
Ticc: A Tool for Interface Compatibility and
Composition?

B. Thomas Adler1, Luca de Alfaro1, Leandro Dias Da Silva2, Marco Faella3,
Axel Legay1,4, Vishwanath Raman1, and Pritam Roy1

1 School of Engineering, University of California, Santa Cruz, USA
2 EE Department, Federal University of Campina Grande, Paraiba, Brasil
3 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Italy

4 Department of Computer Science, University of Liège, Belgium

Abstract. We present the tool Ticc (Tool for Interface Compatibility
and Composition). In Ticc, a component interface describes both the
behavior of a component, and the component’s assumptions on the envi-
ronment’s behavior. Ticc can check the compatibility of such interfaces,
and analyze their emergent behavior, via a symbolic implementation of
game-theoretic algorithms.

1 Overview

Open systems are systems whose behavior is jointly determined by their internal
structure, and by the inputs that they receive from their environment. In pre-
vious work, it has been argued that games constitute a natural model for open
systems [1, 6, 7, 4, 2]. We use games to represent the interaction between the be-
havior originating within a component, and the behavior originating from the
component’s environment. In particular, we model components as Input-Output
games: the moves of Input represent the behavior the component can accept
from the environment, while the moves of Output represent the behavior the
component can generate.

Unlike component models based on transition systems, models based on
games provide a notion of compatibility [6, 7, 4]. When two components P and
Q are composed, we can check whether the output behavior of P satisfies the
input requirements of Q, and vice-versa. However, we do not define P and Q to
be compatible only if their input requirements are always satisfied. Rather, we
recognize that the output behavior of P and Q can still be influenced by their
residual interaction with the environment (unless the composition of P and Q is
closed). Thus, we define P and Q to be compatible if there is some environment
under which their input assumptions are mutually satisfied, and we associate
with their composition P‖Q the weakest (most general) assumptions about the
environment that guarantee mutual compatibility. In game-theoretic terms, P

? This research was supported in part by the NSF grants CCR-0132780 and CCR-
0234690, the ARP grants SC20050553 and SC20051123, and a F.R.I.A grant.

and Q are compatible if, in their joint model, Input has a strategy to guaran-
tee that all outputs from P to Q can be accepted by Q, and vice-versa; the
environment assumption of P‖Q is simply the most general such Input strategy.

These game-based component models have been called interface theories,
and two tools for interface theories predate Ticc. The asynchronous, action-
based interface theories of [6] are implemented as part of the Ptolemy toolset [8].
The tool Chic implements synchronous, variable-based interface theories closely
modeled after [7]. Our goal in developing Ticc was to provide an asynchronous
model where components have rich communication primitives that facilitate the
modeling of software and distributed systems.

In Ticc, variables encode both the local state of the components (called
modules) and the global state of the system. Modules synchronize on shared
actions, and the occurrence of actions can cause variables to be updated. Each
global variable can be updated by more than one module, so that it is both
read and write-shared; restrictions ensure that variable updates are free from
race-conditions. An action can appear in a module both as input and as output.
If an action a occurs in a module P as output, but not as input, then P can
generate a, but not accept it from other modules. If a occurs in P both as input
and as output, then P can both generate a, and accept it from other modules.
This enables the encoding of rich communication schemes, including exclusive,
and many-to-many schemes, and differentiates the modules of Ticc from other
modules with more restrictive communication primitives, such as I/O Automata
[10] and Reactive Modules [3]. The theory behind Ticc has been presented in
[5]; here, we describe the tool itself.

2 The Ticc Tool

Ticc parses interfaces, called modules, encoded in a guarded-command lan-
guage, and builds symbolic representations for these interfaces that are used
for compatibility checking and composition. Ticc is written in OCaml [9],
and the symbolic algorithms rely on the MDD/BDD Glue and Cudd pack-
ages [11]. The code of Ticc is freely available and can be downloaded from
http://dvlab.cse.ucsc.edu/dvlab/Ticc. This web site is an open Wiki that also
contains the documentation for the tool, and several additional examples.

We illustrate the modeling language of Ticc by means of a simple example:
a fire detection system. The system is composed of a control unit and several
smoke detectors. When a detector senses smoke (action smoke), it reports it by
emitting the action fire. When the control unit receives action fire from any
of the detectors, it emits the action call fd , corresponding to a call to the fire
department. Additionally, an input disable disables both the control unit and the
detectors, so that the smoke sensors can be tested without triggering an alarm.

We provide the code for the control unit module (ControlUnit), for one of
the (several) fire detectors (FireDetector1), as well as for a faulty detector that
ignores the disable messages (Faulty FireDetector2):

The body of each module starts with the list of its local variables; Ticc
supports Boolean and integral range variables. The transitions are specified using

2

guarded commands guard ⇒ command, where guard and command are boolean
expressions over the local and global variables; as usual, primed variables refer
to the values after a transition is taken. For instance, the output transition fire
in module FireDetector1 can be taken only when s has value 1; the transition
leads to a state where s = 2.

module ControlUnit:

var s: [0..3] // 0=waiting, 1=alarm raised, 2=fd called, 3=disabled

input fire: { local: s = 0 | s = 1 ==> s’ := 1

else s = 2 ==> }

input disable: { local: true ==> s’ := 3 }

output call_fd: { s = 1 ==> s’ = 2 }

endmodule

module FireDetector1:

var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive

input smoke1: { local: s = 0 | s = 1 ==> s’ := 1

else s = 2 ==> } // do nothing if inactive

output fire: { s = 1 ==> s’ = 2 }

input fire: { } // accepts (and ignores) fire inputs

input disable: { local: true ==> s’ := 2 }

endmodule

module Faulty_FireDetector2:

var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive

input smoke2: { local: s = 0 | s = 1 ==> s’ := 1

else s = 2 ==> } // do nothing if inactive

output fire: { s = 1 ==> s’ = 2 }

input fire: { } // accepts (and ignores) fire inputs

// does not listen to disable action

endmodule

When modules ControlUnit and FireDetector1 are composed, they syn-
chronize on the shared actions fire and disable. First, input transitions in a
module synchronize with the corresponding output transitions in the other mod-
ule. Thus, the output transition labeled with fire in FireDetector1 synchro-
nizes with the input transitions labeled with fire in ControlUnit. Moreover,
input transitions associated to a shared action in different modules also synchro-
nize. For instance, the input transitions associated with fire in FireDetector1
and ControlUnit synchronize, so that the composition FireDetector1 ‖
ControlUnit can also accept fire as input, and can therefore be composed with
other fire detectors.

The composition of ControlUnit and Faulty FireDetector2 goes less
smoothly. When the composition receives a disable action, the control unit shuts
down (s = 3), while the faulty detector remains in operation. When the faulty
detector senses smoke (input smoke2), it will emit fire: if the control unit has
been disabled by the disable action, this causes an incompatibility. Ticc diag-
noses this incompatibility by synthesizing the following input restrictions:

3

– A restriction preventing the input disable if the faulty detector is in state
s = 1, that is, it has detected smoke and is about to issue fire.

– A restriction preventing the input smoke2 when ControlUnit is at s = 3
(disabled).

Since the actions disable and smoke2 should be acceptable at any time, the new
input restrictions for these actions are a strong indication that the composition
ControlUnit ‖ Faulty FireDetector2 does not work properly.

3 Using Ticc

Ticc is implemented as a set of functions that extends the capabilities of the
OCaml command-line. The incompatibility mentioned in the previous section is
exposed by the following series of OCaml commands:

open Ticc;;
parse "fire-detector-disable.si";;
let controlunit = mk_sym "ControlUnit";;
let wfire2 = mk_sym "Faulty_FireDetector2";;
print_input_restriction (compose controlunit wfire2) "disable";;
print_input_restriction (compose controlunit wfire2) "smoke2";;

The mk sym function builds a symbolic representation of a module, given the
module name. The last two lines print how the input actions have been restricted
in the composition.

References

1. S. Abramsky. Semantics of interaction. In Trees in Algebra and Programming –
CAAP’96, LNCS 1059, Springer-Verlag, 1996.

2. S. Abramsky, D. Ghica, A. Murawski, and L. Ong. Applying game semantics to
compositional software modeling and verification. In Proceedings of TACAS 04,
LNCS, Springer-Verlag, 2004.

3. R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design,
15:7–48, 1999.

4. L. de Alfaro. Game models for open systems. In Proceedings of the International
Symposium on Verification (Theory in Practice), LNCS 2772, Springer-Verlag,
2003.

5. L. de Alfaro, L. Dias da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable
interfaces. In Procedings of FROCOS 05, LNAI 3717, Springer-Verlag, 2005.

6. L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the 8th Eu-
ropean Software Engineering Conference and the 9th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM Press, 2001.

7. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design.
In Proceedings of EMSOFT 01, LNCS 2211. Springer-Verlag, 2001.

8. E. A. Lee and Y. Xiong. A behavioral type system and its application in Ptolemy
II. Formal Aspect of Computing Journal, 2003.

9. Xavier Leroy. Objective caml. http://www.ocaml.org.
10. N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.
11. Fabio Somenzi. Cudd: Cu decision diagram package.

http://vlsi.colorado.edu/˜fabio/CUDD/cuddIntro.html.

4

