes.

In a Markov decision process, the problem of computing the maximal probability of
satisfying a Büchi, co-Büchi, or Rabin-chain condition Ψ can be solved in polyno-
mial time, by reducing it to the problem of computing a maximal reachability proba-
bility [CY90]. From Ψ, we can first compute the subset TΨ = {s ∈ S | 〈1〉Ψ(s) = 1}
of states where the maximal probability of Ψ is 1. Then, we have 〈1〉Ψ = 〈1〉3TΨ,
indicating that the maximal probability of satisfying Ψ is equal to the maximal
probability of reaching TΨ. In concurrent games, given a Büchi, co-Büchi, or Rabin-
chain condition Ψ, we can compute the set TΨ with the algorithms of [dAH00],
setting TΨ = 〈〈1〉〉limitΨ. If the equality 〈1〉Ψ = 〈1〉3TΨ held for concurrent games,
it would provide monotonic approximation schemes for computing the value of the
game (the problem would still not be reducible to linear programming, since the
values may be irrational, as mentioned earlier). However, the following example
demonstrates that the equality does not hold for games.

Example 3. Consider the game depicted in Figure 1. Let U = {t1, t2, t4},
and consider the co-Büchi winning condition 32U . The set of states R1 (resp. R2)
where player 1 (resp. 2) can ensure winning (resp. losing) with probability 1 are
given by

R1 = T32U = {s ∈ S | 〈1〉32U(s) = 1} = {t1}
R2 = {s ∈ S | 〈2〉23¬U(s) = 1} = {t4, t5}.

For i ∈ {1, 2}, the maximal probability for player i of reaching Ri from outside Ri

is zero: 〈1〉3R1(tk) = 0 for k 6= 1, and 〈2〉3R2(tk) = 0 for k 6∈ {4, 5}. Nevertheless,
we can verify that 〈1〉32U(t2) = 2/3, and 〈1〉32U(t3) = 1/3.
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