
Sociable Interfaces?

Luca de Alfaro1, Leandro Dias da Silva1,2, Marco Faella1,3, Axel Legay1,4,
Pritam Roy1, and Maria Sorea5

1 School of Engineering, Universitity of California, Santa Cruz, USA
2 Electrical Engineering Department, Federal University ofCampina Grande, Paraiba, Brazil

3 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Italy
4 Department of Computer Science, University of Liège, Belgium

5 School of Computer Science, University of Manchester, United Kingdom

Abstract. Interface formalisms are able to model both the input requirements
and the output behavior of system components; they support both bottom-up
component-based design, and top-down design refinement. Inthis paper, we pro-
pose “sociable” interface formalisms, endowed with a rich compositional seman-
tics that facilitates their use in design and modeling. Specifically, we introduce
interface models that can communicate via both actions and shared variables, and
where communication and synchronization covers the full spectrum, from one-to-
one, to one-to-many, many-to-one, and many-to-many. Thanks to the expressive
power of interface formalisms, this rich compositional semantics can be realized
in an economical way, on the basis of a few basic principles. We show how the
algorithms for composing, checking the compatibility, andrefining the resulting
sociable interfaces can be implemented symbolically, leading to efficient imple-
mentations.

1 Introduction

Interface theories are formal models of communicating systems. Compared to tradi-
tional models, the strength of interface theories lies in their ability to model both the
input requirements, and the output behavior, of a system. This gives rise to acompat-
ibility test when interface models are composed: two interfaces arecompatible if there
is a way to use them (an environment) in which their input assumptions are simultane-
ously satisfied. This ability to model input assumptions andprovide a compatibility test
makes interface models useful in system design. In particular, interface models support
both bottom-up, and top-down, design processes [6, 7]. In a bottom-up direction, the
compatibility test can be used to check that portions of the design work correctly, even
before all the components are assembled in the final design. In a top-down direction,
interface models enable the hierarchical decomposition ofa design specification, while
providing a guarantee that if the components satisfy their specifications, then they will
interact correctly in the overall implementation.

? This research was supported in part by the NSF CAREER award CCR-0132780, by the ONR
grant N00014-02-1-0671, by the ARP award TO.030.MM.D., by awards from the Brazilian
government agencies CNPq and CAPES, and by a F.R.I.A Grant

In this paper we present interfaces models that can communicate via both actions
and variables, and that provide one-to-one, many-to-one, one-to-many, and many-to-
many communication and synchronization. We show that this rich communication se-
mantics can be achieved by combining a small number of basic concepts, thanks to
the expressive power of interface models. This leads to an uniform, and conceptually
simple, communication model. We call this modelsociable interfaces,underlining the
ease with which these interfaces can be composed into modelsof design. While socia-
ble interfaces do not break new ground in the conceptual theory of interface models,
we hope that they constitute a useful step towards a practical, interface-based design
methodology.

In sociable interfaces, synchronization and communication are based on two main
ideas. The first idea is that the same action can appear as a label of both input and output
transitions: when the action labels output transitions, itmeans that the interface can emit
the action; when the action labels an input transition, it means that the action can be
accepted if sent from other components. Depending on whether the action labels only
input transitions, only output transitions, or both kind oftransitions, we have different
synchronization schemes. For instance, if an actiona is associated only with output
transitions, it means that the interface can emita, but cannot receive it, and thus it
cannot be composed with any other interface that emitsa. Conversely, ifa is associated
only with input transitions, it means that the interface acceptsa from other interfaces,
but will not emita. Finally, if a is associated both with input and output transitions, it
means that the interface can both emita, and accepta when emitted by other interfaces.

The second idea is that global variables do not belong to specific interfaces: the
same global variable can be updated by multiple interfaces.In an interface, the output
transitions associated with an action specifies how global variables can be updated when
the interface emits the action; the input transition associated with an action specifies
constraints on how other interfaces can update the global variables when emitting the
action. By limiting the sets of variables whose value must betracked by the interfaces,
and by introducing appropriate non-interference conditions among interfaces, we can
ensure that interfaces can participate in complex communication schemes with limited
knowledge about the other participants. In particular, interfaces do not need to know in
advance the number or identities of the other interfaces that take part in communication
schemes. This facilitates component reuse, as the same interface model can be used in
different contexts.

We show that the compatibility and refinement of sociable interfaces can be checked
via efficient symbolic algorithms. We have implemented these algorithms in a tool
called TIC (Tool for Interface Compatibility); the tool is written in Ocaml [10], and
the symbolic algorithms for interface compatibility and refinement are built on top of
the MDD/BDD Glue and Cudd packages [13, 12].

The paper is organized as follows. First, we introducesociable interface automata,
which include actions, but not variables, and which are a more “sociable” version of
the interface automata of [6, 8]. After illustrating the various synchronization and com-
munication features for sociable interface automata, we endow them with variables in
Section 3, obtainingsociable interface modules.We describe the communication mech-
anisms of sociable interface modules via examples, and we show how the examples can

3

2

1

fire?

FD!

(a)C: Control Unit

3

fire?2

fire?

1 fire?

smoke1?

fire!

(b) D1: Fire Detector 1

3 fire?

fire!

fire?2

smoke2?

fire?1

(c) D2: Fire Detector 2

Fig. 1.Sociable interface automata for a fire detection and reporting system.

be encoded in the input language of the tool TIC. The refinement of sociable interfaces
is discussed Section 4, and the symbolic implementation of the composition and re-
finement algorithms is in Section 5. We conclude with a comparison between sociable
interfaces and previous interface formalisms.

2 Sociable Interface Automata

Social interfaces communicate via both actions and variables. We first illustrate how
sociable interfaces communicate via actions; in the next section, we will augment them
with variables, obtaining the model implemented in the toolTIC. We begin with an
informal, intuitive preview, which will motivate the definitions.

2.1 Preview

To provide some intuition on sociable interfaces, we present an example: a very simple
model of a fire detection and reporting system. The sociable interfaces for this example
are depicted in Figure 1:D1 andD2 are the fire detectors (there could be more), and
C is the control unit. When the fire detectorsD1 andD2 detect smoke (input events
smoke1?,smoke2?), they generate an output eventfire!. The control unit, upon receiving
the input eventfire?, issues a call for the fire department (output eventFD!). Similar
to the original interface model [6, 8], the input and output transitions departing from a
state of a sociable interface denote the inputs that can be received, and the outputs that
can be generated, from that state. For instance, the sociable interfaceC (Figure 1(a))
specifies that input eventfire?can be accepted at state 1, but not at state 2.

Product and composition.To compose two sociable interfaces, we first form their au-
tomata product. In the product, shared output/input events(such as the pairfire!–fire? in
Figure 1) synchronize: this models communication, or synchronization, initiated by the

smoke1?

smoke1?

smoke1?

fire? fire?

1,1 1,2

2,22,1

3,1 3,2

2,3

3,3

fire?

1,3

fire!

FD! FD! FD!

(a)C⊗D1

smoke2?

fire?

fire!

smoke2? fire!
fire?

smoke2?

fire?

fire!

smoke1? smoke1?

fire!fire!fire!

smoke1?

1,31,21,1

2,1 2,2 2,3

3,33,23,1

fire?

fire?

fire? fire?

fire?

fire?

(b) D1⊗D2

Fig. 2. Product of the automataD1, D2, andC.

interface issuing the output transition. Similarly, two interfaces can also synchronize on
shared inputs: when the environment generates an input, both interfaces will receive it
and take the corresponding input transition. However, interfaces do not synchronize on
shared outputs: as an example,D1 andD2 do not synchronize on the output eventfire!
in their productD1⊗D2 (Figure 2(b)). The idea is that, in an asynchronous model, inde-
pendent components issue their output asynchronously, so that synchronization cannot
happen. As usual, interfaces do not synchronize on non-shared actions.

In the product of two interfaces, we distinguish betweengoodandbad states. A
state isgood if all the outputs produced by one component can be accepted as inputs
by the other component; a state is bad otherwise. For instance, in the productC⊗D1

(Figure 2(a)), the states〈2,2〉 and〈3,2〉 arebad, since from state 2 the detectorD1 can
issuefire!, and this cannot be matched by an input transitionfire? neither from state 2
nor from state 3 of the control unit.

A state of the product iscompatibleif there is an Input strategy that can avoid
all bad states: this means that starting from that state, there is an environment under
which the component interfaces interact correctly. The composition of two interfaces is
obtained by removing all incompatible states from the product. The compositionC‖D1

of C andD1 is depicted in Figure 3(a), and the composition ofC‖D1‖D2 is depicted
in Figure 3(b). Notice that in the compositionC‖D1‖D2, oncesmoke1 (resp.smoke2) is
received,smoke2 (resp.smoke1) is not allowed. This behavior results from the design of
the control unit which cannot accept more than one “smoke-input” before issuingFD!.

Multi-way communication.In a sociable interface, the same action can label both input
and output transitions: this is illustrated, for instance,by actionfire in Figures 1(b)
and 1(c). Indeed, sociable interfaces do not have separate input and output transition

fire?

smoke1?

3,1

2,1

1,1 1,2

2,3

3,3

1,3

fire?fire!

FD! FD!

(a)C‖D1

FD!

fire! fire?

FD!

1,2,1

2,3,1

3,3,1 3,1,1

2,1,1

1,1,1

smoke2?

fire!

FD!

1,1,2

2,1,3

3,1,3

1,1,3

1,3,1

smoke1?

2,3,3

1,2,3 1,3,3

3,3,31,3,2

fire!

smoke1? smoke2?

fire?

fire?

fire?

fire!

FD!

(b)C‖D1‖D2

Fig. 3. Composition of the automataD1, D2, andC.

alphabets: rather, they have a singleaction alphabet,and actions in this alphabet can
label edges both as inputs, giving rise toinput transitions,and as outputs, giving rise to
output transitions.For example, the actionfire at state 2 ofD1 corresponds to both an
output, and to an input transition: this indicates thatD1 can generate outputfire, while at
the same time being composable with other interfaces that generatefire as output (such
asD2). Thus, if an actiona is in the alphabet of an interface, there are four cases:

– If a is not associated with any transition, then the interface neither outputsa, nor
can it be composed with other interfaces that do.

– If a is associated with output transitions only, then the interface can generatea, but
it cannot be composed with interfaces that also outputa.

– If a is associated with input transitions only, then the interface can receivea, but
not output it.

2

send!

3

produce?

1

ack?

(a) Se: Sender

3

ack!

2

consume!

send?

1

(b) Re: Receiver

Fig. 4.A simple communication protocol.

– If a is associated with both input and output transitions, then the interface can gen-
eratea, and it can be composed with other interfaces that do.

We notice how these four cases all arise in an uniform way fromour interpretation
of input and output edges. All of these cases have a use in system modeling: the fire
detector example illustrated the non-exclusive generation of outputs, the next example
illustrates exclusive generation.

Figure 4 depicts a simple communication protocol. In this protocol, the senderSe,
after receiving information from the environment (labelproduce?), sends this informa-
tion to the receiver (labelsend!), and awaits for an acknowledge (labelack?). The lack
of input edges labeled withsendin Se, and the lack of input edges labeled withack in
Re indicate that the communication channel betweenSeandRe is not shared: onlySe
can generatesendactions, and onlyRecan generateackactions.

2.2 Definitions

Given two setsA andB, we denote withA ⇒ B the set ofnondeterministic functions
from A to B, that is:A→ 2B.

Definition 1 (Sociable Interface Automaton).A sociable interface automaton(au-
tomaton for short) is a tupleM = (Act,S,τ I ,τO,ϕ I ,ϕO), where:

– Act is a set ofactions.
– S is a set ofstates.
– τ I : Act×S ⇒ S is theinput transition function.
– τO : Act×S ⇒ S is theoutput transition function.
– ϕ I ⊆ S is theinput invariant.
– ϕO ⊆ S is theoutput invariant.

We requireτ I to be deterministic, that is: for alls∈ Sanda∈ Act, |τ I (a,s)| ≤ 1.

For alls∈Sanda∈Act, we definêτ I (a,s) = τ I (a,s)∩ϕ I , andτ̂O(a,s) = τO(a,s)∩ϕO.
Together,S, τ I andτO define a graph whose edges are labeled with actions inAct. As
it was already informally done in the examples of Section 2.1, we therefore depict
interface automata as graphs. To distinguish input from output transitions, we add a tag
at the end of the name of the action: as in process algebra notation, we add “?” for input
transitions and “!” for output transitions. In all examples, it holdsϕ I = ϕO = S.

Example 1.Figure 1(b) is a graphical representation of a 3-state automaton whose ac-
tions arefire, andsmoke1. For instance, from state 2, the automaton can take an input
transitionfire?, as well as an output transitionfire!.

The semantics of a sociable interface automaton can be described in terms of a
game between two players, Input and Output, played over the graph representation of
the automaton. At each round, from the current state in the graph, the Input player
chooses an outgoing input edge, and the Output player chooses an outgoing output
edge. In order to ensure that both players always have an enabled move, we introduce
a special move∆0 which, when played, gives rise to astuttering step, that is, a step
that does not change the current state of the automaton. Furthermore, we postulate that
player Output (resp. Input) can choose only edges that lead to states where the output
(resp. input) invariant holds. Thus, input and output invariants are used to restrict the
set of moves available to the players; their true usefulnesswill become clearer when
considering interfaces with variables, i.e.modules.

In the remaining of this section, we consider a fixed sociableinterface automaton
M = (ActM,SM,τ I

M,τO
M,ϕ I

M ,ϕO
M). The sets of enabled moves can be defined as follows.

Definition 2 (Moves).For alls∈ SM, the set of moves for player Input ats is given by:

Γ I (M,s) = {∆0}∪{〈a,s′〉 ∈ ActM ×SM | s′ ∈ τ̂ I
M(a,s)}.

Similarly, the set of moves for player Output ats is given by:

Γ O(M,s) = {∆0}∪{〈a,s′〉 ∈ ActM ×SM | s′ ∈ τ̂O
M(a,s)}.

Example 2.Consider the automatonD1 of Example 1, we have thatΓ I (D1,1) =
{∆0,〈fire,1〉, 〈smoke1,2〉}, andΓ O(D1,2) = {∆0,〈fire,3〉}.

At each game round, both players choose a move from the corresponding set of enabled
moves. The outcome of their choice is defined as follows.

Definition 3 (Move Outcome). For all statess∈ SM and movesmI ∈ Γ I (M,s) and
mO ∈ Γ O(M,s), the outcomeδ (M,s,aI ,aO) ∈ SM of playing mI andmO at s can be
defined as follows, according to whethermI and mO are ∆0 or a move of the form
〈a,s′〉.

δ (M,s,∆0,∆0) = {s}, δ (M,s,∆0,〈a,s′〉) = {s′},

δ (M,s,〈a,s′〉,∆0) = {s′}, δ (M,s,〈a,s′〉,〈b,t ′〉) = {s′,t ′}.

A strategyrepresents the behavior of a player in the game. A strategy isa function that,
given the history of the game, i.e., the sequence of states visited in the course of the
game, yields one of the player’s enabled moves.

For s∈ SM, we define the set offinite runsstarting froms as the setRuns(M,s) ⊆
S∗M of all finite sequencess0s1s2 . . .sn, such thats0 = s, and for all 0≤ i < n, si+1 ∈
δ (M,si ,mI ,mO), for somemI ∈ Γ I (M,si), mO ∈ Γ O(M,si). We also setRuns(M) =⋃

s∈SM
Runs(M,s).

Definition 4 (Strategy).A strategyfor playerp∈ {I ,O} in an automatonM is a func-
tion π p : Runs(M) → ActM ∪{∆0} that associates, with every runσ ∈ Runs(M) whose
final state iss, a moveπ p(σ) ∈ Γ p(M,s). We denote byΠ I

M andΠO
M the set of input

and output strategies forM, respectively.

An input and an output strategy jointly determine asetof outcomesin Runs(M).

Definition 5 (Strategy Outcome).Given a states∈ SM, an input strategyπ I ∈ Π I
M

and an output strategyπO ∈ ΠO
M, the setoutcomeŝδ (M,s,π I ,πO) of π I andπO from

s consists of all finite runsσ = s0s1s2 . . .sn such thats = s0, and for all 0≤ i < n,
si+1 ∈ δ (M,si ,π I (σ0:i),πO(σ0:i)), whereσ0:i denotes the prefixs0s1s2 . . .si of σ .

Definition 6 (Winning States).Given a states∈ SM and a goalγ ⊆ Runs(M,s), we
say thats is winning for input with respect toγ, and we writes∈ WinI (M,γ), iff there
is π I ∈ Π I

M such that for allπO ∈ ΠO
M, δ̂ (M,s,π I ,πO) ⊆ γ. Similarly, we say thats is

winningfor output with respect toγ, and we writes∈ WinO(M,γ), iff there isπO ∈ ΠO
M

such that for allπ I ∈ Π I
M, δ̂ (M,s,π I ,πO) ⊆ γ.

A state of an automaton iswell-formedif both players have a strategy to always sat-
isfy their own invariant. Following temporal logic notation, for all X ⊆ SM, we de-
note by2X the set of all runs inRuns(M) all whose states belong toX. Formally,
2X = {s0s1s2 . . .sn ∈ Runs(M) | ∀0≤ i ≤ n .si ∈ X}.

Definition 7 (Well-formed State). We say that a states∈ SM is well-formediff s∈
WinI (M,2ϕ I

M)∩WinO(M,2ϕO
M).

Notice that ifs is well-formed, thens∈ ϕ I
M ∩ϕO

M.

Definition 8 (Normal Form). We say that M is in normal form iff ϕ I
M =

WinI (M,2ϕ I
M), andϕO

M = WinO(M,2ϕO
M).

Given an automatonM1, we can define an automatonM2 such that the well-formed
portion of M1 coincides with the one ofM2, and M2 is in normal form. Let
M1 = (Act1,S1,τ I

1,τO
1 ,ϕ I

1,ϕO
1), we setM2 = (Act1,S1,τ I

2,τO
2 ,ϕ I

2,ϕO
2), where,ϕ I

2 =
WinI (M1,2ϕ I

1) and ϕO
2 = WinI (M1,2ϕO

1). Thus, in the following, unless differently
specified, we only consider automata in normal form.

Definition 9 (Well-formed Automaton). We say thatM is well-formediff it is in nor-
mal form, andϕ I

M ∩ϕO
M 6= /0.

Lemma 1. If M is in normal form, then it holds:

∀s∈ ϕ I
M .∀a∈ Γ O(M,s) . τ̂O

M(a,s) ⊆ ϕ I
M

∀s∈ ϕO
M .∀a∈ Γ I (M,s) . τ̂O

M(a,s) ⊆ ϕO
M.

Proof. For the first statement, by contradiction, suppose there iss ∈ ϕ I
M and a ∈

Γ O(M,s) such that̂τO
M(a,s) 6⊆ ϕ I

M. Thens 6∈WinI (M,2ϕ I
M), because there is no way for

the Input player to prevent outputa to be carried out (see Definition 3). This contrasts
with the assumption thatM is in normal form. The second statement can be proven
along similar lines.

2.3 Compatibility and Composition

In this subsection, we define the composition of two automataM1 =
(Act1,S1,τ I

1,τ
O
1 ,ϕ I

1,ϕ
O
1) and M2 = (Act2,S2,τ I

2,τ
O
2 ,ϕ I

2,ϕ
O
2). We first define the

product betweenM1⊗M2 as the classical automata-theoretic product, whereM1 and
M2 synchronize on shared actions and evolve independently on non-shared ones. We
then identify a set of incompatible states whereM1 can do an output transition that
is not accepted byM2 or vice-versa. Finally, we obtain the compositionM1‖M2 from
M1⊗M2 by strengthening the input assumptions ofM1⊗M2 in such a way thatM1 and
M2 mutually satisfy their input assumptions.

Definition 10. We define the set of shared actions ofM1 andM2 by:

Shared(M1,M2) = Act1∩Act2.

The product of two automataM1 andM2 is an automatonM1 ⊗M2, representing the
joint behavior ofM1 andM2. Similarly to other interface models, for each shared ac-
tion, the output transitions ofM1 synchronize with the input transitions ofM2, and
symmetrically, the output transitions ofM2 are synchronized with the input transitions
of M1. This models communication, and gives rise to output transitions in the product.
The input transitions ofM1 andM2 corresponding to shared actions are also synchro-
nized, and lead to input transitions in the product. Output transitions, on the other hand,
are not synchronized. If bothM1 andM2 can emit a shared actiona, they do so asyn-
chronously, so that their output transitions interleave. As usual, the automata interleave
asynchronously on transitions labeled by non-shared actions.

Definition 11 (Product). The product M1 ⊗ M2 is the automaton M12 =
(Act12,S12,τ I

12,τ
O
12,ϕ

I
12,ϕ

O
12), consisting of the following components.

– Act12 = Act1∪Act2; S12 = S1×S2.

– ϕ I
12 = ϕ I

1×ϕ I
2; ϕO

12 = ϕO
1 ×ϕO

2 .

– Fora∈ Shared(M1,M2),

〈s′,t ′〉 ∈ τO
12(a,〈s,t〉) iff

{
s′ ∈ τO

1 (a,s) andt ′ ∈ τ I
2(a,t) or

t ′ ∈ τO
2 (a,t) ands′ ∈ τ I

1(a,s)

〈s′,t ′〉 ∈ τ I
12(a,〈s,t〉) iff s′ ∈ τ I

1(a,s) andt ′ ∈ τ I
2(a,t).

– Fora∈ Act1\Act2,

〈s′,t〉 ∈ τO
12(a,〈s,t〉) iff s′ ∈ τO

1 (a,s)

〈s′,t〉 ∈ τ I
12(a,〈s,t〉) iff s′ ∈ τ I

1(a,s).

– Fora∈ Act2\Act1,

〈s,t ′〉 ∈ τO
12(a,〈s,t〉) iff t ′ ∈ τO

2 (a,t)

〈s,t ′〉 ∈ τ I
12(a,〈s,t〉) iff t ′ ∈ τ I

2(a,t).

Example 3.The sociable interface automaton depicted in Figure 2(a) isthe product
C⊗D1 of the automata depicted in Figures 1(a) and 1(b). For instance, the input transi-
tion fire? from state〈1,1〉 to state〈2,1〉 is obtained by combining the input transition
fire? from state 1 to state 2 inC with the input transitionfire? from state 1 to state 1 in
D1. The output transitionFD! from state〈1,2〉 to state〈2,3〉 is obtained by combining
the input transitionfire? from state 1 to state 2 inC with the output transitionfire! from
state 2 to state 3 inD1.

We have the following theorem.

Theorem 1. The product is a commutative and associative operation, up to isomor-
phism.

The productM12 = M1⊗M2 may contain states in which one of the components, say
M1, can do an output transition labeled by a shared action whilethe other component
cannot do the corresponding input transition. This constitutes a violation of the input
assumptions ofM2. We formalize such notion by introducing alocal compatibilitycon-
dition. To this end, forp∈ {I ,O}, we denote byEnp(M,a) the set of states ofM where
the actiona is enabled as input ifp = I , and as output ifp = O. Formally,

Enp(M,a) = {s∈ SM | τ̂ p
M(a,s) 6= /0}.

Definition 12 (Local Compatibility). Given〈s,t〉 ∈ S12, 〈s,t〉 ∈ good(M1,M2) iff, for
all a∈ Shared(M1,M2) the following conditions hold:

s∈ EnO(M1,a) ⇒ t ∈ EnI (M2,a)

t ∈ EnO(M2,a) ⇒ s∈ EnI (M1,a).

Example 4.Consider the productC⊗D1 of Example 4. The state〈3,2〉 does not satisfy
the Local Compatibility condition because, from state 2,D1 can issue an output tran-
sition fire!, and this cannot be matched by an input transitionfire? from state 3 of the
control unit.

The composition ofM1 andM2 is obtained from the productM1⊗M2 by strengthening
the input assumptions ofM1⊗M2 to avoid states that are not ingood(M1,M2). This is
done by restricting the input invariantϕ I

12 as shown in the next definition. The reason
for restricting only the input behavior is that, when composing automata, only their
input assumptions can be strengthened to ensure that no incompatibility arises, while
their output behavior cannot be modified.

Definition 13 (Composition). AssumeM1 andM2 are compatible. Thecomposition
M1‖M2 is a sociable interface automaton identical toM1⊗M2, except thatϕ I

M1‖M2
=

ϕ I
12∩WinI (M12,2(ϕ I

12∩good(M1,M2))).

Definition 14 (Compatibility). We say thatM1 and M2 are compatibleif ϕ I
M1‖M2

∩

ϕO
M1‖M2

6= /0.

The following theorem states that once the input transitionrelations have been strength-
ened, the automaton is in normal form: it is not necessary to also strengthen the output
transition relations. This result thus provides a sanity check, since strengthening the
output transitions means restricting the output behavior of the interfaces, which is not
reasonable.

Theorem 2. If M1 and M2 are compatible, and they are in normal form, then M1‖M2

is in normal form.

The following result implies that the automata can be composed in any order.

Theorem 3. The composition is a commutative and associative operation, up to iso-
morphism.

3 Sociable Interfaces with Variables

3.1 Preview

In modeling systems and designs, it is often valuable to havea notion of global state,
which can be read and updated by the various components of thesystem. A common,
and flexible, paradigm consists in having the global state consist of a value assignment
to a set of global variables. Once the global state is represented by global variables, it
is natural to encode also the local state of each component via (local) variables.

Previous interface models, such as interface automata [6, 8] and interface modules
[7, 3] were based on either actions, or variables, but not both. In sociable interfaces,
however, we want to have both: actions to model synchronization, and variables to
encode the global and local state of components. In this, sociable interfaces are closely
related to theI/O Automata Language(IOA) of [11].

Interface models are games between Input and Output, and in the models, it is es-
sential that Input and Output are able to choose their moves independently from one
another. To this end, in previous interface formalisms withvariables, the variables were
partitioned intoinputandoutputvariables [7, 3]. A move of Input consisted in choosing
the next value of the input variables, and a move of Output consisted in choosing the
next value of the output variables: this ensured the independence of the moves. Conse-
quently, interfaces sharing output variables could not be composed, and in a composite
system, every variable that was not input from the environment was essentially “owned”
by one of the component interfaces, which was the only one allowed to modify its value.

In sociable interface modules, we can leverage the presenceof actions in order to
achieve a more general setting, in which variables can be modified by more than one

print?

s= 0

ack?

print?

s= 1

user′ = 1

∨ ack?

∧ size′ = nondet
∧ busy= F
∧ print!

(a)U1: User 1

ack!

print?

busy= Tbusy= F

(b) P: Printer.

Fig. 5. Informal depiction of the user process and printer interface modules.

module. Informally, the model is as follows. With each action, we associate a set of
variables that can be modified by the action, as well as an output and an input transition
relation that describe the ways in which the variables can bemodified when the com-
ponent, or its environment, output the action. When the Output player takes an action
a, the output transition relation associated witha specifies how the player can update
the variables associated witha. Symmetrically, when the Input player takes an action
a, the input transition relation associated witha specifies what changes to the variables
associated witha can be accepted by the module.

When modules are composed, actions synchronize in the same way as they do in
sociable interface automata. When an output eventa! of moduleM synchronizes with an
input eventa? of moduleN, we must check that all variable updates that can accompany
a! from M are acceptable toN, that is, that the output transition relation associated with
a in M respects the constraints specified by the input transition relation associated with
a in N. Empty transition relations are used to rule out the possibility of taking an action
as output or input.

3.2 An Example: Modeling a Print Server

We illustrate the main features of sociable interface modules through a very simple ex-
ample: a model of a shared print server. The model consists ofmodules representing
the print server, as well as user processes that communicatewith the server to print
jobs. The modules composing this example are depicted in an intuitive fashion in Fig-
ure 5; the actual input to the tool TIC for this model is given in Figure 6, and it will be
described later.

The user moduleU1 (Figure 5(a)) communicates via two actions: an actionprint,
whose output represents a print request, and an actionack, whose input represents an
acknowledgment. When generatingprint as an output,U1 updates the global variables
userandsize, which indicate the user who issued the request, and the sizeof the request.
The print serverP (Figure 5(b)) synchronizes onackandprint, and also updates a global
state variablebusy, indicating whether the printer is busy. To ensure compatibility, the
user module checks thatbusy= F before printing. In addition, to ensure compatibility
in presence of multiple user modules, the user module ignores inputsack when idle

(s = 0), as these acknowledgments are directed to other users, and ignores all inputs
print, as these correspond to input requests from other users.

3.3 Definitions

We assume a fixed setV of variables. All variables inV are interpreted over a given
domainD . GivenV ⊆ V , a stateoverV is a mappings : V → D that associates with
eachx ∈ V a values(x) ∈ D . For a set of variablesU ⊆ V, and a states∈ [[V]], the
restriction ofs to U is a statet ∈ [[U]] denoted ass[U]. For two disjoint sets of variables
V1 andV2, and two statess1 ∈ [[V1]] ands2 ∈ [[V2]], the operation(s1 ◦ s2) composes the
two states resulting in a new states= s1 ◦ s2 ∈ [[V1∪V2]], such thats(x) = s1(x) for all
x∈V1 ands(x) = s2(x) for all x∈V2.

Our formal model with variables is called asociable interface module. It is con-
venient to define sociable interface modules with respect toa predicate representation.
Given a setV of variables, we denote byPreds(V) the set of first-order predicate for-
mulas with free variables inV; we assume that these predicates are written in some
specified first-order language with interpreted function symbols and predicates; in our
tool, the language contains some arithmetic operators, relational symbols, and boolean
connectives. Given a set of variablesV, we letV ′ = {x′ | x∈V} be the set consisting of
primed versions of variables inV. A variablex′ ∈V ′ represents thenext valueof x∈V.
Given a formulaψ ∈ Preds(V) and a states∈ [[V]], we writes |= ψ if the predicate for-
mulaψ is true when its free variables are interpreted as specified by s. Given a formula
ρ ∈ Preds(V ∪V ′) and two statess,s′ ∈ [[V]], we write〈s,s′〉 |= ρ if the formulaρ holds
when its free variablesx ∈ V are interpreted ass(x), and its free variablesx′ ∈ V ′ are
interpreted ass′(x). Given a setU of variables, we define the formula:

Unchgd(U) =
∧

x∈U

(x′ = x),

which states that the variables inU do not change their value in a transition. Given a
predicateψ ∈ Preds(V), we denote byψ ′ the predicate obtained by substitutingx with
x′ in ψ , for all x∈V.

With these definitions, we can define sociable interface modules as follows.

Definition 15 (Sociable Interface Module).A sociable interface module(module, for
short) is a tupleM = (Act,VG,VL,VH ,W,ρ IL ,ρ IG,ρO,ψ I ,ψO), where:

– Act is a set ofactions.
– VG is a set ofglobal variables, VL is a set oflocal variables, andVH ⊆ VG is

a set ofhistory variables. We requireVL ∩VG = /0. We setVall = VL ∪VG and
V = VL ∪VH .

– W : Act ⇒ Vall associates with eacha∈ Act the set of variablesW(a) ⊆Vall that
can be modified bya; we requireVL ⊆W(a).

– For eacha ∈ Act, the predicateρ IL(a) ∈ Preds(Vall ∪ (Vall)′) is the input local
transition predicatefor a. We require this transition predicate to bedeterministic
w.r.t. variables inVL, that is, for alla∈ Act, all s∈ [[Vall]], and allt ∈ [[(VG)′]], there
is a uniqueu∈ [[(VL)′]] such thats◦ t ◦u |= ρ IL(a).

– For eacha ∈ Act, the predicateρ IG(a) ∈ Preds(Vall ∪ (VG)′) is the input global
transition predicatefor a.

– For eacha∈ Act, the predicateρO(a)∈ Preds(Vall∪W(a)′) is theoutput transition
predicatefor a.

– ψ I ∈ Preds(Vall) is theinput invariant predicate.
– ψO ∈ Preds(Vall) is theoutput invariant predicate.

A stateis a value assignment toVall; we denote the set of states of the module by
S= [[Vall]]. The invariant predicates define invariants

ϕ I = {s∈ S| s |= ψ I}, ϕO = {s∈ S| s |= ψO}.

As a shorthand, for alla∈ Act we letρ I (a) = ρ IL(a)∧ρ IG(a), and we define

ρ̂ I (a) = ρ I (a)∧ (ψ I)′

ρ̂O(a) = ρO(a)∧ (ψO)′∧Unchgd(Vall \W(a)).

Notice thatρ̂ I (a) andρ̂O(a) are predicates overVall ∪ (Vall)′.
In our model, each module owns a set of local variables, that describe the internal

state of a component. We distinguish a setVH of historyvariables, and a setVG\VH of
history-freevariables. A module must be aware of all actions that can modify its history
variables (see, in the following, thenon-interferencecondition in Definition 19). On
the other hand, history-free variables can be modified by environment actions that are
not known to the module. The distinction between the historyand history-free global
variables is thus used to limit the amount of actions a moduleshould include; this point
will be clarified when we will discuss module composability.

The definitions of the input and output transition relationsare similar to those of
Section 2. We require the input transition relation to be deterministic on local variables.
This assumption corresponds to the assumption, in the modelwithout variables, that
input transitions are deterministic. In fact, we will see that when an output and an input
transitions synchronize, it is the output transition that selects the next value of the global
variables, and the input transition is used only to determine the next value of the local
variables.

In the remainder of this section we consider a fixed moduleM =
(ActM,VG

M ,VL
M,VH

M ,WM,ρ IL
M ,ρ IG

M ,ρO
M,ψ I

M,ψO
M), and we setVM = VL

M ∪VH
M , Vall

M = VL
M ∪

VG
M , and correspondingly for the shorthandsρ̂ I

M andρ̂O
M.

Definition 16 (Set of States).The set of states of the sociable interface moduleM is
given bySM = [[Vall

M]].

The sets of moves for players Input and Output are defined as follows. Note that, when
Input plays the move∆0, Input can also choose a new assignment to the history-free
variables. This models the fact that history-free variables can be modified by environ-
ment actions that are not known to the module.

Definition 17 (Moves). The setsΓ I (M,s) andΓ O(M,s) of Input and Output moves at
s∈ SM are defined as follows:

Γ I (M,s) ={∆0}×{s′ ∈ [[Vall
M]] | s′[VM] = s[VM]}∪

{〈a,s′〉 ∈ ActM × [[Vall
M]] | 〈s,s′〉 |= ρ̂ I

M(a)}

Γ O(M,s) ={∆0}∪{〈a,s′〉 ∈ ActM × [[Vall
M]] | 〈s,s′〉 |= ρ̂O

M(a)}.

The outcome of the moves are as follows.

Definition 18 (Move Outcome). For all statess∈ SM and movesmI ∈ Γ I (M,s) and
mO ∈ Γ O(M,s), theoutcomeδ (M,s,mI

,mO) ⊆ SM of playingmI andmO at s can be
defined as follows.

δ (M,s,〈∆0,s
′〉,∆0) = {s′}, δ (M,s,〈∆0,s

′〉,〈a,t ′〉) = {s′,t ′},

δ (M,s,〈a,s′〉,∆0) = {s′}, δ (M,s,〈a,s′〉,〈b,t ′〉) = {s′,t ′}.

The definitions of run, strategy, strategy outcome, winningstate and well-formedness
are similar to the ones given in Section 2.

3.4 The Printer Example, Continued

Figure 6 presents our print-server example, encoded in the actual input language of the
tool TIC. The system consists of the global variablesbusy, size, user, of a printer mod-
ule, and of two user modules. In each module, we give the set ofhistory-free variables
(calledstatelessin the language of the tool); the set of global variables of the module is
simply inferred as the set of global variables that appear anywhere in the module.

The modulePrinter communicates via two actions,ackandprint. The transition
predicates of these actions are specified using a guarded-commands syntax, similar to
[4, 1]. Each guarded command has the formguard⇒ command, whereguardandcom-
mandare formulas written over the set of primed and unprimed variables. A guarded
commandguard⇒ commandcan be taken when its guard is true; when taken,com-
mandspecify how the variables are updated. For instance, the output transitionprint
in moduleUser1 can be taken whens= 0 andbusy= F , and it leads to a state where
s= 1 anduser= 1. The value ofsizein the destination state is nondeterministic.

When specifying sociable interface modules in the tool TIC,we use several short-
hands to make the notation more pleasant:

– When we do not specify the input or output transition relation for an action, the
omitted transition relations are assumed to be false. For example, the actionack
has no input transition relation in the printer: this specifies that no other module
should be able to emit it. Similarly, the actionackhas no output transition relation
in the user modules, specifying that modules do not generateit.

– When we specify a transition relation via an empty guarded command, the guard is
assumed to be always true, and the command is as follows:
• Output transition relations, and local part of input transitions:no variables are

changed.

var busy: bool; // global variable indicating a printer busy

var size: [0..10]; // size of the print job

var user: [0..5]; // user who requested the job

module Printer:

output ack { busy ==> not busy’; }

// ack? is not allowed

input print { global: not busy ==> busy’; }

endmodule

module User1:

var s: [0..1];

stateless size, user;

output print { s = 0 & not busy ==>

s’ = 1 & user’ = 1 & nondet size’; }

input print { } // print? is allowed and ignored

input ack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore ack? when s=0

endmodule

module User2:

var s: [0..1];

stateless size, user;

output print { s = 0 & not busy ==>

s’ = 1 & user’ = 2 & nondet size’; }

input print { } // print? is allowed and ignored

input ack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore ack? when s=0

endmodule

Fig. 6.TIC input modeling a simple print server.

• Global part of input transitions:the transition relation is considered to betrue,
so that all state changes are accepted.

– In a guarded commandguard⇒ command, whenguard is missing, it is assumed
to be true. Ifcommandis missing, then:
• Output transitions, and local part of input transitions:no variables are

changed.
• Global part of input transitions:the transition relation is considered to betrue,

so that all state changes are accepted.
– In output transitions, and in the local part of input transitions, variables that are

not mentioned primed in thecommandportion of a guarded commandguard⇒
commanddo not change their value.

As a more elaborate example, in Figure 7 we present the code ofa print server that
can accept or reject jobs, depending on their length.

3.5 Compatibility and Composition

We now describe the composition of two modules. Due to the presence of variables,
this process is more involved than the one presented in Section 2.

The composition of two modulesM1 andM2 is defined in four steps, in a similar
way as stated in [9]. First, we define whenM1 and M2 are composable, and in the
affirmative case, we define theirproduct M1⊗M2. On the resulting product module, we
identify a set ofbad states:these are the states whereM1 (resp.M2) can produce an
output that is not accepted byM2 (resp.M1). Finally, thecomposition M1‖M2 of M1 and
M2 is obtained from the productM1⊗M2 by strengthening the input transition relations
of M1⊗M2 in such a way that all bad states are avoided.

In the following, we consider two modulesM1 and M2, where Mi =
(Acti ,VG

i ,VL
i ,VH

i ,Wi ,ρ IL
i ,ρ IG

i ,ρO
i ,ψ I

i ,ψO
i), for i = 1,2, and we letVi = VL

i ∪VH
i and

Vall
i = VL

i ∪VG
i .

We say that two modulesM1 andM2 arecomposableif they have disjoint sets of
local variables, and if they satisfy anon-interferencecondition, stating that if an action
of a module can modify a state variable of the other, then the action is shared. This
condition ensures that the set of actions of a module includes all the actions that can
modify its state variables. This condition is essential formodular reasoning. It ensures
that composition does not add behaviors: all changes in the state ofM1 caused by mod-
ules with whichM1 is composable can be already explained by the input transitions
associated with actions ofM1.

Definition 19 (Composability). Two sociable interface modulesM1 andM2 arecom-
posableiff VL

1 ∩VL
2 = /0 and if the followingnon-interferenceconditions hold:

∀a∈ Act2 . W2(a)∩V1 6= /0 =⇒ a∈ Act1
∀a∈ Act1 . W1(a)∩V2 6= /0 =⇒ a∈ Act2.

The non-interference condition is the main justification for distinguishing between
the sets of history and history-free variables. The non-interference condition states that

var busy: bool; // global variable indicating a printer busy

var size: [0..10]; // size of the print job

var user: [0..5]; // user who requested the job

module Printer:

output ack { busy & size < 5 ==> not busy’; } // accept if size < 5

// ack? is not allowed

output nack { busy & size > 4 ==> not busy’; } // reject if size > 4

// nack? is not allowed

input print { global: not busy ==> busy’; }

endmodule

module User1:

var s: [0..1];

stateless size, user;

output print { s = 0 & not busy ==>

s’ = 1 & user’ = 1 & nondet size’; }

input print { } // print? is allowed and ignored

input ack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore ack? when s=0

input nack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore nack? when s=0

endmodule

module User2:

var s: [0..1];

stateless size, user;

output print { s = 0 & not busy ==>

s’ = 1 & user’ = 2 & nondet size’; }

input print { } // print? is allowed and ignored

input ack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore ack? when s=0

input nack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore nack? when s=0

endmodule

Fig. 7. TIC input modeling a print server that rejects large jobs.

a module should know all actions of other modules that modifyits history variables. If
we dropped the distinction, requiring that a module knows all actions of other modules
that can change any of its variables (history or history-free), we could greatly increase
the number of actions that must be known to the module.

As an example, consider a set of modules{Ni}i∈{1..100}. Each module has an action
ai whose output transition relation setsindexto i, andx to some content, whereindexand
x are global variables shared among allN1, . . . ,N100. If moduleNi does not need to keep
track of the value ofindexandx, as these variables are used as outputs only, then we can
let index 6∈VNi andx 6∈VNi , even though of courseindex,x∈Vall

Ni
. The non-interference

condition forNi , stated in terms ofVNi , will not requireNi to know abouta j for i 6= j.
This keeps the model ofNi simple and concise and, even more importantly, enables us
to modelNi before we know exactly how many other modules there are that can modify
indexandx. Dropping the distinction betweenVNi andVall

Ni
, on the other hand, would

force eachNi to have all the actionsa1, . . . ,a100 in its set of actions, greatly complicating
the model, and forcing us to know in advance how many components there are, before
each of the components can be modeled. Similarly, if a modulereads a variablex, but
does not need to know how and when the value ofx is changed, then the variablex can
be declared to be history-free, so that the module does not have to know all the actions
that can modifyx. Hence, the distinction between history and history-free variables is
at the heart of our “sociable” approach to compositional modeling.

We define the product of two sociable interface modulesM1 andM2 as follows.

Definition 20 (Product). Assume thatM1 andM2 are composable. Theproduct M1⊗
M2 is the interfaceM12 = (Act12,VG

12,V
L
12,V

H
12,W12,ρ IL

12,ρ IG
12 ,ρO

12,ψ
I
12,ψO

12), defined as
follows.

– Act12 = Act1∪Act2.

– VG
12 = VG

1 ∪VG
2 ; VL

12 = VL
1 ∪VL

2 ; VH
12 = VH

1 ∪VH
2 ; Vall

12 = Vall
1 ∪Vall

2 .

– W12(a) =

{
W1(a)∪W2(a) for a∈ Shared(M1,M2)

Wi(a) for a∈ Acti \Act3−1, i ∈ {1,2}.

– ψ I
12 = ψ I

1∧ψ I
2; ψO

12 = ψO
1 ∧ψO

2 .

– Fora∈ Shared(M1,M2), we let:

ρO
12(a) =

=

ρO
1 (a)∧ρ IL

2 (a)∧Unchgd(W12(a)\ (W1(a)∪VL
2))

∨

ρO
2 (a)∧ρ IL

1 (a)∧Unchgd(W12(a)\ (W2(a)∪VL
1))

ρ IL
12(a) = ρ IL

1 (a)∧ρ IL
2 (a)

ρ IG
12(a) = ρ IG

1 (a)∧ρ IG
2 (a).

– For i ∈ {1,2} anda∈ Acti \Act3−i we let:

ρO
12(a) = ρO

i (a)

ρ IL
12(a) = ρ IL

i (a)∧Unchgd(VL
3−i)

ρ IG
12 (a) = ρ IG

i (a)∧Unchgd(VH
3−i).

We have the following result.

Theorem 4. Product between modules is a commutative and associative operation.

Similarly to Definition 12, we identify a set of locally incompatible states of the product
M1⊗M2.

Definition 21 (Local Compatibility). Given s∈ [[Vall
12]], we say thats is good iff it

satisfies the predicategood(M1,M2), defined as follows:

good(M1,M2) =

=
∧

a∈Shared(M1,M2)

∀(Vall
12)′ .

((
ρ̂O

1 (a)∧Unchgd(VG
2 \W1(a))

)
=⇒ ρ̂ IG

2 (a)
)

∧

∀(Vall
12)′ .

((
ρ̂O

2 (a)∧Unchgd(VG
1 \W2(a))

)
=⇒ ρ̂ IG

1 (a)
)

.

Using this condition, the compositionM1‖M2 is obtained fromM1⊗M2 by restricting
the input invariant ofM12 to the set of well-formed states from where input has a strat-
egy to always stay in the good statesgood(M1,M2), in analogy with Definition 13.

Theorem 5. Composition between modules is a commutative and associative opera-
tion.

4 Refinement

We wish to define a refinement relation between modules, such that whenM1 re-
fines M2, M1 can be used as a replacement forM2 in any context. First, some
conditions should hold on the set of variables that the modules manipulate. In the
following, M1 and M2 are two modules in normal form. Fori ∈ {1,2}, let Mi =
(Acti ,VG

i ,VL
i ,VH

i ,Wi ,ρ IL
i ,ρ IG

i ,ρO
i ,ψ I

i ,ψO
i), Vi = VH

i ∪VL
i andSi = [[Vi]]. The setsActi ,

VG
i , VH

i , andWi jointly define thesignatureof a moduleMi .

Definition 22 (Signature). The signatureSign(Mi) of a moduleMi = (Acti ,VG
i ,VL

i ,

VH
i ,Wi ,ρ IL

i ,ρ IG
i ,ρO

i ,ψ I
i ,ψO

i), is the tuple(Acti ,VG
i ,VH

i ,Wi).

The following result shows that signature equality preserves composability. It can be
proved by inspecting Definition 19.

Theorem 6. Let N1,N2, and N3 be three modules, such that the Sign(N1) = Sign(N2),
and N2 and N3 are composable. For i∈ {1,2,3}, let VL

i be the set of local variables of
Ni . If VL

1 ∩VL
3 = /0, then N1 and N3 are composable.

To replaceM2, M1 should also behave like it, from the point of view of the environment.
As usual in a game-theoretic setting such as ours, this constraint is captured byalter-
nating simulation[2]. Intuitively, M1 must be willing to accept at least all the inputs
thatM2 accepts, and it should emit a subset of the outputs emitted byM2.

Definition 23 (Alternating Simulation). Assume thatSign(M1) = Sign(M2). A rela-
tion�⊆ S1×S2 is analternating simulationiff s� t implies:

1. s[VG
1] = t[VG

1];

2. for all a∈ Act1 and for allt ′ ∈ S2 such that〈t,t ′〉 |= ρ̂ I
2(a) there existss′ ∈ S1 such

that〈s,s′〉 |= ρ̂ I
1(a) ands′ � t ′;

3. for all a∈ Act1 and for alls′ ∈ S1 such that〈s,s′〉 |= ρ̂O
1 (a) there existst ′ ∈ S2 such

that〈t,t ′〉 |= ρ̂O
2 (a) ands′ � t ′.

We say thats is similar tot, and we writesv t, if there exists an alternating simulation
� such thats� t. Similarity is itself a simulation (the coarsest one). ForM1 to refine
M2, M1 andM2 should have the same signature, and each well-formed state of M2 must
be similar to some well-formed state ofM1.

Definition 24 (Refinement). We say thatM1 refines M2 iff (i) Sign(M1) = Sign(M2),
and(ii) for all t |= ψ I

2∧ψO
2 there iss |= ψ I

1∧ψO
1 such thatsv t.

Theorem 7. Let N1,N2, and N3 be three modules, such that N1 refines N2, and N2 and
N3 are compatible. For i∈ {1,2,3}, let VL

i be the set of local variables of Ni . If VL
1 ∩

VL
3 = /0, then N1 and N3 are compatible.

We now introduce the related concept ofbisimilarity. Bisimilarity between two modules
captures the intuitive concept that the environment cannotdistinguish the two modules.

Definition 25 (Alternating Bisimulation). Assume thatSign(M1) = Sign(M2). A re-
lation≈⊆ S1×S2 is analternating bisimulationiff it is a symmetricalalternating sim-
ulation.

We say thats and t are bisimilar, and we writes∼= t, if there exists an alternating
bisimulation≈ such thats≈ t.

Definition 26 (Bisimilarity). We say thatM1 andM2 arebisimilar iff (i) Sign(M1) =
Sign(M2), and(ii) for all t |= ψ I

2∧ψO
2 there iss |= ψ I

1∧ψO
1 such thats∼= t, and for all

s |= ψ I
1∧ψO

1 there ist |= ψ I
2∧ψO

2 such thats∼= t.

Theorem 8. Let N1,N2, and N3 be three modules, such that N1 is bisimilar to N2. For
i ∈ {1,2,3}, let VL

i be the set of local variables of Ni . If VL
1 ∩VL

3 = /0 and VL
2 ∩VL

3 = /0,
then N1 and N3 are compatible iff N2 and N3 are compatible.

5 Symbolic Implementation

In this section, we examine the problem of efficiently implementing the following op-
erations:(i) module composition,(ii) verification of safety properties of modules (such
as well-formedness), and(iii) refinement and bisimilarity checking between modules.

Consider the moduleM = (ActM,VG
M ,VL

M,VH
M ,WM,ρ IL

M ,ρ IG
M ,ρO

M,ψ I
M,ψO

M), and set
Vall

M = VL
M ∪VG

M .
A well-established technique for efficiently implementingfinite transition systems

is based on MDDs [12, 14]. MDDs are graph-like data structures that allow us to repre-
sent and manipulate functions of the typeA→ {T,F}, for a finite setA (i.e. predicates
overA). Therefore, we assume that the variable domainD is finite, and we represent the
predicatesρ IL

M , ρ IG
M , ρO

M, ψ I
M, andψO

M as MDDs. We now show that all the operations
involved in computing the composition of modules, checkingtheir well-formedness,
checking safety properties, and checking refinement are computable on MDDs.

5.1 Safety Games

A basic operation on modules is computing the set of winning states for a playerp ∈
{I ,O} w.r.t. a safety goal, that isWinp(M,2ϕ), for some setϕ ⊆ [[Vall

M]]. The operations
of checking well-formedness, putting a module in normal form, and computing the
composition of two modules, are all reducible to solving safety games.

By abuse of notation, we denote byWinp(M,2ϕ) both the set of states it denotes,
and its characteristic function, which is a predicate overVall

M .
It is well known that such set of winning states can be characterized as a fix-point

of an equation involving the so-calledcontrollable predecessors operators. For a player
p ∈ {I ,O} and a predicateX ∈ Preds(Vall

M), the operatorCprep(X) returns the set of
states from which playerp can force the game intoX in one step, regardless of the
opponent’s moves. Formally, we have the following definition.

Definition 27 (Controllable Predecessor Operator).For a predicateX ∈Preds(Vall
M),

we have:

CpreI (X) = ∃mI ∈ Γ I (M,s) .∀mO ∈ Γ O(M,s) .∀t ∈ δ (M,s,mI
,mO) . t |= X

CpreO(X) = ∃mO ∈ Γ O(M,s) .∀mI ∈ Γ I (M,s) .∀t ∈ δ (M,s,mI
,mO) . t |= X.

Intuitively, CpreI (X) (resp.CpreO(X)) holds true for the states from which the Input
(resp. Output) player has a move that leads toX for each possible counter-move of the
Output (resp. Input) player. For allϕ ∈ Preds(Vall

M), we have:

WinI (M,2ϕ) = νX. [ϕ ∧CpreI (X)]

WinO(M,2ϕ) = νX. [ϕ ∧CpreO(X)],

whereνX . f (X) denotes the greatest fixpoint of the operatorf . SinceCpreI (·) is mono-
tonic, the above fixpoints exist and can be computed by Picarditeration:

X0 = ϕ , Xi+1 = ϕ ∧CpreI (Xi), . . . Xn = Xn+1 = WinI (M,2ϕ). (1)

We now show how to computeCpreI (X) starting from the MDD representation ofM.
Considering Definition 18, in order for a states to satisfyCpreI (X), two conditions
must hold. First, every output transition should lead toX. Second, eithers |= X, in
which case Input can play〈∆0,s〉, or there must be an input transition that leads toX.
This observation allows us to expressCpreI (X) as follows:

CpreI (X) = ∀PreO(X)∧∃PreI (X),

where

∀PreO(X) =
∧

a∈ActM

∀(Vall
M)′ . (ρ̂O

M(a) ⇒ X′)

∃PreI (X) = X∨
(
∃(Vall

M)′ .X′∧Unchgd(VH
M ∪VL

M)
)
∨

∨

a∈ActM

∃(Vall
M)′ . (ρ̂ I

M(a)∧X′).

Since boolean operations and quantifications of variables are computable on MDDs, the
operators above are computable. In a dual fashion,CpreO(X) can be computed from the
non-game operators∀PreI (·) and∃PreO(·).

We can improve the efficiency of computingWinI (M,2ϕ), by observing that,
since (1) is a decreasing sequence, it holds thatνX. [ϕ ∧CpreI (X)] = νX. [ϕ ∧X ∧
CpreI (X)]. SinceX∧CpreI (X) = X∧∀PreO(X), we obtain

WinI (M,2ϕ) = νX. [ϕ ∧X∧∀PreO(X)] = νX. [ϕ ∧∀PreO(X)].

In conclusion, we can then computeWinI (M,2ϕ) by iterating∀PreO(·) instead of
the more complicatedCpreI (·). A similar argument holds for the computation of
WinO(M,2ϕ).

5.2 Composition

By inspecting Definition 20, it is clear that computing the product of two modules
M1 andM2 only involves simple boolean operations on the predicates that define the
modules. Such operations are computable on MDDs.

To obtain the compositionM1‖M2, according to Definition 13, the in-
put invariant ψ I

12 of the product must be conjoined with the predicate
WinI (M1⊗M2,2(ψ I

12∧good(M1,M2)). To compute the above winning set, we first
compute the predicategood(M1,M2) following Definition 21, and then solve the safety
game as explained in Section 5.1.

5.3 Refinement

Let M1 and M2 be two modules in normal form, such thatSign(M1) = Sign(M2).
For i ∈ {1,2}, let Mi = (Act,VG,VL

i ,VH ,W,ρ IL
i ,ρ IG

i ,ρO
i ,ψ I

i ,ψO
i), Vall

i = VG∪VL
i and

Si = [[Vall
i]]. Assume for simplicity thatVL

1 ∩VL
2 = /0. We wish to compute the coarsest

alternating simulationv betweenS1 andS2. Consider the predicateψv over the set of

variablesVall
1 ∪Vall

2 , defined as the greatest fixpoint of the operatorSimPre(·), defined
as follows. For allX ∈ Preds(Vall

1 ∪Vall
2), we have

SimPre(X) = X∧
∧

a∈Act
∀(Vall

2)′ .∃(VL
1)′ .

(
ρ̂ I

2(a) =⇒ ρ̂ I
1(a)∧X′

)

∧
∧

a∈Act
∀(Vall

1)′ .∃(VL
2)′ .

(
ρ̂O

1 (a) =⇒ ρ̂O
2 (a)∧X′

)
.

The operatorSimPre(·), and consequently its fixpointψv, can be computed from the
MDD representation ofM1 andM2. The following result states thatψv can be used
to trivially obtainv. The result can be proven by induction, observing thatSimPre(·)
represents conditions 2 and 3 of Definition 23.

Theorem 9. Given s∈ S1 and t∈ S2, sv t iff s[VG] = t[VG] and s◦ t[VL
2] |= ψv.

A similar algorithm can be used to compute the coarsest bisimulation∼=.

6 Comparison with Previous Interface Models

The sociable interface model presented in this paper is closely related to theI/O Au-
tomata Model(IOA) of [11]: sociable interfaces synchronize on actions and use vari-
ables to encode the state of components. However, sociable interfaces diverge fromI/O
Automatain several ways. UnlikeI/O Automata, where every state must be receptive to
every possible input event, sociable interfaces allow states to forbid some input events.
By not accepting certain inputs, sociable interfaces express the assumption that the en-
vironment never generates these inputs: hence, sociable interfaces (like other interface
models) model both the output behavior, and the input assumptions, of a component.
This approach implies a notion of composition (based on synthesizing the weakest en-
vironment assumptions that guarantee compatibility) which is not present in the I/O
Automata Model.

Interface models are the subject of many recent works. Previous interface models,
such as interface automata [6, 8] and interface modules [7, 3] were based on either ac-
tions, or variables, but not both. Sociable interfaces do not break new ground in the
conceptual theory of interface models. However, by allowing both actions and vari-
ables, they take advantage of the existing models and try to avoid their deficiencies.
The rest of this section is devoted to a quick presentation ofexisting interface models.

Variable-based interface formalisms.In variable-based interface formalisms, such as
the formalisms of [7, 3], communication is mediated by inputand output variables, and
the system evolves in synchronous steps. It is well known that synchronous, variable-
based models can also encode communication via actions [1]:the generation of an
outputa! is translated into the toggling of the value of an (output) boolean variablexa,
and the reception of an inputa? is encoded by forcing a transition to occur whenever the
(input) variablexa is toggled. This encoding is made more attractive by syntactic sugar
[1]. However, this encoding prevents the modeling of many-to-one and many-to-many
communication.

In fact, due to the synchronous nature of the formalism, a variable can be modified
at most by one module: if two modules modified it, there would be no simple way
to determine its updated value.6 Since the generation of an outputa! is modeled by
toggling the value of a boolean variablexa, this limitation indicates that an output action
can be emitted at most by one module. As a consequence, we cannot write modules that
can accept inputs from multiple sources: every module must know precisely which other
modules can provide inputs to it, so that distinct communication actions can be used.
The advance knowledge of the modules involved in communication hampers module
re-use.

Action-based interface formalisms.Action-based interfaces, such as the models of [6,
5, 8], enable a natural encoding of asynchronous communication. In previous proposal,
however, two interfaces could be composed only if they did not share output actions —
again ruling out many-to-one communication.

Furthermore, previous action-based formalisms lacked a notion of global variables
which are visible to all the modules of a system. Such global variables are a very pow-
erful and versatile modeling paradigm, providing a notion of global, shared state. Mim-
icking global variables in purely action-based models is rather inconvenient: it requires
encapsulating every global variable by a module, whose state corresponds to the value
of the variable. Read and write accesses to the variable mustthen be translated to ap-
propriate sequences of input and output actions, leading tocumbersome models.

References

1. R. Alur and T.A. Henzinger. Reactive modules.Formal Methods in System Design, 15:7–48,
1999.

2. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations.
In CONCUR 98: Concurrency Theory. 9th Int. Conf., volume 1466 ofLect. Notes in Comp.
Sci., pages 163–178. Springer-Verlag, 1998.

3. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Synchronous and bidirec-
tional component interfaces. InCAV 02: Proc. of 14th Conf. on Computer Aided Verification,
volume 2404 ofLect. Notes in Comp. Sci., pages 414–427. Springer-Verlag, 2002.

4. K.M. Chandy and J. Misra.Parallel Program Design: A Foundation. Addison-Wesley Pub-
lishing Company, 1988.

5. L. de Alfaro. Game models for open systems. InProceedings of the International Symposium
on Verification (Theory in Practice), volume 2772 ofLect. Notes in Comp. Sci.Springer-
Verlag, 2003.

6. L. de Alfaro and T.A. Henzinger. Interface automata. InProceedings of the 8th European
Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), pages 109–120. ACM Press, 2001.

7. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design. InEM-
SOFT 01: 1st Intl. Workshop on Embedded Software, volume 2211 ofLect. Notes in Comp.
Sci., pages 148–165. Springer-Verlag, 2001.

6 A possible way out would be to define that, in case of simultaneous updates, only one of the
updates occurs nondeterministically. This choice, however, would lead to a complex semantics,
and to complex analysis algorithms.

8. L. de Alfaro and T.A. Henzinger. Interface-based design.In Engineering Theories of Soft-
ware Intensive Systems, proceedings of the Marktoberdorf Summer School. Kluwer, 2004.

9. L. de Alfaro and M. Stoelinga. Interfaces: A game-theoretic framework to reason about open
systems. InFOCLASA 03: Proceedings of the 2nd International Workshop on Foundations
of Coordination Languages and Software Architectures, 2003.

10. Xavier Leroy. Objective caml. http://caml.inria.fr/ocaml/index.en.html.
11. N.A. Lynch.Distributed Algorithms. Morgan-Kaufmann, 1996.
12. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Al-

gebraic Decision Diagrams and Their Applications. InIEEE /ACM International Conference
on CAD, pages 188–191, Santa Clara, California, 1993. IEEE Computer Society Press.

13. Fabio Somenzi. Cudd: Cu decision diagram package.
http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html.

14. A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipu-
lation. InProceedings International Conference CAD (ICCAD-91), 1990.

