
Compositional Quantitative Reasoning∗

In QEST 06: Intl. Conf. on Quantitative Evaluation of Systems, IEEE Computer Society Press, 2006.

Krishnendu Chatterjee
UC Berkeley

Luca de Alfaro
UC Santa Cruz

Marco Faella
Università di Napoli “Federico II”

Thomas A. Henzinger
EPFL and UC Berkeley

Rupak Majumdar
UC Los Angeles

Mariëlle Stoelinga
University of Twente

Abstract. We present a compositional theory of system verifica-
tion, where specifications assign real-numbered costs to systems.
These costs can express a wide variety of quantitative system prop-
erties, such as resource consumption, price, or a measure ofhow
well a system satisfies its specification. The theory supports the
composition of systems and specifications, and the hiding ofvari-
ables. Boolean refinement relations are replaced by real-numbered
distances between descriptions of a system at different levels of
detail. We show that the classical boolean rules for compositional
reasoning have quantitative counterparts in our setting.

While our general theory allows costs to be specified by arbi-
trary cost functions, we also consider a class of linear costfunc-
tions, which give rise to an instance of our framework where all
operations are computable in polynomial time.

1. Introduction

In formal approaches to system design and verification, a
specificationprescribes a set of desirable behaviors; and a
systemimplementsthe specification if all of its behaviors
are among the desirable ones. Hence, the implementation
question is phrased as a yes/no, or boolean, question. This
setup contrasts with the quantitative point of view taken in
other disciplines. For instance, in optimization theory (e.g.,
optimal control [8, 1] or linear programming [17]), a speci-
fication not only describes the correct implementations (the
feasible solutions), but also describes the quality of the im-
plementations via rewards, costs, or objective functions.

Recently, much research has been devoted to develop-
ing a quantitative approach to formal design and verifi-
cation. Quantitative temporal logics [6, 10, 4] and calculi
[13, 7, 15, 6, 5, 14] have been suggested as specification for-
malisms, and directed and undirected metrics on states have
been proposed as generalized notions of refinement and be-
havioral equivalence [9, 10, 2]. The proposal in this paper
differs from the above quantitative approaches in two main
respects. In [9, 10, 2, 6, 5], the quantitative aspect aims

∗ Supported in part by the NSF grants CCR-0234690, CCR-0208875,
and CCR-0225610; by the NSF grant CCR-0132780 and ARP grant
SC20051123.

at providing a measure of the similarity between systems.
In our proposal, on the other hand, the quantitative aspect
is used to define acost that differentiates among more or
less desirable implementations, in analogy with the setting
common in optimization problems. Furthermore, the em-
phasis in previous work has been on systems that are mod-
eled as indivisible units. The success of the boolean theory,
however, crucially depends on its modularity: it supports
component-based design and modular reasoning, whereby
the properties of a complex system can be derived from the
properties of its components [3, 12].

The basic operations of a modular theory of systems
are composition and refinement [16]. Composition permits
the construction of complex systems from simple building
blocks; refinement permits a change in the level of detail
when describing a system. In this paper, we study the inter-
action of composition and refinement in a quantitative set-
ting, and we develop a modular theory of system verifica-
tion for quantitative specifications. As in formal system de-
sign, the emphasis is on stepwise refinement and modular
reasoning; as in optimization theory, the notions of spec-
ification and implementation are quantitative, rather than
boolean. The proposal of this paper can thus be viewed both
as a quantitative extension of the classical techniques for
modular and hierarchical reasoning, and as an exploration
of the issues of modularity and hierarchy in the context of
optimization theory.

We develop our theory in both static (combinational) and
dynamic (sequential) contexts. We distinguish between sys-
tems and specifications. A staticsystemis a set of assign-
ments of values to variables, and it describes a set of be-
haviors (e.g., input/output pairs) that may occur. A dynamic
system is a set of infinite sequences of assignments to vari-
ables. Aspecificationassigns a cost to each possible value
assignment (in the static case), or to each possible infinite
behavior (in the dynamic case).

The composition of two systems is defined as usual, by
taking the intersection of the system behaviors. The compo-
sition of two specificationsF andG combines the costs that
are assigned byF andG to the implementations via a com-

bination operator⊕ : IR≥0 × IR≥0 7→ IR≥0, which is typi-
cally either+ or max. Thus, the cost assigned by the com-
positionF‖G to a variable assignments corresponds to the
sum (if⊕ is+) or to the maximum (if⊕ ismax) of the costs
assigned byF andG to s. For example, the cost of a vari-
able assignment may express the amount of memory needed
by a configuration. When composing two systems in paral-
lel, it is reasonable to add their memory consumptions and
choose⊕ to be+; when composing the two systems se-
quentially, one can reuse the memory if it is shared, and
may choose⊕ to memax.

We introduce two notions of refinement: one between a
system and a specification; the other between two specifi-
cations. Both notions are quantitative. The refinement dis-
tanced(I, F) between a systemI and a specificationF cor-
responds to the maximum cost, according toF , of a behav-
ior of I. The refinement distancer(F, F ′) between a speci-
ficationF and a more abstract specificationF ′ measures the
maximumrelative cost increase fromF to F ′ incurred by
anybehavior (in particular,r(F, F) = 1). We focus on the
relative distance between specifications, rather than on the
absolute one, because it leads to a theory that is more ro-
bust to disturbances. For instance, if the cost assigned by
F can grow unboundedly large for undesirable behaviors,
then the absolute distance betweenF and1.01 · F is infi-
nite, while the relative distance is 1.01. Moreover, the rela-
tive distance is less sensitive to an increase in costs that af-
fect already high costs, and that are thus less likely to be
paid by actual implementations.

With these definitions, we are able to cast in a quantita-
tive setting the classical theorems relating composition and
refinement. In particular, the classical rule for composition-
ality of boolean refinement, thatI � F andJ � G implies
I‖J � F‖G (whereI � F means “I implementsF ”), cor-
responds in our quantitative setting to the two inequalities

d(I‖J, F‖G) ≤ max{d(I, F), d(J, G)}, (1)

r(F‖G, F ′‖G′) ≤ max{r(F, F ′), r(G, G′)}, (2)

whereI and J are systems, andF and F ′ are specifica-
tions. The classical rule allows the decomposition of a re-
finement problem into two simpler problems: in order to
prove that a composite systemI‖J implementsF‖G, it suf-
fices to prove independently thatI implementsF , and that
J implementsG. Similarly, the quantitative rules suggest a
compositional approach to optimization problems: they pro-
vide bounds on the optimality of a global solution in terms
of bounds on the optimality of partial solutions for the in-
dividual components. Moreover, the transitivity of boolean
refinement, thatI � F andF � F ′ impliesI � F ′, corre-
sponds in our setting to the two inequalities

d(I, F ′) ≤ d(I, F) · r(F, F ′), (3)

r(F, F ′′) ≤ r(F, F ′) · r(F ′, F ′′), (4)

whereI is a system andF , F ′, andF ′′ are specifications.
These rules allow the chaining of multiple refinement steps.

In general, cost functions are infinite, semantic objects.
In order to obtain a computational theory, we introducesym-
bolic cost algebras. These are a quantitative generalization
of symbolic theories used in classical system verification to
represent sets of states. A symbolic cost algebra consists of
a set of cost functions that have finite representations, and
that are effectively closed under composition, variable hid-
ing, and refinement. Symbolic cost algebras furnish sym-
bolic algorithms for computing refinement distances. To il-
lustrate symbolic cost algebras, we introduce a specific ex-
ample, themaxlin cost algebra, which enables the expres-
sion of piecewise-linear concave cost functions (which en-
code convex utility functions). We show that in this alge-
bra, composition, hiding, and refinement distances can all
be computed in polynomial time. As a result, we obtain a
compositional and efficiently computable theory for quanti-
tative reasoning about component-based systems.

Example 1 We illustrate our theory with a simple example.
Consider a factory receiving orders from a client that re-
quires just-in-time delivery. At timex, the factory receives
an order, and the client expects the delivery at a certain
time, say, 7 days after ordering. If the delivery occurs ear-
lier than that, the client has to pay stocking costs, and if the
delivery is late, the client needs to delay the production line.
Therefore, the factory’s contractG with the client includes
a penalty, which the factory has to pay if an order placed
at timex is delivered at timez. The factory budgets a pro-
duction cost ofc(x, z) = α + |z − x − 7|, consisting of a
fixed portion ofα and a penalty of|z − x− 7|. Thus, devia-
tions from the ideal delivery time of 7 days are punished in
a linear fashion. A systemI in this setting is a set of behav-
iors specifying a production schedule, indicating when the
orders acquired will be delivered. Thus, the refinement dis-
tanced(I, G) represents what the factory targets to spend
on the scheduleI.

The factory has subcontracted the three production
phases —processing, packaging, and shipment— and stip-
ulates three contractsG1, G2, and G3 with the subcon-
tractors. As the combined contractG1‖G2‖G3 accumulates
the costs of the individual contracts, their composition is
formed by taking+ for the operator⊕. Note thatd(I, Gi)
is the maximum cost of contractGi under scheduleI, and
d(I, G1‖G2‖G3) is the maximum total cost of combina-
tion of contracts under that schedule. More interestingly,
r(G1‖G2‖G3, G) measures to what extent the subcontrac-
tors together meet the planned production costs. The tran-
sitivity rule (3 and 4) shows that for every scheduleI, we
haved(I, G) ≤ d(I, G1‖G2‖G3) ·r(G1‖G2‖G3, G). So, if
r(G1‖G2‖G3, G) is, say,1.05, then the factory is guaran-
teed that the costs realized by the subcontractors will be at
most 5% more than the targeted costs.

2

The paper is organized as follows. In Section 2, we pro-
vide the basic definitions of system, specification, and com-
position, as well as variable hiding. In Section 3, we define
our two notions of quantitative refinement, and we charac-
terize the relationship between composition, hiding, and re-
finement, giving (among other results) precise statements
of (1)–(4). In Section 4, we introduce symbolic cost alge-
bras, and as a particular example, the maxlin algebra. We
show that the maxlin algebra allows polynomial-time com-
putation of composition, hiding, and refinement distances.
In Section 5, we extend our setting to dynamic systems.

2. Systems and Specifications

Variables and assignments.Let Varsbe a fixed set of vari-
ables; each variablex ∈ Vars has an associated domain
Dx. Given a setV ⊆ Vars of variables, astate over V
is a functions ∈ Πx∈VDx that assigns to each variable
x ∈ V a values(x) ∈ Dx. We denote byS[V] the set of
all states overV . Given a states ∈ S[V] andW ⊆ V ,
we denote bys|W ∈ S[W] the restriction of s to W , de-
fined by s|W(x) = s(x) for all x ∈ W . Given a state
s ∈ S[V], a variablex ∈ Vars, and a valued ∈ Dx for
x, we denote by(s ◦ [x 7→ d]) ∈ S[V ∪ {x}] the state de-
fined by(s ◦ [x 7→ d])(y) = s(y) for y ∈ V \ {x}, and by
(s ◦ [x 7→ d])(x) = d.

Systems.A systemI = 〈VI , BI〉 consists of a setVI of vari-
ables,1 and of a subsetBI ⊆ S[VI] of states overVI . We
omit the subscriptI when clear from the context. We de-
fine system composition and hiding as follows.

• Composition.Given two systemsI andJ , theircom-
position I‖J is defined byVI‖J = VI ∪ VJ , and
BI‖J = {s ∈ S[VI ∪ VJ] | s|VI

∈ BI ∧ s|VJ
∈ BJ}.

• Hiding. Given a systemI and a variablex ∈ Vars, we
define the resultHidex(I) of hidingx in I by I itself if
x 6∈ VI , and otherwise byJ = 〈VJ , BJ〉, whereVJ =
VI \ {x} andBJ = {s ∈ S[VJ] | ∃d ∈ Dx.(s ◦ [x 7→
d]) ∈ BI}. ForX = {x1, x2, . . . , xn} ⊆ Vars, we de-
fine2 HideX(I) = Hidex1

(Hidex2
(· · ·Hidexn

(I))).

Specifications.Let IR≥0 be the set of nonnegative real num-
bers together with∞. A specificationF = 〈VF , cF 〉 con-
sists of a setVF of variables, and a functioncF : S[VF] 7→
IR≥0 that assigns to each states ∈ S[VF] a real number
cF (s) ∈ IR≥0. The valuecF (s) can be interpreted as the
cost of realizings. We require that the cost be bounded away
from 0: for each specificationF , there is a positive constant

1 Often, a system model distinguishes between input and output vari-
ables. However, no such distinction is necessary for the development
of the theory presented in this paper.

2 One easily shows thatHidex1
(Hidex2

(I)) = Hidex2
(Hidex1

(I)).

x
u z

y

Figure 1.

b ∈ IR>0 such thatcF (s) ≥ b for all s ∈ S[VF]. We omit
the subscriptF when clear from the context.

To define the composition of two specifications, we need
an operator to combine costs. Acombination operator⊕ :
IR2

≥0 7→ IR≥0 is a binary function that satisfies the follow-
ing properties: (1)⊕ is monotonic, commutative, and asso-
ciative, and (2)⊕ subdistributes over multiplication: for all
a, b, c ∈ IR≥0, we have(a · b)⊕ (a · c) ≤ a · (b ⊕ c). Com-
mon choices for⊕ are+ andmax. For a fixed combination
operator⊕, we define hiding and composition of specifica-
tions as follows.

• Composition. Given two specificationsF andG, we
define theircompositionF‖G by VF‖G = VF ∪ VG,
and for alls ∈ S[VF ∪ VG], bycF‖G(s) = cF (s|VF

)⊕
cG(s|VG

).

• Hiding. Given a specificationF and a variablex ∈
Vars, we define the resultHidex(F) of hiding x in F
byF itself if x 6∈ VF , and otherwise byG = 〈VG, cG〉,
whereVG = VF \ {x} and, for alls ∈ S[VG], by
cG(s) = infd∈Dx

cF (s ◦ [x 7→ d]). In other words,
Hidex(F) is equal to the minimum ofF over all
values ofx. Once we hide a variablex in F , the
specificationF no longer cares about the variablex,
and hence the cost is minimal over all values ofx.
Also note that by defining hiding as above, we ob-
tain the boolean theory as a special case. ForX =
{x1, x2, . . . , xn} ⊆ Vars, we defineHideX(F) =
Hidex1

(Hidex2
(· · ·Hidexn

(F))).

With abuse of notation, given a specificationF , a state
s ∈ S[V], andVF ⊆ V , we writecF (s) for cF (s|VF

). We il-
lustrate these notions giving a simple example.

Example 2 The circuit in Figure 1 implements an AND
gate as the composition of a NAND gateI1 =
〈{x, y, u}, B1〉 and an inverterI2 = 〈{u, z}, B2〉. This
means thatB1 consists of all valuations satisfyingu =
x · y. andB2 contains all valuations satisfyingz = ū. As
their costs, we consider the worst-case time-to-settle, that
is, the maximal time it takes for changes at the input ports
to propagate to the output ports. Since the time-to-settle
of this system is the sum of the settle times of the compo-
nents, we interpret⊕ as +. In both gates, raising edges
take at most 35ns to settle and falling edges take 33ns. This
means that ifu = 0 in the first gateI1, then the worst time-
to-settle is 33. Either there has been a change from high
voltage to low voltage, or there was no change at all, in
which case the settle time is 0. Thus the cost specifications

3

F1 = 〈{x, y, u}, c1〉 for I1, andF2 = 〈{u, z}, c2〉 for I2,
are given by

c1(x, y, u) =

{
33 if u = 0,

35 if u = 1,
c2(u, z) =

{
33 if z = 0,

35 if z = 1.

The compositionI1‖I2 is 〈{x, y, z, u}, B〉, whereB con-
tains all valuations over{x, y, z, u} satisfyingu = x · y
andz = ū. The compositionF1‖F2 = 〈{x, y, z, u}, c〉 is

c(x, y, z) =

66 if u = z = 0,

70 if u = z = 1,

68 otherwise.

Further, if we hide the variableu in the composition, then
Hideu(I1‖I2) is 〈{x, y, z}, Bxyz〉, whereBxyz contains all
valuations withz = x · y. Similarly, Hideu(F1‖F2) is given
by 〈{x, y, z}, cxyz〉, with cxyz(x, y, z) = 66 if z = 0, and
68 if z = 1.

3. Refinement

We introduce two notions of refinement: refinement be-
tween a system and a specification, and refinement between
specifications. The refinement between a system and a spec-
ification measures the cost of a system according to a spec-
ification; the refinement between two specifications mea-
sures the relative cost difference between the specifications.

Refinement between systems and specifications.Given a
systemI = 〈VI , BI〉 and a specificationF = 〈VF , cF 〉
with VF ⊆ VI , we define the refinement distanced(I, F)
betweenI andF as follows:

d(I, F) = sup
s∈BI

cF (s).

Refinement between specifications.Given two specifica-
tions F andG with VG ⊆ VF , we define the relative re-
finement distancer(F, G) betweenF andG as follows:

r(F, G) = sup
s∈S[VF]

cG(s)

cF (s)
.

Refinement hierarchies.The following theorem provides a
form of triangular-inequality law formulated for relative
distances. This law is the quantitative analogue of the tran-
sitivity of boolean refinement.

Theorem 1 Consider three specificationsF , G, and H ,
and a systemI, such thatVH ⊆ VG ⊆ VF ⊆ VI and
VH 6= ∅ andBI 6= ∅. The following two assertions hold:

r(F, H) ≤ r(F, G) · r(G, H),

d(I, G) ≤ d(I, F) · r(F, G).

Proof. We have

r(F, G) · r(G, H) = sup
s∈S[VF]

cG(s)

cF (s)
· sup

s∈S[VG]

cH(s)

cG(s)

≥ sups∈S[VF]
cH(s)
cF (s) = r(F, H);

the inequality follows fromVG ⊆ VF . Moreover,

d(I, F) · r(F, G) = sup
s∈BI

cF (s) · sup
s∈S[VF]

cG(s)

cF (s)

≥ sups∈BI
cG(s) = d(I, G).

Compositionality of refinement.To prove the composition-
ality of refinement, we will need the following lemma.

Lemma 1 Let a, b, c, d ∈ IR≥0 and c, d 6= 0. Then(a ⊕
b)/(c ⊕ d) ≤ max{a/c, b/d}.

Proof. Leta = α ·c andb = β ·d. Without loss of generality
let α ≥ β. Then we have

a ⊕ b

c ⊕ d
=

α · c ⊕ β · d

c ⊕ d
≤

α · c ⊕ α · d

c ⊕ d
≤

α · (c ⊕ d)

c ⊕ d
≤ α

= max{a/c, b/d}.

The second inequality follows from subdistributivity of⊕
over multiplication.

The next theorem states the compositionality of refinement.

Theorem 2 Consider four specificationsF , F ′, G, andG′

with VF ′ ⊆ VF andVG′ ⊆ VG, and two systemsI andJ
with VF ⊆ VI , VG ⊆ VJ , VF ′ 6= ∅, andVG′ 6= ∅. Then:

r(F‖G, F ′‖G′) ≤ max{r(F, F ′), r(G, G′)},
d(I‖J, F‖G) ≤ d(I, F) ⊕ d(J, G).

Proof. The first assertion can be proved as follows:

r(F‖G, F ′‖G′) = sup
s∈S[VF ∪VG]

cF ′(s) ⊕ cG′(s)

cF (s) ⊕ cG(s)

≤ sup
s∈S[VF ∪VG]

max

{
cF ′(s)

cF (s)
,
cG′(s)

cG(s)

}

≤ max

{
sup

s∈S[VF]

cF ′(s)

cF (s)
, sup
s∈S[VG]

cG′(s)

cG(s)

}

= max{r(F, F ′), r(G, G′)}.

The first inequality follows from Lemma 1.
For the second assertion, first note thatd(I‖J, F) ≤

d(I, F) and d(I‖J, G) ≤ d(J, G). This is because
sups∈BI‖J

cF (s) ≤ sups∈BI
cF (s). Hence we have

d(I‖J, F‖G) = sup
s∈BI‖J

(
cF (s) ⊕ cG(s)

)

≤ sup
s∈BI‖J

cF (s) ⊕ sup
s∈BI‖J

cG(s)

= d(I‖J, F) ⊕ d(I‖J, G)

≤ d(I, F) ⊕ d(J, G).

4

The first inequality follows from the monotonicity of⊕.

We note that the theorem is not symmetric with respect tor
andd: implementation refinementsd are composed with⊕,
while specification refinements are composed withmax. In
particular, the theorem does not hold if in the second asser-
tion we replace⊕ with max. It may also be noted that given
systems with boolean variables; specifications that assign
cost 1 to states with desired values of variables and assign
cost 2 otherwise; and withmax as the combination opera-
tors we can obtain the boolean theory as a special case of
the present quantitative theory.

Example 3 Consider the system defined in Example 2. The
cost ofI1 andI2 are given byd(I1, F1) = d(I2, F2) = 35,
indicating the maximum cost for any state. We also see that
d(I1‖I2, F1‖F2) = 68, because the worst time-to-settle in
I1‖I2 is obtained by a falling edge and a raising edge. As
stated in Theorem 2, we see thatd(I1‖I2, F1‖F2) = 68 ≤
d(I1, F1) ⊕ d(I2, F2) = 35 + 35 = 70. That is, the costs of
the components provide a bound on the cost of the compos-
ite system.

Suppose now that we upgrade the gates by faster ver-
sions with the same behavior. Let the cost specifications
of the new components bẽF1 = 〈{x, y, u}, c̃1〉 and F̃2 =
〈{u, z}, c̃2〉, with

c̃1(x, y, u) =

{
31 if u = 0,

32 if u = 1,
c̃2(u, z) =

{
31 if z = 0,

32 if z = 1.

Then, for i ∈ {1, 2}, we haved(Ii, F̃i) = 31 and
r(Fi, F̃i) = max{0.94, 0.91} = 0.94. As formulated
in Theorem 1, we obtain31 = d(Ii, F̃i) ≤ d(Ii, Fi) ·
r(Fi, F̃i) = 35 · 0.94 = 32.8. That is, the new worst-case
settle times are bounded by the old settle times multiplied by
the relative increase of the new gates with respect to the old
ones. Moreover, we see that, in accordance with Theorem 2,
r(F1‖F2, F̃1‖F̃2) = 0.94 ≤ max{r(F1, F̃1), r(F2, F̃2)} =
0.94, formalizing the intuition that the relative increase in
the cost in the composite system with the new components
over the old system is bounded by (in this case equal to) the
maximum relative increase for any new component over its
old version.

Example 4 As a second example, consider a specification
F1 = ({x, y}, c1) for an inverter with inputx and outputy.
Its cost functionc1(x, y) = α + |x + y| measures the dis-
tance from the perfect invertery = −x, with a minimum
fixed costα > 0. The specificationF2 for the second in-
verter is the same, except that it hasy as input andz as out-
put. We can implement the specificationF1 by an inverter
I1 that takes inputs from[−1, 1] and realizes the behav-
ior y = −0.9 · x. We see thatd(I1, F1) = α + 0.1 mea-
sures the cost of the maximal deviation from the ideal in-
vertery = −x, which occurs whenx = 1 andy = −0.9.

Similarly, if we implementF2 by an inverterI2 taking in-
puts from[−1, 1] and realizingz = −1.3 · y, we obtain
d(I2, F2) = α+0.3. The combined implementationI1‖I2 is
given byy = −0.9 ·x andz = −1.3 ·y = 1.22 ·x. By taking
max as⊕, the cost function of the combined specification
F1‖F2 is given byc(x, y, z) = α+max{|x+y|, |y+z|}. As
Theorem 2 predicts, we haveα+0.22 = d(I1‖I2, F1‖F2) ≤
max d(I1, F1), d(I2, F2) = α + 0.3.

Hiding and refinement.The following theorem states that
hiding variables of an implementation, or of a lower-level
specification, does not change the distance with respect to a
higher-level specification.

Theorem 3 LetI be a system, and letF andG be two spec-
ifications such thatVG ⊆ VI , andVG ⊆ VF , andVG 6= ∅.
Consider a variablex such that ifx ∈ VI , thenx /∈ VG;
and ifx ∈ VF , thenx /∈ VG. Consider a variabley ∈ Vars.
The following assertions hold:

d(Hidex(I), G) = d(I, G), (1)

r(Hidex(F), G) = r(F, G), (2)

d(I, Hidey(G)) ≤ d(I, G), (3)

r(F, Hidey(G)) ≤ r(F, G). (4)

Parts (1) and (2) of Theorem 3 are basic requirements of a
compositional theory. These results require that hiding ofa
variablex for specifications is defined as theinf over the
values ofx; they do not hold ifsup is used in place ofinf.
The theorem leads to the following corollary, stating that
hiding the same variable in a specification and a system, or
in two specifications, yields a lesser or equal distance.

Corollary 1 Consider an implementationI and two speci-
ficationsF, G with VG ⊆ VF , andVG ⊆ VI , andVG 6= ∅.
For all x ∈ Vars, the following two assertions hold:

d(Hidex(I), Hidex(G)) ≤ d(I, G),

r(Hidex(F), Hidex(G)) ≤ r(F, G).

Example 5 For Example 2, we have

d(Hideu(I1‖I2),Hideu(F1‖F2)) = 66

≤ d(I1‖I2, F1‖F2)) = 68.

From Corollary 1 it follows that, given a sequence of spec-
ifications G0, G1, . . . , Gn, from the most concrete to the
most abstract, when approximating the distancer(G0, Gn)
via the product of the stepwise refinement distances, as
in r(G0, Gn) ≤

∏n−1
i=0 r(Gi, Gi+1), we obtain a tighter

bound by first hiding fromG0, . . . , Gn−1 all the variables
that do not appear in the most abstract specificationGn.
More precisely, for1 ≤ i < n, let Wi = VGi

\ VGn
be

the variables present inGi but not in Gn, and letG′
i =

HideWi
(Gi). We haver(G0, Gn) ≤

∏n−1
i=0 r(G′

i, G
′
i+1) ≤∏n−1

i=0 r(Gi, Gi+1). A similar result holds for refinement hi-
erarchies in which the most concrete element is a system,
rather than a specification.

5

Example 6 To obtain an identity gate from the inverters in
Example 4, we hide the variabley in bothI1‖I2 andF1‖F2.
We writeI = Hidey(I1‖I2) andF = Hidey(F1‖F2). Since
the value ofy that minimizesα + max{|x + y|, |y + z|} is
y = −(x+z)/2, the cost functioncF is α+|z−x|/2, which
represents the distance from the identity gatez = x. Theo-
rem 3 shows thatα+0.11 = d(I, F) ≤ d(I1‖I2, F1‖F2) =
α + 0.22.

4. Symbolic Cost Algebras

Static systems and specifications are infinite semantic ob-
jects: even when variables have finite domains, there is
still an uncountable number of possible cost functions. In
this section, we introducesymbolic cost algebras, which
are symbolic representations for restricted classes of sys-
tems and cost functions that are closed under composi-
tion and hiding. We also present algorithms that operate on
such symbolic representations, and compute refinement dis-
tances, compositions, and the result of hiding variables.

A cost algebra〈Vars,B,F ,⊕, [[·]]〉 consists of a setVars
of typed variables, a countable set of symbolic system rep-
resentationsB, a countable set of symbolic cost represen-
tationsF , a computable combination operator⊕, and of a
semantics[[·]]. Each element ofB andF must have a fi-
nite representation. The semantics[[·]] maps symbolic rep-
resentations to systems and specifications: specifically, for
B ∈ B, [[B]] is a system, and forF ∈ F , [[F]] is a specifi-
cation. We require that the cost algebra is effectively closed
with respect to composition and hiding:

• For all B, B′ ∈ B, there isB′′ ∈ B effectively com-
putable fromB andB′ such that[[B]]‖[[B′]] = [[B′′]]; for
all F, F′ ∈ F , there isF′′ ∈ F effectively computable
from F andF′ such that[[F]]‖[[F′]] = [[F′′]].

• For all B ∈ B and all x ∈ Vars, there isB′ ∈
B effectively computable fromB and x such that
Hidex([[B]]) = [[B′]]; for all F ∈ F and allx ∈ Vars,
there isF′ ∈ F effectively computable fromF andx
such thatHidex([[F]]) = [[F′]].

4.1. Maximum of Linear Terms Algebra

Many interesting examples of static cost systems involve
numerical variables representing physical measures, and
convex utility functions encoded by piecewise linear con-
cave cost functions that assign higher cost to systems whose
behaviors are farther away from a set of desired values for
the variables. As an example of a symbolic cost algebra
which is geared towards such systems, we consider themax-
imum of linear terms algebra(maxlin algebra, in short).
In this cost algebra, we fix a countable set of real-valued
variablesVars so thatDx = IR for all x ∈ Vars. For

a finite setV ⊆ Vars, a linear term γ over V is an ex-
pression of the formb +

∑
x∈V x · ax, whereb ∈ Q and

ax ∈ Q for x ∈ V . For s ∈ S[V], we write γ(s) for
the value of the linear term when eachv ∈ V takes the
real values(v). We denote byLin(V) the set of all linear
terms overV . Given a setΦ of linear terms overV , we write
Poly(Φ) =

⋂
γ∈Φ{s ∈ S[V] | γ(s) ≥ 0} for the convex

polyhedron defined by the inequalitiesγ ≥ 0.

Maxlin systems and specifications.Let A ⊆fin B denote
that A is a finite subset ofB. A maxlin systemis a pair
〈V , Φ〉 consisting of a finite setV ⊆fin Vars of variables
and a finite setΦ ⊆fin Lin(V) of linear terms overV . The
semantics is defined by[[〈V , Φ〉]] = 〈V ,Poly(Φ)〉.

We say that a setΩ ⊆fin Lin(V) is positiveif for ev-
erys ∈ S[V], there isγ ∈ Ω with γ(s) > 0. A maxlin spec-
ification is a pair〈V , Ω〉, whereV ⊆fin Vars, andΩ ⊆fin

Lin(V), andΩ is positive. We letMaxΩ(s) = max{γ(s) |
γ ∈ Ω} for all s ∈ S[V], and[[〈V , Ω〉]] = 〈V ,MaxΩ〉; it
is easy to see thatMaxΩ is bounded away from 0. As a re-
mark, notice that the factory example from the introduction,
the time-to-settle example (Example 2), and the inverter ex-
ample (Example 4) can be modeled in the maxlin algebra,
as their cost functions only involve absolute value and lin-
ear functions.

Maxlin systems and specifications can be concretely rep-
resented by listing the coefficients of the linear terms that
define them. For a maxlin systemI and specificationF ,
we write |I| and|F | for the length of such coefficient lists.
We assume that arithmetic operations on rationals are per-
formed in constant time, so that our complexity results es-
sentially measure the number of arithmetic operations.

For the maxlin algebra, the combinator⊕ can be either
max or +. The algebra is obviously closed under composi-
tion when⊕ is max. To see that it is also closed when⊕
is +, it suffices to note that, forγ1, . . . , γn, γ′

1, . . . , γ
′
m ∈

Lin(V), we have

max{γ1, . . . , γn} + max{γ′
1, . . . , γ

′
m}

= max{γi + γ′
j | 1 ≤ i ≤ n and1 ≤ j ≤ m}.

We next show that the maxlin algebra is also effectively
closed under hiding.

Hiding in a maxlin system.To hide the variablex in a
maxlin systemI = 〈V ∪ {x}, Φ〉, we proceed as follows
[11]. For eachφ ∈ Φ, we examine the constraintφ ≥ 0.
Let ax be the coefficient ofx in φ. There are three possi-
ble cases. LetΦ0, Φ−, andΦ+ be the least sets such that:

• If ax = 0, thenΦ0 containsφ.

• If ax > 0, then the constraint can be put in the form
x ≥ δ, whereδ = −b/ax −

∑
y∈V y · ay/ax. In this

case, the setΦ− containsδ.

6

• If ax < 0, then the constraint can be put in the form
x ≤ δ, whereδ = −b/ax −

∑
y∈V y · ay/ax. In this

case, the setΦ+ containsδ.

Consider the setΦ′ = Φ0 ∪ {δ+ − δ− | δ− ∈ Φ− andδ+ ∈
Φ+}. Then, we can show that

Hidex([[〈V ∪ {x}, Φ〉]]) = [[〈V \ {x}, Φ′〉]].

Moreover, computingΦ′ requires time quadratic in|I|.

Theorem 4 For every maxlin systemI = 〈V ∪ {x}, Φ〉, a
maxlin systemJ such that[[J]] = Hidex([[I]]) can be com-
puted in time quadratic in|I|.

We writeHidex(〈V ∪ {x}, Φ〉) for the maxlin system〈V \
{x}, Φ′〉.

Hiding in a maxlin specification.For the sake of simplic-
ity, we restrict ourselves to maxlin specifications whose
defining constraints have all nonzero coefficients. LetF =
〈V ∪ {x}, Ω〉 be such a specification, wherex 6∈ V and
Ω = {γ1, γ2, . . . , γn}. To show that the maxlin specifica-
tions are effectively closed under hiding, we need some pre-
liminary definitions.

Given a pair(i, j) ∈ {1, . . . , n}2 of indices, we say that
they form acounter-slope pairif the x coefficient is nega-
tive in γi and positive inγj . For a counter-slope pair(i, j),
ands ∈ S[V], let xi,j(s) be the unique value ofx that sat-
isfiesγi(s, x) = γj(s, x). For s ∈ S[V], let x(s) denote
the value ofd that minimizesMaxΩ(s ◦ [x 7→ d]), that
is, x(s) = argmind∈Q MaxΩ(s ◦ [x 7→ d]). Finally, let
y(s) = MaxΩ(s ◦ [x 7→ x(s)]).

Lemma 2 For every states ∈ S[V], there is a counter-
slope pair (i, j) such thatx(s) = xi,j(s) and y(s) =
γi(s, xi,j(s)).

Intuitively, the lemma states that the point(x(s), y(s)) is al-
ways located at the intersection of two counter-slope lines.
This can be shown by simple arguments regarding minimiz-
ing a linear function over a convex polyhedron.

Lemma 3 Let (i, j) and (i′, j′) be two counter-slope
pairs. For every states ∈ S[V], if γi(s, xi,j(s)) <
γi′(s, xi′,j′(s)), then there is ak′ ∈ {i′, j′} such that
γi(s, xi,j(s)) < γk′ (s, xi,j(s)).

Intuitively, this lemma states that if the intersection point
between two counter-slope lines is lower than the intersec-
tion point of another pair, the first point lies beneath one of
the defining lines. This can be shown by a simple case anal-
ysis.

Theorem 5 For every maxlin specificationF = 〈V ∪
{x}, Ω〉, a maxlin specificationG such that [[G]] =
Hidex([[F]]) can be computed in time quadratic in|F |.

Proof. We show thaty(s) = max{γi(s, xi,j(s)) |
(i, j) is a counter-slope pair}. Lemma 2 shows thaty(s) is
one of the elements in the set on the right-hand side. It
remains to be shown that it is the maximal element. As-
sume thaty(s) = γi(s, xi,j(s)) andx(s) = xi,j(s). For
all k = 1, . . . , n, we know thaty(s) ≥ γk(s, x(s)).
Now, if γi(s, xi,j(s)) is smaller than the maximum, by
Lemma 3, there isk ∈ {1, . . . , n} such thatγi(s, xi,j(s)) <
γk(s, xi,j(s)). We then obtain the contradiction:y(s) =
γi(s, xi,j(s)) < γk(s, xi,j(s)) = γk(s, x(s)). Intuitively,
the contradiction is that the point(x(s), y(s)) lies beneath
the lineγk.

Thus, to compute the representation ofHidex([[F]]) for a
maxlin specificationF = 〈V , {γ1, . . . , γn}〉, we check each
pair of indices(i, j) ∈ {1, . . . , n}2. If (i, j) form a counter-
slope pair, we compute the coefficients ofγi(s, xi,j(s)), and
we add the corresponding linear term to the result. This pro-
cedure terminates in time quadratic in|F |.

4.2. Computing Refinement Distances

Refinement between a maxlin system and a maxlin specifica-
tion. Consider a maxlin systemI = [[〈V , Φ〉]] and a maxlin
specificationF = [[〈V ′, Ω〉]]. For simplicity we present al-
gorithms for the case whenV = V ′; they can be extended
to the general case whenV 6= V ′. Let Ω = {γ1, . . . , γn};
we haveMaxΩ(s) = max{γi(s) | 1 ≤ i ≤ n}. The re-
finement distanced(I, F) = sups∈Φ MaxΩ(s) can be com-
puted by solving the followingn linear-programming prob-
lems. For all1 ≤ i ≤ n, let

mi = max γi;

subject to the constraint setΦ.

Thend(I, F) = max{mi | 1 ≤ i ≤ n}.

Refinement between two maxlin specifications.Consider
two maxlin specificationsF = [[〈V , Ω〉]] and F ′ =
[[〈V ′, Ω′〉]]. As before, we can assume without loss of gener-
ality thatV = V ′. Let Ω = {γ1, . . . , γn} with MaxΩ(s) =
max{γj(s) | 1 ≤ j ≤ n}; andΩ′ = {γ′

1, . . . , γ
′
m} with

MaxΩ′(s) = max{γ′
i(s) | 1 ≤ i ≤ m}. To compute

r(F, F ′) we consider the followingn ·m optimization prob-
lems. For all1 ≤ i ≤ m and1 ≤ j ≤ n, let

mij = max
γ′

i

γj

;

subject to γ′
i ≥ γ′

k for all 1 ≤ k ≤ m,

γj ≥ γl for all 1 ≤ l ≤ n.

Intuitively, if the pairγ′
i ∈ Ω′ andγj ∈ Ω maximizes the

value of r(F, F ′), thenmij calculates the corresponding
value. Hence we haver(F, F ′) = max{mij | 1 ≤ i ≤
m and1 ≤ j ≤ n}. In the optimization problems the objec-
tive function to maximize is a ratio of two linear functions.

7

Such objective functions can be easily reduced to linear ob-
jectives as follows. The optimization problem

max
~cT ~x + ~d

~eT ~x + ~f
;

subject toG~x ≤ ~h and A~x = ~b

can be reduced to an equivalent linear-programming prob-
lem described as:

max ~cT ~y + ~d~z;

subject to

{
G~y − ~h~z ≤ 0 and A~y −~b~z = 0,

~eT ~y + ~f~z = 1 and ~z ≥ 0.

The equivalence of the two optimization problems is easy
to establish by letting~y = ~x

~eT ~x+~f
and~z = 1

~eT ~x+~f
. Since

linear programming is solvable in polynomial time [17] we
have proved the following result.

Theorem 6 For a maxlin systemI and two maxlin specifi-
cationsF andG, the refinement distancesd([[I]], [[F]]) and
r([[F]], [[G]]) can be computed in time polynomial in the size
of the inputs.

5. Dynamic Systems and Specifications

So far, we have developed the theory for the static context,
where a system is an assignment to variables. We now ex-
tend our theory to the dynamic context, where behaviors are
infinite temporal sequences of valuations, and specifications
assign costs to temporal sequences.

Dynamic systems.A dynamic systemI = 〈L,VI , BI , δI〉
consists of a setL of locations, a setVI of variables, a func-
tion BI : L → 2S[VI] that assigns for every locationl ∈ L a
subsetBI(l) ⊆ S[VI] of states overVI , and a transition re-
lationδI ⊆ L×L. We omit the subscriptI when clear from
the context. We define composition and hiding for dynamic
systems as follows.

• Composition. Given two dynamic systemsI and J ,
their compositionI‖J is defined byVI‖J = VI ∪ VJ ,
LI‖J = LI × LJ , BI‖J : LI‖J → 2S[VI‖J] such that
BI‖J(l1, l2) = {s ∈ S[VI‖J] | s|VI

∈ BI(l1)∧s|VJ
∈

BJ(l2)}, andδI‖J = {〈(l1, l2), (l′1, l
′
2)〉 | 〈l1, l′1〉 ∈

δI ∧ 〈l2, l′2〉 ∈ δJ}.

• Hiding. Given a systemI and a variablex ∈ Vars, we
define the resultHidex(I) of hidingx in I by I itself if
x 6∈ VI , and otherwise byJ = 〈VJ , BJ〉, whereVJ =
VI\{x} andBJ(l) = {s ∈ S[VJ] | ∃d ∈ Dx.(s◦[x 7→
d]) ∈ BI(l)}. ForX = {x1, x2, . . . , xn} ⊆ Vars, we
defineHideX(I) = Hidex1

(Hidex2
(· · ·Hidexn

(I))).

Dynamic specifications.A dynamic specificationF =
〈L,VF , cF , δF 〉 consists of a setL of locations, a setVF

of variables, a functioncF (l) : S[VF] 7→ IR≥0 that as-
signs to every locationl and states ∈ S[VF] a real num-
bercF (l)(s) ∈ IR≥0, and a transition relationδ ⊆ L × L.
The valuecF (l)(s) can be interpreted as the cost of real-
izing s at locationl. We require that the cost be bounded
away from 0: for each specificationF , there is a constant
b ∈ IR≥0 such thatcF (l)(s) ≥ b for all statess ∈ S[VF]
and locationsl ∈ L. We omit the subscriptF when clear
from the context. For a fixed combination operator⊕, we
define hiding and composition of specifications as follows.

• Composition. Given two specificationsF andG, we
define theircompositionF‖G by VF‖G = VF ∪ VG,
where the location and transition relation is obtained
as the usual synchronous product (as in the case of dy-
namic systems), and for alls ∈ S[VF‖G], we have
cF‖G(l1, l2)(s) = cF (l1)(s|VF

) ⊕ cG(l2)(s|VG
).

• Hiding. Given a specificationF and a variablex ∈
Vars, we define the resultHidex(F) of hiding x in F
byF itself if x 6∈ VF , and otherwise byG = 〈VG, cG〉,
whereVG = VF \ {x} and, for alls ∈ S[VG], by
cG(l)(s) = infd∈Dx

cF (l)(s ◦ [x 7→ d]). In other
words,Hidex(F) is equal to the minimum ofF over
all values ofx. ForX = {x1, x2, . . . , xn} ⊆ Vars, we
defineHideX(F) = Hidex1

(Hidex2
(· · ·Hidexn

(F))).

Traces and trace distances.A traceτI of a dynamic system
I is an infinite sequence〈l0, l1, l2, . . .〉 of locations such that
(li, li+1) ∈ δI for all i ≥ 0. A traceτF of a dynamic spec-
ification F is defined similarly. Given a dynamic systemI
and a dynamic specificationF , we denote byTI andTF the
set of all traces ofI andF , respectively. Given a system
I, and two specificationsF andG with VG ⊆ VF ⊆ VI ,
let τI = 〈l0, l1, l2, . . .〉, τF = 〈l̂0, l̂1, l̂2, . . .〉, and τG =

〈l̃0, l̃1, l̃2, . . .〉 be traces ofI, F , andG, respectively. The
trace distances are defined as follows:

td(τI , τF) = sup
i∈N

sup
s∈BI(li)

cF (l̂i)(s),

td(τF , τG) = sup
i∈N

sup
s∈S[VF]

cG(l̃i)(s)

cF (l̂i)(s)
.

Note that for each locationl ∈ LI , the tupleI(l) defined
by I(l) = 〈VI , BI(l)〉 is a static system. Similarly, for
each locationl ∈ LF , the tupleF (l) defined byF (l) =
〈VF , cF (l)〉 is a static specification, and we have

td(τI , τF) = sup
i∈N

d(I(li), F (l̂i)),

td(τF , τG) = sup
i∈N

r(F (l̂i), G(l̃i)).

We illustrate the theory of dynamic systems and specifi-
cations with a simple, theoretical example. To make the cal-

8

u = xy //

l1

I1 : u = 0
oo

l2

l′′1 //F̃1 : l′′2
oo

l′1 //

""D

D

D

D

D

D

D

D

D

D

F1 : l′2
oo

l′3

bbD
D

D

D

D

D

D

D

D

D

Figure 2. Dynamic system I1 and specifica-
tions F1 and F̃1.

culations easier, we reuse some material from previous ex-
amples.

Example 7 Figure 2 displays the dynamic systemI1 =
〈L1, {x, y, u}, B1, δ1〉, and the dynamic specificationF1 =
〈L′

1, {x, y, u}, c1, δ
′
1〉, where

c1(l
′
1)(x, y, u) =

{
33 if u = 0,

35 if u = 1,

c1(l
′
2)(x, y, u) =

{
31 if u = 0,

34 if u = 1,

c1(l
′
3)(x, y, u) = 38.

From Example 4, we know thatd(I1(l1), F1(l
′
1)) =

35. Similarly, we haved(I1(l2), F1(l
′
2)) = 31 and

d(I1(l2), F1(l
′
3)) = 38. Thus, the distance from the trace

τ = l1l2l1l2 . . . of I1 to the traceτ2 = l′1l
′
2l

′
1l

′
2 . . . of F1 is

td(τ, τ2) = sup
i=1,2

d(I1(li), F1(l
′
i)) = max(35, 31) = 35.

Similarly, the distance fromτ to the traceτ3 = l′1l
′
3l

′
1l

′
3 . . .

of F1 is

td(τ, τ3) = sup
i=1,3

d(I1(li), F1(l
′
i)) = max(35, 38) = 38.

Refinement between dynamic systems and specifications.
Given a dynamic systemI and a dynamic specificationF
with VF ⊆ VI , we define the refinement distanced(I, F)
betweenI andF by

d(I, F) = sup
τI∈TI

inf
τF ∈TF

td(τI , τF),

i.e., it is the Hausdorff distance betweenI andF .

Refinement between dynamic specifications.Given two dy-
namic specificationsF andG with VG ⊆ VF , we define the
relative refinement distancer(F, G) betweenF andG by

r(F, G) = sup
τF ∈TF

inf
τG∈TG

td(τF , τG),

i.e., it is the Hausdorff distance betweenF andG.

Example 8 From Example 7 we obtain that the traceτ2 is
the trace ofF1 that has the minimal distance fromτ . The
only other traceρ = l2l1l2l1 . . . of I1 also has a trace ofF1

at (minimal) distance 35, namely,ρ2 = l′2l
′
1l

′
2l

′
1 . . . Thus,

d(I1, F1) = max{td(τ, τ2), td(ρ, ρ2)} = 35.

Compositionality of refinement.We start with a technical
lemma to generalize the results of compositional reasoning
to dynamic systems and specifications. In the following,a
andb represent sequences of real numbers, andai andbi

their i-th elements.

Lemma 4 LetA, A′, B, andB′ be sets of sequences of real
numbers bounded away from0. Then:

sup
a∈A

inf
b∈B

sup
i∈N

ai

bi

≤

(
sup
a∈A

inf
b′∈B′

sup
i∈N

ai

b′i

)
·

(
sup

b′∈B′

inf
b∈B

sup
i∈N

b′i
bi

)
.

sup
a∈A,a′∈A′

inf
b∈B,b′∈B′

sup
i∈N

max

{
ai

bi

,
a′

i

b′i

}

≤ max

{
sup
a∈A

inf
b∈B

sup
i∈N

ai

bi

, sup
a′∈A

inf
b′∈B′

sup
i∈N

a′
i

b′i

}
.

The first part of Lemma 4 and arguments similar to the proof
of Theorem 1 yield Theorem 7. This theorem provides a
form of triangular-inequality law for relative distances for
dynamic systems and specifications.

Theorem 7 Given three dynamic specificationsF , G, and
H , and a dynamic systemI such thatVH ⊆ VG ⊆ VF ⊆
VI andVH 6= ∅ andBI 6= ∅, the following assertions hold:

r(F, H) ≤ r(F, G) · r(G, H),

d(I, G) ≤ d(I, F) · r(F, G).

Part 2 of Lemma 4 and arguments similar to the proof of
Theorem 2 yield Theorem 8, which states the composition-
ality of refinement for dynamic systems and specifications.

Theorem 8 Given four dynamic specificationsF , F ′, G,
andG′ with VF ′ ⊆ VF andVG′ ⊆ VG, and two dynamic
systemsI andJ with VF ⊆ VI , VG ⊆ VJ , VF ′ 6= ∅, and
VG′ 6= ∅, we have:

r(F‖G, F ′‖G′) ≤ max{r(F, F ′), r(G, G′)},
d(I‖J, F‖G) ≤ d(I, F) ⊕ d(J, G).

The analogue Theorem 3 and the corresponding corollary
also generalize to dynamic systems and specifications in a
straight-forward way. Furthermore, for cost functions speci-
fied in the maxlin algebra, refinement distances can be com-
puted through quantifier elimination in the theory of reals
with addition and multiplication [11].

Example 9 Consider the second, dynamic specification
F̃1 = 〈L̃1, {x, y, u}, c̃1, δ̃1〉 from Figure 2, where

c̃1(l
′′
1)(x, y, u) = c1(l

′
1)(x, y, u),

c̃1(l
′′
2)(x, y, u) = 36.

For the static specificationsF1(l
′
1), F1(l

′
2), F̃1(l

′′
1), F̃1(l

′′
2),

andF̃1(l
′′
3), we have

r(F1(l
′
1), F̃1(l

′′
1)) = 1,

r(F1(l
′
2), F̃1(l

′′
2)) = max{ 36

31 , 36
34} = 36

31 ,

r(F1(l
′
3), F̃1(l

′′
2)) = 36

38 .

9

For a trace ofF1 starting in locationl′i, the closest trace of
F̃1 is the one starting at locationl′′i . The traces ofF1 con-
taining l′2 have the largest minimal distance toF1. For in-
stance, the trace of̃F1 closest tol′1l

′
2l

′
1l

′
2 . . . is l′′1 l′′2 l′′1 l′′2 . . . ,

and lies at distance3631 . Thus,r(F1, F̃1) = 36
31 .

It is easy to see thatd(I1, F̃1) = 36. Thus, in accordance
with Theorem 7, we haved(I1, F̃1) = 36 ≤ d(I1, F1) ·
r(F1, F̃1) = 35 · 36

31 .

6. Conclusion

We focused on the basic features of a modular approach
to quantitative reasoning, and illustrated them with a sim-
ple concrete symbolic cost algebra. We studied both a static
setting, where behaviors are sets of variable valuations, and
a dynamic setting, where behaviors are sets of sequences of
variable valuations. The definitions and results of this pa-
per can be extended to more general settings. For exam-
ple, we can restrict the domains of cost functions of speci-
fications using constraints. For the maxlin cost algebra and
linear constraints, our algorithms from Section 4 general-
ize in a straight-forward way. Also, while we have studied
a relative notion of refinement, similar results may be ob-
tained for an absolute notion, where the distance between
two specifications is the difference rather than the ratio of
costs. While we have not discussed symbolic cost algebras
for the dynamic setting, we can extend the maxlin algebra
to use automata labeled by linear constraints and linear cost
functions.

In general, we expect that when the framework proposed
in this paper is applied to concrete problems, the notion of
state, the cost combinator⊕, and the symbolic cost alge-
bra need to be adapted according to the semantics of the
given problem. Our purpose was to illustrate the existence
of compositional frameworks for quantitative reasoning and
optimization, rather than advocate one specific way of as-
signing, composing, and refining cost functions.

References

[1] D. Bertsekas.Dynamic Programming and Optimal Control,
vol. I and II. Athena Scientific, 1995.

[2] P. Caspi and A. Benveniste. Toward an approximation the-
ory for computerized control. InEMSOFT, vol. 2491 ofLect.
Notes in Comp. Sci., pages 294–304. Springer, 2002.

[3] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, 1999.

[4] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and
M. Stoelinga. Model checking discounted temporal proper-
ties. InTACAS, vol. 2988 ofLect. Notes in Comp. Sci., pages
77–92. Springer, 2004.

[5] L. de Alfaro, M. Faella, and M. Stoelinga. Linear and
branching metrics for quantitative transition systems. In

ICALP, vol. 3142 ofLect. Notes in Comp. Sci., pages 97–
109. Springer, 2004.

[6] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Discount-
ing the future in systems theory. InICALP, vol. 2719 ofLect.
Notes in Comp. Sci., pages 1022–1037. Springer, 2003.

[7] L. de Alfaro and R. Majumdar. Quantitative solution ofω-
regular games. InSTOC, pages 675–683. ACM Press, 2001.

[8] C. Derman. Finite-State Markovian Decision Processes.
Academic Press, 1970.

[9] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden.
Metrics for labeled Markov systems. InCONCUR, vol. 1664
of Lect. Notes in Comp. Sci., pages 258–273. Springer, 1999.

[10] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden.
Approximating labeled Markov processes.Info. Comp.,
184(1):160–200, 2003.

[11] J. Ferrante and C. Rackoff. A decision procedure for the
first-order theory of real addition with order.SIAM J. Comp.,
4(1):69–76, 1975.

[12] O. Grumberg and D. Long. Model checking and modular
verification. ACM Trans. Prog. Lang. Sys., 16(3):843–871,
1994.

[13] M. Huth and M. Kwiatkowska. Quantitative analysis and
model checking. InLICS, pages 111–122. IEEE Computer
Society Press, 1997.

[14] A. Lluch-Lafuente and U. Montanari. Quantitativeµ-
calculus and CTL defined over constraint semirings.Theor.
Comp. Sci., 346(1):135–160, 2005.

[15] A. McIver and C. Morgan. Games, probability, and the quan-
titative µ-calculus qMµ. In LPAR, vol. 2514 ofLect. Notes
in Comp. Sci., pages 292–310. Springer, 2002.

[16] R. Milner. An algebraic definition of simulation between
programs. InIJCAI, pages 481–489. The British Computer
Society, 1971.

[17] A. Schrijver. Theory of Linear and Integer Programming.
Wiley, 1987.

10

