In QEST 06: Intl. Conf. on Quantitative Evaluation of SystelfBEE Computer Society Press, 2006.

Strategy Improvement for Concurrent Reachability Games

Krishnendu Chatterjee
UC Berkeley

Abstract

A concurrent reachability game is a two-player game

played on a graph: at each state, the players simultane-
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is the supremum of the set of values that player 1 can guar-
antee froms. An optimal strategyfor player 1 is a strat-
egy that guarantees the value of the game from eachsstate
Fore > 0, ane-optimal strategyfor player 1 is a strategy

ously and independently select moves; the two moves dethat guarantees that the objective is satisfied with a proba-

termine jointly a probability distribution over the sucees

sor states. The objective for player 1 consists in reaching

a set of target states; the objective for player 2 is to pre-
vent this, so that the game is zero-sum.

Our contributions are two-fold. First, we present a sim-
ple proof of the fact that in concurrent reachability games,
forall e > 0, memoryless-optimal strategies exist. A mem-

bility within ¢ of the value of the game, for each state
Concurrent reachability games belong to the family of

repeated games [17, 13], and they have been studied more

specifically in [9, 8, 10]. In this paper our contributiongar

two-fold. First, we present a simple and combinatorial proo

of the existence of memorylessoptimal strategies for con-

current games with reachability objectives, for alt> 0.

oryless strategy is independent of the history of plays, andSecond, we present a strategy-improvement (a.k.a. policy-

an e-optimal strategy achieves the objective with probabil-
ity within ¢ of the value of the game. In contrast to pre-
vious proofs of this fact, which rely on the limit behavior

iteration) algorithm for concurrent reachability games-U
like in the special case dfirn-basedgames, where at ev-
ery state at most one player can choose between multiple

of discounted games using advanced Puisieux series analymoves, the algorithm need not terminate in finitely many
sis, our proof is elementary and combinatorial. Second, we jterations. Strategy improvement algorithms were previ-

present a strategy-improvement (a.k.a. policy-iteratiala
gorithm for concurrent games with reachability objectives

1. Introduction

ously known for turn-based games with reachability objec-
tives [5], and turn-based games with more complex objec-
tives [18, 2].

It has long been known that optimal strategies need not
exist for concurrent reachability games [13], so that one
must settle fore-optimality. It was also known that, for
e > 0, there exist-optimal strategies that are memoryless,

We consider concurrent reachability games played by twoi.e., strategies that always choose a probability distidiou
players on finite state spaces. The configuration of such aover moves that depends only on the current state, and not

game is called atate At each round, the two players choose

on the past history of the play [14]. Unfortunately, the only

their moves concurrently and independently; the two movesprevious proof of this fact is rather complex. The proof con-
and the current state determine a successor state, or in gersidereddiscountedrersions of reachability games, where a

eral, a probability distribution over the successor states

play that reaches the targetirsteps is assigned a value of

play of the game consists in the infinite sequence of statesa*, for some discount factdr < a < 1, rather than value 1.

visited while playing the game. The objective of player 1

It is possible to show that, far < o < 1, memoryless opti-

consists in forcing the game to a specified set of targetmal strategies always exist. The result for the undiscalnte
states; the objective of player 2 consists in preventing the (o = 1) case followed from an analysis of the limit behavior
game from reaching a target state. Consequently, we assigiof such optimal strategies far — 1. The limit behavior is

value 1 to all plays that reach the target set, and value Ostudied with the help of results on the field of real Puisieux
to all other plays. The players can adopt strategies that areseries [14]. This proof idea works not only for reachability

both randomized and history-dependent. Player locean-
anteea valuev for the game from a stateif player 1 has a

games, but also for total-reward games with nonnegative re-

wards (see [14] again). A more specialized recent resu]t [12

strategy that ensures that the expected value of a play fromestablished the existence of memorylessptimal strate-

s is at least, regardless of the strategy chosen by player 2.

Thevalue at states of the reachability game with targét

gies for certain infinite-state (recursive) concurrent gam
but again the proof relies on deep results from analysis and



linear algebra (matrix theory). We show that the existerice 0 games we cannot guarantee the termination of the strategy-
memoryless-optimal strategies for concurrent reachability improvement algorithm. In fact, there are games where op-

games can be established by more elementary means. Ouimal strategies do not exist, and we can guarantee the exis-
proof relies only on combinatorial techniques and on sim- tence of onlye-optimal strategies, for al > 0 [13, 9].

ple properties of Markov decision processes [1, 7]. As our

p_roof is easily a_ccgssible, we beI_ievg thaﬁ the proof tech-2_ Definitions

nigues we use will find future applications in game theory.

Our proof of the existence of memorylessoptimal — Notation. For a countable set, a probability distribution
strategies, for ale > 0, is built upon a value-iteration 5 4 is a functions: A — [0,1] such thaty", _ , 8(a) = 1.
scheme that converges to the value of the game [10]. Theye denote the set of probability distributions oh by
value-iteration scheme computes a sequence., uz,...  p(A). Given a distributions € D(A), we denote by

of valuations, where foi = 0,1,2,... each valuation; Supp(8) = {z € A|5(z) > 0} the support set of.
associates with each stateof the game a lower bound

u;(s) on the value of the game, such tHai, .. u;(s) Definition 1 (Concurrent games) A (two-player)concur-
converges to the value of the gamesafFrom each valu- ~ rent game structur& = (S, M,I'1,I's,§) consists of the
ationu;, we can easily extract a memoryless, randomized following components:

player-1 strategy, by considering the (randomized) choice

! ! ¢ Afinite state spac#é and a finite sef\/ of moves.
of moves for player 1 that achieves the maximal one-step

expectation ofu;. In general, a strategy; obtained in this e Two move assignmenifs, I'y: § — 2%\ §. Fori €
fashion is not guaranteed to achieve the valyaNe show {1,2}, assignment’; associates with each statec
that; is guaranteed to achieve the valugif it is proper, S anonempty sef;(s) C M of moves available to

that is, if regardless of the strategy adopted by player 2, playeri at states.
the game reaches with probability 1 states that are either e A probabilistic transition functiord : S x M x M —
in the target, or that have no path leading to the target. D(S) that gives the probabilityi(s, a;,a2)(t) of a

Next, we show how to extract from the sequence of val- transition froms to ¢ when player 1 chooses at state
uationsuo, u1, uz, ... @ sequence of memoryless random- moveq, and player 2 chooses mowg, forall s, ¢ € S
ized player-1 strategies), 1, 7o, . . . that are guaranteed to anda; € T'1(s), az € Ta(s).

be proper, and thus achieve the valugsu;, us, . ... This

proves the existence of memorylessptimal strategies for Ve denote byd| =5 s I'1(s)-I's(s) the number of tran-
alle > 0. sitions of the transition function. At every states € S,

) player 1 chooses a movg < I'y(s), and simultaneously
We then apply the techniques developed for the above,, g independently player 2 chooses a mayee Ds(s).

proof to develop astrategy-improvemenalgorithm for  the game then proceeds to the successor staith prob-
concurrent reachability games. Strategy-improvemeiotalg ability 5(s, a1, as)(t), for all t € S. A states is anabsorb-
rithms, also known agolicy iterationalgorithms in the con- ing stateif for all a; € T';(s) andas € T's(s), we have
text of Markov decision processes [11, 1], compute a se-5(s7a17a2)(8) — 1. In other words, at an absorbing state

H ! !
quence of memoryless strat/egre.gs T, T, .. SUCh that, oo a)l choices of moves of the two players, the succes-
forall & > 0, (i) the strategyr; , , is at all states no worse ¢, state is always.

thanm; (ii) if =, = m, thenm, is optimal; and (jii) for
everye > 0, we can find & sufficiently large so that;, ise-
optimal. Computing a sequence of strategigsr, 7o, . . . . . )
on the basis the value-iteration scheme from above does not€re are movea, < [i(sk) anda; € Tp(sy) with
yield a strategy-improvement algorithm, as condition (i) 9(5%>@15a3)(sk+1) > 0. We denote by the set of all
may be violated: there is no guarantee that a step in theP/@ys: and by, the set of all plays. = (so, 51,52, ...)
value iteration leads to an improvement in the strategy. We SUCh thatso = s, that is, the set of plays starting from
will show that the key to obtain a strategy-improvement al- States.

gorithm consists in recomputing, at each iteration, the val Selectors and strategie#\ selector¢ for playeri € {1,2}

ues of the player-1 strategy to be improved, and in adopt-is a functioné : S — D(M) such that for all states € S

ing a particular strategy-update rule, which ensures that a and moves € M, if £(s)(a) > 0, thena € T;(s). We de-
the strategies produced are proper. Unlike previous proofsnote by A; the set of all selectors for playére {1,2}.

of strategy-improvement algorithms for concurrent games The selectok is pure if for every states € S, there is a

[5, 14], which relied on the analysis of discounted ver- movea € M such that(s)(a) = 1. A strategyfor player
sions of the games, our analysis is again purely combinato< € {1,2} is a functiont : ST — D(M) that associates
rial. Differently from turn-based games [5], for concurren with every finite, nonempty sequence of states, repreggntin

Plays. A play w of G is an infinite sequences =
(s0, 81, 82,...) of states inS such that for allk > 0,



the history of the play so far, a selector for playgthat is,
forallw € S* ands € S, we haveSupp(m(w-s)) C I';(s).
The strategyr is pureif it always chooses a pure selector;
that is, for allw € ST, there is a move € M such that
m(w)(a) = 1. A memorylesstrategy is independent of the
history of the play and depends only on the current state.
Memoryless strategies correspond to selectors; we §rite
for the memoryless strategy consisting in playing forever
the selectok. A strategy ispure memoryles it is both
pure and memoryless. We denotellby andIl; the sets of

all strategies for player and player, respectively.

Destinations of moves and selectoFor all statess € S
and movesy; € I'i(s) andas € I's(s), we indicate by
Dest(s,a1,a2) = Supp(d(s,a1,az)) the set of possible
successors ofwhen the moves; andas are chosen. Given
a states, and selectorg; and¢; for the two players, we de-
note by

DGSt(Sa€17€2) =

U

a1 €Supp(&1(s)),
a2€Supp(&2(s))

Dest(s, a1, a2)

the set of possible successorssafith respect to the selec-
tors&; andés.

Once a starting state and strategiesr; and wo for

the two players are fixed, the game is reduced to an ordi-

nary stochastic process. Hence, the probabilities of svent
are uniquely defined, where avent4 C Q, is a mea-
surable set of plays. For an evedt C (), we denote
by Pri*™(A) the probability that a play belongs td
when the game starts fromand the players follows the
strategiesr; andm,. Similarly, for a measurable function
f: Qs — IR, we denote byE™™2( f) the expected value
of f when the game starts frogand the players follow the
strategiesr; andms. Fori > 0, we denote by, : Q@ — S

the random variable denoting tih state along a play.

Valuations. A valuationis a mappingy : S — [0,1] as-
sociating a real number(s) € [0, 1] with each states.
Given two valuations, w : S — IR, we writev < w when
v(s) < w(s) for all statess € S. For an event4, we de-
note byPr""2(.A) the valuationS — [0,1] defined for
all statess € S by (Pr™ ™ (A))(s) = Pri*™(A). Sim-
ilarly, for a measurable functiofi : Q, — [0, 1], we de-
note byE™ ™2 ( f) the valuationS — [0, 1] defined for all

s € Sby (ET7(1))(s) = B ()

Given a valuation, and two selector§;, € A; andés €
Ao, we define the valuationBreg, ¢, (v), Prei.e, (v), and

Preq(v) as follows, for all states € S:

Preg e (v)(s)
= Y > ut)-8(s,a,0)(1) - &(s)(a) - E2(s)(b)

a,beM teS
Preie, (v)(s)

Prey(v)(s)

o Preg e, (v)(s)

su inf Pre v)(s
51651 [PISY) §1=f2( )( )

Intuitively, Pre;(v)(s) is the greatest expectation othat
player 1 can guarantee at a successor state. gflso
note that given a valuation, the computation oPre; (v)
reduces to the solution of a zero-sum one-shot matrix
game, and can be solved by linear programming. Simi-
larly, Preq.e, (v)(s) is the greatest expectation of that
player 1 can guarantee at a successor state mf play-

ing the selectog;. Note that all of these operators on val-
uations are monotonic: for two valuationsw, if v < w,
then for all selectorg; € A; and& € Ao, we have
PT‘eghgz(U) < Preﬁl,ﬁz (w)' PT@l;gl (’U) < Prel?fl (U}),
andPre;(v) < Prej(w).

Reachability and safety objectiveGiven a subsel” C S

of target states, the objective of a reachability game con-
sists in reaching’. Therefore, we define the set winning
plays as the set Reath) = {(so, 51,82,...) € Q| s €

T for somek > 0} of plays that visitT. For allT C S,

the set ReadIT’) is measurable. The probability of reach-
ing T' from a states € S under strategies; andr, for
players 1 and 2, respectively,lis7* ™ (ReacliT")). We de-
fine thevaluefor player 1 of the reachability game with tar-
getT from the states € S as

(1) (ReactT))(s)

sup inf Priv"(ReachfT)).

m ell;, m2€1lz

Given a player-1 strategy;, we use the notation

(1)™ (ReacHT))(s) = inf Pr7™(ReachT)).

A strategym for player 1 isoptimalif for all statess € S,
we have

(1)™ (ReachT))(s) = (1)) (ReachT))(s).

Fore > 0, a strategyr; for player 1 iss-optimalif for all
statess € S, we have

{(1)™ (ReackT))(s) > (1))(ReachT))(s) — e.

Given a setF’ C S of safestates, the objective of a safety
game consists in never leaviidg Correspondingly, the set

of winning plays is SafeF") = {(so, s1, 52,...) € Q| s €
Fforallk > 0}. For all FF C S, the set Safg") is mea-
surable. We define the value for player 2 of the safety game
with objective SaféS \ T') at the state € S as
{(2))(Safg.S\T))(s) = sup inIfI Priv™ (Safd S\ T)).

mo€ll, m1 €I



Reachability and safety objectives are dual, i.e., we haveCorollary 1 For a player-1 selectog, let C be the set
ReactiT’) = Q \ SafdS \ T'). The quantitative determi- of end components of a 2-MDPr¢,, and let Z =
nacy result of [16] ensures that for all states S, we have Ucee € be the set of states of all end components. For

all player-2 strategiesrs and all statess € S, we have
(1) (ReachT))(s) + (2))(Safg.S\ T))(s) = 1. Préi™ (ReachiZ)) = 1.

MDPs with reachability objectivesGiven a 2-MDP with a
reachability objective Rea¢®') for player 2, wherd” C S,

the values can be obtained as the solution of a linear pro-
To develop our arguments, we need some facts about Onegram [14]. The linear program has a variabigs) for all

player versions of concurrent stochastic games, Known asgiatess € 5, and the objective function and the constraints
Markov decision process¢BIDPs) [11, 1]. Fori € {1,2}, are as follows:

a player< MDP (for short,i-MDP) is a concurrent game

3. Markov Decision Processes

where, for all states € S, we havel's_;(s)| = 1. Given a min Zx(s) subject to
concurrent gamé/, if we fix a memoryless strategy corre- ses
sponding to selectaf; for player 1, the game is equivalent
to a 2-MDPG, with the transition function x(s) > Zx(t) -0(s,a2)(t) forall s € Sandas € I'y(s)
tes
be, (s,a2)(t) = Z d(s,ar,az2)(t) - &1(s)(ar), z(s) =1 forall seT

a1€T(s) 0<z(s) <1 forall s S

forall s € S anday € I'z(s). Similarly, if we fix selec-  The correctness of the above linear program to compute the
tors&; andé, for both players in a concurrent garte we values follows from [11, 14].
obtain a Markov chain, which we denote &Y, ,.

End componentsin an MDP, the sets of states that play 4. Existence of Memoryless-Optimal Strate-

an equivalent role to the closed recurrent classes of Markov gies for Concurrent Reachability Games
chains [15] are called “end components” [6, 7].

Definition 2 (End components) An end componenof an In this section we present an elementary proof of the ex-
i-MDP G, for i € {1,2}, is a subsetC C S of the states  istence of memoryless-optimal strategies for concurrent
such that there is a selectdrfor playeri so thatC is a reachability games, for af > 0 (optimal strategies need
closed recurrent class of the Markov chaif. not exist for concurrent games with reachability objec-
tives [13]). A proof of the existence of memoryless opti-

Itis not difficult to see that an equivalent characterizatid mal strategies for safety games can be found in [10].

an end componeirdt is the following. For each statec C,

there is a subsel/;(s) C I'i(s) of moves such that: 4.1. From value iteration to selectors

1. (closed)if a move in M;(s) is chosen by playei at
states, then all successor states that are obtained with Consider a reachability game with targét C S. Let
nonzero probability lie irC’; and Wy = {s € S| (1))(ReaclT))(s) = 0} be the set of

2. (recurrent)the graph(C, E), whereE consists of the  States from which player 1 cannot reach the target with posi-
transitions that occur with nonzero probability when tive probability. From [8], we know that this set can be com-

moves inM; () are chosen by playéris strongly con- ~ Puted asVs = limj . Wi, whereWy = S\ T, and for
nected. allk >0,
Given a playw € 2, we denote bynf(w) the set of states Watl = {s € S\ T | 3ag € N'y(s) . Va; € T1(s) .
that occurs infinitely often along. Given a setF C 2° Dest(s, a1, az) C W}

of subsets of states, we denote hyf(F) the event{w |

Inf(w) € F}. The following theorem states that in a 2- The limit is reached in at mostS| iterations. Note that
MDP, for every strategy of player 2, the set of states that areplayer 2 has a strategy that confines the gamé/to and
visited infinitely often is, with probability 1, an end compo  that consequently all strategies are optimal for playessl, a
nent. Corollary 1 follows easily from Theorem 1. they realize the value O of the gameliry. Therefore, with-
out loss of generality, in the remainder we assume that all
states i/, andT are absorbing.

s Ouir first step towards proving the existence of memory-
giesm, and all statess € S, we havePr$ ™ (Inf(C)) = 1. lesse-optimal strategies for reachability games consists in

Theorem 1 [7] For a player-1 selectok,, let C be the set
of end components of a 2-MDOF, . For all player-2 strate-



considering a value-iteration scheme for the computation o ) :)
(1) (ReachfT)). Let[T] : S — [0, 1] be the indicator func- /2

tion of T, defined by{T(s) = 1 for s € T, and[T](s) = 0 a b
VT](s) = 1 for s 7](5) =@

fors ¢ T. Letug = [T], and for allk > 0, let

D

ugy1 = Preq(ug). (1)
Note that the classical equation assi 1 = [T]V . . . L
Pre;y(ug), whereV is interpreted as the %\ni(imumgn]point- Figure 1. An MDP with reachability objective.
wise fashion. Since we assume that all state¥ iare ab- On the other hand, consider any selecgpifor player 1
sorbing, the classical equation reduces to the simpler-equathat chooses moveat statess with positive probability. Un-
tion given by (1). From the monotonicity dtre it follows der the memoryless strategy, the set{s, s1} of states is
thatu, < ugi1, thatis, Prei(ug) > ug, for all & > 0. reached with probability 1, and, is reached with proba-

The result of [10] establishes by a combinatorial argument pjlity 1/, Such a¢/ is thus an example of a selector that is

that (1)) (ReaclT)) = limy_, ux, Where the limit is in- both value-optimal and optimal.
terpreted in pointwise fashion. For &I> 0, let the player-1

selector; be avalue-optimakelector foruy, that is, a se- N the example, the problem is that the strategymay
lector such thatPre; (uy,) = Prei.c, (ux). An s-optimal cause player 1 to stay forever #\ (7' U W5) with pos-
strategyr for player 1 can be constructed by applying the itive probability. We call “proper” the strategies of playe
sequence, Co—_1, . - -, (1, Co, Cos Co, . - . Of selectors, where  that guarantee reachifigu I, with probability 1.

the last selectorgy, is repeated forever. It is possible to

prove by induction ork that Definition 3 (Proper strategies and selectors)A player-1

strategy 71 is proper if for all player-2 strategiesms,,
. 7 e o and for all statess € S T U W), we have
,,jgfnz Pri72(35 € [0.4].8; € T) = up. Priv™ (ReacT UWy)) = 1. ,\A i)layer—l s?electofl is
properif the memoryless player-1 strategyis proper.
As the strategies”, for & > 0, are not necessarily memo- _
ryless, this proof does not suffice for showing the existence Ve note that proper strategies are closely related to Con-
of memoryless-optimal strategies. On the other hand, the don’s notion of ahalting game[4]: precisely, a game is
following example shows that the memoryless strategy ~ halting iff all player-1 strategies are proper. We can check
does not necessarily guarantee the valje whether a selector for player 1 is proper by considering only
the pure selectors for player 2.
Example 1 Consider thel-MDP shown in Fig 1. At all
states excepts, the set of available moves for player 1 isa Lemma 1 Given a selectok, for player 1, the memory-
singleton set. Ats, the available moves for player 1 are  '€SS player-1 strategy, is proper iff for every pure se-
andb. The transitions at the various states are shown in the lector &, for player 2, and for all states € 5, we have
figure. The objective of player 1 is to reach the state Pr{¢2(ReacliT U W) = 1.
We consider the value-iteration procedure and denote by

uy, the valuation aftef iterations. Writing a valuation: as Proof. We prove the contrapositive. Given a player-1 se-

lector &, consider the 2-MDRGy,. If &, is not proper,

the list of valueg(u(so), u(s1), ... u(s4)), we have: then by Theorem 1, there must exist an end component
uo = (1,0,0,0,0) C C S\ (T'UWsy)in Ge,. Then, fromC, player 2 can
w1 = Pre;(ug) = (1,0, /5,0, 0) avoid reaching’ U W5 by repeatedly applying a pure selec-

tor &, that at every state € C deterministically chooses a
moveas € T'y(s) such thatDest(s, &1, a2) C C. The exis-
tence of a suitablé,(s) for all statess € C follows from
the definition of end componem.

(
us = Prej(ur) = (1,0, s, 1/5,0)
uz = Prel(UQ) = (1705 1/25 1/25 1/2)

ug = Prei(uz) = uz = (1,0, 2, 12, 1/2)

The valuationu; is thus a fixpoint. The following lemma shows that the selector that
Now consider the selectar for player 1 thatchooses at  chooses all available moves uniformly at random is proper.
statess the move: with probability 1. The selectd isop-  This fact will be used later to initialize our strategy-

timal with respect to the valuati_om;. However, if pl_ayer 1 improvement algorithm.
follows the memoryless strategy, then the play visits; .
ands, alternately and reaches, with probability 0. Thus,  Lemma 2 Let&;™ be the player-1 selector that at all states
&1 is an example of a selector that is value-optimal, but not s € S\ (T'U W) chooses all moves if; (s) uniformly at

optimal. random. Them‘”if is proper.



Proof. Assume towards contradiction th@f”" is not
proper. From Theorem 1, in the 2-MDP cunif there must

be an end componerit C S\ (TU Wg) Then, when

player 1 follows the strategg/1 , player 2 can confine the
game toC. By the definition ofgun'f, player 2 can ensure
that the game does not lea/eregardless of the moves cho-
sen by player 1, and thus, fall strategies of player 1. This
contradicts the fact thdl’; contains all states from which
player 2 can ensure thatis not reached

The following lemma shows that if the player-1 selec-

tor (;, computed by the value-iteration scheme (1) is proper,

then the player-1 strategy, guarantees the valug,, for all
k> 0.

Lemma 3 Let v be a valuation such thaPre;(v) > v
and v(s) 0 for all statess € W,. Let& be a se-
lector for player 1 such thaPre;.e, (v) = Prei(v). If
& is proper, then for all player-2 strategies,, we have

Pré1™ (ReachT))) > v.

Proof. Consider an arbitrary player-2 strategy, and for
k>0,let

vk = B2 (0(6))
be the expected value ofafterk steps undef, andrs. By

induction onk, we can provey, > v for all & > 0. In fact,
vg = v, and fork > 0, we have

Vg1 > Preqe, (vg) > Preqe, (v) = Prei(v) > v.

Forallk > 0 ands € S, we can writev;, as

vg(s) = Egl ™ (v(Ok) | Or €T) ~Pr§1 (0, €T)

" (Ef (v(O1) | B € 5\ (T UW)):

préim (Bre S\ (TU WQ)))
+ Egl’” (v(©k) | O € Wa) -Prgl’7T2 (0) € Wa).

Sincev(s) < 1whens € T, the first term on the right-hand
side is at mosPrgl’7T2 (@k S T). For the second term, we
havelimy_, o Prgl’”(@k € S\ (T UWs)) = 0 by hy-
pothesis, becau&érgl’”(ReacmT U Ws)) = 1 and every
states € (T'U Ws) is absorbing. Finally, the third term on

the right hand side is O, ags) = 0 for all statess € W5.
Hence, taking the limit withk — oo, we obtain

PifL™ (ReacHT) = Jim P (6 € 7)

> lim v, > v,

k—o0

where the last inequality follows from, > v for all & > 0.
The desired result followd.

4.2. From value iteration to optimal selectors

Considering again the value-iteration scheme (1), since
{(1))(ReachT)) = limg_ o ug, for everye > 0 there is

ak such thatu,(s) > ug—1(s) > {(1)(ReachT))(s) — ¢

at all states € S. Lemma 3 indicates that, in order to con-
struct a memorylessoptimal strategy, we need to construct
fromuy_; a player-1 selectaf; such that:

1. & is value-optimal fotu,_1, thatis,Prey.¢, (ug—1) =
Prej(ug—1) = ux; and

2. & is proper.

To ensure the construction of a value-optimal, proper selec
tor, we need some definitions. For>- 0, thevalue class

:7‘}

consists of the states with valueunder the valuatiom,.
Similarly we definelUt, = {s € S | ux(s) > r}, fore
{<,<,>,>}. Forastates € S, let{i(s) = min{j < k |
u;(s) = uk(s)} be theentry timeof s in UY_, thatis, the
least iteratiory in which the state has the same value as in
iterationk. Fork > 0, we define the player-1 selectay as
follows: if £;(s) > 0, then

Urkz{seS|uk(s)

= = f P
M(8) =T () = axg sup Inf Preg, g (te, 1)

otherwise, ift;(s) = 0, thenny(s) = 1, (s)(s) = &™ (s)
(this definition is arbitrary, and it does not affect the réma
der of the proof). In words, the selectgy(s) is an optimal
selector fors at the iteration,(s). It follows easily that
up = Prei.y, (ux—1), thatis,n is also value-optimal for
uy_1, satisfying the first of the above conditions.

To conclude the construction, we need to prove that for
k sufficiently large (namely, fok such thatug(s) > 0 at
all statess € S\ (T U Wy)), the selector is proper. To
this end we use Theorem 1, and show that for sufficiently
largek no end component af7,,, is entirely contained in
S\ (T'UW>).! To reason about the end component&gf,
for a states € S and a player-2 move, € I's(s), we write

U

a1 € Supp(nk(s))

Desty(s,as) = Dest(s, a1, a2)

for the set of possible successors of statghen player 1
follows the strategyj,,, and player 2 chooses the mave

Lemma4 Let0 < r < 1 andk > 0, and consider a state
s € S\ (T UWs,) such thats € U*. For all movesa, €
s (s), we have:

1. eitherDesty(s,as) N UL, #£ 0,

1 Infact, the result holds for alt, even though our proof, for the sake
of a simpler argument, does not show it.



2. or Desty(s,a2) C UF, and there is a state¢ <
Desty (s, az) with £ (t) < Cx(s).

Proof. For convenience, letr = ¢;(s), and consider any
moveas € I'y(s).

e Consider first the case thabesty(s,a2) ¢ UF.
Then, it cannot be thabest(s,a2) C UZE, ; other-
wise, for all stateg € Desty(s,az), we would have
ug(t) < r, and there would be at least one state
t € Desty(s,az) such thatu,(t) < r, contradicting
ug(s) = r and Prei.,, (ux—1) = ug. SO, it must be
that Desty, (s, az) N UL, # 0.

e Consider now the case thBst;(s,az) C UF. Since
Uy < ug, due to the monotonicity of th€re; opera-
tor and (1), we have that,,_(t) < r for all states
t € Destp(s,az2). Fromr = ug(s) = up(s) =
Preqy, (Um—1), it follows thatu,,_,(t) = r for all
statest € Desty (s, az), implying thatéy(t) < m for
all states € Desty (s, az). 11

The above lemma states that undgr from each state
i € UF with » > 0 we are guaranteed a probability bounded
away from 0 of either moving to a higher-value clds,,

Theorem 2 (Memoryless:=-optimal strategies) For every
¢ > 0, memoryless-optimal strategies exist for all concur-
rent games with reachability objectives.

Proof. Consider a concurrent reachability game with tar-
getT C S. Sincelimy,_, o ur, = {(1))(Reach{T)), for every
¢ > 0 we can findk € N such that the following two asser-
tions hold:
max(((1) (ReaclfT))(s) — ux—1(s)) < ¢
min  ug—1(s) >0
SGS\WQ
By construction,Pres.,, (ux—1) = Prei(ux—1) = ug.
Hence, from Lemma 3 and Lemma 5, for all player-2 strate-
giesms, we havePr” ™ (Reacl{T")) > uy_1, leading to
the result

5. Strategy Improvement

In the previous section, we provided a proof of the existence
of memoryless-optimal strategies for all > 0, on the ba-

sis of a value-iteration scheme. In this section we present a
strategy-improvement algorithm for concurrent games with

or of moving to states within the value class that have a yeachapility objectives. The algorithm will produce a se-

strictly lower entry time. Note that the states in the target qyence of selectors, 1,

setT are all inUY: they have entry-time 0 in the value class
for value 1. This implies that every state $h\ W> has a
probability bounded above zero of reachifign at most

n = |S| steps, so that the probability of staying forever in
S\ (T'UW>) is 0. To prove this fact formally, we analyze
the end components 6f,, in light of Lemma 4.

Lemma5 For all £ > 0, if for all statess € S\ W, we
haveuy_1(s) > 0, then for all player-2 strategies,, we
havePr"+™ (Reacl{T U W5)) = 1.

Proof. Since every state € (T'UW,) is absorbing, to prove
this result, in view of Corollary 1, it suffices to show that no
end componentdf,, is entirely contained i$'\ (TUW5).

. for player 1, such that:
<

V2, - -
1. for all ¢ > 0, we have {(1)7:(Reacl{T))
(1)1 (ReachT));
2. lim;_ o (1)7i(ReaclT)) = ((1))(Reacl{T)); and
3. if trlere isi > 0 such that~;
(1) (ReachT’)) = (1)) (ReachT)).
Condition 1 guarantees that the algorithm computes a se-
guence of monotonically improving selectors. Condition 2
guarantees that the value guaranteed by the selectors con-
verges to the value of the game, or equivalently, that for all
e > 0, there is a numberof iterations such that the mem-
oryless player-1 stratedy, is e-optimal. Condition 3 guar-

Yidt1s then

Towards the contradiction, assume there is such an endntees that if a selector cannot be improved, then it is opti-

componenC' C S\ (T'UW»). Then, we have’ C U]}, |
with C N U,, # 0, for somed < r; < ry < 1, where
Ul ., = UL, nUE,, is the union of the value classes for
all values in the intervalr;, r2]. Consider a state € U
with minimal ¢, that is, such that,(s) < ¢x(t) for all
other states € UF . From Lemma 4, it follows that for ev-
ery movea, € I's(s), there is a state€ Desty(s, a2) such
that (i) eithert € U” and((t) < (x(s), (i) ort € U,

In both cases, we obtain a contradictiiin.

The above lemma shows that satisfies both require-

ments for optimal selectors spelt out at the beginning of ng, 71,12, . .

Section 4.2. Hencey, guarantees the valug,. This proves
the existence of memorylessoptimal strategies for con-
current reachability games.

mal. Note that for concurrent reachability games, there may
be noi > 0 such thaty; = ~;+1, that is, the algorithm may
fail to generate an optimal selector. This is because there
are concurrent reachability games that do not admit opti-
mal strategies, but only-optimal strategies for at > 0

[13, 9]. Forturn-basedreachability games, it can be eas-
ily seen that our algorithm terminates with an optimal se-
lector.

We note that the value-iteration scheme of the previ-
ous section does not directly yield a strategy-improvement
algorithm. In fact, the sequence of player-1 selectors
. computed in Section 4.1 may violate Condi-
tion 3: it is possible that for some> 0 we haven; = 1,11,
butn; # n; for somej > 4. This is because the scheme
of Section 4.1 is fundamentally a value-iteration scheme,



even though a selector is extracted from each valuation.states in the Markov chaifi,, , ¢,. Let ] be the nonempty

The scheme guarantees that the valuations:;, us, . . .

set of states where the selector is modified to obtain

defined as in (1) converge, but it does not guarantee thatfrom ;; at all other states; and~; ; agree.

the selectorsg, 11,72, - . . improve at each iteration.

Since~; and~;; agree at all states other than the states

The strategy-improvement algorithm presented herein I, andy; is a proper strategy, it follows thatN 7 + . Let

shares an important connection with the proof of the ex-

istence of memorylessoptimal strategies presented in the
previous section. Here, also, the key is to ensure thatal ge

erated selectors are proper. Again, this is ensured by modiU;, then Dest(s,v;, &) N UL, # 0. Let z

fying the selectors, at each iteration, only where they @an b
improved.

5.1. The strategy-improvement algorithm

Ordering of strategiesWe letW; be as in Section 4.1, and

Uy ={s € S\(TUW2) | (1))7(Reacl{T))(s) = vi(s) =

r} be the value class with valueat iteration:. For a state

s € U} the following assertion holds: iDest (s, v;, &2) <
max{r |
UinC # 0}, thatis,U! is the greatest value class at iter-
ation: with a nonempty intersection with the closed recur-
rent setC'. It easily follows that) < z < 1. Consider any
states € I, and lets € U}. SincePre; (v;)(s) > vi(s), it
follows that Dest (s, viy1,&2) N UL, # 0. Hence we must
havez > ¢, and thereford N C N U = {). Thus, for all

again we assume without loss of generality that all statesstatess € UZ N C, we havey;(s) = vi+1(s). Recall that:

in Wy U T are absorbing. We define a preordemon the
strategies for player 1 as follows: given two player 1 strate
giesm; and i, let m;; < =} if the following two con-
ditions hold: (i) (1))™ (ReachT)) < ((1))™ (ReachT));
and (i) (1)™ (ReachT))(s) < ((1)™ (ReaclT))(s) for
some states € S. Furthermore, we writer; < 77 if ei-
therm, < w orm = .

Informal description of Algorithm 1We now present the
strategy-improvement algorithm (Algorithm 1) for comput-
ing the values for all states i \ (T" U W3). The algo-
rithm iteratively improves player-1 strategies accordiog
the preorder<. The algorithm starts with the random se-

lectorvyy = Eﬁn'f. At iterationi + 1, the algorithm considers
the memoryless player-1 strategyand computes the value
{(1)7:(ReacHT)). Observe that since, is a memory-
less strategy, the computation(0if))7: (ReaciT)) involves
solving the 2-MDRG.,,. The valuation(1))”: (ReachiT)) is
namedy;. For all statess such thatPre; (v;)(s) > v;(s),
the memoryless strategy atis modified to a selector that
is value-optimal for;. The algorithm then proceeds to the
next iteration. IfPre; (v;) = v;, the algorithm stops and re-
turns the optimal memoryless strategyfor player 1. Un-
like strategy-improvement algorithms for turn-based game

is the greatest value class at iteratiomith a nonempty in-
tersection withC'; henceUZ , N C = 0. Thus for all states

s € CNUL we haveDest(s,7vi+1,&) C UL N C. It fol-
lows thatC' C U:. However, this gives us three statements
that together form a contradictiof: N I # @ (or elsey;
would not have been proped)C NU! = (), andC C U:.

|

Lemma 7 For all i > 0, the player-1 selectot; obtained
at iteration+ of Algorithm 1 is proper.

Proof. By Lemma 2 we have thay, is proper. The result
then follows from Lemma 6 and inductidh.

Lemma 8 Let y; and ~;, be the player-1 selectors ob-
tained at iterations andi + 1 of Algorithm 1. Letl = {s €
S| Preq(v;)(s) > vi(s)}. Letv; = (1))7i(ReacKT’)) and
vir1 = ((1))7i+1(ReaclT)). Thenv;1(s) > Pre;(v;)(s)
for all statess € S; and thereforev; 1 (s) > v;(s) for all
statess € S, andv;;1(s) > v;(s) for all statess € I.

Proof. Consider the valuations andv;; obtained at itera-
tionsi andi+ 1, respectively, and let; be the valuation de-
fined byw;(s) = 1 — v;(s) for all statess € S. Sincev; ;1

is proper (by Lemma 7), it follows that the counter-optimal
strategy for player 2 to minimize, ; is obtained by maxi-

(see [5] for a survey), Algorithm 1 is not guaranteed to ter- mjzing the probability to reach/,. In fact, there are no end

minate, because the value of a reachability game may notcomponentsirs \ (W, U T') in the 2-MDPG

be rational.
5.2. Convergence

Lemma 6 Let +; and~;,; be the player-1 selectors ob-
tained at iterations andi+ 1 of Algorithm 1. Ify; is proper,
then~,; is also proper.

Proof. Assume towards a contradiction that is proper
and~; . is not. Leté; be a pure selector for player 2 to
witness thaty;,1 is not proper. Then there exist a subset
C C S\ (T UW,) such thatC' is a closed recurrent set of

yisi- LEL
if seS\I;

wit1(s) if s € 1.

_ Jwi(s)

1= Pres(vi)(s) < wi(s)
In other wordsw;+1 = 1 — Pre;(v;), and we also have
w1 < w;. We now show thaiv; 1 is a feasible solution to
the linear program for MDPs with the objective Reddh),
as described in Section 3. Sinee= {(1))7:(ReaclT)), it
follows that for all states € S and all movesi; € T'a(s),

we have
w;(8) > sz(t) - 0ny, (8, a2).
tes



Algorithm 1 Strategy-Improvement Algorithm

Input: a concurrent game structuégwith target sefl”.

0. Computdl, = {s € S | (1)) (ReachT’))(s) = 0}.

1. Lety, = £ andi = 0.

2. Computeyy = ((1))70(Reach{T))).

3.do{
31 . Letl ={se S\ (TUWs) | Prei(v;)(s) > vi(s)}.
3.2. Let¢; be a player-1 selector such that for all states I, we havePrei.¢, (vi)(s) = Prei(vi)(s) > vi(s).
3.3. The player-1 selectet  ; is defined as follows: for each state S, let

. ) t) if s E T
Y1 (D) = &i(s) ifsel.
3.4. Computey; 1 = {(1))7i+1(ReachT)).
3.5. Leti =i + 1.
Luntil T =0.

For all statess € S\ I, we havey;(s) = 7+1(s) and Proof. We prove the two parts as follows.
wi+1(8) = w;(s), and sincaw; 1 < wy, it follows that for

all statess € S\ T and all moves:, € T's(s), we have 1. The assertion that, < 7, follows from Lemma 8.

If %, = 7.1, then Pre;(v;) = v;, indicating that
_ _ ) v; = (1))(ReacKT)). From Lemma 7 it follows that
wisa () 2 3 winn (1) 8y (5,02). 7, is proper. Sincey; is proper by Lemma 3, we have
{1)7i(ReaclT)) > v; = {(1))(ReacT)). It follows
Since fors € I the selectory;;1(s) is obtained as an op- that7, is optimal for player 1.
timal selector forPre; (v;)(s), it follows that for all states 2 L _ _
. Letvy = [T] andug = [T]. We haveuy < vy. For all

s € I and all movesi; € T'y(s), we have k > 0, by Lemma 8, we havey ., > [T]V Pres (vy).

Forallk > 0, letugy1 = [T] V Prei(ug). By induc-
wiy1(s) 2 Zwi(t) $03i14 (5, 02)- tion we conclude th+at for[al;t >0, Wé hzzlveu}; < V.
Moreoveryy, < ((1))(ReachT)), thatis, for allk > 0,
Sincew;+1 < w;, for all statess € I and all movesi; € we have
Ta(s), we have

wig1(s) 2 > wiga(t) - 6y, (5, 02).

tesS

tes

ugp < v < (1) (ReachT)).

pyere Sincelimy_.o ux = ((1))(ReachfT’)), it follows that

Hence it follows thatw;; is a feasible solution to the lin- lim (1))7*(ReachfT)) = lim vy
ear program for MDPs with reachability objectives. Since koo B ]<C<T>§O(ReacmT))
the reachability valuation for player 2 for Redtl,) is o ’
the I_east solution _(observ_e t_hf';lt the ol_)jecti_ve function of The theorem followsl
the linear program is a minimizing function), it follows tha
vig1 > 1 —w;y1 = Prey(v;). Thus we obtain, 1 (s) > Acknowledgments.This research was supported in part by
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