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Abstract. The theory of graph games with ω-regular winning condi-
tions is the foundation for modeling and synthesizing reactive processes.
In the case of stochastic reactive processes, the corresponding stochastic
graph games have three players, two of them (System and Environment)
behaving adversarially, and the third (Uncertainty) behaving probabilis-
tically. We consider two problems for stochastic graph games: the qualita-

tive problem asks for the set of states from which a player can win with
probability 1 (almost-sure winning); the quantitative problem asks for
the maximal probability of winning (optimal winning) from each state.
We show that for Rabin winning conditions, both problems are in NP. As
these problems were known to be NP-hard, it follows that they are NP-
complete for Rabin conditions, and dually, coNP-complete for Streett
conditions. The proof proceeds by showing that pure memoryless strate-
gies suffice for qualitatively and quantitatively winning stochastic graph
games with Rabin conditions. This insight is of interest in its own right, as
it implies that controllers for Rabin objectives have simple implementa-
tions. We also prove that for every ω-regular condition, optimal winning
strategies are no more complex than almost-sure winning strategies.

1 Introduction

A stochastic graph game [5] is played on a directed graph with three kinds of
states: player-1, player-2, and probabilistic states. At player-1 states, player 1
chooses a successor state; at player-2 states, player 2 chooses a successor state;
and at probabilistic states, a successor state is chosen according to a given prob-
ability distribution. The result of playing the game forever is an infinite path
through the graph. If there are no probabilistic states, we refer to the game as
a 2-player graph game; otherwise, as a 21/2-player graph game. There has been
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a long history of using 2-player graph games for modeling and synthesizing re-
active processes [1, 14, 16]: a reactive system and its environment represent the
two players, whose states and transitions are specified by the states and edges
of a game graph. Consequently, 21/2-player graph games provide the theoretical
foundation for modeling and synthesizing processes that are both reactive and
stochastic [9, 15].

For the modeling and synthesis (or “control”) of reactive processes, one tra-
ditionally considers ω-regular winning conditions, which naturally express the
temporal specifications and fairness assumptions of transition systems [11]. This
paper focuses on the complexity of solving 21/2-player graph games with respect
to two important normal forms of ω-regular winning conditions: Rabin condi-
tions and Streett conditions [17]. Rabin and Streett conditions are dual (i.e.,
complementary), and their practical relevance stems from the fact that their
form corresponds to the form of fairness conditions for transition systems.

In the case of 2-player graph games, where no randomization is involved, a
fundamental determinacy result ensures that, given an ω-regular winning con-
dition, at each state, either player 1 has a strategy to ensure that the condition
holds, or player 2 has a strategy to ensure that the condition does not hold [10].
Thus, the problem of solving 2-player graph games consists in finding the set of
winning states, from which player 1 can ensure that the condition holds. This
problem is known to be in NP ∩ coNP for parity conditions, to be NP-complete
for Rabin conditions [8], and consequently, to be coNP-complete for Streett con-
ditions. The proofs of inclusion in NP rely on the existence of pure (i.e., deter-
ministic) memoryless winning strategies, which act as polynomial witnesses. The
existence of pure memoryless winning strategies is also of independent interest,
as such strategies can be simply and effectively implemented by a controller.
Note that for Streett conditions, winning strategies in general require memory.

In the case of 21/2-player graph games, where randomization is present in the
transition structure, the notion of winning needs to be clarified. Player 1 is said to
win surely if she has a strategy that guarantees to achieve the winning condition
against all player-2 strategies. While this is the classical notion of winning in
the 2-player case, it is less meaningful in the presence of probabilistic states,
because it makes all probabilistic choices adversarial (it treats them analogously
to player-2 choices). To adequately treat probabilistic choice, we consider the
probability with which player 1 can ensure that the winning condition is met.
We thus define two solution problems for 21/2-player graph games: the qualitative
problem asks for the set of states from which player 1 can ensure winning with
probability 1; the quantitative problem asks for the maximal probability with
which player 1 can ensure winning from each state (this probability is called the
value of the game at a state) [7]. Correspondingly, we define almost-sure winning
strategies, which enable player 1 to win with probability 1 whenever possible,
and optimal strategies, which enable player 1 to win with maximal probability.
The main result of this paper is that, in 21/2-player graph games, both the
qualitative and the quantitative solution problems are NP-complete in the case of
Rabin conditions, and coNP-complete in the case of Streett conditions. The NP-
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hardness for Rabin conditions follows from the NP-hardness of 2-player games
with Rabin conditions [8]; we establish the membership in NP. Both questions
are known to be in NP ∩ coNP for the more restrictive, self-dual case of parity
conditions [4, 13, 18], whose exact complexity is an important open problem.

Our proof of membership in NP for stochastic Rabin games relies on es-
tablishing the existence of pure memoryless almost-sure winning and optimal
strategies. The corresponding result for stochastic parity games has been proved
only recently [4, 13, 18], and these proofs rely on the self-duality of parity condi-
tions. For Rabin conditions, a new proof approach is required. First, we show the
existence of pure memoryless almost-sure winning strategies in stochastic Rabin
games by a reduction from 21/2-player games to 2-player. The reduction pre-
serves the ability of player 1 to win with probability 1, but it does not preserve
the maximal probability of winning. The proof technique is combinatorial and
uses graph-theoretic arguments to account for the fact that Rabin conditions
are not closed under complementation. Second, to show the existence of pure
memoryless optimal strategies in stochastic Rabin games, we partition the game
graph into value classes, each consisting of states where the value of the game is
identical. We prove that if the players play according to optimal strategies, then
the game leaves every intermediate value class (in which the value is neither 0
nor 1) with probability 1. We then use the qualitative result on almost-sure
winning to establish the existence of pure memoryless optimal strategies.

We emphasize that, as mentioned earlier, the existence of pure memoryless
strategies is relevant in its own right, as such strategies consist in mappings
that associate with each player-1 state a unique successor, without need for
randomization or memory; such mappings are easily implemented in controllers.
Furthermore, our techniques lead us to a more general result, which states a
strong connection between certain qualitative and quantitative games: we show
that for every ω-regular winning condition in a 21/2-player game graph, if a
restricted family of strategies suffices for almost-sure winning, then it suffices
also for optimality. Hence future research on 21/2-player games with ω-regular
conditions can focus on qualitatively (i.e., almost-sure) winning strategies, and
our result generalizes these strategies to quantitatively winning (i.e., optimal)
strategies.

2 Definitions

We consider several classes of turn-based games, namely, two-player turn-based
probabilistic games (21/2-player games), two-player turn-based deterministic
games (2-player games), and Markov decision processes (1 1/2-player games).

Game graphs. A turn-based probabilistic game graph (2 1/2-player game graph)
G = ((S, E), (S1, S2, S©), δ) consists of a directed graph (S, E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
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the successor state; and the states in S© are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S, E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors.

A set U ⊆ S of states is called δ-closed if for every probabilistic state
u ∈ U ∩ S©, if (u, t) ∈ E, then t ∈ U . The set U is called δ-live if for ev-
ery nonprobabilistic state s ∈ U ∩ (S1 ∪ S2), there is a state t ∈ U such that
(s, t) ∈ E. A δ-closed and δ-live subset U of S induces a subgame graph of G,
indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are the
special case of the 21/2-player game graphs with S© = ∅. The Markov decision
processes (11/2-player game graphs) are the special case of the 2 1/2-player game
graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1
MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.

Plays and strategies. An infinite path, or play, of the game graph G is an
infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write
Ωs ⊆ Ω for the set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗ · S1 → D(S) that assigns a prob-
ability distribution to all finite sequences w ∈ S∗ · S1 of states ending in a
player-1 state (the sequence represents a prefix of a play). Player 1 follows the
strategy σ if in each player-1 move, given that the current history of the game is
w ∈ S∗ ·S1, she chooses the next state according to the probability distribution
σ(w). A strategy must prescribe only available moves, i.e., for all w ∈ S∗, s ∈ S1,
and t ∈ S, if σ(w · s)(t) > 0, then (s, t) ∈ E. The strategies for player 2 are
defined analogously. We denote by Σ and Π the set of all strategies for player 1
and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) > 0.
Given two strategies σ ∈ Σ and π ∈ Π , and a state s ∈ S, we denote by
Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given strategies
σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,π

s (A) for the
probability that a path belongs to A if the game starts from the state s and
the players follow the strategies σ and π, respectively. In the context of player-1
MDPs we often omit the argument π, because Π is a singleton set.

We classify strategies according to their use of randomization and memory.
The strategies that do not use randomization are called pure. A player-1 strat-
egy σ is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that
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σ(w · s)(t) = 1. We denote by ΣP ⊆ Σ the set of pure strategies for player 1. A
strategy that is not necessarily pure is called randomized. Let M be a set called
memory. A player-1 strategy can be described as a pair of functions: a memory-
update function σu: S × M → M and a next-move function σm: S1 × M → D(S).
The strategy (σu, σm) is finite-memory if the memory M is finite. We denote by
ΣF the set of finite-memory strategies for player 1, and by ΣPF the set of pure
finite-memory strategies; that is, ΣPF = ΣP ∩ ΣF . The strategy (σu, σm) is
memoryless if |M| = 1; that is, the next move does not depend on the history of
the play but only on the current state. A memoryless player-1 strategy can be
represented as a function σ: S1 → D(S). A pure memoryless strategy is a pure
strategy that is memoryless. A pure memoryless strategy for player 1 can be
represented as a function σ: S1 → S. We denote by ΣM the set of memoryless
strategies for player 1, and by ΣPM the set of pure memoryless strategies; that
is, ΣPM = ΣP ∩ΣM . Analogously we define the corresponding strategy families
ΠP , ΠF , ΠPF , ΠM , and ΠPM for player 2.

Given a finite-memory strategy σ ∈ ΣF , let Gσ be the game graph obtained
from G under the constraint that player 1 follows the strategy σ. The corre-
sponding definition Gπ for a player-2 strategy π ∈ ΠF is analogous, and we
write Gσ,π for the game graph obtained from G if both players follow the finite-
memory strategies σ and π, respectively. Observe that given a 2 1/2-player game
graph G and a memoryless player-1 strategy σ, the result Gσ is a player-2 MDP.
Similarly, for a player-1 MDP G and a memoryless player-1 strategy σ, the re-
sult Gσ is a Markov chain. Hence, if G is a 21/2-player game graph and the two
players follow memoryless strategies σ and π, the result Gσ,π is a Markov chain.
These observations will be useful in the analysis of 21/2-player games.

Objectives. An objective for a player consists of an ω-regular set of winning
plays Φ ⊆ Ω [17]. In this paper we study zero-sum games [9, 15], where the
objectives of the two players are complementary; that is, if the objective of one
player is Φ, then the objective of the other player is Ω \ Φ. We consider ω-
regular objectives specified in Rabin or Streett normal forms. For a play ω =
〈s0, s1, s2, . . .〉, let Inf(ω) be the set { s ∈ S | s = sk for infinitely many k ≥ 0 }
of states that occur infinitely often in ω. We use colors to define objectives
independent of game graphs. For a set C of colors, we write [[·]]: C → 2S for a
function that maps each color to a set of states. Inversely, given a set U ⊆ S of
states, we write [U ] = { c ∈ C | [[c]] ∩ U 6= ∅ } for the set of colors that occur
in U . Note that a state can have multiple colors.

A Rabin objective is specified as a set P = {(e1, f1), . . . , (ed, fd)} of pairs
of colors ei, fi ∈ C. Intuitively, the Rabin condition P requires that for some
1 ≤ i ≤ d, all states of color ei be visited finitely often and some state of
color fi be visited infinitely often. Let [[P ]] = {(E1, F1), . . . , (Ed, Fd)} be the
corresponding set of so-called Rabin pairs, where Ei = [[ei]] and Fi = [[fi]] for all
1 ≤ i ≤ d. Formally, the set of winning plays is Rabin(P ) = {ω ∈ Ω | ∃ 1 ≤ i ≤
d. (Inf(ω) ∩ Ei = ∅ ∧ Inf(ω) ∩ Fi 6= ∅) }. Without loss of generality, we require
that

( ⋃
i∈{ 1,2,...,d }(Ei ∪ Fi)

)
= S. The parity (or Rabin-chain) objectives are

the special case of Rabin objectives such that E1 ⊂ F1 ⊂ E2 ⊂ F2 . . . ⊂ Ed ⊂
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Fd. A Streett objective is again specified as a set P = {(e1, f1), . . . , (ed, fd)}
of pairs of colors. The Streett condition P requires that for each 1 ≤ i ≤ d,
if some state of color fi is visited infinitely often, then some state of color ei

be visited infinitely often. Formally, the set of winning plays is Streett(P ) =
{ ω ∈ Ω | ∀ 1 ≤ i ≤ d. (Inf(ω) ∩ Ei 6= ∅ ∨ Inf(ω) ∩ Fi = ∅) }, for the set
[[P ]] = {(E1, F1), . . . , (Ed, Fd)} of so-called Streett pairs. Note that the Rabin
and Streett objectives are dual; i.e., the complement of a Rabin objective is
a Streett objective, and vice versa. Moreover, every parity objective is both a
Rabin objective and a Streett objective.

Sure winning, almost-sure winning, and optimality. Given a player-1
objective Φ, a strategy σ ∈ Σ is sure winning for player 1 from a state s ∈
S if for every strategy π ∈ Π for player 2, we have Outcome(s, σ, π) ⊆ Φ.
The strategy σ is almost-sure winning for player 1 from the state s for the
objective Φ if for every player-2 strategy π, we have Prσ,π

s (Φ) = 1. The sure
and almost-sure winning strategies for player 2 are defined analogously. Given
an objective Φ, the sure winning set 〈〈1〉〉sure(Φ) for player 1 is the set of states
from which player 1 has a sure winning strategy. The almost-sure winning set
〈〈1〉〉almost (Φ) for player 1 is the set of states from which player 1 has an almost-
sure winning strategy. The sure winning set 〈〈2〉〉sure(Ω \Φ) and the almost-sure
winning set 〈〈2〉〉almost (Ω \Φ) for player 2 are defined analogously. It follows from
the definitions that for all 21/2-player game graphs and all objectives Φ, we have
〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ). Computing sure and almost-sure winning sets and
strategies is referred to as the qualitative analysis of 2 1/2-player games [7].

Given ω-regular objectives Φ ⊆ Ω for player 1 and Ω\Φ for player 2, we define
the value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as
the following functions from the state space S to the interval [0, 1] of reals: for all
states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,π

s (Φ) and 〈〈2〉〉val (Ω \Φ)(s) =
supπ∈Π infσ∈Σ Prσ,π

s (Ω \ Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the
maximal probability with which player 1 can achieve her objective Φ from state s,
and analogously for player 2. The strategies that achieve the value are called
optimal: a strategy σ for player 1 is optimal from the state s for the objective
Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). The optimal strategies for player 2 are
defined analogously. Computing values is referred to as the quantitative analysis
of 21/2-player games. The set of states with value 1 is called the limit-sure winning
set [7]. For 21/2-player game graphs with ω-regular objectives the almost-sure
and limit-sure winning sets coincide [3].

Let C ∈ {P, M, F,PM ,PF} and consider the family ΣC ⊆ Σ of special
strategies for player 1. We say that the family ΣC suffices with respect to a
player-1 objective Φ on a class G of game graphs for sure winning if for every
game graph G ∈ G and state s ∈ 〈〈1〉〉sure(Φ), there is a player-1 strategy σ ∈ ΣC

such that for every player-2 strategy π ∈ Π , we have Outcome(s, σ, π) ⊆ Φ.
Similarly, the family ΣC suffices with respect to the objective Φ on the class
G of game graphs for almost-sure winning if for every game graph G ∈ G and
state s ∈ 〈〈1〉〉almost (Φ), there is a player-1 strategy σ ∈ ΣC such that for every
player-2 strategy π ∈ Π , we have Prσ,π

s (Φ) = 1; and for optimality, if for every
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game graph G ∈ G and state s ∈ S, there is a player-1 strategy σ ∈ ΣC such
that 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ).
For sure winning, the 11/2-player and 21/2-player games coincide with 2-player

(deterministic) games where the random player (who chooses the successor at the
probabilistic states) is interpreted as an adversary, i.e., as player 2. Theorem 1
and Theorem 2 state the classical determinacy results for 2-player and 2 1/2-player
game graphs with ω-regular objectives.

Theorem 1 (Qualitative determinacy [8, 10]). For all 2-player game graphs
and Rabin or Streett objectives Φ, we have 〈〈1〉〉sure(Φ) ∩ 〈〈2〉〉sure(Ω \ Φ) = ∅
and 〈〈1〉〉sure(Φ) ∪ 〈〈2〉〉sure(Ω \ Φ) = S. Moreover, on 2-player game graphs, the
family of pure memoryless strategies suffices for sure winning with respect to
Rabin objectives, and the family of pure finite-memory strategies suffices for
sure winning with respect to Streett objectives.

Theorem 2 (Quantitative determinacy [12]). For all 2 1/2-player game
graphs, all Rabin or Streett objectives Φ, and all states s, we have 〈〈1〉〉val (Φ)(s)+
〈〈2〉〉val (Ω \ Φ)(s) = 1.

3 Qualitative Analysis

We show that the pure memoryless strategies suffice for almost-sure winning with
respect to Rabin objectives on 21/2-player game graphs. The result is achieved
by a reduction to 2-player Rabin games. The reduction also allows us to apply
algorithms for solving 2-player Rabin games to the qualitative analysis of 2 1/2-
player Rabin games. Furthermore, in the next section, we will use the existence
of pure memoryless almost-sure winning strategies to prove the existence of pure
memoryless optimal strategies.

End components of MDPs. We review some facts about end components [6]
which are needed for the further development of the paper. We consider player-1
MDPs and hence strategies for player 1. Let G = ((S, E), (S1, S2, S©), δ) with
S2 = ∅ be a 11/2-player game graph.

Definition 1 (End components). A set U ⊆ S of states is an end component
if U is δ-closed and the subgame graph G � U is strongly connected.

We denote by E ⊆ 2S the set of all end-components of G. The next lemma
states that, under every strategy (memoryless or not), with probability 1 the
set of states visited infinitely often along a play is an end component. This
lemma allows us to derive conclusions on the (infinite) set of plays in an MDP
by analyzing the (finite) set of end components in the MDP. In particular, the
lemma implies that to show that a set {(E1, F1), . . . , (Ed, Fd)} of Rabin pairs
is satisfied with probability 1, it suffices to show that for each reachable end
component U , there exists an 1 ≤ i ≤ d such that U ∩Ei = ∅ and U ∩Fi 6= ∅. To
state the lemma, for s ∈ S and U ⊆ S, we define ΩU

s = {ω ∈ Ωs | Inf(ω) = U }.

Lemma 1. [6] For all states s ∈ S and strategies σ ∈ Σ, Prσ
s (

⋃
U∈E ΩU

s ) = 1.
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Fig. 1. Gadget for the reduction of 2 1/2-player Rabin games to 2-player Rabin games.

Reduction. Given a 21/2-player game graph G = ((S, E), (S1, S2, S©), δ), a set
C = {e1, f1, . . . , ed, fd} of colors, and a color map [·]: S → 2C \ ∅, we construct
a 2-player game graph G = ((S, E), (S1, S2), δ) together with a color map [·]:

S → 2C \ ∅ for the extended color set C = C ∪ {ed+1, fd+1}. The construction
is specified as follows. For every nonprobabilistic state s ∈ S1 ∪ S2, there is a
corresponding state s ∈ S such that (1) s ∈ S1 iff s ∈ S1, and (2) [s] = [s],
and (3) (s, t) ∈ E iff (s, t) ∈ E. Every probabilistic state s ∈ S© is replaced by
the gadget shown in Figure 1. In the figure, diamond-shaped states are player-2
states (in S2), and square-shaped states are player-1 states (in S1). From the
state s with [s] = [s], the players play the following 3-step game in G. First,
in state s player 2 chooses a successor (s̃, 2k), for k ∈ {0, 1, . . . , d}. For every
state (s̃, 2k), we have [(s̃, 2k)] = [s]. For k > 1, in state (s̃, 2k) player 1 chooses
from two successors: state (ŝ, 2k−1) with [(ŝ, 2k − 1)] = ek, or state (ŝ, 2k) with
[(ŝ, 2k)] = fk. The state (s̃, 0) has only one successor (ŝ, 0), with [(ŝ, 0)] = fd+1.
Note that no state in S is labeled by the new color ed+1, that is, [[ed+1]] = ∅.
Finally, in each state (ŝ, j) the choice is between all states t such that (s, t) ∈ E,
and it belongs to player 1 if k is odd, and to player 2 if k is even.

We consider the 21/2-player game played on the graph G with the Rabin
condition P = {(e1, f1), . . . , (ed, fd)} for player 1. Let U1 and U2 be the sure
winning sets for players 1 and 2, respectively, in the constructed 2-player game
graph G with the modified Rabin condition P = {(e1, f1), . . . , (ed+1, fd+1)} for
player 1. Define the sets U1 and U2 in the original 21/2-player game graph G by
U1 = { s ∈ S | s ∈ U1 } and U2 = { s ∈ S | s ∈ U2 }. From the determinacy
of 2-player Rabin games (Theorem 1), it follows that U 1 = S \ U2, and hence
U1 = S \ U2.

Lemma 2. In the 21/2-player game graph G with the Rabin condition P for
player 1, there exists a pure memoryless strategy σ for player 1 such that for all
player-2 strategies π and all states s ∈ U1, we have Prσ,π

s (Rabin(P )) = 1.

Proof. We define a pure memoryless strategy σ for player 1 in the game G from
a strategy σ in the game G as follows: for all states s ∈ S1, if σ(s) = t, then
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set σ(s) = t. Consider a pure memoryless sure winning strategy σ in the game
G from every state s ∈ U 1. Our goal is to establish that σ is an almost-sure
winning strategy from every state in U1.

For the Rabin objective Rabin(P ), let the set Rabin pairs be [[P ]] =
{ (E1, F1), (E2, F2), . . . , (Ed, Fd) }. A strongly connected component (s.c.c.) W
in a graph G1 is winning for player 1, if there exists i ∈ { 1, 2, . . . , d } such that
W ∩ Fi 6= ∅ and W ∩ Ei = ∅; otherwise W is winning for player 2. If G1 is a
MDP, then an end component W in G1 is winning for player 1, if there exists
i ∈ { 1, 2, . . . , d } such that W ∩Fi 6= ∅ and W ∩Ei = ∅; otherwise W is winning
for player 2.

We prove that every end component in the player-2 MDP (G � U1)σ is
winning for player 1. It would follow from Lemma 1 that σ is an almost-sure
winning strategy. We argue that if there is an end component W in (G � U1)σ

that is winning for player 2, then we can construct an s.c.c. in the subgraph
(G � U1)σ that is winning for player 2, which is impossible because σ is a sure
winning strategy for player 1 from the set U1 in the 2-player Rabin game G. Let
W be an end component in (G � U1)σ that is winning for player 2. We denote by
W the set of states in the gadget of states in W . Hence for all i ∈ { 1, 2, . . . , d }
we have if Fi ∩W 6= ∅, then W ∩Ei 6= ∅. Let us define the set I = { i1, i2, . . . , ij }
such that Eik

∩ W 6= ∅. Thus for all i ∈ ({ 1, 2, . . . , d } \ I) we have Fi ∩ W = ∅.
Note that I 6= ∅, as every state has at least one color. We now construct a
sub-game in Gσ as follows:

1. For a state s ∈ W ∩ S2 keep all the edges (s, t) such that t ∈ W .
2. For a state s ∈ W ∩ S© the sub-game is defined as follows:

– At state s choose the edges to state (s̃, 2i) such that i ∈ I .
– For a state s ∈ W , let dis(s, W ∩Ei) denote the shortest distance (BFS

distance) from s to W ∩ Ei in the graph of (G � W )σ . At state (ŝ, 2i),
which is a player 2 state, player 2 chooses a successor ŝ1 such that
dis(s1, W ∩Ei) < dis(s, W ∩Ei) (i.e., shorten distance to the set W ∩Ei

in G).

We now prove that every terminal s.c.c. is winning for player 2 in the subgame
thus constructed in (G � W )σ , where W is the set of states in the gadget of states
in W . Consider any arbitrary terminal s.c.c. Y in the subgame constructed in
(G � W )σ . It follows from the construction that for every i ∈ ({ 1, 2, . . . , d } \ I),
we have Fi ∩ Y = ∅. Suppose for a i ∈ I we have Fi ∩ Y 6= ∅, we show that
Ei ∩ Y 6= ∅. There are two cases:

1. If there is at least one state (s̃, 2i) such that the strategy σ chooses the
successor (ŝ, 2i − 1), then Ei ∩ Y 6= ∅, since [(s̃, 2i− 1)] = ei.

2. Else for every state (s̃, 2i) the strategy for player 1 chooses the successor
(ŝ, 2i). At state (ŝ, 2i), which is a player 2 state, player 2 chooses a successor
ŝ1 that shortens distance to the set Y ∩Ei. Hence the terminal s.c.c. Y must
contain a state s such that [s] = ei. Hence Ei ∩ Y 6= ∅.

We argue that for every probabilistic state s ∈ S© ∩ U1, all of its successors
are in U1. Otherwise, player 2 in the state s of the game G can choose the
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successor (s̃, 0) and then a successor to its winning set U 2, which contradicts
the assumption that the strategy σ is a sure winning strategy for player 1 in the
game G from U1. It follows from Lemma 1 that for all strategies π, for all states
s ∈ U1, with probability 1 the set of states visited infinitely often along the
play ωσ,π

s is an end component in U1. Since every end component in (G � U1)σ

is winning for player 1 the strategy σ is an almost-sure winning strategy for
player 1 from U1.

Lemma 3. In the 21/2-player game graph G with the Rabin condition P for
player 1, there exists a finite-memory strategy π for player 2 such that for all
player-1 strategies σ and all states s ∈ U2, we have Prσ,π

s (Ω \ Rabin(P )) > 0.

From Lemma 2, it follows that U1 ⊆ 〈〈1〉〉almostRabin(P ). From Lemma 3, it
follows that 〈〈1〉〉almostRabin(P ) ⊆ U1. Therefore U1 = 〈〈1〉〉almostRabin(P ). The
proof of Lemma 2 also establishes the existence of pure memoryless almost-sure
winning strategies for Rabin objectives.

Theorem 3. The family of pure memoryless strategies suffices for almost-sure
winning with respect to Rabin objectives on 21/2-player game graphs.

4 Quantitative Analysis

We extend sufficiency results for families of strategies from almost-sure winning
to optimality with respect to all ω-regular objectives. In the following, we fix a
21/2-player game graph G. Given an ω-regular objective Φ, for every real r ∈ IR
the value class with value r is VC(r) = {s ∈ S | 〈〈1〉〉val (Φ)(s) = r}. Proposition 1
states that there exist optimal strategies for player 1 such that they never choose
an edge to a lower value class.

Proposition 1. For all ω-regular objectives Φ, there exists an optimal strategy
σ for player 1 such that for all w ∈ S∗, s ∈ S1, and t ∈ S, if 〈〈1〉〉val (Φ)(t) <
〈〈1〉〉val (Φ)(s), then σ(w · s)(t) = 0.

Definition 2 (Boundary probabilistic states). Given an ω-regular objec-
tive Φ, a probabilistic state s ∈ S© is a boundary probabilistic state if there
exists a successor t ∈ E(s) such that 〈〈1〉〉val (Φ)(t) 6= 〈〈1〉〉val (Φ)(s). Observe
that for every boundary probabilistic state s, there exist t1, t2 ∈ E(s) such that
〈〈1〉〉val (Φ)(t1) < 〈〈1〉〉val (Φ)(s) and 〈〈1〉〉val (Φ)(t2) > 〈〈1〉〉val (Φ)(s).

Lemma 4. Consider a 21/2-player game G with an ω-regular objective Φ. Given
a value class VC(r) with 0 < r < 1, let B(r) be the set of boundary probabilistic
states in the value class VC(r). Convert each state in B(r) into a sink state that
is winning for player 1. Let the new game be G′. Then player 1 wins almost-surely
from all states in the subgame with game graph G′ � VC(r) and objective Φ.

Proof. Assume that player 1 does not win almost-surely from every state in
G′ � VC(r). Then there exists a state where player 2 wins with positive bounded
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probability. It follows from Corollary 1 of [7] that there exist a non-empty set U ⊆
VC(r) such that that player 2 wins almost-surely from U in G′ � VC(r). Consider
an optimal strategy σ that never chooses an edge with positive probability to a
lower value class (such a strategy exists from Proposition 1). Since player 2 wins
almost-surely from U it follows that for every state s ∈ U∩S1, for every successor
t of s in VC(r) we have t ∈ U . It follows that every move of the strategy σ exists
in U . Hence player 2 wins almost-surely from U against σ. This is a contradiction
to the assumption that r > 0 and that σ is an optimal strategy.

Definition 3 (Qualitatively optimal strategies). A strategy σ is qualita-
tively optimal for player 1, for an ω-regular objective Φ, if the following con-
ditions hold: (a) for every state s ∈ 〈〈1〉〉almost (Φ), the strategy σ is almost-sure
winning, and (b) for every state s ∈ VC(r) such that 0 < r < 1, there is a
constant c > 0 such that infπ∈Π Prσ,π

s (Φ) ≥ c.

Lemma 4 shows that in every value class, if the boundary probabilistic states
are assumed to be winning for player 1, then player 1 wins almost-surely. We call
such an almost-sure winning strategy a conditional almost-sure winning strategy.
We compose conditional almost-sure winning strategies in value classes to obtain
an optimal strategy. If a strategy σ is conditional almost-sure winning, it follows
that for all player-2 strategies π that are optimal against σ, the play ωσ,π

s reaches
the boundary probabilistic states with positive probability, for s ∈ VC(r) and
r > 0. From every boundary probabilistic state the game proceeds to a higher
value class with positive probability. An induction on the number of value classes
yields Lemma 5.

Lemma 5. For every ω-regular objective Φ, if a player-1 strategy σ is almost-
sure winning from every state s ∈ 〈〈1〉〉almost (Φ), and is conditionally almost-sure
winning from every state s 6∈ 〈〈2〉〉almost (Ω \ Φ), then σ is qualitatively optimal
for Φ.

Definition 4 (Locally optimal strategies). A strategy σ is locally optimal
for player 1, for an ω-regular objective Φ, if for all w ∈ S∗, s ∈ S1, and t ∈ S,
if 〈〈1〉〉val (Φ)(t) < 〈〈1〉〉val (Φ)(s), then σ(w · s)(t) = 0.

Note that by definition, a conditional almost-sure winning strategy is locally
optimal. The following Lemma generalizes Lemma 5.3 of [4]. Theorem 4 follows
from Lemma 6. Since pure memoryless strategies suffice for almost-sure win-
ning with respect to Rabin objectives on 21/2-player game graphs (Theorem 3),
Theorem 5 is immediate from Theorem 4.

Lemma 6. Consider a 21/2-player game G with an ω-regular objective Φ for
player 1. Let σ be a finite-memory strategy such that σ is both qualitatively
optimal and locally optimal for Φ. Then σ is an optimal strategy for Φ from all
states of G.

Theorem 4. If a family ΣC of strategies suffices for almost-sure winning with
respect to an ω-regular objective Φ on 21/2-player game graphs, then ΣC suffices
for optimality with respect to Φ on 21/2-player game graphs.
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Theorem 5. The family of pure memoryless strategy suffices for optimality with
respect to Rabin objectives on 21/2-player game graphs.

The existence of pure memoryless optimal strategies for 2 1/2-player game
graphs with Rabin objectives, and of polynomial-time algorithms for computing
the values of MDPs with Streett objectives [2], establishes that the 2 1/2-player
games with Rabin objectives can be decided (qualitatively and quantitatively)
in NP. The NP-hardness follows from the hardness of 2-player Rabin games.

Theorem 6. Given a 21/2-player game graph G, an objective Φ for player 1,
a state s of G, and a rational r, the complexity of determining whether
〈〈1〉〉val (Φ)(s) ≥ r is as follows: NP-complete if Φ is a Rabin objective; coNP-
complete if Φ is a Streett objective; and in NP ∩ coNP if Φ is a parity objective.
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3. K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Simple stochastic parity games.
In CSL’03, volume 2803 of LNCS, pages 100–113. Springer, 2003.
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