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Abstract

A concurrent reachability game is a two-player game
played on a graph: at each state, the players simultane-
ously and independently select moves; the two moves de-
termine jointly a probability distribution over the succes-
sor states. The objective for player 1 consists in reaching
a set of target states; the objective for player 2 is to pre-
vent this, so that the game is zero-sum.

Our contributions are two-fold. First, we present a sim-
ple proof of the fact that in concurrent reachability games,
for all ε > 0, memorylessε-optimal strategies exist. A mem-
oryless strategy is independent of the history of plays, and
an ε-optimal strategy achieves the objective with probabil-
ity within ε of the value of the game. In contrast to pre-
vious proofs of this fact, which rely on the limit behavior
of discounted games using advanced Puisieux series analy-
sis, our proof is elementary and combinatorial. Second, we
present a strategy-improvement (a.k.a. policy-iteration) al-
gorithm for concurrent games with reachability objectives.

1. Introduction

We consider concurrent reachability games played by two
players on finite state spaces. The configuration of such a
game is called astate. At each round, the two players choose
their moves concurrently and independently; the two moves
and the current state determine a successor state, or in gen-
eral, a probability distribution over the successor states. A
play of the game consists in the infinite sequence of states
visited while playing the game. The objective of player 1
consists in forcing the game to a specified set of target
states; the objective of player 2 consists in preventing the
game from reaching a target state. Consequently, we assign
value 1 to all plays that reach the target set, and value 0
to all other plays. The players can adopt strategies that are
both randomized and history-dependent. Player 1 canguar-
anteea valuev for the game from a states if player 1 has a
strategy that ensures that the expected value of a play from
s is at leastv, regardless of the strategy chosen by player 2.
Thevalue at states of the reachability game with targetT

is the supremum of the set of values that player 1 can guar-
antee froms. An optimal strategyfor player 1 is a strat-
egy that guarantees the value of the game from each states.
For ε > 0, anε-optimal strategyfor player 1 is a strategy
that guarantees that the objective is satisfied with a proba-
bility within ε of the value of the game, for each states.

Concurrent reachability games belong to the family of
repeated games [17, 13], and they have been studied more
specifically in [9, 8, 10]. In this paper our contributions are
two-fold. First, we present a simple and combinatorial proof
of the existence of memorylessε-optimal strategies for con-
current games with reachability objectives, for allε > 0.
Second, we present a strategy-improvement (a.k.a. policy-
iteration) algorithm for concurrent reachability games. Un-
like in the special case ofturn-basedgames, where at ev-
ery state at most one player can choose between multiple
moves, the algorithm need not terminate in finitely many
iterations. Strategy improvement algorithms were previ-
ously known for turn-based games with reachability objec-
tives [5], and turn-based games with more complex objec-
tives [18, 2].

It has long been known that optimal strategies need not
exist for concurrent reachability games [13], so that one
must settle forε-optimality. It was also known that, for
ε > 0, there existε-optimal strategies that are memoryless,
i.e., strategies that always choose a probability distribution
over moves that depends only on the current state, and not
on the past history of the play [14]. Unfortunately, the only
previous proof of this fact is rather complex. The proof con-
sidereddiscountedversions of reachability games, where a
play that reaches the target ink steps is assigned a value of
αk, for some discount factor0 < α ≤ 1, rather than value 1.
It is possible to show that, for0 < α < 1, memoryless opti-
mal strategies always exist. The result for the undiscounted
(α = 1) case followed from an analysis of the limit behavior
of such optimal strategies forα → 1. The limit behavior is
studied with the help of results on the field of real Puisieux
series [14]. This proof idea works not only for reachability
games, but also for total-reward games with nonnegative re-
wards (see [14] again). A more specialized recent result [12]
established the existence of memorylessε-optimal strate-
gies for certain infinite-state (recursive) concurrent games,
but again the proof relies on deep results from analysis and



linear algebra (matrix theory). We show that the existence of
memorylessε-optimal strategies for concurrent reachability
games can be established by more elementary means. Our
proof relies only on combinatorial techniques and on sim-
ple properties of Markov decision processes [1, 7]. As our
proof is easily accessible, we believe that the proof tech-
niques we use will find future applications in game theory.

Our proof of the existence of memorylessε-optimal
strategies, for allε > 0, is built upon a value-iteration
scheme that converges to the value of the game [10]. The
value-iteration scheme computes a sequenceu0, u1, u2, . . .
of valuations, where fori = 0, 1, 2, . . . each valuationui

associates with each states of the game a lower bound
ui(s) on the value of the game, such thatlimi→∞ ui(s)
converges to the value of the game ats. From each valu-
ation ui, we can easily extract a memoryless, randomized
player-1 strategy, by considering the (randomized) choice
of moves for player 1 that achieves the maximal one-step
expectation ofui. In general, a strategyπi obtained in this
fashion is not guaranteed to achieve the valueui. We show
thatπi is guaranteed to achieve the valueui if it is proper,
that is, if regardless of the strategy adopted by player 2,
the game reaches with probability 1 states that are either
in the target, or that have no path leading to the target.
Next, we show how to extract from the sequence of val-
uationsu0, u1, u2, . . . a sequence of memoryless random-
ized player-1 strategiesπ0, π1, π2, . . . that are guaranteed to
be proper, and thus achieve the valuesu0, u1, u2, . . .. This
proves the existence of memorylessε-optimal strategies for
all ε > 0.

We then apply the techniques developed for the above
proof to develop astrategy-improvementalgorithm for
concurrent reachability games. Strategy-improvement algo-
rithms, also known aspolicy iterationalgorithms in the con-
text of Markov decision processes [11, 1], compute a se-
quence of memoryless strategiesπ′

0, π
′
1, π

′
2, . . . such that,

for all k ≥ 0, (i) the strategyπ′
k+1 is at all states no worse

thanπ′
k; (ii) if π′

k+1 = π′
k, thenπk is optimal; and (iii) for

everyε > 0, we can find ak sufficiently large so thatπ′
k isε-

optimal. Computing a sequence of strategiesπ0, π1, π2, . . .
on the basis the value-iteration scheme from above does not
yield a strategy-improvement algorithm, as condition (ii)
may be violated: there is no guarantee that a step in the
value iteration leads to an improvement in the strategy. We
will show that the key to obtain a strategy-improvement al-
gorithm consists in recomputing, at each iteration, the val-
ues of the player-1 strategy to be improved, and in adopt-
ing a particular strategy-update rule, which ensures that all
the strategies produced are proper. Unlike previous proofs
of strategy-improvement algorithms for concurrent games
[5, 14], which relied on the analysis of discounted ver-
sions of the games, our analysis is again purely combinato-
rial. Differently from turn-based games [5], for concurrent

games we cannot guarantee the termination of the strategy-
improvement algorithm. In fact, there are games where op-
timal strategies do not exist, and we can guarantee the exis-
tence of onlyε-optimal strategies, for allε > 0 [13, 9].

2. Definitions

Notation. For a countable setA, a probability distribution
onA is a functionδ : A → [0, 1] such that

∑

a∈A δ(a) = 1.
We denote the set of probability distributions onA by
D(A). Given a distributionδ ∈ D(A), we denote by
Supp(δ) = {x ∈ A | δ(x) > 0} the support set ofδ.

Definition 1 (Concurrent games) A (two-player)concur-
rent game structureG = 〈S, M, Γ1, Γ2, δ〉 consists of the
following components:

• A finite state spaceS and a finite setM of moves.

• Two move assignmentsΓ1, Γ2 : S → 2M \ ∅. For i ∈
{1, 2}, assignmentΓi associates with each states ∈
S a nonempty setΓi(s) ⊆ M of moves available to
playeri at states.

• A probabilistic transition functionδ : S × M × M →
D(S) that gives the probabilityδ(s, a1, a2)(t) of a
transition froms to t when player 1 chooses at states
movea1 and player 2 chooses movea2, for all s, t ∈ S
anda1 ∈ Γ1(s), a2 ∈ Γ2(s).

We denote by|δ| =
∑

s∈S Γ1(s) ·Γ2(s) the number of tran-
sitions of the transition functionδ. At every states ∈ S,
player 1 chooses a movea1 ∈ Γ1(s), and simultaneously
and independently player 2 chooses a movea2 ∈ Γ2(s).
The game then proceeds to the successor statet with prob-
ability δ(s, a1, a2)(t), for all t ∈ S. A states is anabsorb-
ing stateif for all a1 ∈ Γ1(s) anda2 ∈ Γ2(s), we have
δ(s, a1, a2)(s) = 1. In other words, at an absorbing state
s for all choices of moves of the two players, the succes-
sor state is alwayss.

Plays. A play ω of G is an infinite sequenceω =
〈s0, s1, s2, . . .〉 of states inS such that for allk ≥ 0,
there are movesak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) with

δ(sk, ak
1 , ak

2)(sk+1) > 0. We denote byΩ the set of all
plays, and byΩs the set of all playsω = 〈s0, s1, s2, . . .〉
such thats0 = s, that is, the set of plays starting from
states.

Selectors and strategies.A selectorξ for playeri ∈ {1, 2}
is a functionξ : S → D(M) such that for all statess ∈ S
and movesa ∈ M , if ξ(s)(a) > 0, thena ∈ Γi(s). We de-
note byΛi the set of all selectors for playeri ∈ {1, 2}.
The selectorξ is pure if for every states ∈ S, there is a
movea ∈ M such thatξ(s)(a) = 1. A strategyfor player
i ∈ {1, 2} is a functionπ : S+ → D(M) that associates
with every finite, nonempty sequence of states, representing
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the history of the play so far, a selector for playeri; that is,
for all w ∈ S∗ ands ∈ S, we haveSupp(π(w ·s)) ⊆ Γi(s).
The strategyπ is pure if it always chooses a pure selector;
that is, for allw ∈ S+, there is a movea ∈ M such that
π(w)(a) = 1. A memorylessstrategy is independent of the
history of the play and depends only on the current state.
Memoryless strategies correspond to selectors; we writeξ
for the memoryless strategy consisting in playing forever
the selectorξ. A strategy ispure memorylessif it is both
pure and memoryless. We denote byΠ1 andΠ2 the sets of
all strategies for player1 and player2, respectively.

Destinations of moves and selectors.For all statess ∈ S
and movesa1 ∈ Γ1(s) anda2 ∈ Γ2(s), we indicate by
Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible
successors ofs when the movesa1 anda2 are chosen. Given
a states, and selectorsξ1 andξ2 for the two players, we de-
note by

Dest(s, ξ1, ξ2) =
⋃

a1∈Supp(ξ1(s)),

a2∈Supp(ξ2(s))

Dest(s, a1, a2)

the set of possible successors ofs with respect to the selec-
torsξ1 andξ2.

Once a starting states and strategiesπ1 and π2 for
the two players are fixed, the game is reduced to an ordi-
nary stochastic process. Hence, the probabilities of events
are uniquely defined, where aneventA ⊆ Ωs is a mea-
surable set of plays. For an eventA ⊆ Ωs, we denote
by Prπ1,π2

s (A) the probability that a play belongs toA
when the game starts froms and the players follows the
strategiesπ1 andπ2. Similarly, for a measurable function
f : Ωs → IR, we denote byEπ1,π2

s (f) the expected value
of f when the game starts froms and the players follow the
strategiesπ1 andπ2. For i ≥ 0, we denote byΘi : Ω → S
the random variable denoting thei-th state along a play.

Valuations.A valuation is a mappingv : S → [0, 1] as-
sociating a real numberv(s) ∈ [0, 1] with each states.
Given two valuationsv, w : S → IR, we writev ≤ w when
v(s) ≤ w(s) for all statess ∈ S. For an eventA, we de-
note byPrπ1,π2(A) the valuationS → [0, 1] defined for
all statess ∈ S by

(

Prπ1,π2(A)
)

(s) = Prπ1,π2

s (A). Sim-
ilarly, for a measurable functionf : Ωs → [0, 1], we de-
note byEπ1,π2(f) the valuationS → [0, 1] defined for all
s ∈ S by

(

Eπ1,π2(f)
)

(s) = Eπ1,π2
s (f).

Given a valuationv, and two selectorsξ1 ∈ Λ1 andξ2 ∈
Λ2, we define the valuationsPreξ1,ξ2

(v), Pre1:ξ1
(v), and

Pre1(v) as follows, for all statess ∈ S:

Preξ1,ξ2
(v)(s)

=
∑

a,b∈M

∑

t∈S

v(t) · δ(s, a, b)(t) · ξ1(s)(a) · ξ2(s)(b)

Pre1:ξ1
(v)(s) = inf

ξ2∈Λ2

Preξ1,ξ2
(v)(s)

Pre1(v)(s) = sup
ξ1∈Λ1

inf
ξ2∈Λ2

Preξ1,ξ2
(v)(s)

Intuitively, Pre1(v)(s) is the greatest expectation ofv that
player 1 can guarantee at a successor state ofs. Also
note that given a valuationv, the computation ofPre1(v)
reduces to the solution of a zero-sum one-shot matrix
game, and can be solved by linear programming. Simi-
larly, Pre1:ξ1

(v)(s) is the greatest expectation ofv that
player 1 can guarantee at a successor state ofs by play-
ing the selectorξ1. Note that all of these operators on val-
uations are monotonic: for two valuationsv, w, if v ≤ w,
then for all selectorsξ1 ∈ Λ1 and ξ2 ∈ Λ2, we have
Preξ1,ξ2

(v) ≤ Preξ1,ξ2
(w), Pre1:ξ1

(v) ≤ Pre1:ξ1
(w),

andPre1(v) ≤ Pre1(w).

Reachability and safety objectives.Given a subsetT ⊆ S
of target states, the objective of a reachability game con-
sists in reachingT . Therefore, we define the set winning
plays as the set Reach(T ) = {〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈
T for somek ≥ 0} of plays that visitT . For all T ⊆ S,
the set Reach(T ) is measurable. The probability of reach-
ing T from a states ∈ S under strategiesπ1 andπ2 for
players 1 and 2, respectively, isPrπ1,π2

s (Reach(T )). We de-
fine thevaluefor player 1 of the reachability game with tar-
getT from the states ∈ S as

〈〈1〉〉(Reach(T ))(s) = sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2

s (Reach(T )).

Given a player-1 strategyπ1, we use the notation

〈〈1〉〉π1 (Reach(T ))(s) = inf
π2∈Π2

Prπ1,π2

s (Reach(T )).

A strategyπ1 for player 1 isoptimal if for all statess ∈ S,
we have

〈〈1〉〉π1(Reach(T ))(s) = 〈〈1〉〉(Reach(T ))(s).

For ε > 0, a strategyπ1 for player 1 isε-optimal if for all
statess ∈ S, we have

〈〈1〉〉π1 (Reach(T ))(s) ≥ 〈〈1〉〉(Reach(T ))(s) − ε.

Given a setF ⊆ S of safestates, the objective of a safety
game consists in never leavingF . Correspondingly, the set
of winning plays is Safe(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈
F for all k ≥ 0}. For all F ⊆ S, the set Safe(F ) is mea-
surable. We define the value for player 2 of the safety game
with objective Safe(S \ T ) at the states ∈ S as

〈〈2〉〉(Safe(S \T ))(s) = sup
π2∈Π2

inf
π1∈Π1

Prπ1,π2

s (Safe(S \T )).

3



Reachability and safety objectives are dual, i.e., we have
Reach(T ) = Ω \ Safe(S \ T ). The quantitative determi-
nacy result of [16] ensures that for all statess ∈ S, we have

〈〈1〉〉(Reach(T ))(s) + 〈〈2〉〉(Safe(S \ T ))(s) = 1.

3. Markov Decision Processes

To develop our arguments, we need some facts about one-
player versions of concurrent stochastic games, known as
Markov decision processes(MDPs) [11, 1]. Fori ∈ {1, 2},
a player-i MDP (for short, i-MDP) is a concurrent game
where, for all statess ∈ S, we have|Γ3−i(s)| = 1. Given a
concurrent gameG, if we fix a memoryless strategy corre-
sponding to selectorξ1 for player 1, the game is equivalent
to a 2-MDPGξ1

with the transition function

δξ1
(s, a2)(t) =

∑

a1∈Γ1(s)

δ(s, a1, a2)(t) · ξ1(s)(a1),

for all s ∈ S anda2 ∈ Γ2(s). Similarly, if we fix selec-
torsξ1 andξ2 for both players in a concurrent gameG, we
obtain a Markov chain, which we denote byGξ1,ξ2

.

End components.In an MDP, the sets of states that play
an equivalent role to the closed recurrent classes of Markov
chains [15] are called “end components” [6, 7].

Definition 2 (End components) An end componentof an
i-MDP G, for i ∈ {1, 2}, is a subsetC ⊆ S of the states
such that there is a selectorξ for player i so thatC is a
closed recurrent class of the Markov chainGξ.

It is not difficult to see that an equivalent characterization of
an end componentC is the following. For each states ∈ C,
there is a subsetMi(s) ⊆ Γi(s) of moves such that:

1. (closed)if a move inMi(s) is chosen by playeri at
states, then all successor states that are obtained with
nonzero probability lie inC; and

2. (recurrent)the graph(C, E), whereE consists of the
transitions that occur with nonzero probability when
moves inMi(·) are chosen by playeri, is strongly con-
nected.

Given a playω ∈ Ω, we denote byInf(ω) the set of states
that occurs infinitely often alongω. Given a setF ⊆ 2S

of subsets of states, we denote byInf(F) the event{ω |
Inf(ω) ∈ F}. The following theorem states that in a 2-
MDP, for every strategy of player 2, the set of states that are
visited infinitely often is, with probability 1, an end compo-
nent. Corollary 1 follows easily from Theorem 1.

Theorem 1 [7] For a player-1 selectorξ1, let C be the set
of end components of a 2-MDPGξ1

. For all player-2 strate-

giesπ2 and all statess ∈ S, we havePrξ1,π2

s (Inf(C)) = 1.

Corollary 1 For a player-1 selectorξ1, let C be the set
of end components of a 2-MDPGξ1

, and let Z =
⋃

C∈C C be the set of states of all end components. For
all player-2 strategiesπ2 and all statess ∈ S, we have

Prξ1,π2

s (Reach(Z)) = 1.

MDPs with reachability objectives.Given a 2-MDP with a
reachability objective Reach(T ) for player 2, whereT ⊆ S,
the values can be obtained as the solution of a linear pro-
gram [14]. The linear program has a variablex(s) for all
statess ∈ S, and the objective function and the constraints
are as follows:

min
∑

s∈S

x(s) subject to

x(s) ≥
∑

t∈S

x(t) · δ(s, a2)(t) for all s ∈ S anda2 ∈ Γ2(s)

x(s) = 1 for all s ∈ T

0 ≤ x(s) ≤ 1 for all s ∈ S

The correctness of the above linear program to compute the
values follows from [11, 14].

4. Existence of Memorylessε-Optimal Strate-
gies for Concurrent Reachability Games

In this section we present an elementary proof of the ex-
istence of memorylessε-optimal strategies for concurrent
reachability games, for allε > 0 (optimal strategies need
not exist for concurrent games with reachability objec-
tives [13]). A proof of the existence of memoryless opti-
mal strategies for safety games can be found in [10].

4.1. From value iteration to selectors

Consider a reachability game with targetT ⊆ S. Let
W2 = {s ∈ S | 〈〈1〉〉(Reach(T ))(s) = 0} be the set of
states from which player 1 cannot reach the target with posi-
tive probability. From [8], we know that this set can be com-
puted asW2 = limk→∞ W k

2 , whereW 0
2 = S \ T , and for

all k ≥ 0,

W k+1
2 = {s ∈ S \ T | ∃a2 ∈ Γ2(s) . ∀a1 ∈ Γ1(s) .

Dest(s, a1, a2) ⊆ W k
2 } .

The limit is reached in at most|S| iterations. Note that
player 2 has a strategy that confines the game toW2, and
that consequently all strategies are optimal for player 1, as
they realize the value 0 of the game inW2. Therefore, with-
out loss of generality, in the remainder we assume that all
states inW2 andT are absorbing.

Our first step towards proving the existence of memory-
lessε-optimal strategies for reachability games consists in
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considering a value-iteration scheme for the computation of
〈〈1〉〉(Reach(T )). Let [T ] : S → [0, 1] be the indicator func-
tion of T , defined by[T ](s) = 1 for s ∈ T , and[T ](s) = 0
for s 6∈ T . Let u0 = [T ], and for allk ≥ 0, let

uk+1 = Pre1(uk). (1)

Note that the classical equation assignsuk+1 = [T ] ∨
Pre1(uk), where∨ is interpreted as the maximum in point-
wise fashion. Since we assume that all states inT are ab-
sorbing, the classical equation reduces to the simpler equa-
tion given by (1). From the monotonicity ofPre1 it follows
that uk ≤ uk+1, that is,Pre1(uk) ≥ uk, for all k ≥ 0.
The result of [10] establishes by a combinatorial argument
that 〈〈1〉〉(Reach(T )) = limk→∞ uk, where the limit is in-
terpreted in pointwise fashion. For allk ≥ 0, let the player-1
selectorζk be avalue-optimalselector foruk, that is, a se-
lector such thatPre1(uk) = Pre1:ζk

(uk). An ε-optimal
strategyπk

1 for player 1 can be constructed by applying the
sequenceζk, ζk−1, . . . , ζ1, ζ0, ζ0, ζ0, . . . of selectors, where
the last selector,ζ0, is repeated forever. It is possible to
prove by induction onk that

inf
π2∈Π2

Prπk

1 ,π2(∃j ∈ [0..k]. Θj ∈ T ) ≥ uk.

As the strategiesπk
1 , for k ≥ 0, are not necessarily memo-

ryless, this proof does not suffice for showing the existence
of memorylessε-optimal strategies. On the other hand, the
following example shows that the memoryless strategyζk

does not necessarily guarantee the valueuk.

Example 1 Consider the1-MDP shown in Fig 1. At all
states excepts3, the set of available moves for player 1 is a
singleton set. Ats3, the available moves for player 1 area
andb. The transitions at the various states are shown in the
figure. The objective of player 1 is to reach the states0.

We consider the value-iteration procedure and denote by
uk the valuation afterk iterations. Writing a valuationu as
the list of values

(

u(s0), u(s1), . . . , u(s4)
)

, we have:

u0 = (1, 0, 0, 0, 0)

u1 = Pre1(u0) = (1, 0, 1/2, 0, 0)

u2 = Pre1(u1) = (1, 0, 1/2, 1/2, 0)

u3 = Pre1(u2) = (1, 0, 1/2, 1/2, 1/2)

u4 = Pre1(u3) = u3 = (1, 0, 1/2, 1/2, 1/2)

The valuationu3 is thus a fixpoint.
Now consider the selectorξ1 for player 1 that chooses at

states3 the movea with probability 1. The selectorξ1 is op-
timal with respect to the valuationu3. However, if player 1
follows the memoryless strategyξ1, then the play visitss3

ands4 alternately and reachess0 with probability 0. Thus,
ξ1 is an example of a selector that is value-optimal, but not
optimal.

a b
s4 s3

s2

s1

s0

1/2

1/2

Figure 1. An MDP with reachability objective.

On the other hand, consider any selectorξ′1 for player 1
that chooses moveb at states3 with positive probability. Un-
der the memoryless strategyξ

′

1, the set{s0, s1} of states is
reached with probability 1, ands0 is reached with proba-
bility 1/2. Such aξ′1 is thus an example of a selector that is
both value-optimal and optimal.

In the example, the problem is that the strategyξ1 may
cause player 1 to stay forever inS \ (T ∪ W2) with pos-
itive probability. We call “proper” the strategies of player 1
that guarantee reachingT ∪ W2 with probability 1.

Definition 3 (Proper strategies and selectors)A player-1
strategy π1 is proper if for all player-2 strategiesπ2,
and for all states s ∈ S \ (T ∪ W2), we have
Prπ1,π2

s (Reach(T ∪ W2)) = 1. A player-1 selectorξ1 is
properif the memoryless player-1 strategyξ1 is proper.

We note that proper strategies are closely related to Con-
don’s notion of ahalting game[4]: precisely, a game is
halting iff all player-1 strategies are proper. We can check
whether a selector for player 1 is proper by considering only
the pure selectors for player 2.

Lemma 1 Given a selectorξ1 for player 1, the memory-
less player-1 strategyξ1 is proper iff for every pure se-
lector ξ2 for player 2, and for all statess ∈ S, we have

Prξ1,ξ2
s (Reach(T ∪ W2)) = 1.

Proof. We prove the contrapositive. Given a player-1 se-
lector ξ1, consider the 2-MDPGξ1

. If ξ1 is not proper,
then by Theorem 1, there must exist an end component
C ⊆ S \ (T ∪ W2) in Gξ1

. Then, fromC, player 2 can
avoid reachingT ∪W2 by repeatedly applying a pure selec-
tor ξ2 that at every states ∈ C deterministically chooses a
movea2 ∈ Γ2(s) such thatDest(s, ξ1, a2) ⊆ C. The exis-
tence of a suitableξ2(s) for all statess ∈ C follows from
the definition of end component.

The following lemma shows that the selector that
chooses all available moves uniformly at random is proper.
This fact will be used later to initialize our strategy-
improvement algorithm.

Lemma 2 Letξunif
1 be the player-1 selector that at all states

s ∈ S \ (T ∪ W2) chooses all moves inΓ1(s) uniformly at
random. Thenξunif

1 is proper.
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Proof. Assume towards contradiction thatξunif
1 is not

proper. From Theorem 1, in the 2-MDPG
ξ
unif
1

there must

be an end componentC ⊆ S \ (T ∪ W2). Then, when

player 1 follows the strategyξ
unif
1 , player 2 can confine the

game toC. By the definition ofξunif
1 , player 2 can ensure

that the game does not leaveC regardless of the moves cho-
sen by player 1, and thus, forall strategies of player 1. This
contradicts the fact thatW2 contains all states from which
player 2 can ensure thatT is not reached.

The following lemma shows that if the player-1 selec-
tor ζk computed by the value-iteration scheme (1) is proper,
then the player-1 strategyζk guarantees the valueuk, for all
k ≥ 0.

Lemma 3 Let v be a valuation such thatPre1(v) ≥ v
and v(s) = 0 for all statess ∈ W2. Let ξ1 be a se-
lector for player 1 such thatPre1:ξ1

(v) = Pre1(v). If
ξ1 is proper, then for all player-2 strategiesπ2, we have

Prξ1,π2(Reach(T )) ≥ v.

Proof. Consider an arbitrary player-2 strategyπ2, and for
k ≥ 0, let

vk = Eξ1,π2
(

v(Θk)
)

be the expected value ofv afterk steps underξ1 andπ2. By
induction onk, we can provevk ≥ v for all k ≥ 0. In fact,
v0 = v, and fork ≥ 0, we have

vk+1 ≥ Pre1:ξ1
(vk) ≥ Pre1:ξ1

(v) = Pre1(v) ≥ v.

For allk ≥ 0 ands ∈ S, we can writevk as

vk(s) = Eξ1,π2

s

(

v(Θk) | Θk ∈ T
)

· Prξ1,π2

s

(

Θk ∈ T
)

+

(

Eξ1,π2

s

(

v(Θk) | Θk ∈ S \ (T ∪ W2)
)

·

Prξ1,π2

s

(

Θk ∈ S \ (T ∪ W2)
)

)

+ Eξ1,π2

s

(

v(Θk) | Θk ∈ W2

)

· Prξ1,π2

s

(

Θk ∈ W2

)

.

Sincev(s) ≤ 1 whens ∈ T , the first term on the right-hand

side is at mostPrξ1,π2

s

(

Θk ∈ T
)

. For the second term, we

havelimk→∞ Prξ1,π2
(

Θk ∈ S \ (T ∪ W2)
)

= 0 by hy-

pothesis, becausePrξ1,π2(Reach(T ∪ W2)) = 1 and every
states ∈ (T ∪ W2) is absorbing. Finally, the third term on
the right hand side is 0, asv(s) = 0 for all statess ∈ W2.
Hence, taking the limit withk → ∞, we obtain

Prξ1,π2
(

Reach(T )
)

= lim
k→∞

Prξ1,π2
(

Θk ∈ T
)

≥ lim
k→∞

vk ≥ v,

where the last inequality follows fromvk ≥ v for all k ≥ 0.
The desired result follows.

4.2. From value iteration to optimal selectors

Considering again the value-iteration scheme (1), since
〈〈1〉〉(Reach(T )) = limk→∞ uk, for everyε > 0 there is
a k such thatuk(s) ≥ uk−1(s) ≥ 〈〈1〉〉(Reach(T ))(s) − ε
at all statess ∈ S. Lemma 3 indicates that, in order to con-
struct a memorylessε-optimal strategy, we need to construct
from uk−1 a player-1 selectorξ1 such that:

1. ξ1 is value-optimal foruk−1, that is,Pre1:ξ1
(uk−1) =

Pre1(uk−1) = uk; and

2. ξ1 is proper.

To ensure the construction of a value-optimal, proper selec-
tor, we need some definitions. Forr > 0, thevalue class

Uk
r = {s ∈ S | uk(s) = r}

consists of the states with valuer under the valuationuk.
Similarly we defineUk

./r = {s ∈ S | uk(s) ./ r}, for ./∈
{<,≤,≥, >}. For a states ∈ S, let `k(s) = min{j ≤ k |
uj(s) = uk(s)} be theentry timeof s in Uk

uk(s), that is, the
least iterationj in which the states has the same value as in
iterationk. Fork ≥ 0, we define the player-1 selectorηk as
follows: if `k(s) > 0, then

ηk(s) = η`k(s)(s) = arg sup
ξ1∈Λ1

inf
ξ2∈Λ2

Preξ1,ξ2
(u`k(s)−1);

otherwise, if`k(s) = 0, thenηk(s) = η`k(s)(s) = ξunif
1 (s)

(this definition is arbitrary, and it does not affect the remain-
der of the proof). In words, the selectorηk(s) is an optimal
selector fors at the iteratioǹ k(s). It follows easily that
uk = Pre1:ηk

(uk−1), that is,ηk is also value-optimal for
uk−1, satisfying the first of the above conditions.

To conclude the construction, we need to prove that for
k sufficiently large (namely, fork such thatuk(s) > 0 at
all statess ∈ S \ (T ∪ W2)), the selectorηk is proper. To
this end we use Theorem 1, and show that for sufficiently
largek no end component ofGηk

is entirely contained in
S \(T ∪W2).1 To reason about the end components ofGηk

,
for a states ∈ S and a player-2 movea2 ∈ Γ2(s), we write

Destk(s, a2) =
⋃

a1∈Supp(ηk(s))

Dest(s, a1, a2)

for the set of possible successors of states when player 1
follows the strategyηk, and player 2 chooses the movea2.

Lemma 4 Let 0 < r ≤ 1 andk ≥ 0, and consider a state
s ∈ S \ (T ∪ W2) such thats ∈ Uk

r . For all movesa2 ∈
Γ2(s), we have:

1. eitherDestk(s, a2) ∩ Uk
>r 6= ∅,

1 In fact, the result holds for allk, even though our proof, for the sake
of a simpler argument, does not show it.
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2. or Destk(s, a2) ⊆ Uk
r , and there is a statet ∈

Destk(s, a2) with `k(t) < `k(s).

Proof. For convenience, letm = `k(s), and consider any
movea2 ∈ Γ2(s).

• Consider first the case thatDestk(s, a2) 6⊆ Uk
r .

Then, it cannot be thatDestk(s, a2) ⊆ Uk
≤r; other-

wise, for all statest ∈ Destk(s, a2), we would have
uk(t) ≤ r, and there would be at least one state
t ∈ Destk(s, a2) such thatuk(t) < r, contradicting
uk(s) = r andPre1:ηk

(uk−1) = uk. So, it must be
thatDestk(s, a2) ∩ Uk

>r 6= ∅.

• Consider now the case thatDestk(s, a2) ⊆ Uk
r . Since

um ≤ uk, due to the monotonicity of thePre1 opera-
tor and (1), we have thatum−1(t) ≤ r for all states
t ∈ Destk(s, a2). From r = uk(s) = um(s) =
Pre1:ηk

(um−1), it follows that um−1(t) = r for all
statest ∈ Destk(s, a2), implying that`k(t) < m for
all statest ∈ Destk(s, a2).

The above lemma states that underηk, from each state
i ∈ Uk

r with r > 0 we are guaranteed a probability bounded
away from 0 of either moving to a higher-value classUk

>r,
or of moving to states within the value class that have a
strictly lower entry time. Note that the states in the target
setT are all inU0

1 : they have entry-time 0 in the value class
for value 1. This implies that every state inS \ W2 has a
probability bounded above zero of reachingT in at most
n = |S| steps, so that the probability of staying forever in
S \ (T ∪ W2) is 0. To prove this fact formally, we analyze
the end components ofGηk

in light of Lemma 4.

Lemma 5 For all k ≥ 0, if for all statess ∈ S \ W2 we
haveuk−1(s) > 0, then for all player-2 strategiesπ2, we
havePrη

k
,π2

(

Reach(T ∪ W2)) = 1.

Proof. Since every states ∈ (T∪W2) is absorbing, to prove
this result, in view of Corollary 1, it suffices to show that no
end component ofGηk

is entirely contained inS\(T ∪W2).
Towards the contradiction, assume there is such an end
componentC ⊆ S \ (T ∪W2). Then, we haveC ⊆ Uk

[r1,r2]

with C ∩ Ur2
6= ∅, for some0 < r1 ≤ r2 ≤ 1, where

Uk
[r1,r2]

= Uk
≥r1

∩Uk
≤r2

is the union of the value classes for

all values in the interval[r1, r2]. Consider a states ∈ Uk
r2

with minimal `k, that is, such that̀k(s) ≤ `k(t) for all
other statest ∈ Uk

r2
. From Lemma 4, it follows that for ev-

ery movea2 ∈ Γ2(s), there is a statet ∈ Destk(s, a2) such
that (i) eithert ∈ Uk

r2
and`k(t) < `k(s), (ii) or t ∈ Uk

>r2
.

In both cases, we obtain a contradiction.

The above lemma shows thatηk satisfies both require-
ments for optimal selectors spelt out at the beginning of
Section 4.2. Hence,ηk guarantees the valueuk. This proves
the existence of memorylessε-optimal strategies for con-
current reachability games.

Theorem 2 (Memorylessε-optimal strategies) For every
ε > 0, memorylessε-optimal strategies exist for all concur-
rent games with reachability objectives.

Proof. Consider a concurrent reachability game with tar-
getT ⊆ S. Sincelimk→∞ uk = 〈〈1〉〉(Reach(T )), for every
ε > 0 we can findk ∈ N such that the following two asser-
tions hold:

max
s∈S

(

〈〈1〉〉(Reach(T ))(s) − uk−1(s)
)

< ε

min
s∈S\W2

uk−1(s) > 0

By construction,Pre1:ηk
(uk−1) = Pre1(uk−1) = uk.

Hence, from Lemma 3 and Lemma 5, for all player-2 strate-
giesπ2, we havePrη

k
,π2(Reach(T )) ≥ uk−1, leading to

the result.

5. Strategy Improvement

In the previous section, we provided a proof of the existence
of memorylessε-optimal strategies for allε > 0, on the ba-
sis of a value-iteration scheme. In this section we present a
strategy-improvement algorithm for concurrent games with
reachability objectives. The algorithm will produce a se-
quence of selectorsγ0, γ1, γ2, . . . for player 1, such that:

1. for all i ≥ 0, we have 〈〈1〉〉γi(Reach(T )) ≤
〈〈1〉〉γi+1(Reach(T ));

2. limi→∞〈〈1〉〉γi(Reach(T )) = 〈〈1〉〉(Reach(T )); and

3. if there is i ≥ 0 such that γi = γi+1, then
〈〈1〉〉γi(Reach(T )) = 〈〈1〉〉(Reach(T )).

Condition 1 guarantees that the algorithm computes a se-
quence of monotonically improving selectors. Condition 2
guarantees that the value guaranteed by the selectors con-
verges to the value of the game, or equivalently, that for all
ε > 0, there is a numberi of iterations such that the mem-
oryless player-1 strategyγi is ε-optimal. Condition 3 guar-
antees that if a selector cannot be improved, then it is opti-
mal. Note that for concurrent reachability games, there may
be noi ≥ 0 such thatγi = γi+1, that is, the algorithm may
fail to generate an optimal selector. This is because there
are concurrent reachability games that do not admit opti-
mal strategies, but onlyε-optimal strategies for allε > 0
[13, 9]. For turn-basedreachability games, it can be eas-
ily seen that our algorithm terminates with an optimal se-
lector.

We note that the value-iteration scheme of the previ-
ous section does not directly yield a strategy-improvement
algorithm. In fact, the sequence of player-1 selectors
η0, η1, η2, . . . computed in Section 4.1 may violate Condi-
tion 3: it is possible that for somei ≥ 0 we haveηi = ηi+1,
but ηi 6= ηj for somej > i. This is because the scheme
of Section 4.1 is fundamentally a value-iteration scheme,
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even though a selector is extracted from each valuation.
The scheme guarantees that the valuationsu0, u1, u2, . . .
defined as in (1) converge, but it does not guarantee that
the selectorsη0, η1, η2, . . . improve at each iteration.

The strategy-improvement algorithm presented here
shares an important connection with the proof of the ex-
istence of memorylessε-optimal strategies presented in the
previous section. Here, also, the key is to ensure that all gen-
erated selectors are proper. Again, this is ensured by modi-
fying the selectors, at each iteration, only where they can be
improved.

5.1. The strategy-improvement algorithm

Ordering of strategies.We letW2 be as in Section 4.1, and
again we assume without loss of generality that all states
in W2 ∪ T are absorbing. We define a preorder≺ on the
strategies for player 1 as follows: given two player 1 strate-
gies π1 and π′

1, let π1 ≺ π′
1 if the following two con-

ditions hold: (i) 〈〈1〉〉π1 (Reach(T )) ≤ 〈〈1〉〉π
′

1 (Reach(T ));
and (ii) 〈〈1〉〉π1(Reach(T ))(s) < 〈〈1〉〉π

′

1 (Reach(T ))(s) for
some states ∈ S. Furthermore, we writeπ1 � π′

1 if ei-
therπ1 ≺ π′

1 or π1 = π′
1.

Informal description of Algorithm 1.We now present the
strategy-improvement algorithm (Algorithm 1) for comput-
ing the values for all states inS \ (T ∪ W2). The algo-
rithm iteratively improves player-1 strategies accordingto
the preorder≺. The algorithm starts with the random se-

lectorγ0 = ξ
unif
1 . At iterationi + 1, the algorithm considers

the memoryless player-1 strategyγi and computes the value
〈〈1〉〉γi(Reach(T )). Observe that sinceγi is a memory-
less strategy, the computation of〈〈1〉〉γi(Reach(T )) involves
solving the 2-MDPGγi

. The valuation〈〈1〉〉γi(Reach(T )) is
namedvi. For all statess such thatPre1(vi)(s) > vi(s),
the memoryless strategy ats is modified to a selector that
is value-optimal forvi. The algorithm then proceeds to the
next iteration. IfPre1(vi) = vi, the algorithm stops and re-
turns the optimal memoryless strategyγi for player 1. Un-
like strategy-improvement algorithms for turn-based games
(see [5] for a survey), Algorithm 1 is not guaranteed to ter-
minate, because the value of a reachability game may not
be rational.

5.2. Convergence

Lemma 6 Let γi and γi+1 be the player-1 selectors ob-
tained at iterationsi andi+1 of Algorithm 1. Ifγi is proper,
thenγi+1 is also proper.

Proof. Assume towards a contradiction thatγi is proper
andγi+1 is not. Letξ2 be a pure selector for player 2 to
witness thatγi+1 is not proper. Then there exist a subset
C ⊆ S \ (T ∪ W2) such thatC is a closed recurrent set of

states in the Markov chainGγi+1,ξ2
. Let I be the nonempty

set of states where the selector is modified to obtainγi+1

from γi; at all other statesγi andγi+1 agree.
Sinceγi andγi+1 agree at all states other than the states

in I, andγi is a proper strategy, it follows thatC∩I 6= ∅. Let
U i

r = {s ∈ S \ (T ∪W2) | 〈〈1〉〉γi(Reach(T ))(s) = vi(s) =
r} be the value class with valuer at iterationi. For a state
s ∈ U i

r the following assertion holds: ifDest(s, γi, ξ2) (

U i
r, thenDest(s, γi, ξ2) ∩ U i

>r 6= ∅. Let z = max{r |
U i

r ∩ C 6= ∅}, that is,U i
z is the greatest value class at iter-

ation i with a nonempty intersection with the closed recur-
rent setC. It easily follows that0 < z < 1. Consider any
states ∈ I, and lets ∈ U i

q. SincePre1(vi)(s) > vi(s), it
follows thatDest(s, γi+1, ξ2) ∩ U i

>q 6= ∅. Hence we must
havez > q, and thereforeI ∩ C ∩ U i

z = ∅. Thus, for all
statess ∈ U i

z ∩ C, we haveγi(s) = γi+1(s). Recall thatz
is the greatest value class at iterationi with a nonempty in-
tersection withC; henceU i

>z ∩ C = ∅. Thus for all states
s ∈ C ∩ U i

z, we haveDest(s, γi+1, ξ2) ⊆ U i
z ∩ C. It fol-

lows thatC ⊆ U i
z. However, this gives us three statements

that together form a contradiction:C ∩ I 6= ∅ (or elseγi

would not have been proper),I ∩C ∩U i
z = ∅, andC ⊆ U i

z.

Lemma 7 For all i ≥ 0, the player-1 selectorγi obtained
at iterationi of Algorithm 1 is proper.

Proof. By Lemma 2 we have thatγ0 is proper. The result
then follows from Lemma 6 and induction.

Lemma 8 Let γi and γi+1 be the player-1 selectors ob-
tained at iterationsi andi+1 of Algorithm 1. LetI = {s ∈
S | Pre1(vi)(s) > vi(s)}. Letvi = 〈〈1〉〉γi(Reach(T )) and
vi+1 = 〈〈1〉〉γi+1(Reach(T )). Thenvi+1(s) ≥ Pre1(vi)(s)
for all statess ∈ S; and thereforevi+1(s) ≥ vi(s) for all
statess ∈ S, andvi+1(s) > vi(s) for all statess ∈ I.

Proof. Consider the valuationsvi andvi+1 obtained at itera-
tionsi andi+1, respectively, and letwi be the valuation de-
fined bywi(s) = 1 − vi(s) for all statess ∈ S. Sinceγi+1

is proper (by Lemma 7), it follows that the counter-optimal
strategy for player 2 to minimizevi+1 is obtained by maxi-
mizing the probability to reachW2. In fact, there are no end
components inS \ (W2 ∪ T ) in the 2-MDPGγi+1

. Let

wi+1(s) =

{

wi(s) if s ∈ S \ I;

1 − Pre1(vi)(s) < wi(s) if s ∈ I.

In other words,wi+1 = 1 − Pre1(vi), and we also have
wi+1 ≤ wi. We now show thatwi+1 is a feasible solution to
the linear program for MDPs with the objective Reach(W2),
as described in Section 3. Sincevi = 〈〈1〉〉γi(Reach(T )), it
follows that for all statess ∈ S and all movesa2 ∈ Γ2(s),
we have

wi(s) ≥
∑

t∈S

wi(t) · δγi
(s, a2).
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Algorithm 1 Strategy-Improvement Algorithm

Input: a concurrent game structureG with target setT .

0. ComputeW2 = {s ∈ S | 〈〈1〉〉(Reach(T ))(s) = 0}.
1. Letγ0 = ξunif

1 andi = 0.
2. Computev0 = 〈〈1〉〉γ0(Reach(T )).
3. do {

3.1. LetI = {s ∈ S \ (T ∪ W2) | Pre1(vi)(s) > vi(s)}.
3.2. Letξ1 be a player-1 selector such that for all statess ∈ I, we havePre1:ξ1

(vi)(s) = Pre1(vi)(s) > vi(s).
3.3. The player-1 selectorγi+1 is defined as follows: for each statet ∈ S, let

γi+1(t) =

{

γi(t) if s 6∈ I;

ξ1(s) if s ∈ I.

3.4. Computevi+1 = 〈〈1〉〉γi+1(Reach(T )).
3.5. Leti = i + 1.

} until I = ∅.

For all statess ∈ S \ I, we haveγi(s) = γi+1(s) and
wi+1(s) = wi(s), and sincewi+1 ≤ wi, it follows that for
all statess ∈ S \ I and all movesa2 ∈ Γ2(s), we have

wi+1(s) ≥
∑

t∈S

wi+1(t) · δγi+1
(s, a2).

Since fors ∈ I the selectorγi+1(s) is obtained as an op-
timal selector forPre1(vi)(s), it follows that for all states
s ∈ I and all movesa2 ∈ Γ2(s), we have

wi+1(s) ≥
∑

t∈S

wi(t) · δγi+1
(s, a2).

Sincewi+1 ≤ wi, for all statess ∈ I and all movesa2 ∈
Γ2(s), we have

wi+1(s) ≥
∑

t∈S

wi+1(t) · δγi+1
(s, a2).

Hence it follows thatwi+1 is a feasible solution to the lin-
ear program for MDPs with reachability objectives. Since
the reachability valuation for player 2 for Reach(W2) is
the least solution (observe that the objective function of
the linear program is a minimizing function), it follows that
vi+1 ≥ 1 − wi+1 = Pre1(vi). Thus we obtainvi+1(s) ≥
vi(s) for all statess ∈ S, andvi+1(s) > vi(s) for all states
s ∈ I.

Theorem 3 (Strategy improvement) The following two
assertions hold about Algorithm 1:

1. For all i ≥ 0, we haveγi � γi+1; moreover, ifγi =
γi+1, thenγi is an optimal strategy.

2. limi→∞ vi = limi→∞〈〈1〉〉γi(Reach(T )) =
〈〈1〉〉(Reach(T )).

Proof. We prove the two parts as follows.

1. The assertion thatγi � γi+1 follows from Lemma 8.
If γi = γi+1, thenPre1(vi) = vi, indicating that
vi = 〈〈1〉〉(Reach(T )). From Lemma 7 it follows that
γi is proper. Sinceγi is proper by Lemma 3, we have
〈〈1〉〉γi(Reach(T )) ≥ vi = 〈〈1〉〉(Reach(T )). It follows
thatγi is optimal for player 1.

2. Letv0 = [T ] andu0 = [T ]. We haveu0 ≤ v0. For all
k ≥ 0, by Lemma 8, we havevk+1 ≥ [T ]∨Pre1(vk).
For all k ≥ 0, let uk+1 = [T ] ∨ Pre1(uk). By induc-
tion we conclude that for allk ≥ 0, we haveuk ≤ vk.
Moreover,vk ≤ 〈〈1〉〉(Reach(T )), that is, for allk ≥ 0,
we have

uk ≤ vk ≤ 〈〈1〉〉(Reach(T )).

Sincelimk→∞ uk = 〈〈1〉〉(Reach(T )), it follows that

lim
k→∞

〈〈1〉〉γk(Reach(T )) = lim
k→∞

vk

= 〈〈1〉〉(Reach(T )).

The theorem follows.
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