
Average Reward Timed Games?

B. Thomas Adler1, Luca de Alfaro1, and Marco Faella1,2

1 School of Engineering, University of California, Santa Cruz, USA
2 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Italy

Abstract. We consider real-time games where the goal consists, for each player,
in maximizing the average reward he or she receives per time unit. We consider
zero-sum rewards, so that a reward of +r to one player corresponds to a reward
of −r to the other player. The games are played on discrete-time game structures
which can be specified using a two-player version of timed automata whose loca-
tions are labeled by reward rates. Even though the rewards themselves are zero-
sum, the games are not, due to the requirement that time must progress along a
play of the game.
Since we focus on control applications, we define the value of the game to a
player to be the maximal average reward per time unit that the player can ensure.
We show that, in general, the values to players 1 and 2 do not sum to zero. We
provide algorithms for computing the value of the game for either player; the al-
gorithms are based on the relationship between the original, infinite-round game,
and a derived game that is played for only finitely many rounds. As memoryless
optimal strategies exist for both players in both games, we show that the problem
of computing the value of the game is in NP∩coNP.

1 Introduction

Games provide a setting for the study of control problems. It is natural to view a system
and its controller as two players in a game; the problem of synthesizing a controller
given a control goal can be phrased as the problem of finding a controller strategy
that enforces the goal, regardless of how the system behaves [Chu63,RW89,PR89].
In the control of real-time systems, the games must not only model the interac-
tion steps between the system and the controller, but also the amount of time that
elapses between these steps. This leads to timed games, a model that was first ap-
plied to the synthesis of controllers for safety, reachability, and other ω-regular goals
[MPS95,AH97,AMAS98,HHM99,dAFH+03]. More recently, the problem of design-
ing controllers for efficiency goals has been addressed, via the consideration of priced
versions of timed games [BCFL04,ABM04]. In priced timed games, price rates (or,
symmetrically, reward rates) are associated with the states of the game, and prices (or
rewards) with its transitions. The problem that has so far been addressed is the synthe-
sis of minimum-cost controllers for reachability goals [BCFL04,ABM04]. In this paper,
we focus instead on the problem of synthesizing controllers that maximize the average

? This is an extended version of a paper that appeared in the proceedings of FORMATS 05: In-
ternational Conference on Formal Modelling and Analysis of Timed Systems, LNCS, Springer-
Verlag, 2005. This research was supported in part by the NSF CAREER award CCR-0132780,
by the ONR grant N00014-02-1-0671, and by the ARP award TO.030.MM.D.

Inv2 : true
Inv1 : x≤2 a1

r = 1r = 2
Inv1 : true
Inv2 : true

q0

Fig. 1. A game automaton where player 1 can freeze time to achieve a higher average reward.

reward1 per time unit accrued along an infinite play of the game. This is an expressive
and widely applicable efficiency goal, since many real-time systems are modeled as
non-terminating systems which exhibit infinite behaviors.

We consider timed games played between two players over discrete-time game
structures with finite state space. At each round, both players independently choose
a move. We distinguish between immediate moves, which correspond to control actions
or system transitions and take 0 time, and timed moves. There are two timed moves:
the move ∆0, which signifies the intention to wait for 0 time, and the move ∆1, which
signifies the intention of waiting for 1 time unit. The two moves chosen by the players
jointly determine the successor state: roughly, immediate moves take the precedence
over timed ones, and unit-length time steps occur only when both players play ∆1. Each
state is associated with a reward rate, which specifies the reward obtained when staying
at the state for one time unit. We consider zero-sum rewards, so that a reward of +r to
one player corresponds to a reward of −r to the other player. These game structures can
be specified using a notation similar to that of timed automata. Each location is labeled
by a reward rate, and by two invariants (rather than one), which specify how long the
two players can stay at the location; the actions labeling the edges correspond to the
immediate moves of the players.

The goal of each player is to maximize the long-run average reward it receives per
time unit; however, this goal is subordinate to the requirement that players should not
block the progress of time by playing forever zero-delay moves (immediate moves,
or ∆0). As an example, consider the game of Figure 1. The strategy that maximizes the
reward per time unit calls for player 1 staying forever at q0: this yields an average reward
per time unit of 4. However, such a strategy would block time, since the clock x would
not be able to increase beyond the value 2, due to the player-1 invariant x ≤ 2 at q0. If
player 1 plays move a1, time can progress, but the average reward per time unit is 1. To
prevent players from blocking time in their pursuit of higher average reward, we define
the value of a play of the game in a way that enforces time progress. If time diverges
along the play, the value of the play is the average reward per time unit obtained along
it. If time does not diverge along the play, there are two cases. If a player contributes
to blocking the progress of time, then the value of the play to the player is −∞; if
the progress of time is blocked entirely by the other player, then the value of the play
to the player is +∞. These definitions are based on the treatment of time divergence
in timed games of [dAFH+03,dAHS02]. According to these definitions, even though
the reward rate is zero-sum, and time-divergent plays have zero-sum values, the games
are not zero-sum, due to the treatment of time divergence. Since we are interested in
the problem of controller design, we define the value of a game to a player to be the
maximal play value that the player is able to secure, regardless of how the adversary

1 With a sign change, this is obviously equivalent to minimizing the average cost.

2

plays. The resulting games are not determined: that the values that the two players can
secure do not sum to zero. We show that there is no symmetrical formulation that can
at the same time enforce time progress, and lead to a determined setting.

We provide algorithms for computing the value of the game for either player. The
algorithms are based on the relationship between the original, infinite-round, game, and
a derived game that is played on the same discrete-time game structure, but for only
finitely many rounds. As in [EM79], the derived game terminates whenever one of the
two players closes a loop; our construction, however, differs from [EM79] in how it
assigns a value to the loops, due to our different notion of value of a play. We show that
a player can achieve the same value in the finite game, as in the original infinite-round
game. Our proof is inspired by the argument in [EM79], and it closes some small gaps
in the proof of [EM79].

The equivalence between finite and infinite games provides a PSPACE algorithm
for computing the value of average reward discrete-time games. We improve this re-
sult by showing that both finite and infinite games admit memoryless optimal strategies
for each player. Once we fix a memoryless strategy for a player, the game is reduced
to a graph. We provide a polynomial-time algorithm that enables the computaton of
the value of the graph for the other player. The algorithm is based on polynomial-time
graph transformations, followed by the application of Karp’s algorithm for computing
the minimum/maximal average cost of a cycle [Kar78]. The existence of memoryless
strategies, together with this algorithm, provide us with a polynomial witness and with
a polynomial-time algorithm for checking the witness. Since this analysis can be done
both for the winning strategies of a player, and for the “spoiling” strategies of the oppo-
nent, we conclude that the problem of computing the value of an average-reward timed
game, for either player, is in NP∩coNP. This matches the best known bounds for several
other classes of games, among which are turn-based deterministic parity games [EJ91]
and turn-based stochastic reachability games [Con92]. Since the maximum average re-
ward accumulated in the first n time units cannot be computed by iterating n times a
dynamic-programming operator, the weakly-polynomial algorithm of [ZP96] cannot be
adapted to our games; the existence of polynomial algorithms is an open problem.

The goal of minimizing the long-run average cost incurred during the life of a real-
time system has been considered previously in [BBL04]. There, the underlying model is
a timed automaton, and the paper solves the verification problem (“what is the minimum
long-run average cost achievable?”), or equivalently, the control problem for a fully
deterministic system. In contrast, the underlying computational model in this paper is
a timed game, and the problem solved is the control of a nondeterministic real-time
system.

Compared to other work on priced timed games [BCFL04,ABM04], our models for
timed games are simplified in two ways. First, rewards can only be accrued by staying
at a state, and not by taking transitions. Second, we study the problem in discrete time.
On the other hand, our models are more general in that, unlike [BCFL04,ABM04], we
do not impose structural constraints on the game structures that ensure the progress of
time. There is a tradeoff between imposing structural constraints and allowing rewards
for transitions: had we introduced constraints that ensure time progress, we could have
easily accommodated for rewards on the transitions. The restriction to discrete-time lim-

3

its somewhat the expressiveness of the models. Nevertheless, control problems where
the control actions can be issued only at discrete points in time are very common: most
real controllers are driven by a periodic clock; hence, the discrete-time restriction is not
unduly limiting as far as the controller actions are concerned. We note that there are
also many cases where the system actions can be considered to occur in discrete-time:
this is the case, for instance, whenever the state of the system is sampled regularly in
time.

2 Discrete-Time Game Structures

We define discrete-time game structures as a discrete-time version of the timed
game structures of [dAFH+03]. A discrete-time game structure represents a game
between two players, which we denote by 1, 2; we indicate by ∼i the opponent
of i ∈ {1,2} (that is, player 3 − i). A discrete-time game structure is a tuple G =
(S,Acts1,Acts2,Γ1,Γ2,δ ,r), where:

– S is a finite set of states.
– Acts1 and Acts2 are two disjoint sets of actions for player 1 and player 2, respec-

tively. We assume that ∆0,∆1 /∈ Actsi and write Mi = Actsi ∪{∆0,∆1} for the sets
of moves of player i ∈ {1,2}.

– For i ∈ {1,2}, the function Γi : S 7→ 2Mi \ /0 is an enabling condition, which assigns
to each state s a set Γi(s) of moves available to player i in that state.

– δ : S× (M1 ∪M2) 7→ S is a destination function that, given a state and a move of
either player, determines the next state in the game.

– r : S 7→ Z is a function that associates with each state s ∈ S the reward rate of s: this
is the reward that player 1 earns for staying for one time unit at s.

The move ∆0 represents an always-enabled stuttering move that takes 0 time: we require
that for s ∈ S and i ∈ {1,2}, we have ∆0 ∈ Γi(s) and δ (s,∆0) = s. The moves in {∆0}∪
Acts1 ∪Acts2 are known as the zero-time moves. The move ∆1 represents the decision
of waiting for 1 time unit. We do not require that ∆1 be always enabled: if we have
∆1 6∈ Γi(s) for player i ∈ {1,2} at a state s ∈ S, then player i cannot wait, but must
immediately play a zero-time move. We define the size of a discrete-time game structure
by |G | = ∑s∈S(|Γ1(s)|+ |Γ2(s)|).

2.1 Move Outcomes, Runs, and Strategies

A timed game proceeds as follows. At each state s ∈ S, player 1 chooses a move a1 ∈
Γ1(s), and simultaneously and independently, player 2 chooses a move a2 ∈ Γ2(s). The
set of successor states δ̃ (s,a1,a2) ⊆ S is then determined according to the following
rules.

– Actions take precedence over stutter steps and time steps. If a1 ∈ Acts1 or a2 ∈
Acts2, then the game takes an action a selected nondeterministically from A =

{a1,a2}∩ (Acts1 ∪Acts2), and δ̃ (s,a1,a2) = {δ (s,a) | a ∈ A}.
– Stutter steps take precedence over time steps. If a1,a2 ∈ {∆0,∆1}, there are two

cases.
• If a1 = ∆0 or a2 = ∆0, the game performs a stutter step, and δ̃ (s,a1,a2) = {s}.

4

• If a1 = a2 = ∆1, then the game performs a time step of duration 1, and the game
proceeds to δ̃ (s,a1,a2) = {δ (s,∆1)}.

An infinite run (or simply run) of the discrete-time game structure G is a sequence
s0,〈a1

1,a
2
1〉,s1,〈a1

2,a
2
2〉,s2, . . . such that sk ∈ S, a1

k+1 ∈ Γ1(sk), a2
k+1 ∈ Γ2(sk), and sk+1 ∈

δ̃ (sk,a1
k+1,a

2
k+1) for all k ≥ 0. A finite run σ is a finite prefix of a run that terminates

at a state s, we then set last(σ) = s. We denote by FRuns the set of all finite runs of
the game structure, and by Runs the set of its infinite runs. For a finite or infinite run σ ,
and a number k < |σ |, we denote by σ≤k the prefix of σ up to and including state σk. A
state s′ is reachable from another state s if there exists a finite run s0,〈a1

1,a
2
1〉,s1, . . . ,sn

such that s0 = s and sn = s′.
A strategy πi for player i ∈ {1,2} is a mapping πi : FRuns 7→ Mi that asso-

ciates with each finite run s0,〈a1
1,a

2
1〉,s1, . . . ,sn the move πi(s0,〈a1

1,a
2
1〉,s1, . . . ,sn) to

be played at sn. We require that the strategy only selects enabled moves, that is,
πi(σ) ∈ Γi(last(σ)) for all σ ∈ FRuns. For i ∈ {1,2}, let Πi denote the set of all player
i strategies. A strategy πi for player i ∈ {1,2} is memoryless if for all σ ,σ ′ ∈ FRuns we
have that last(σ) = last(σ ′) implies πi(σ) = πi(σ ′). For strategies π1 ∈Π1 and π2 ∈Π2,
we say that a run s0,〈a1

1,a
2
1〉,s1, . . . is consistent with π1 and π2 if, for all n ≥ 0 and

i = 1,2, we have πi(s0,〈a1
1,a

2
1〉,s1, . . . ,sn) = ai

n+1. We denote by Outcomes(s,π1,π2)
the set of all runs that start in s and are consistent with π1,π2. Note that in our timed
games, two strategies and a start state yield a set of outcomes, because if the players
both propose actions, a nondeterministic choice between the two moves is made. Ac-
cording to this definition, strategies can base their choices on the entire history of the
game, consisting of both past states and moves.

2.2 Discrete-Time Game Automata

We specify discrete-time game structures via discrete-time game automata, which are
a discrete-time version of the timed automaton games of [dAFH+03]; both models are
two-player versions of timed automata [AD94]. A clock condition over a set C of clocks
is a boolean combination of formulas of the form x� c or x−y� c, where c is an integer,
x,y ∈ C, and � is either < or ≤. We denote the set of all clock conditions over C by
ClkConds(C). A clock valuation is a function κ : C 7→ IR≥0, and we denote by K(C) the
set of all clock valuations for C.

A discrete-time game automaton is a tuple A =
(Q,C,Acts1,Acts2,E,θ ,ρ , Inv1, Inv2,Rew), where:

– Q is a finite set of locations.
– C is a finite set of clocks.
– Acts1 and Acts2 are two disjoint, finite sets of actions for player 1 and player 2,

respectively.
– E ⊆ Q× (Acts1 ∪Acts2)×Q is an edge relation.
– θ : E 7→ ClkConds(C) is a mapping that associates with each edge a clock con-

dition that specifies when the edge can be traversed. We require that for all
(q,a,q1),(q,a,q2) ∈ E with q1 6= q2, the conjunction θ (q,a,q1)∧θ (q,a,q2) is un-
satisfiable. In other words, the game move and clock values determine uniquely the
successor location.

5

– ρ : E 7→ 2C is a mapping that associates with each edge the set of clocks to be reset
when the edge is traversed.

– Inv1, Inv2 : Q 7→ ClkConds(C) are two functions that associate with each location
an invariant for player 1 and 2, respectively.

– Rew : Q 7→ Z is a function that assignes a reward Rew(q) ∈ Z with each q ∈ Q.

Given a clock valuation κ : C 7→ IR≥0, we denote by κ + 1 the valuation defined by
(κ + 1)(x) = κ(x)+ 1 for all clocks x ∈ C. The clock valuation κ : C 7→ IR≥0 satisfies
the clock constraint α ∈ ClkConds(C), written κ |= α , if α holds when the clocks have
the values specified by κ . For a subset C′ ⊆C of clocks, κ [C′ := 0] denotes the valuation
defined by κ [C′ := 0](x) = 0 if x ∈C′, and by κ [C′ := 0](x) = κ(x) otherwise.

The discrete-time game automaton A induces a discrete-time game structure [[A]],
whose states consist of a location of A and a clock valuation over C. The idea is the
following. The move ∆0 is always enabled at all states 〈q,κ〉, and leads again to 〈q,κ〉.
The move ∆1 is enabled for player i ∈ {1,2} at state 〈q,κ〉 if κ +1 |= Invi(q); the move
leads to state 〈q,κ + 1〉. For player i ∈ {1,2} and a ∈ Actsi, the move a is enabled at
a state 〈q,κ〉 if there is a transition (q,a,q′) in E which is enabled at 〈q,κ〉, and if the
invariant Invi(q′) holds for the destination state 〈q′,κ [ρ(q,a,q′) := 0]〉. If the values of
the clocks can grow unboundedly, this translation would yield an infinite-state discrete-
time game structure. However, we can define clock regions similarly to timed automata
[AD94], and we can include in the discrete-time game structure only one state per clock
region; as usual, this leads to a finite state space.

3 The Average Reward Condition

In this section, we consider a discrete-time game structure G =
(S,Acts1,Acts2,Γ1,Γ2,δ ,r), unless otherwise noted.

3.1 The Value of a Game

We consider games where the goal for player 1 consists in maximizing the aver-
age reward per time unit obtained along a game outcome. The goal for player 2
is symmetrical, and it consists in minimizing the average reward per time unit ob-
tained along a game outcome. To make these goals precise, consider a finite run
σ = σ0,〈σ 1

1 ,σ2
1 〉,σ1, . . . ,σn. For k ≥ 1, the time Dk elapsed at step k of the run is de-

fined by Dk(σ) = 1 if σ 1
k = σ 2

k = ∆1, and Dk(σ) = 0 otherwise; the reward Rk accrued
at step k of the run is given by Rk(σ) = r(σk−1) ·Dk(σ). The time elapsed during σ and
the reward achieved during σ are defined in the obvious way, by D(σ) =∑n

k=1 Dk(σ)
and R(σ) = ∑n

k=1 Rk(σ). Finally, we define the long-run average reward of an infinite
run σ ′ by:

r(σ ′) = liminf
n→∞

R(σ ′
≤n)

D(σ ′
≤n)

.

A first attempt to define the goal of the game consists in asking for the maximum
value of this long-run average reward that player 1 can secure. According to this ap-
proach, the value for player 1 of the game at a state s would be defined by

ṽ(G ,s) = sup
π1∈Π1

inf
π2∈Π2

inf{r(σ) | σ ∈ Outcomes(s,π1,π2)}.

6

However, this approach fails to take into account the fact that, in timed games, players
must not only play in order to achieve the goal, but must also play realistic strategies
that guarantee the advancement of time. As an example, consider the game of Figure 1.
We have ṽ(〈q0, [x := 0]〉) = 4, and the optimal strategy of player 1 consists in staying
at q0 forever, never playing the move a1. Due to the invariant x ≤ 2, such a strategy
blocks the progress of time: once x = 2, the only move player 1 can play is ∆0. It is easy
to see that the only strategies of player 1 that do not block time eventually play move
a1, and have value 1. Note that the game does not contain any blocked states, i.e., from
every reachable state there is a run that is time-divergent: the lack of time progress of
the above-mentioned strategy is due to the fact that player 1 values more obtaining high
average reward, than letting time progress.

To ensure that winning strategies do not block the progress of time, we modify the
definition of value of a run, so that ensuring time divergence has higher priority than
maximizing the average reward. Following [dAFH+03], we introduce the following
predicates:

– For i ∈ {1,2}, we denote by blamelessi(σ) (“blameless i”) the predicate defined
by ∃n ≥ 0.∀k > n.σ i

k = ∆1. Intuitively, blamelessi(σ) holds if, along σ , player i
beyond a certain point cannot be blamed for blocking time.

– We denote by td(σ) (‘‘time-divergence”) the predicate defined by ∀n ≥ 0 . ∃k >
n . [(σ 1

k = ∆1)∧ (σ 2
k = ∆1)].

We define the value of a run σ ∈ Runs for player i ∈ {1,2} by:

wi(σ) =

+∞ if blamelessi(σ)∧¬td(σ);

(−1)(i+1) r(σ) if td(σ);

−∞ if ¬blamelessi(σ)∧¬td(σ).

(1)

It is easy to check that, for each run, exactly one of the three cases of the above definition
applies. Notice that if td(σ) holds, then w1(σ) = −w2(σ), so that the value of time-
divergent runs is defined in a zero-sum fashion. We define the value of the game for
player i at s ∈ S as follows:

vi(G ,s) = sup
πi∈Πi

inf
π∼i∈Π∼i

inf{wi(σ) | σ ∈ Outcomes(s,π1,π2)}. (2)

We omit the argument G from vi(G ,s) when clear from the context.
We say that a state s ∈ S is well-formed if, for all i ∈ {1,2}, we have vi(s) > −∞.

From (1) and (2), a state is well-formed if both players can ensure that time progresses
from that state, unless blocked by the other player: this is the same notion of well-
formedness introduced in [dAHS02,dAFH+03]. Since we desire games where time
progresses, we consider only games consisting of well-formed states.

3.2 Determinacy

A game is determined if, for all s∈ S, we have v1(s)+v2(s) = 0: this means that if player
i ∈ {1,2} cannot enforce a reward c ∈ IR, then player ∼i can enforce at least reward −c.
The following theorem provides a strong non-determinacy result for average-reward
discrete-time games.

7

q2x := 0x := 0

a1

x≥1 x≥1

Inv1 : x≤0
Inv2 : x≤0

r = −c r = +ca1

a2

a2

q0q1

Fig. 2. A game automaton. Unspecified guards and invariants are “true”.

Theorem 1. (non-determinacy) For all c > 0, there exists a game structure G =
(S,Acts1,Acts2,Γ1,Γ2,δ ,r) with a state s ∈ S, and two “spoiling” strategies π∗

1 ∈ Π1,
π∗

2 ∈ Π2, such that the following holds:

sup
π1∈Π1

sup{w1(σ) | σ ∈ Outcomes(s,π1,π∗
2)} ≤ −c

sup
π2∈Π2

sup{w2(σ) | σ ∈ Outcomes(s,π∗
1 ,π2)} ≤ −c.

As a consequence, v1(s) ≤−c and v2(s) ≤−c.

Note that in the theorem we take sup, rather than inf as in (2), over the set of outcomes
arising from the strategies. Hence, the theorem states that even if the choice among
actions is resolved in favor of the player trying to achieve the value, there is a game
with a state s where v1(s)+ v2(s) ≤−2c < 0. Moreover, in the theorem, the adversary
strategies are fixed, again providing an advantage to the player trying to achieve the
value.

Proof. Consider the game of Figure 2. We take for π∗
1 ∈ Π1 and π∗

2 ∈ Π2 the strategies
that play always ∆0 in q0, and ∆1 elsewhere. Let s0 = 〈q0, [x := 0]〉, and consider the
value

v̂1(s0) = sup
π1∈Π1

sup{w1(σ) | σ ∈ Outcomes(s0,π1,π∗
2)}.

There are two cases. If eventually player 1 plays forever ∆0 in s0, player 1 obtains the
value−∞, as time does not progress, and player 1 is not blameless. If player 1, whenever
at s0, eventually plays a1, then the value of the game to player 1 is −c. Hence, we have
v̂1(s0) = −c. The analysis for player 2 is symmetrical.

The example of Figure 2, together with the above analysis, indicates that we cannot
define the value of an average reward discrete-time game in a way that is symmetrical,
leads to determinacy, and enforces time progress. In fact, consider again the case in
which player 2 plays always ∆0 at s0. If, beyond some point, player 1 plays forever ∆0

in s0, time does not progress, and the situation is symmetrical wrt. players 1 and 2: they
both play forever ∆0. Hence, we must rule out this combination of strategies (either
by assigning value −∞ to the outcome, as we do, or by some other device). Once this
is ruled out, the other possibility is that player 1, whenever in s0, eventually plays a1.
In this case, time diverges, and the average value to player 1 is −c. As the analysis is
symmetrical, the value to both players is −c, contradicting determinacy.

8

4 Solution of Average Reward Timed Games

In this section, we solve the problem of computing the value of an average reward
timed game with respect to both players. First, we define a turn-based version of the
timed game. Such version is equivalent to the first game when one is concerned with
the value achieved by a specific player. Then, following [EM79], we define a finite
game and we prove that it has the same value as the turn-based infinite game. This will
lead to a PSPACE algorithm for computing the value of the game. We then show that the
finite and, consequently, the infinite game admit memoryless optimal strategies for both
players; as mentioned in the introduction, this will enable us to show that the problem
of computing the value of the game is in NP∩coNP.

In the remainder of this section, we consider a fixed discrete-time game structure
G = (S,Acts1,Acts2,Γ1,Γ2,δ ,r), and we assume that all states are well-formed. We fo-
cus on the problem of computing v1(s), as the problem of computing v2(s) is symmet-
rical. For a finite run σ and a finite or infinite run σ′ such that last(σ) = first(σ ′), we
denote by σ ·σ ′ their concatenation, where the common state is included only once.

4.1 Turn-based Timed Game

We describe a turn-based version of the timed game, where at each round player 1
chooses his move before player 2. Player 2 can thus use her knowledge of player 1’s
move to choose her own. Moreover, when both players choose an action, the action
chosen by player 2 is carried out. This accounts for the fact that in the definition of
v1(s), nondeterminism is resolved in favor of player 2 (see (2)). Notice that if player 2
prefers to carry out the action chosen by player 1, she can reply with the stuttering move
∆0. Definitions pertaining this game have a “t∞” superscript that stands for “turn-based
infinite”. We define the turn-based joint destination functionδ̃ t : S×M1×M2 7→ S by

δ̃ t(s,a1,a2) =

δ (s,∆1) if a1 = a2 = ∆1

δ (s,∆0) if {a1,a2} ⊆ {∆0,∆1} and a1 = ∆0 or a2 = ∆0

δ (s,a1) if a1 ∈ Acts1 and a2 ∈ {∆0,∆1}

δ (s,a2) if a2 ∈ Acts2

As before, a run is an infinite sequence s0,〈a1
1,a

2
1〉,s1,〈a1

2,a
2
2〉,s2, . . . such that sk ∈ S,

a1
k+1 ∈ Γ1(sk), a2

k+1 ∈ Γ2(sk), and sk+1 ∈ δ̃ t(sk,a1
k+1,a

2
k+1) for all k ≥ 0. A 1-run

is a finite prefix of a run ending in a state sk, while a 2-run is a finite prefix of
run ending in a move a ∈ M1. For a 2-run σ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn,〈a1

n+1〉, we set
last(s0,〈a1

1,a
2
1〉,s1, . . . ,sn,〈a1

n+1〉) = sn and lasta(s0,〈a1
1,a

2
1〉,s1, . . . ,sn,〈a1

n+1〉) = a1
n+1.

For i∈{1,2}, we denote by FRunsi the set of all i-runs. Intuitively, i-runs are runs where
it is player i’s turn to move. In the turn-based game, a strategy πi for player i ∈ {1,2}
is a mapping πi : FRunsi 7→ Mi such that πi(σ) ∈ Γi(last(σ)) for all σ ∈ FRunsi. For
i ∈ {1,2}, let Π t

i denote the set of all player i strategies; notice that Π t
1 = Π1. Player-

1 memoryless strategies are defined as usual. We say that a player-2 strategy π ∈ Πt
2

is memoryless iff, for all σ ,σ ′ ∈ FRuns2, last(σ) = last(σ ′) and lasta(σ) = lasta(σ ′)
imply π(σ) = π(σ ′).

For strategies π1 ∈ Π t
1 and π2 ∈ Π t

2, we say that a run s0,〈a1
1,a

2
1〉,s1, . . . is consistent

with π1 and π2 if, for all n ≥ 0 and i = 1,2, we have π1(s0,〈a1
1,a

2
1〉,s1, . . . ,sn) = a1

n+1

9

and π2(s0,〈a1
1,a

2
1〉,s1, . . . ,sn,〈a1

n+1〉) = a2
n+1. Since δ̃ t is deterministic, for all s ∈ S,

there is a unique run that starts in s and is consistent with π1 and π2. We denote this
run by outcomest∞(s,π1,π2). The value assigned to a run, to a strategy and to the whole
game are defined as follows. We set wt∞

1 (σ) = w1(σ), and

vt∞
1 (s,π1) = inf

π2∈Π t
2

wt∞
1 (outcomest∞(s,π1,π2)); vt∞

1 (s) = sup
π1∈Π t

1

vt∞
1 (s,π1).

The following theorem follows from the definition of turn-based game and from (2).

Theorem 2. For all s ∈ S, it holds v1(s) = vt∞
1 (s).

4.2 Turn-based Finite Game

We now define a finite turn-based game that can be played on a discrete-time game
structure. Definitions pertaining this game have a “tf” superscript that stands for “turn-
based finite”. The finite game ends as soon as a loop is closed. A maximal run in the
finite game is a 1-run σ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn such that sn is the first state that is

repeated in σ . Formally, n is the least number such that sn = s j , for some j < n. We
set loop(σ) to be the suffix of σ : sj,〈a1

j+1,a
2
j+1〉, . . . ,sn. For π1 ∈ Π t

1, π2 ∈ Π t
2, and

s ∈ S, we denote by outcomestf(s,π1,π2) the unique maximal run that starts in s and is
consistent with π1 and π2.

In the finite game, a maximal run σ ending with the loop λ is assigned the value of
the infinite run obtained by repeating λ forever. Formally, wtf

1(σ) = w1(σ ·λ ω), where
λ ω denotes the concatenation of numerably many copies of λ . The value assigned to a
strategy π1 ∈ Π t

1 and the value assigned to the whole game are defined as follows.

vtf
1(s,π1) = inf

π2∈Π t
2

wtf
1(outcomestf(s,π1,π2)); vtf

1(s) = sup
π1∈Π t

1

vtf
1(s,π1).

Notice that since this game is finite and turn-based, for all s ∈ S, it holds:

sup
π1∈Π1

inf
π2∈Π2

wtf
1(outcomestf(s,π1,π2)) = inf

π2∈Π2
sup

π1∈Π1

wtf
1(outcomestf(s,π1,π2)). (3)

4.3 Mapping Strategies

We introduce definitions that allow us to relate the finite game to the infinite one. For a
1-run σ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn, let firstloop(σ) be the operator that returns the first sim-

ple loop (if any) occurring in σ . Similarly, let loopcut(σ) be the operator that removes
the first simple loop (if any) from σ . Formally, if σ is a simple run (i.e. it contains no
loops) we set firstloop(σ) = ε (the empty sequence), and loopcut(σ) = σ . Otherwise,
let k ≥ 0 be the smallest number such that σ j = σk, for some j < k; we set

firstloop(σ) = σ j,〈a
1
j+1,a

2
j+1〉, . . . ,〈a

1
k ,a

2
k〉,σk;

loopcut(σ) = σ0,〈a
1
1,a

2
1〉, . . . ,σ j,〈a

1
k+1,a

2
k+1〉, . . . ,σn.

We now define the quasi-segmentation QSeg(σ) to be the sequence of simple loops
obtained by applying firstloop repeatedly to σ .

QSeg(σ) =

{
ε if firstloop(σ) = ε
firstloop(σ) ·QSeg(loopcut(σ)) otherwise

10

λ1

σ jσi σ j−1

Fig. 3. Nodes linked by dashed lines represent the same state of the game.

For an infinite run σ , we set QSeg(σ) = limn→∞ QSeg(σ≤n). Given a finite run σ ,
loopcut can only be applied a finite number of times before it converges to a fixpoint.
We call this fixpoint resid(σ). Notice that for all runs σ , resid(σ) is a simple path and
therefore its length is bounded by |S|.

For simplicity, we developed the above definitions for 1-runs. The corresponding
definitions of resid(σ) and QSeg(σ) for 2-runs σ are similar.

For all i ∈ {1,2} and all strategies π ∈ Π t
i , we define the strategy π̃ as π̃(σ) =

π(resid(σ)) for all σ ∈ FRunsi. Intuitively, π̃ behaves like π until a loop is formed. At
that point, π̃ forgets the loop, behaving as if the whole loop had not occurred. We now
give some technical lemmas.

Lemma 1. Let π1 ∈ Π t
1, π2 ∈ Π t

2, and σ = outcomest∞(s, π̃1,π2). For all k > 0,
resid(σ≤k) is a prefix of a finite run consistent with π1. Formally, there is π ′

2 ∈ Π t
2

and σ ′ = outcomestf(s,π1,π ′
2) such that σ ′ = resid(σ≤k) ·ρ .

Similarly, let σ = outcomest∞(s,π1, π̃2). For all k > 0, there is π ′
1 ∈ Π t

1 and σ ′ =
outcomestf(s,π ′

1,π2) such that σ ′ = resid(σ≤k) ·ρ .

Proof. We prove the first statement, as the second one is analogous. We proceed by
induction on the length of QSeg(σ≤k). If QSeg(σ≤k) is the empty sequence (i.e. σ≤k

contains no loops), the result is easily obtained, as π̃1 coincides with π1 until a loop is
formed. So, we can take π ′

2 = π2 and obtain the conclusion.
On the other hand, suppose QSeg(σ≤k) = λ1, . . . ,λn. For simplicity, suppose λ1 6=

λ2. As illustrated in Figure 3, let σ j be the first state after λ1 that does not belong to λ1.
Then, σ j−1 belongs to λ1 and there is another index i < j−1 such that σi = σ j−1. So,
the game went twice through σ j−1 and two different successors were taken. However,
player 1 must have chosen the same move in σi and σ j−1, as by construction π̃1(σ≤i) =
π̃1(σ≤ j−1). Therefore, the change must be due to a different choice of π2. It is easy to
devise π ′

2 that coincides with π2, except that λ1 may be skipped, and at σi, the successor
σ j is chosen. We can then obtain a run ρ = outcomest∞(s, π̃1,π ′

2) and an integer k′ ≥ 0
such that QSeg(ρ≤k′) = λ2, . . . ,λn and resid(ρ≤k′) = resid(ρ). The thesis is obtained by
applying the inductive hypothesis to ρ and k′.

Using this lemma, we can show that for all π1 ∈ Π1, each loop occurring in the
infinite game underπ̃1 can also occur in the finite game under π1.

Lemma 2. Let π1 ∈ Π t
1, π2 ∈ Π t

2, and σ = outcomest∞(s, π̃1,π2). For all λ ∈ QSeg(σ),
λ can occur as the final loop in a maximal run of the finite game. Formally, there is
π ′

2 ∈ Π t
2 and σ ′ = outcomestf(s,π1,π ′

2) such that λ = loop(σ ′).

11

Similarly, let σ = outcomest∞(s,π1, π̃2). For all λ ∈ QSeg(σ), there is π ′
1 ∈ Π t

1 and
σ ′ = outcomestf(s,π ′

1,π2) such that λ = loop(σ ′).

The next lemma states that if the strategy π1 of player 1 achieves value ν in the
finite turn-based game, the strategy π̃1 achieves at least as much in the infinite turn-
based game.

Lemma 3. For all s ∈ S and π1 ∈ Π t
1, it holds vt∞

1 (s, π̃1) ≥ vtf
1(s,π1).

Proof. Let ν = vtf
1(s,π1). We show that π̃1 can ensure reward ν in the infinite game. The

result is trivially true if ν = −∞. So, in the following we assume that ν > −∞.
Fix a player 2 strategy π2 ∈ Π t

2, and let σ = outcomest∞(s, π̃1,π2). Let QSeg(σ) =
λ1,λ2 We distinguish two cases, according to whether time diverges or not in σ . If
time diverges, all loops λ j that contain no tick give no contribution to the value of σ
and can therefore be ignored.

For all λ j containing (at least) a time step, by Lemma 2, λ j is a possible terminating
loop for the finite game under π1. Thus, R(λ j) ≥ ν ·D(λ j). Now, the value of σ can be
split as the value due to loops containing time steps, plus the value due to the residual.
For all n ≥ 0, let mn be the number of loops in QSeg(σ≤n). We obtain:

wt∞
1 (σ) =

liminf
n→∞

R(σ≤n)

D(σ≤n)
= liminf

n→∞

R(resid(σ≤n))+ ∑mn
j=1 R(λ j)

D(resid(σ≤n))+ ∑mn
j=1 D(λ j)

= liminf
n→∞

∑mn
j=1 R(λ j)

∑mn
j=1 D(λ j)

≥ ν .

Consider now the case when σ contains only finitely many time steps. Let k ≥ 0 be
such that no time steps occur in σ after σk. Consider a loop λ j entirely occurring after
σk. Obviously λ j contains no time steps. Moreover, by Lemma 2, λ j is a terminating
loop for a maximal run ρ in the finite game under π1. Since vtf

1(s,π1) > −∞, it must
be wtf

1(ρ) = +∞. Consequently, it holds blameless1(ρ) and in particular player 1 is
blameless in all edges in λ j.

Now, let k′ ≥ 0 be such that each state (and edge) after σk′ will eventually be part
of a loop of QSeg(σ). Let k′′ = max{k,k′}. Then, all edges that occur after k′′ will
eventually be part of a loop where player 1 is blameless. Consequently, k′′ is a witness
to the fact that blameless1(σ), and therefore wt∞

1 (σ) = +∞ ≥ ν .

Lemma 4. For all s ∈ S and π2 ∈ Π t
2, it holds vt∞

1 (s, π̃2) ≤ vtf
1(s,π2).

Proof. Let ν = vtf
1(s,π2). Similarly to Lemma 3, we can rule out the case ν = +∞

as trivial. Fix a player 1 strategy π1, and let σ = outcomest∞(s,π1, π̃2). We show
that wt∞

1 (σ) ≤ ν . If time diverges on σ , the proof is similar to the analogous case in
Lemma 3. Otherwise, let k ≥ 0 be such that no time steps occur in σ after σk. Con-
sider a loop λ ∈ QSeg(σ), entirely occurring after σk. Obviously λ contains no time
steps. Moreover, by Lemma 2, λ is a terminating loop for a maximal run ρ in the finite
game under π1. Since vtf

1(s,π1) < +∞, it must be wtf
1(ρ) = −∞. Consequently, it holds

¬blameless1(ρ) and in particular player 1 is blamed in some edge of λ . This shows that
¬blameless1(σ), and consequently wt∞

1 (σ) = −∞ ≤ ν .

Lemmas 3 and 4 show that the infinite game is no harder than the finite one, for both
players. Considering also (3), we obtain the following result.

12

Theorem 3. For all s ∈ S, vt∞
1 (s) = vtf

1(s).

Theorems 2 and 3 allow us to use the finite game to compute the value of the original
timed game. The length of the finite game is bounded by |S|. It is well-known that a
recursive, backtracking algorithm can compute the value of such game in PSPACE.

Theorem 4. For all s ∈ S, v1(s) can be computed in PSPACE.

4.4 Memory

By following the “forgetful game” construction and proofs used by [EM79], we can
derive a similar result on the existence of memoryless strategies for both players. The
proof depends on the fact that the value of forgetful game is the same as the turn-based
finite game (and hence, the same as the infinite game, from Theorem 3), and follows
the same inductive steps as provided in [EM79].

Theorem 5. For all i ∈ {1,2}, and t ∈ S, there exists a memoryless optimal strategy for
player i. Formally, there exists πi ∈ Πi such that v1(t,πi) = v1(t).

4.5 Improved Algorithms

We show that, given s ∈ S, ν ∈ Q and i ∈ {1,2}, the problem of checking whether
vtf

i (s) ≥ ν is in NP∩coNP. The decision problem vtf
1(s) ≥ ν is in NP because a memo-

ryless strategy for player 1 acts as a polynomial-time witness: once such a strategy π1

is fixed, we can compute in polynomial time the value vtf
1(s,π1). The problem is also

in coNP because, once a memoryless strategy of player 2 is fixed, we can compute in
polynomial time the value vtf

1(s,π2).
Once we fix a memoryless strategy for player i ∈ {1,2}, the finite game is reduced

to a multigraph where all the choices belong to player ∼i. It is convenient to define
the set of vertices of the multigraph as U = {{s} | s ∈ S}, rather than simply as S. Let
E be the set of edges of the multigraph. Each edge e ∈ E is labeled with the pair of
moves 〈a1,a2〉 ∈ M1×M2 played by the players along e. We label e with tick whenever
a1 = a2 = ∆1, and with bli whenever ai ∈ Actsi ∪{∆0}; every edge e from {s} to {t}
is also associated with reward r(s) if it has label tick, and reward 0 otherwise. We
indicate paths in this graph by u0,e1,u1,e2, . . . ,un, where ei is an edge from ui−1 to ui,
for 1 ≤ i ≤ n. Given a strongly connected component (SCC) (V,F), where V ⊆U and
F ⊆ E, we collapse (V,F) as follows: (i) we replace in U the vertices in V by the single
vertex

⋃
V ; (ii) we remove all edges in F ; (iii) we replace every edge from v ∈ V to

u ∈ U \V (resp. from u ∈ U \V to v ∈ V) with an edge of the same label from
⋃

V to
u (resp. from u to

⋃
V); (iv) we replace every edge e 6∈ F from v ∈ V to v′ ∈ V with a

self-loop of the same label from
⋃

V to
⋃

V .
To determine the value of this multigraph to player 1, we first transform the multi-

graph so that all edges are labeled with tick, and we then apply Karp’s algorithm for
computing the loop with minimum or maximum average reward [Kar78]. We proceed
depending on whether player 1, or player 2, fixes a memoryless strategy. When player 1
fixes a memoryless strategy:

1. Find a maximal SCC (V,F), where V ⊆ U and F ⊆ E, such that all edges in F
are labeled with ¬tick and ¬bl1. Player 2 will want to avoid following this SCC
forever; thus, we collapse it. Repeat until no more SCCs can be collapsed.

13

2. If a vertex u ∈ U has no outgoing edges, it means that player 2 could not avoid
entering and following one of the SCCs collapsed above. Hence, for each u ∈ U
without outgoing edges, remove u from the graph along with all incoming edges,
and assign value +∞ to all s ∈ u. Repeat until no more vertices can be removed.

3. Find all the loops whose edges are all labeled with ¬tick. Due to the collapsing in
the above steps, each of these loops contains at least one edge labeled bl1, so its
value when followed forever is −∞. Remove all such vertices from the graph, and
assign value −∞ to the corresponding states.

4. From the resulting multigraph G, construct a multigraph G′ with the same vertices
as G. For each simple path in G of the form u0,e1,u1, . . . ,un,en+1,un+1 where the
edges e1, . . . ,en are labeled by ¬tick, and the edge en+1 is labeled by tick, we insert
in G′ an edge from u0 to un+1 labeled by the same reward as en+1.

5. Use the algorithm of [Kar78] to find the loop with minimal average reward in G′

(the algorithm of [Kar78] is phrased for graphs, but it can be trivially adapted to
multigraphs). If r is the average reward of the loop thus found, all the vertices of
the loop, and all the vertices that can reach the loop, have value r. Remove them
from G′, and assign value r to the corresponding states. Repeat this step until all
vertices have been removed.

Similarly (but not symmetrically), if player 2 fixes a memoryless strategy, we can com-
pute the value for player 1 as follows:
1. Find all the loops where all the edges are labeled with ¬tick and ¬bl1. These loops,

and all the vertices that can reach them, have value +∞. Remove them from the
graph, and assign value +∞ to the corresponding states.

2. Find a maximal SCC (V,F), where V ⊆U and F ⊆ E, such that all edges in F are
labeled with ¬tick. Due to the previous step, every loop in (V,F) contains at least
one edge labeled bl1, and player 1 will want to avoid following forever such an
SCC: thus, we collapse (V,F).

3. For each u ∈ U without outgoing edges, remove u from the graph along with all
incoming edges, and assign value −∞ to all s ∈ u. Repeat until no more vertices
can be removed.

4. From the resulting multigraph G, construct a multigraph G′ as in step 4 of the
previous case.

5. This step is the same as step 5 of the previous case, except that in each iteration we
find the loop with maximal average reward.

Since the algorithm of [Kar78], as well as the above graph manipulations, can all be
done in polynomial time, we have the following result.

Theorem 6. The problem of computing the value to player i ∈ {1,2} of a discrete-time
average reward game is in NP∩coNP.

We note that the maximal reward that a player can accrue in the first n time units cannot
be computed by iterating n times a dynamic-programming operator, as is the case for
untimed games. In fact, each player can play an unbounded number of zero-time moves
in the first n time units, so that even the finite time-horizon version of our games requires
the consideration of time divergence. Hence, it does not seem possible to adapt the
approach of [ZP96] to obtain a weakly-polynomial algorithm. Whether polynomial-
time algorithms can be achieved by other means is an open problem.

14

References

[ABM04] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed
games. In Proc. 31st Int. Colloq. Aut. Lang. Prog., volume 3142 of Lect. Notes in
Comp. Sci. Springer-Verlag, 2004.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theor. Comp. Sci., 126:183–235,
1994.

[AH97] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In CONCUR
97: Concurrency Theory. 8th Int. Conf., volume 1243 of Lect. Notes in Comp. Sci.,
pages 74–88. Springer-Verlag, 1997.

[AMAS98] E. Asarin, O. Maler, A.Pnueli, and J. Sifakis. Controller synthesis for timed auto-
mata. In Proc. IFAC Symposium on System Structure and Control, pages 469–474.
Elsevier, 1998.

[BBL04] P. Bouyer, E. Brinksma, and K.G. Larsen. Staying alive as cheaply as possible. In
Proc. of 7th Intl. Workshop on Hybrid Systems: Computation and Control (HSCC),
volume 2993 of Lect. Notes in Comp. Sci., pages 203–218. Springer-Verlag, 2004.

[BCFL04] P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced timed
game automata. In Found. of Software Technology and Theoretical Comp. Sci., vol-
ume 3328 of Lect. Notes in Comp. Sci., pages 148–160. Springer-Verlag, 2004.

[Chu63] A. Church. Logic, arithmetics, and automata. In Proc. International Congress of
Mathematicians, 1962, pages 23–35. Institut Mittag-Leffler, 1963.

[Con92] A. Condon. The complexity of stochastic games. Information and Computation,
96:203–224, 1992.

[dAFH+03] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. The
element of surprise in timed games. In CONCUR 03: Concurrency Theory. 14th Int.
Conf., volume 2761 of Lect. Notes in Comp. Sci., pages 144–158. Springer-Verlag,
2003.

[dAHS02] L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Timed interfaces. In Proceedings of
the Second International Workshop on Embedded Software (EMSOFT 2002), volume
2491 of Lect. Notes in Comp. Sci., pages 108–122. Springer-Verlag, 2002.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In Proc. 32nd IEEE Symp. Found. of Comp. Sci., pages 368–377. IEEE
Computer Society Press, 1991.

[EM79] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. Int.
Journal of Game Theory, 8(2):109–113, 1979.

[HHM99] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games. In
CONCUR’99: Concurrency Theory. 10th Int. Conf., volume 1664 of Lect. Notes in
Comp. Sci., pages 320–335. Springer-Verlag, 1999.

[Kar78] R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23:309–311, 1978.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In Proc. of 12th Annual Symp. on Theor. Asp. of Comp. Sci., volume 900 of
Lect. Notes in Comp. Sci., pages 229–242. Springer-Verlag, 1995.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the
16th Annual Symposium on Principles of Programming Languages, pages 179–190.
ACM Press, 1989.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE
Transactions on Control Theory, 77:81–98, 1989.

[ZP96] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comp. Sci., 158:343–359, 1996.

15

