Sociable Interfaces

Luca de Alfard, Leandro Dias da SilVet, Marco Faella?, Axel Legay-*,
Pritam Roy, and Maria Sorea

1 School of Engineering, Universitity of California, Santeug, USA
2 Electrical Engineering Department, Federal Universit€afmpina Grande, Paraiba, Brazil
3 Dipartimento di Scienze Fisiche, Universita di Napoli tieeico 117, Italy
4 Department of Computer Science, University of Liége, Bety
5 School of Computer Science, University of Manchester, éthKingdom

Abstract. Interface formalisms are able to model both the input regoents

and the output behavior of system components; they supmoht Bottom-up

component-based design, and top-down design refinemethislpaper, we pro-
pose “sociable” interface formalisms, endowed with a riginpositional seman-
tics that facilitates their use in design and modeling. 8jpady, we introduce

interface models that can communicate via both actions laaekd variables, and
where communication and synchronization covers the feltspm, from one-to-
one, to one-to-many, many-to-one, and many-to-many. Thémkhe expressive
power of interface formalisms, this rich compositional s@tics can be realized
in an economical way, on the basis of a few basic principles.st\bw how the
algorithms for composing, checking the compatibility, aafining the resulting

sociable interfaces can be implemented symbolically,iteptb efficient imple-

mentations.

1 Introduction

Interface theories are formal models of communicatingesyst Compared to tradi-
tional models, the strength of interface theories lies girtability to model both the
input requirements, and the output behavior, of a systeris Jikies rise to a&ompat-
ibility test when interface models are composed: two interfacesoan@atible if there
is a way to use them (an environment) in which their input agsions are simultane-
ously satisfied. This ability to model input assumptions pravide a compatibility test
makes interface models useful in system design. In paaticiterface models support
both bottom-up, and top-down, design processes [6, 7]. lotiim-up direction, the
compatibility test can be used to check that portions of #&gh work correctly, even
before all the components are assembled in the final designtdp-down direction,
interface models enable the hierarchical decompositi@andgfsign specification, while
providing a guarantee that if the components satisfy thggc#ications, then they will
interact correctly in the overall implementation.

* This research was supported in part by the NSF CAREER awaRI-CI32780, by the ONR
grant NO0014-02-1-0671, by the ARP award TO.030.MM.D., Wwam@s from the Brazilian
government agencies CNPq and CAPES, and by a F.R.l.A Grant

In this paper we present interfaces models that can commtgnga both actions
and variables, and that provide one-to-one, many-to-ones;to-many, and many-to-
many communication and synchronization. We show that tbiscommunication se-
mantics can be achieved by combining a small number of basicapts, thanks to
the expressive power of interface models. This leads to #oram and conceptually
simple, communication model. We call this modetiable interfacesjnderlining the
ease with which these interfaces can be composed into mobléésign. While socia-
ble interfaces do not break new ground in the conceptuakryhebinterface models,
we hope that they constitute a useful step towards a prgdtitarface-based design
methodology.

In sociable interfaces, synchronization and communioadi® based on two main
ideas. The firstidea is that the same action can appear aslafddoth input and output
transitions: when the action labels output transitionsgans that the interface can emit
the action; when the action labels an input transition, iangethat the action can be
accepted if sent from other components. Depending on whé#tkeaction labels only
input transitions, only output transitions, or both kindui@nsitions, we have different
synchronization schemes. For instance, if an actias associated only with output
transitions, it means that the interface can eapibut cannot receive it, and thus it
cannot be composed with any other interface that emi@onversely, ifais associated
only with input transitions, it means that the interfaceegtea from other interfaces,
but will not emita. Finally, if a is associated both with input and output transitions, it
means that the interface can both eaiand accepa when emitted by other interfaces.

The second idea is that global variables do not belong toifsp&aterfaces: the
same global variable can be updated by multiple interfdoesn interface, the output
transitions associated with an action specifies how glodngisles can be updated when
the interface emits the action; the input transition asged with an action specifies
constraints on how other interfaces can update the globalblas when emitting the
action. By limiting the sets of variables whose value mustrheked by the interfaces,
and by introducing appropriate non-interference condéiamong interfaces, we can
ensure that interfaces can participate in complex comnatinit schemes with limited
knowledge about the other participants. In particulagrifisices do not need to know in
advance the number or identities of the other interfaceddhke part in communication
schemes. This facilitates component reuse, as the sanfaggenodel can be used in
different contexts.

We show that the compatibility and refinement of sociablerfaces can be checked
via efficient symbolic algorithms. We have implemented ¢éhafgorithms in a tool
called TIC (Tool for Interface Compatibility); the tool isritten in Ocaml [10], and
the symbolic algorithms for interface compatibility andimement are built on top of
the MDD/BDD Glue and Cudd packages [13, 12].

The paper is organized as follows. First, we introdseeiable interface automata,
which include actions, but not variables, and which are aemisociable” version of
the interface automata of [6, 8]. After illustrating the iears synchronization and com-
munication features for sociable interface automata, vaerthem with variables in
Section 3, obtainingociable interface moduleg/e describe the communication mech-
anisms of sociable interface modules via examples, and o Bbw the examples can

fire? fire?

fire? smoke? smoke?
fire? fire?
ED! fire! fire!
fire? fire?
(a)C: Control Unit (b) D1: Fire Detector 1 (c) Dy: Fire Detector 2

Fig. 1. Sociable interface automata for a fire detection and rampgystem.

be encoded in the input language of the tool TIC. The refin¢wiesociable interfaces
is discussed Section 4, and the symbolic implementatiom®fcomposition and re-
finement algorithms is in Section 5. We conclude with a consparbetween sociable
interfaces and previous interface formalisms.

2 Sociable Interface Automata

Social interfaces communicate via both actions and va&@biVe first illustrate how
sociable interfaces communicate via actions; in the nestimg we will augment them
with variables, obtaining the model implemented in the foi. We begin with an
informal, intuitive preview, which will motivate the defiions.

2.1 Preview

To provide some intuition on sociable interfaces, we preaarexample: a very simple
model of a fire detection and reporting system. The socialdgfaces for this example
are depicted in Figure ID; andD» are the fire detectors (there could be more), and
C is the control unit. When the fire detectddg and D, detect smoke (input events
smoke?,smoke?), they generate an output evding!. The control unit, upon receiving
the input evenfire?, issues a call for the fire department (output event). Similar

to the original interface model [6, 8], the input and outpansitions departing from a
state of a sociable interface denote the inputs that candeévesl, and the outputs that
can be generated, from that state. For instance, the sediablfaceC (Figure 1(a))
specifies that input evefite? can be accepted at state 1, but not at state 2.

Product and compositionTo compose two sociable interfaces, we first form their au-
tomata product. In the product, shared output/input e\suoish as the pafirelfire?in
Figure 1) synchronize: this models communication, or syoweization, initiated by the

(b) D1®D>

Fig. 2. Product of the automata,, D,, andC.

interface issuing the output transition. Similarly, twierfaces can also synchronize on
shared inputs: when the environment generates an inpuiimtetfaces will receive it
and take the corresponding input transition. Howeverriates do not synchronize on
shared outputs: as an exampg,andD, do not synchronize on the output evéing!

in their producD1 ® D, (Figure 2(b)). The idea is that, in an asynchronous modeé¢-in
pendent components issue their output asynchronousligas@ynchronization cannot
happen. As usual, interfaces do not synchronize on noreglzations.

In the product of two interfaces, we distinguish betwgeod and bad states. A
state isgoodif all the outputs produced by one component can be accegtéthats
by the other component; a state is bad otherwise. For instam¢he produc€ ® D1
(Figure 2(a)), the statd®,2) and(3,2) arebad since from state 2 the detectdj can
issuefire!, and this cannot be matched by an input transifi@? neither from state 2
nor from state 3 of the control unit.

A state of the product isompatibleif there is an Input strategy that can avoid
all bad states: this means that starting from that statee tisean environment under
which the component interfaces interact correctly. Thepasition of two interfaces is
obtained by removing all incompatible states from the pobdTihe compositiol©||D1
of C andD; is depicted in Figure 3(a), and the compositiorCdD, ||D; is depicted
in Figure 3(b). Notice that in the compositi@fiD1||D,, oncesmoke (resp.smoke) is
receivedsmoke (resp.smoke) is not allowed. This behavior results from the design of
the control unit which cannot accept more than one “smoketinbefore issuindg-D!.

Multi-way communicationIn a sociable interface, the same action can label both input
and output transitions: this is illustrated, for instanlbg,actionfire in Figures 1(b)
and 1(c). Indeed, sociable interfaces do not have sepamai® and output transition

(b) C[|D1|D2

Fig. 3. Composition of the automafdy, D,, andC.

alphabets: rather, they have a singldion alphabetand actions in this alphabet can
label edges both as inputs, giving risdnput transitionsand as outputs, giving rise to
output transitionsFor example, the actiofire at state 2 oD; corresponds to both an
output, and to an input transition: this indicates thatan generate outpfite, while at
the same time being composable with other interfaces thergésfire as output (such
asDy). Thus, if an actiorais in the alphabet of an interface, there are four cases:

— If ais not associated with any transition, then the interfadgthaeoutputsa, nor
can it be composed with other interfaces that do.

— If ais associated with output transitions only, then the iategfcan generate but
it cannot be composed with interfaces that also oudput

— If ais associated with input transitions only, then the integfaan receiva, but
not output it.

produce? send®

consume
ack?

send ack

(a) Se Sender (b) Re Receiver

Fig. 4. A simple communication protocol.

— If ais associated with both input and output transitions, theririterface can gen-
eratea, and it can be composed with other interfaces that do.

We notice how these four cases all arise in an uniform way foaminterpretation
of input and output edges. All of these cases have a use iarsystodeling: the fire
detector example illustrated the non-exclusive genaratfmutputs, the next example
illustrates exclusive generation.

Figure 4 depicts a simple communication protocol. In thistgecol, the sendeBe
after receiving information from the environment (lapebduce?, sends this informa-
tion to the receiver (labedend), and awaits for an acknowledge (lalagk?). The lack
of input edges labeled witbendin Se and the lack of input edges labeled wéabkin
Reindicate that the communication channel betw8eandReis not shared: onle
can generatsendactions, and onlyRecan generatackactions.

2.2 Definitions

Given two setA andB, we denote withA = B the set olmondeterministic functions
from A to B, that is:A — 2B.

Definition 1 (Sociable Interface Automaton).A sociable interface automatafau-
tomaton for short) is a tuplel = (Act, S ', 1°,¢', ¢°), where:

— Actis a set ofactions

— Sis a set ofstates

— 1" 1 Actx S = Sis theinput transition function
— 19 Actx S = Sis theoutput transition function
— ¢' C Sis theinput invariant

— ¢© C Sis theoutput invariant

We requiret' to be deterministic, that is: for adlc Sanda € Act, |T'(a,s)| < 1.

For alls€ Sanda < Act, we definet’ (a,s) = ' (a,5)N¢', andT©(a,s) = 1°(a,s) N ¢°.
TogetherS, 1! and1® define a graph whose edges are labeled with actioAsinAs

it was already informally done in the examples of Section %ué& therefore depict
interface automata as graphs. To distinguish input frompututansitions, we add a tag
at the end of the name of the action: as in process algebraomgtae add “?” for input
transitions and “!” for output transitions. In all examplésolds¢' = ¢© =S.

Example 1.Figure 1(b) is a graphical representation of a 3-state aatomwhose ac-
tions arefire, andsmoke. For instance, from state 2, the automaton can take an input
transitionfire?, as well as an output transitidine!.

The semantics of a sociable interface automaton can beildeddn terms of a
game between two players, Input and Output, played over dqghgrepresentation of
the automaton. At each round, from the current state in tla@tgrthe Input player
chooses an outgoing input edge, and the Output player ch@s®utgoing output
edge. In order to ensure that both players always have adeshadove, we introduce
a special move\y which, when played, gives rise tostuttering stepthat is, a step
that does not change the current state of the automatoindfarbre, we postulate that
player Output (resp. Input) can choose only edges that leathtes where the output
(resp. input) invariant holds. Thus, input and output ifatis are used to restrict the
set of moves available to the players; their true usefulmébdecome clearer when
considering interfaces with variables, irrodules

In the remaining of this section, we consider a fixed sociattlerface automaton
M = (Actv,Su, Ty, 79, Ol, 95)- The sets of enabled moves can be defined as follows.

Definition 2 (Moves).For alls€ Sy, the set of moves for player Inputsis given by:
r'(M,s) = {40} U{(a,s) € Acty x Su | § € Ty(a,9)}.

Similarly, the set of moves for player Outputsis given by:
roM,s) = {Ao} U{(a,s) € Acty x Su | § € 173(a,9)}.

Example 2.Consider the automatoB; of Example 1, we have tha‘f'(Dl,l) =
{ Ao, (fire, 1), (smoke, 2)}, andl ©(Dy,2) = { Ao, (fire,3)}.

At each game round, both players choose a move from the pomdig set of enabled
moves. The outcome of their choice is defined as follows.

Definition 3 (Move Outcome). For all statess € Sy and movesn' € I''(M,s) and
mP € r9(M,s), the outcomed(M,s,a',a®) € Sy of playingm' andmP at s can be
defined as follows, according to whethal and m® are Ag or a move of the form
(a,s).

5(M,s,Ag, Ag) = {s}, 3(M,s, Ao, (a,8)) = {s},
5(M,s, (a,g),40) = {g}, 3(M,s,(a,8), (b,t') = {s,t'}.

A strategyrepresents the behavior of a player in the game. A strategfuisction that,
given the history of the game, i.e., the sequence of statéediin the course of the
game, yields one of the player’s enabled moves.

Fors e Sy, we define the set dfnite runsstarting froms as the seRungM,s)
S of all finite sequencessiS,. .. s, such thatsp =s, and for all 0<i < n, 541
5(M,s,m’,m°), for somem' € I''(M,s), m° € F°(M,s). We also seRungM)
Uses, RUNEM; s).

Definition 4 (Strategy).A strategyfor playerp € {I,O} in an automatoiM is a func-
tion 7 : RungM) — Acty U {Ao} that associates, with every rane RungM) whose
final state iss, a mover®(o) € I P(M,s). We denote by}, and/1§ the set of input
and output strategies fdd, respectively.

-
€

An input and an output strategy jointly determinsediof outcomesn RungM).

Definition 5 (Strategy Outcome).Given a states € Sy, an input strategyt e I'I,{,I
and an output strategy® € 19, the setoutcomed(M, s, 7', °) of 7' and r° from
s consists of all finite rune = $$55...5, such thats = 5, and for all 0< i < n,
S.1€ 0(M,s, T (0p;i), ™°(0p;i)), wheredp; denotes the prefigs;s,...s of 0.

Definition 6 (Winning States).Given a states € Sy and a goaly C RungM;,s), we
say thats is winningfor input with respect toy, and we writes € Win' (M, y), iff there
is 7' €), such that for alin® € 12, 5(M,s, 7, i°) C y. Similarly, we say thas is
winningfor output with respect tg, and we writes € Win®(M, y), iff there is1© € na
such that for alt? € r1!,, 5(M,s, i, ©) C .

A state of an automaton isell-formedif both players have a strategy to always sat-
isfy their own invariant. Following temporal logic notatipfor all X C Sy, we de-
note byOX the set of all runs irRungM) all whose states belong 2. Formally,
OX = {s51%2-..Sn € RungM) | VO<i<n.s € X}.

Definition 7 (Well-formed State). We say that a statee Sy is well-formediff s €
win' (M, 0¢},) NWin°(M,0¢9).

Notice that ifsis well-formed, thers € ¢}, N $9.

Definition 8 (Normal Form). We say thatM is in normal form iff ¢, =
win' (M, 0¢},), andgQ = Win®(M,0¢9).

Given an automatoM;, we can define an automatdf, such that the well-formed
portion of M; coincides with the one oM,, and M, is in normal form. Let
My = (Act, Sy, 71,70, 91, 90), we setMp = (Acty, Sy, 70, 15, 95, ¢5), Where,) =
win' (M,0¢!) and 99 = Win' (M1, 0¢2). Thus, in the following, unless differently
specified, we only consider automata in normal form.

Definition 9 (Well-formed Automaton). We say thai is well-formediff it is in nor-
mal form, andg), N ¢ # 0.

Lemma 1. If M is in normal form, then it holds:

Vse ¢y, .Yae Fro(M,s).17(a,s) C oy
Vse g9 .Vac ' (M,s).73(a,s) C 939

Proof. For the first statement, by contradiction, suppose theredsg), and a €
O(M,s) such thati$(a,s) Z ¢),. Thens¢ Win' (M, 0¢},), because there is no way for
the Input player to prevent outpatto be carried out (see Definition 3). This contrasts
with the assumption tha¥l is in normal form. The second statement can be proven
along similar lines.

2.3 Compatibility and Composition

In this subsection, we define the composition of two automda =
(Act, Sy, 1}, 12,91,00) and My = (Ach, S, 1), 12, 5, ¢9). We first define the
product betweeM;®M, as the classical automata-theoretic product, wiéyeand
M, synchronize on shared actions and evolve independentipofshared ones. We
then identify a set of incompatible states whéfig can do an output transition that
is not accepted b, or vice-versa. Finally, we obtain the compositibh||M; from
M; ® M» by strengthening the input assumptiondvaf® M, in such a way thatl; and
M, mutually satisfy their input assumptions.

Definition 10. We define the set of shared actiondvbf andM, by:
SharedM1,Mz) = Acti NAct.

The product of two automatsl; and M, is an automato; ® My, representing the
joint behavior ofM; andM,. Similarly to other interface models, for each shared ac-
tion, the output transitions dfl; synchronize with the input transitions &, and
symmetrically, the output transitions bf, are synchronized with the input transitions
of M1. This models communication, and gives rise to output tteoms in the product.
The input transitions of; andM, corresponding to shared actions are also synchro-
nized, and lead to input transitions in the product. Outrartgitions, on the other hand,
are not synchronized. If botkl; andM, can emit a shared actia they do so asyn-
chronously, so that their output transitions interleave u8ual, the automata interleave
asynchronously on transitions labeled by non-sharedretio

Definition 11 (Product). The product M ® M, is the automatonMi, =
(Actiz, Si2, Thp, T, 915, 9), consisting of the following components.

— Actip = ActiUACh; So=S5xS.
— 9lo= 1%y L= PPx 97,
— Forae SharedM1,My),

g € 19(a,9) andt’ € th(a,t) or

(') e 1(a, (s 1)) iff {

(,t"y e thy(a, (st)) iff & €1i(a,s) andt’ € Th(a,t).

t' € 1(a,t) ands € ti(a,9)

— Forae Acty \ Acb,
(1) € 15(a, (s,t)) iff § € 12(as)
(1) € 1y5(a, (s,t)) iff § € 1](a,s).
— Forae Act \ Acty,
(st') e 12(a, (s t)) iff ' € D (at)
(s,t') € To(a, (s,t)) iff t' € Th(at).

Example 3.The sociable interface automaton depicted in Figure 2(ahasproduct
C®D; of the automata depicted in Figures 1(a) and 1(b). For iestahe input transi-
tion fire? from state(1, 1) to state(2,1) is obtained by combining the input transition
fire? from state 1 to state 2 i@ with the input transitioriire? from state 1 to state 1 in
D;. The output transitiofrD! from state(1, 2) to state(2,3) is obtained by combining
the input transitioriire? from state 1 to state 2 i@ with the output transitiofire! from
state 2 to state 3 iD;.

We have the following theorem.

Theorem 1. The product is a commutative and associative operation,ouigdmor-
phism.

The productM;»> = M1 ® M, may contain states in which one of the components, say
Mj, can do an output transition labeled by a shared action wihdether component
cannot do the corresponding input transition. This comsti a violation of the input
assumptions dfl,. We formalize such notion by introducindacal compatibilitycon-
dition. To this end, fop € {I, O}, we denote b¥n?(M, a) the set of states dfl where

the actionais enabled as input if = |, and as output ip = O. Formally,

EnP(M,a) = {s€ Su | T} (a,s) # 0}.

Definition 12 (Local Compatibility). Given(s,t) € Si2, (s,t) € good My, My) iff, for
all a€ SharedMi, M) the following conditions hold:

se En°(My,a) = t € En' (M, a)
t € En°(Mp,a) = s En' (My,a).

Example 4.Consider the produ€@®D; of Example 4. The stat8, 2) does not satisfy
the Local Compatibility condition because, from statd2,can issue an output tran-
sition fire!, and this cannot be matched by an input transifim® from state 3 of the
control unit.

The composition oM; andM; is obtained from the produdf; ® M, by strengthening
the input assumptions &fl; ® M, to avoid states that are notgood M1, M;). This is
done by restricting the input invariaqbl'12 as shown in the next definition. The reason
for restricting only the input behavior is that, when conipgsautomata, only their
input assumptions can be strengthened to ensure that nmpatibility arises, while
their output behavior cannot be modified.

Definition 13 (Composition). AssumeM; and M, are compatible. Theomposition
M1||M; is a sociable interface automaton identicaM@® M,, except tha‘t}b,'vllwvl2 =

$1,NWIn' (M2, 0(¢1,N good Mz, M2))).

Definition 14 (Compatibility). We say thatM; and M, are compatibleif ¢,'V|1HM2 N
¢'\(21HM2 #0.

The following theorem states that once the input transitiations have been strength-
ened, the automaton is in normal form: it is not necessarystosirengthen the output
transition relations. This result thus provides a sanitgath since strengthening the
output transitions means restricting the output behavidgh® interfaces, which is not

reasonable.

Theorem 2. If M1 and M, are compatible, and they are in normal form, then|[Mi,
is in normal form.

The following result implies that the automata can be coragas any order.

Theorem 3. The composition is a commutative and associative operatiprto iso-
morphism.

3 Sociable Interfaces with Variables

3.1 Preview

In modeling systems and designs, it is often valuable to lawetion of global state,
which can be read and updated by the various components sf#em. A common,
and flexible, paradigm consists in having the global statesist of a value assignment
to a set of global variables. Once the global state is reptedéyy global variables, it
is natural to encode also the local state of each compona(ibgal) variables.

Previous interface models, such as interface automatd #dinterface modules
[7, 3] were based on either actions, or variables, but ndb.hot sociable interfaces,
however, we want to have both: actions to model synchronizabnd variables to
encode the global and local state of components. In thigallecinterfaces are closely
related to thé/O Automata Languag@OA) of [11].

Interface models are games between Input and Output, ame imbdels, it is es-
sential that Input and Output are able to choose their mawespiendently from one
another. To this end, in previous interface formalisms wéhables, the variables were
partitioned intdnputandoutputvariables [7, 3]. A move of Input consisted in choosing
the next value of the input variables, and a move of Outpusisted in choosing the
next value of the output variables: this ensured the indépece of the moves. Conse-
quently, interfaces sharing output variables could notdyepmosed, and in a composite
system, every variable that was not input from the envirammas essentially “owned”
by one of the componentinterfaces, which was the only ongvelll to modify its value.

In sociable interface modules, we can leverage the presgrations in order to
achieve a more general setting, in which variables can bdfiaddy more than one

usef =1
A sizé = nondet

" A busy=F
print? ’ .
v acke A print! print? print?
‘Q ack? @ ackl
(a)Uq: User 1 (b) P: Printer.

Fig. 5. Informal depiction of the user process and printer interfamdules.

module. Informally, the model is as follows. With each actigve associate a set of
variables that can be modified by the action, as well as arubatp an input transition
relation that describe the ways in which the variables cambdified when the com-
ponent, or its environment, output the action. When the Qupfayer takes an action
a, the output transition relation associated watkpecifies how the player can update
the variables associated wigh Symmetrically, when the Input player takes an action
a, the input transition relation associated witBpecifies what changes to the variables
associated witla can be accepted by the module.

When modules are composed, actions synchronize in the saypasvthey do in
sociable interface automata. When an output eaesitmoduleM synchronizes with an
input even? of moduleN, we must check that all variable updates that can accompany
al from M are acceptable t, that is, that the output transition relation associatet wi
ain M respects the constraints specified by the input transiétaiion associated with
ain N. Empty transition relations are used to rule out the polisiloif taking an action
as output or input.

3.2 An Example: Modeling a Print Server

We illustrate the main features of sociable interface mesithrough a very simple ex-
ample: a model of a shared print server. The model consistsoaiules representing
the print server, as well as user processes that communigtitehe server to print
jobs. The modules composing this example are depicted intaitive fashion in Fig-
ure 5; the actual input to the tool TIC for this model is givarFigure 6, and it will be
described later.

The user modul&); (Figure 5(a)) communicates via two actions: an acpwaint,
whose output represents a print request, and an aatikrwhose input represents an
acknowledgment. When generatipdgnt as an outputJ; updates the global variables
userandsize which indicate the user who issued the request, and thefilae request.
The print serveP (Figure 5(b)) synchronizes atkandprint, and also updates a global
state variabldusy indicating whether the printer is busy. To ensure compayitthe
user module checks thbhtusy= F before printing. In addition, to ensure compatibility
in presence of multiple user modules, the user module igniogutsack when idle

(s= 0), as these acknowledgments are directed to other usetsgmaores all inputs
print, as these correspond to input requests from other users.

3.3 Definitions

We assume a fixed set of variables. All variables ir#” are interpreted over a given
domainZ. GivenV C ¥, astateoverV is a mapping:V — Z that associates with
eachx € V a values(x) € 2. For a set of variabled C V, and a state € [V]], the
restriction ofsto U is a state € [[U] denoted as[U]. For two disjoint sets of variables
Vi andV,, and two states; € [V1]] ands; € [V2]], the operatiorfs; o s;) composes the
two states resulting in a new stae- s; 0, € [Vh UV>]|, such thas(x) = s;(x) for all

x € Vy ands(x) = sp(x) for all x € V.

Our formal model with variables is calledsaciable interface modulét is con-
venient to define sociable interface modules with respeatgredicate representation.
Given a seV of variables, we denote byredgV) the set of first-order predicate for-
mulas with free variables iN; we assume that these predicates are written in some
specified first-order language with interpreted functiombypls and predicates; in our
tool, the language contains some arithmetic operatoijoabl symbols, and boolean
connectives. Given a set of variabMswe letV’ = {X' | x € V } be the set consisting of
primed versions of variables W. A variablex’ € V' represents theext valueof x € V.
Given a formulay € PredgV) and a stats € [V, we writes |= if the predicate for-
mula is true when its free variables are interpreted as specified ®iven a formula
p € PredgV UV’) and two states,s € [V]], we write(s,s') |= p if the formulap holds
when its free variables € V are interpreted as(x), and its free variables € V' are
interpreted as'(x). Given a set of variables, we define the formula:

UnchgdU) = A (X =x),

xeU

which states that the variableslihdo not change their value in a transition. Given a
predicate € PredgV), we denote by}’ the predicate obtained by substitutixgvith
X iny, forallxeV.

With these definitions, we can define sociable interface rresdas follows.

Definition 15 (Sociable Interface Module).A sociable interface modulenodule for
short) is a tupleM = (Act,VE V- VR W, p't p!C p© ', ¢O), where:

— Actis a set ofactions

— V@ is a set ofglobal variables V' is a set oflocal variables andvVH C VC is
a set ofhistory variables We requireV- NVC¢ = 0. We setvd =V UVC and
V=VvtuvH,

— W: Act = V@ associates with eahe Actthe set of variablew/(a) € V&' that
can be modified bg; we requirev™ C W(a).

— For eacha € Act, the predicatg'-(a) € PredgVa' U (V@'Y is theinput local
transition predicatefor a. We require this transition predicate to Beterministic
w.r.t. variables inv', that is, for alla € Act, all s [V@'], and allt € [(V®)'], there
is a uniqueu € [(V')'] such thasotou = p'-(a).

— For eacha € Act, the predicate'®(a) € PredgV2' U (VC)) is theinput global
transition predicatdor a.

— For eacha € Act, the predicat@®(a) € PredgV3' uW(a)’) is theoutput transition
predicatefor a.

— (' € PredgVv@) is theinput invariant predicate

— O e PredgVv@) is theoutput invariant predicate

A stateis a value assignment ¥?": we denote the set of states of the module by
S= [Vv2']. The invariant predicates define invariants

¢' ={seS|sEy'}, $°={seS|sky°}.
As a shorthand, for ath € Actwe letp' (a) = p't(a) A p'®(a), and we define

p'(@) =p' @A)
p°(a) = p°(a) A ($°)' A UnchgdV \ W(a)).

Notice thatp' (a) andp®(a) are predicates ov&f' U (vl

In our model, each module owns a set of local variables, taatribe the internal
state of a component. We distinguish a\éEtof historyvariables, and a s&t®\ V! of
history-freevariables. A module must be aware of all actions that can fpdadihistory
variables (see, in the following, theon-interferencecondition in Definition 19). On
the other hand, history-free variables can be modified byr@mment actions that are
not known to the module. The distinction between the historg history-free global
variables is thus used to limit the amount of actions a mosluteild include; this point
will be clarified when we will discuss module composability.

The definitions of the input and output transition relatiane similar to those of
Section 2. We require the input transition relation to bedwatnistic on local variables.
This assumption corresponds to the assumption, in the nvaitleut variables, that
input transitions are deterministic. In fact, we will seattivhen an output and an input
transitions synchronize, it is the output transition tleésts the next value of the global
variables, and the input transition is used only to deteentie next value of the local
variables.

In the remainder of this section we consider a fixed modde =
(Actw, VIS, Vi, Vil Wi, oir 00, o9, Wy, W9), and we seviy = Vi; UV, val = v u
V\&, and correspondingly for the shortharg|s andpg.

Definition 16 (Set of States).The set of states of the sociable interface moddilis
given bySu = [Vi3'].

The sets of moves for players Input and Output are definedlas/& Note that, when
Input plays the move, Input can also choose a new assignment to the history-free
variables. This models the fact that history-free varialdan be modified by environ-
ment actions that are not known to the module.

Definition 17 (Moves). The setd™! (M, s) andl"©(M, s) of Input and Output moves at
s e Su are defined as follows:

r'(M.s) ={4o} x {s € [V§'] | ¢ V] = slVw]}U
{(a,8) € Actw x [Vi'T | (.) = Pu(a)}
rOM,s) ={4o} U{(a.s) € Actw x [Vig'] | (s.S) = Pu(a)}-
The outcome of the moves are as follows.

Definition 18 (Move Outcome). For all statess € Sy and movesn' € I''(M,s) and
mP € r9(M,s), the outcomed(M,s,m',m°) C Sy of playingm' andm® ats can be
defined as follows.

5(M,S, <A0,SI>,A0) = {Sl}v 5(M,S, <A07sl>7 <avt/>) = {slvt/}a
d(M,s,(a,s),40) = {S'}, d(M;s (a,s), (bt')) = {d,t'}.

The definitions of run, strategy, strategy outcome, winrstaje and well-formedness
are similar to the ones given in Section 2.

3.4 The Printer Example, Continued

Figure 6 presents our print-server example, encoded indtu@kinput language of the
tool TIC. The system consists of the global varialidasy size user, of a printer mod-
ule, and of two user modules. In each module, we give the deistdry-free variables
(calledstatelessn the language of the tool); the set of global variables efrtfodule is
simply inferred as the set of global variables that appegwhsre in the module.

The modulePrinter communicates via two actionack andprint. The transition
predicates of these actions are specified using a guardadiands syntax, similar to
[4, 1]. Each guarded command has the fguard=- commangdwhereguardandcom-
mandare formulas written over the set of primed and unprimedaiaess. A guarded
commandguard = commandcan be taken when its guard is true; when talecam-
mandspecify how the variables are updated. For instance, theubtrtansitionprint
in moduleUser1 can be taken whes= 0 andbusy= F, and it leads to a state where
s=1 anduser= 1. The value ofizein the destination state is nondeterministic.

When specifying sociable interface modules in the tool M€,use several short-
hands to make the notation more pleasant:

— When we do not specify the input or output transition relatior an action, the
omitted transition relations are assumed to be false. Famele, the actiormck
has no input transition relation in the printer: this spesifihat no other module
should be able to emit it. Similarly, the actiack has no output transition relation
in the user modules, specifying that modules do not genérate

— When we specify a transition relation via an empty guardedroand, the guard is
assumed to be always true, and the command is as follows:

e Output transition relations, and local part of input tratisns: no variables are
changed.

var busy: bool; // global variable indicating a printer busy
var size: [0..10]; // size of the print job
var user: [0..5]; // user who requested the job

module Printer:

output ack { busy ==> not busy’; }
// ack? is not allowed

input print { global: not busy ==> busy’; }

endmodule

module Userl:
var s: [0..1];
stateless size, user;

output print { s = 0 & not busy ==
s’ = 1 & user’ = 1 & nondet size’; }
input print { } // print? is allowed and ignored
input ack { local: s =1 ==> s’ := 0;
else s ==> ; } // ignore ack? when s=0

|
o =

endmodule

module User2:
var s: [0..1];
stateless size, user;

output print { s = 0 & not busy ==
s’ = 1 & user’ = 2 & nondet size’; }
input print { } // print? is allowed and ignored

input ack { local: s =1 ==> 35’ := 0;
else s ==>; } // ignore ack? when s=0

|
o =

endmodule

Fig. 6. TIC input modeling a simple print server.

e Global part of input transitionsthe transition relation is considered totoee,
so that all state changes are accepted.
— In a guarded commarglard = commangwhenguardis missing, it is assumed
to be true. Iftcommands missing, then:
e Output transitions, and local part of input transitionsio variables are
changed.
e Global part of input transitionsthe transition relation is considered totbee,
so that all state changes are accepted.
— In output transitions, and in the local part of input traiesis, variables that are
not mentioned primed in theommandportion of a guarded commargliard =
commandlo not change their value.

As a more elaborate example, in Figure 7 we present the coagiaft server that
can accept or reject jobs, depending on their length.

3.5 Compatibility and Composition

We now describe the composition of two modules. Due to thegee of variables,
this process is more involved than the one presented indde2ti

The composition of two moduled; andM; is defined in four steps, in a similar
way as stated in [9]. First, we define whéfy and M, are composableand in the
affirmative case, we define thgiroduct M, ® Mz. On the resulting product module, we
identify a set ofbad statesthese are the states whevk (resp.M,) can produce an
output that is not accepted My (resp.Ms). Finally, thecomposition M||M, of M; and
Mz is obtained from the produdt; ® M by strengthening the input transition relations
of My ® M5 in such a way that all bad states are avoided.

In the following, we consider two module$!; and My, where M; =
(Act, VC VL VP W, ot plC. pO gl ¢i°), fori = 1,2, and we ley; = V- UVH and
Via” _ ViL UViG.

We say that two modulel§l; and M, arecomposabléf they have disjoint sets of
local variables, and if they satisfyreon-interferenceondition, stating that if an action
of a module can modify a state variable of the other, then thierais shared. This
condition ensures that the set of actions of a module incladlethe actions that can
modify its state variables. This condition is essentialrfadular reasoning. It ensures
that composition does not add behaviors: all changes int#te sfM; caused by mod-
ules with whichM; is composable can be already explained by the input transiti
associated with actions ;.

Definition 19 (Composability). Two sociable interface modul®é4; andM, arecom-
posableff V- NV} = 0 and if the followingnon-interferenceonditions hold:

Yae Act. Wo(a)NV1 £0 — a€ Ach
Yae Acti. Wi(a)NVo #0 — a € Act.

The non-interference condition is the main justificationdastinguishing between
the sets of history and history-free variables. The noarfatence condition states that

var busy: bool; // global variable indicating a printer busy
var size: [0..10]; // size of the print job
var user: [0..5]; // user who requested the job

module Printer:
output ack { busy & size < 5 ==> not busy’; } // accept if size < 5
// ack? is not allowed

output nack { busy & size > 4 ==> not busy’; } // reject if size > 4
// nack? is not allowed

input print { global: not busy ==> busy’; }
endmodule

module Userl:
var s: [0..1];
stateless size, user;

output print { s = 0 & not busy ==
s’ = 1 & user’ = 1 & nondet size’; }
input print { } // print? is allowed and ignored

input ack { local: s =1 ==> s’ := 0;
else s =0 ==> ; } // ignore ack? when s=0
input nack { local: s =1 ==> s’ := 0;
else s =0 ==> ; } // ignore nack? when s=0
endmodule

module User2:
var s: [0..1];
stateless size, user;

output print { s = 0 & not busy ==
s’ = 1 & user’ = 2 & nondet size’; }
input print { } // print? is allowed and ignored

input ack { local: s =1 ==> 35’ := 0;
else s =0 ==> ; } // ignore ack? when s=0
input nack { local: s =1 ==> s’ := 0;
else s =0 ==>; } // ignore nack? when s=0
endmodule

Fig. 7. TIC input modeling a print server that rejects large jobs.

a module should know all actions of other modules that mathfiistory variables. If
we dropped the distinction, requiring that a module knowaetions of other modules
that can change any of its variables (history or historg¥reve could greatly increase
the number of actions that must be known to the module.

As an example, consider a set of modul®ls}ic(1.100- Each module has an action
a; whose output transition relation sétslexto i, andx to some content, whemdexand
x are global variables shared amongMll . . ., Nigo. If moduleN; does not need to keep
track of the value oindexandx, as these variables are used as outputs only, then we can
letindex¢ Vi, andx ¢ Vi, even though of coursadex x € V,ﬁi”. The non-interference
condition forN;, stated in terms ¥, will not requireN; to know about; for i # j.
This keeps the model df; simple and concise and, even more importantly, enables us
to modelN; before we know exactly how many other modules there are Hratwdify
indexandx. Dropping the distinction betweevy, andV,f‘,i”, on the other hand, would
force eactN; to have all the actiona, . .. ,a;p0in its set of actions, greatly complicating
the model, and forcing us to know in advance how many comgsrikare are, before
each of the components can be modeled. Similarly, if a mochalds a variablg, but
does not need to know how and when the valur isfchanged, then the variabtean
be declared to be history-free, so that the module does wettbheknow all the actions
that can modifyx. Hence, the distinction between history and history-fragables is
at the heart of our “sociable” approach to compositional eliog.

We define the product of two sociable interface modiMesandM; as follows.

Definition 20 (Product). Assume thaM; andM, are composable. Thaoduct M ®
M, is the interfaceMiz = (Actiz, V5, Vi, VI3, Wiz, pl5, p1$, 02, i, 0S), defined as
follows.

— Act;o = Actj UACH.
- VS =VEuVe; VvhL=Viuvh vi=viuvl, val=valuval
Wi(a)UWs(a) for ae SharedMq, My)
- Wip(a) =)
W (a) forae Act\ Actz_1,i € {1,2}.
— W=y W YD =YPAYR.
— Forae SharedM1,My), we let:
pH(a) =
pO(a) A plt-(a) AUnchgdWaz(a) \ (Wa(a) UVY))
= \/
p9(a) A pl-(a) A UnchgdWiz(a) | (Wa(a) VL))

pi5(a) = p1-(a) A p5- (a)
pi5(a) = p1°(a) A p°(a).

— Fori € {1,2} anda € Act; \ Actz_; we let:
pix(@) = p(
pi5(a) = pi* (@) AUnchgdVs)

P15 (@) = p/®(a) AUnchgdV4!)).

a)

We have the following result.
Theorem 4. Product between modules is a commutative and associateetqn.

Similarly to Definition 12, we identify a set of locally incqratible states of the product
M1®@My.

Definition 21 (Local Compatibility). Givense [VA], we say thas is goodiff it
satisfies the predicaggood M1, M5), defined as follows:

good Mg, Mp) =
v(v3)'. ((P9(a) AUnchgdVs \Wi(@)) = pi(a))
- A A
acSharedMq,My) V(szn)’. ((ﬁg(a)/\Unchngf\Wg(a))) — b\:ILG(a))

Using this condition, the compositidvl; || Mz is obtained fromM;®Ma by restricting
the input invariant oM3; to the set of well-formed states from where input has a strat-
egy to always stay in the good staggsod M;, M), in analogy with Definition 13.

Theorem 5. Composition between modules is a commutative and assceiagiera-
tion.

4 Refinement

We wish to define a refinement relation between modules, sughwhenM; re-
fines My, M1 can be used as a replacement fds in any context. First, some
conditions should hold on the set of variables that the mesluhanipulate. In the
following, M; and M, are two modules in normal form. Fare {1,2}, let M; =
(Acti7VinViLvViHa\vapiILapilGapiov Ipilv’#io)' Vl :ViH UViL ands = [[VI]] The Setﬁcti'
V¢, VH, andwi jointly define thesignatureof a moduleM;.

Definition 22 (Signature). The signatureSignM;) of a moduleM; = (Act,V,®, VL,
\/iH 7VVI7piILapi|G7pioa wil) wio)v iS the tupldACtia\/iea\/iH 7VVI)

The following result shows that signature equality pressreomposability. It can be
proved by inspecting Definition 19.

Theorem 6. Let N;,N,, and Ny be three modules, such that the Sign) = Sign(Ny),
and N and Ny are composable. Forg {1,2,3}, let \/iL be the set of local variables of
Ni. If Vi NV5 = 0, then N and N; are composable.

To replaceMl,, M; should also behave like it, from the point of view of the eoniment.
As usual in a game-theoretic setting such as ours, this @ntis captured bwlter-
nating simulation[2]. Intuitively, M; must be willing to accept at least all the inputs
thatM, accepts, and it should emit a subset of the outputs emittédbby

Definition 23 (Alternating Simulation). Assume thaBignM;) = SignM,). A rela-
tion <X C § x S is analternating simulationff s <t implies:

L. sNE] =t

2. forallae Act and for allt’ € S such thatt,t’) = pi(a) there exists € S; such
that(s,s) |= p}(a) ands <t’;

3. forallae Act and for alls € S; such that's,s) = pO(a) there exists’ € S, such
that(t,t’) = p9(a) ands <t

We say thasis similar tot, and we writesC t, if there exists an alternating simulation
=< such thats <'t. Similarity is itself a simulation (the coarsest one). ®byr to refine
M>, M1 andM, should have the same signature, and each well-formed $thtg must
be similar to some well-formed state ;.

Definition 24 (Refinement). We say thaiM; refines M iff (i) Sign(M;) = SignMy,),
and(ii) for all t = @b A @9 there iss|= @} A @ such thas Ct.

Theorem 7. Let N, N, and Ny be three modules, such that Kfines N, and N and
N3 are compatible. For i {1,2,3}, let - be the set of local variables of Nf V| N
V3L =0, then N and N\; are compatible.

We now introduce the related concepbigimilarity. Bisimilarity between two modules
captures the intuitive concept that the environment cadistinguish the two modules.

Definition 25 (Alternating Bisimulation). Assume thaBignM;) = SignM,). A re-
lation~C S x S is analternating bisimulatioriff it is a symmetricablternating sim-
ulation.

We say thats andt are bisimilar, and we writes = t, if there exists an alternating
bisimulationa such thas ~ t.

Definition 26 (Bisimilarity). We say thaM; andM arebisimilar iff (i) Sign(M1) =
Sign(My), and(ii) for all t = @) A 2 there iss = @) A ¢ such thas=t, and for all
sk Yl AgP there ist = @) A g9 such thas > t.

Theorem 8. Let N, N, and Ny be three modules, such that I$ bisimilar to N.. For
i € {1,2,3}, let I* be the set of local variables of Nf V| NVE = 0 and & NV5 = 0,
then N and Ny are compatible iff M and Ny are compatible.

5 Symbolic Implementation

In this section, we examine the problem of efficiently impéarting the following op-
erations(i) module composition(ji) verification of safety properties of modules (such
as well-formedness), ar(di) refinement and bisimilarity checking between modules.

Consider the modul® = (Actw,V\&, Vi, Vi, W, ol 018, 09, Wy, 09), and set
Val =V uvg.

A well-established technique for efficiently implementiingjte transition systems
is based on MDDs [12, 14]. MDDs are graph-like data structtinat allow us to repre-
sent and manipulate functions of the tyhe~ {T,F}, for a finite setA (i.e. predicates
overA). Therefore, we assume that the variable dondais finite, and we represent the
predicatepir, P, PG, Wiy, andyS as MDDs. We now show that all the operations
involved in computing the composition of modules, checkiingir well-formedness,
checking safety properties, and checking refinement argoutable on MDDs.

5.1 Safety Games

A basic operation on modules is computing the set of winntates for a playep €
{1,0} w.r.t. a safety goal, that M/inP(M,0¢), for some sep C [[V3"]. The operations
of checking well-formedness, putting a module in normahfpand computing the
composition of two modules, are all reducible to solvingesafjames.

By abuse of notation, we denote kyin?(M,0¢) both the set of states it denotes,
and its characteristic function, which is a predicate &

It is well known that such set of winning states can be charamd as a fix-point
of an equation involving the so-calledntrollable predecessors operatoFor a player
p € {I,0} and a predicatX € PredgV3"), the operatoCpre”(X) returns the set of
states from which playep can force the game int¥ in one step, regardless of the
opponent’s moves. Formally, we have the following defimitio

Definition 27 (Controllable Predecessor Operator) For a predicatX € Prediv,('j,‘”),
we have:

Cpré (X) =3m e r'(M,s).vm° € F°(M,s). vt € 5(M,s,m,m°) .t = X
Cpre®(X) =3mP e ro(M,s).vm e r'(M,s). vt € 3(M,s,m,m°) .t = X.

Intuitively, Cpre (X) (respCpre®(X)) holds true for the states from which the Input
(resp. Output) player has a move that leadX tor each possible counter-move of the
Output (resp. Input) player. For ajl € PredgVd"), we have:

win' (M, 0¢) = vX. [¢ A Cpré (X)]
Win°(M,0¢) = vX. [¢p A Cpre®(X)],

wherevX . f(X) denotes the greatest fixpoint of the operdto®inceCpre (-) is mono-
tonic, the above fixpoints exist and can be computed by Pitenation:

Xo=¢, Xu1=0¢ACPre(X), ... Xo=Xop1=Win'(M,0¢). (1)

We now show how to comput@pre (X) starting from the MDD representation bf.
Considering Definition 18, in order for a staseo satisfy Cpre (X), two conditions
must hold. First, every output transition should leadXtoSecond, eithes = X, in
which case Input can pla§y,s), or there must be an input transition that leadXto
This observation allows us to expredpre (X) as follows:

Cpré (X) = VPre®(X) A 3Pré (X),
where

vPreP(X) = A V(v (B (@) = X))
acActy
IPre' (X) = XV (3. X" AUnchgd Vi Uvi) v \/ 3VEY - (Bw (@) AX).
acActy

Since boolean operations and quantifications of varialbees@mputable on MDDs, the
operators above are computable. In a dual fast@pmne® (X) can be computed from the
non-game operatokPre! (-) and3Pre®(-).

We can improve the efficiency of computingin' (M, 0¢), by observing that,
since (1) is a decreasing sequence, it holds théat[$ A Cpre (X)] = vX. [¢p AX A
Cpré (X)]. SinceX A Cpré (X) = X AVPre®(X), we obtain

win' (M, 0¢) = vX. [¢ AXAVPre®(X)] = vX. [¢ AVPreP(X)].

In conclusion, we can then computéin' (M,0¢) by iteratingVPre®(-) instead of
the more complicatecCprée (-). A similar argument holds for the computation of
WirP(M,0¢).

5.2 Composition

By inspecting Definition 20, it is clear that computing theguct of two modules
M; and M5 only involves simple boolean operations on the predicdtasdefine the
modules. Such operations are computable on MDDs.

To obtain the compositionM;||M,, according to Definition 13, the in-
put invariant 4"12 of the product must be conjoined with the predicate
win' (M; ® My, O(g}, A good My, My)). To compute the above winning set, we first
compute the predicagood M;, M>) following Definition 21, and then solve the safety
game as explained in Section 5.1.

5.3 Refinement

Let M; and Mz be two modules in normal form, such th8ignM;) = SignMy,).
Fori € {1,2}, letMj = (Act VCE V- VH W, p/t p!lC O ¢! O), v =vE UV and

S = [V"]. Assume for simplicity tha¥- NV} = 0. We wish to compute the coarsest
alternating simulatiofic betweerS; andS,. Consider the predicatg- over the set of

variablesv UV, defined as the greatest fixpoint of the oper&nPre-), defined
as follows. For alX € PredgV2 uVv2l), we have

SimPréX) = XA A\ V(VE) . 3(V) . (Ph(a) = py(a)AX')
acAct
AN VY S0 (BR() = p9(a) AX).
acAct

The operatoSimPrég-), and consequently its fixpoint-, can be computed from the
MDD representation oM; andM,. The following result states thai- can be used
to trivially obtain C. The result can be proven by induction, observing SiatPre-)
represents conditions 2 and 3 of Definition 23.

Theorem 9. Givense S and te S, sC t iff SV =t[V®] and sot|Vi] = yrc.

A similar algorithm can be used to compute the coarsest bisition=.

6 Comparison with Previous Interface Models

The sociable interface model presented in this paper i®loslated to thd/O Au-
tomata ModelIOA) of [11]: sociable interfaces synchronize on actionsl aise vari-
ables to encode the state of components. However, socrgbleices diverge frotdO
Automatan several ways. UnlikééO Automatawhere every state must be receptive to
every possible input event, sociable interfaces allovesttd forbid some input events.
By not accepting certain inputs, sociable interfaces esgtige assumption that the en-
vironment never generates these inputs: hence, sociabhfsices (like other interface
models) model both the output behavior, and the input assangy of a component.
This approach implies a notion of composition (based onr®giting the weakest en-
vironment assumptions that guarantee compatibility) Whécnot present in the 1/0
Automata Model.

Interface models are the subject of many recent works. usvinterface models,
such as interface automata [6, 8] and interface module§ {veB based on either ac-
tions, or variables, but not both. Sociable interfaces diobmeak new ground in the
conceptual theory of interface models. However, by allguioth actions and vari-
ables, they take advantage of the existing models and trydil dheir deficiencies.
The rest of this section is devoted to a quick presentatiaxisting interface models.

Variable-based interface formalismdn variable-based interface formalisms, such as
the formalisms of [7, 3], communication is mediated by inguitl output variables, and
the system evolves in synchronous steps. It is well knowhgachronous, variable-
based models can also encode communication via actionshid]generation of an
outputal is translated into the toggling of the value of an (outpuplkean variable,

and the reception of an inpa? is encoded by forcing a transition to occur whenever the
(input) variablex, is toggled. This encoding is made more attractive by syittacgar

[1]. However, this encoding prevents the modeling of mamwpie and many-to-many
communication.

In fact, due to the synchronous nature of the formalism, alée can be modified
at most by one module: if two modules modified it, there wouddrnim simple way
to determine its updated val@eSince the generation of an outpaitis modeled by
toggling the value of a boolean variablg this limitation indicates that an output action
can be emitted at most by one module. As a consequence, wetearite modules that
can accept inputs from multiple sources: every module mustprecisely which other
modules can provide inputs to it, so that distinct commuigcesactions can be used.
The advance knowledge of the modules involved in commuioicdtampers module
re-use.

Action-based interface formalisméction-based interfaces, such as the models of [6,
5, 8], enable a natural encoding of asynchronous commuaicah previous proposal,
however, two interfaces could be composed only if they didshare output actions —
again ruling out many-to-one communication.

Furthermore, previous action-based formalisms lackediamof global variables
which are visible to all the modules of a system. Such glohehkbles are a very pow-
erful and versatile modeling paradigm, providing a notibglobal, shared state. Mim-
icking global variables in purely action-based models isgainconvenient: it requires
encapsulating every global variable by a module, whose statesponds to the value
of the variable. Read and write accesses to the variable tineistbe translated to ap-
propriate sequences of input and output actions, leadingrtbersome models.

References

1. R. Alurand T.A. Henzinger. Reactive modul&rmal Methods in System Desjdirb:7-48,
1999.

2. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Athating refinement relations.
In CONCUR 98: Concurrency Theory. 9th Int. Conblume 1466 ol ect. Notes in Comp.
Sci, pages 163-178. Springer-Verlag, 1998.

3. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.CaMy. Synchronous and bidirec-
tional component interfaces. @AV 02: Proc. of 14th Conf. on Computer Aided Verification
volume 2404 oL ect. Notes in Comp. Scpages 414-427. Springer-Verlag, 2002.

4. K.M. Chandy and J. MisraParallel Program Design: A FoundatiorAddison-Wesley Pub-
lishing Company, 1988.

5. L. de Alfaro. Game models for open systemsPtaceedings of the International Symposium
on Verification (Theory in Practice)olume 2772 ofLect. Notes in Comp. Scepringer-
Verlag, 2003.

6. L. de Alfaro and T.A. Henzinger. Interface automata.Phoceedings of the 8th European
Software Engineering Conference and the 9th ACM SIGSOFPp&jiom on the Founda-
tions of Software Engineering (ESEC/FSgages 109-120. ACM Press, 2001.

7. L. de Alfaro and T.A. Henzinger. Interface theories fompmnent-based design. EM-
SOFT 01: 1st Intl. Workshop on Embedded Softweméume 2211 ot ect. Notes in Comp.
Sci, pages 148-165. Springer-Verlag, 2001.

6 A possible way out would be to define that, in case of simutiasaipdates, only one of the
updates occurs nondeterministically. This choice, howeveuld lead to a complex semantics,
and to complex analysis algorithms.

10.
11.
12.
13.

14.

. L. de Alfaro and T.A. Henzinger. Interface-based designEngineering Theories of Soft-

ware Intensive Systems, proceedings of the Marktoberdwoning&r SchooKluwer, 2004.

. L. de Alfaro and M. Stoelinga. Interfaces: A game-theorfeamework to reason about open

systems. IFFOCLASA 03: Proceedings of the 2nd International Workshopa@undations
of Coordination Languages and Software Architecty2803.

Xavier Leroy. Objective caml. http://caml.inria.fcaml/index.en.html.

N.A. Lynch. Distributed Algorithms Morgan-Kaufmann, 1996.

R.l. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Nj@ciPardo, and F. Somenzi. Al-
gebraic Decision Diagrams and Their ApplicationslEEE /ACM International Conference
on CAD, pages 188-191, Santa Clara, California, 1993. IEEE Coen@dciety Press.
Fabio Somenzi. Cudd: Cu decision diagram package.
http://visi.colorado.edu/ fabio/CUDD/cuddIntro.html.

A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algontk for discrete function manipu-
lation. InProceedings International Conference CAD (ICCAD;91990.

