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Abstract. We present a compositional theory of system verifica- at providing a measure of the similarity between systems.
tion, where specifications assign real-numbered costsstess.  In our proposal, on the other hand, the quantitative aspect
These costs can express a wide variety of quantitativersystep- is used to define aostthat differentiates among more or
erties, such as resource consumption, price, or a measti@\of  |ess desirable implementations, in analogy with the sgttin
well a system satisfies its specification. The theory suppibue common in optimization problems. Furthermore, the em-
composition of systems and specifications, and the hidinguof phasis in previous work has been on systems that are mod-
ables. Boolean refinement relations are replaced by reabated led as indivisibl its. Th fthe bool th
distances between descriptions of a system at differeetdesf eledasin IVISI. € units. The suc_cess 0 e_ 00. ean theory
however, crucially depends on its modularity: it supports

detail. We show that the classical boolean rules for contiposil A .
reasoning have quantitative counterparts in our setting. component-based design and modular reasoning, whereby

While our general theory allows costs to be specified by arbi- the properties of a complex system can be derived from the

trary cost functions, we also consider a class of linear frost- properties of its components [3, 12].

tions, which give rise to an instance of our framework whete a The basic operations of a modular theory of systems
operations are computable in polynomial time. are composition and refinement [16]. Composition permits

the construction of complex systems from simple building

blocks; refinement permits a change in the level of detalil
when describing a system. In this paper, we study the inter-
action of composition and refinement in a quantitative set-
ting, and we develop a modular theory of system verifica-

1. Introduction

In formal approaches to system design and verification, a
specificatiorprescribes a set of desirable behaviors; and Btion for guantitative specifications. As in formal system de

systemimplementghe specification if all of its behaviors . o . ,
. : . sign, the emphasis is on stepwise refinement and modular
are among the desirable ones. Hence, the implementation - . oo :
.reasoning; as in optimization theory, the notions of spec-
Tication and implementation are quantitative, rather than
boolean. The proposal of this paper can thus be viewed both
as a quantitative extension of the classical techniques for
modular and hierarchical reasoning, and as an exploration

of the issues of modularity and hierarchy in the context of

setup contrasts with the quantitative point of view taken in
other disciplines. For instance, in optimization theorg(e
optimal control [8, 1] or linear programming [17]), a Speci-
fication not only describes the correctimplementations (th
feasible solutions), but also describes the quality of the i

X . o . optimization theory.
plementations via rewards, costs, or objective functions. We devel h i both stati binational and
Recently, much research has been devoted to develop-, '’ Y4€VEIOP aur theory in both static (combinational) an

ing a quantitative approach to formal design and verifi- dynamic (sequential) contexts. We distinguish between sys

cation. Quantitative temporal logics [6, 10, 4] and calculi tems and specifications. A stagsteris a set of assign-

[13,7, 15, 6, 5, 14] have been suggested as specificationfor—ments of values to variables, and it describes a set of be-
PN input/output pairs) that may occur. A dyrami

malisms, and directed and undirected metrics on states havdaviors _(e.g., o ; .
been proposed as generalized notions of refinement and peystem Is a set of _|nf|n|te_ sequences of assignments to vari-
havioral equivalence [9, 10, 2]. The proposal in this paper able_zs. Aspeqﬂcaﬂorass_lgns a cost to each poss.|ble _va!ug

differs from the above quantitative approaches in two main assignment (in the static case), or to each possible infinite

respects. In [9, 10, 2, 6, 5], the quantitative aspect aimeGhaVior (in the_dynamic case). ) )
The composition of two systems is defined as usual, by

+  Supported in part by the NSF grants CCR-0234690, CCR-0Z)8g7 taking the intersection of the system behaviors. The compo-
and CCR-0225610; by the NSF grant CCR-0132780 and ARP grant Sition of two specificationg’ andG combines the costs that
SC20051123. are assigned by andG to the implementations via a com-




bination operato® : IR>o x IR>¢ +— IR0, which is typi- wherel is a system and’, F’, andF" are specifications.
cally either+ or max. Thus, the cost assigned by the com- These rules allow the chaining of multiple refinement steps.
positionF'||G to a variable assignmentcorresponds to the In general, cost functions are infinite, semantic objects.
sum (if® is +) or to the maximum (ifp is max) of the costs  In order to obtain a computational theory, we introdsye-
assigned by’ andG to s. For example, the cost of a vari- bolic cost algebrasThese are a quantitative generalization
able assignment may express the amount of memory neededf symbolic theories used in classical system verification t
by a configuration. When composing two systems in paral- represent sets of states. A symbolic cost algebra consists o
lel, it is reasonable to add their memory consumptions anda set of cost functions that have finite representations, and
choose® to be +; when composing the two systems se- that are effectively closed under composition, variabt hi
guentially, one can reuse the memory if it is shared, anding, and refinement. Symbolic cost algebras furnish sym-
may choosed to memax. bolic algorithms for computing refinement distances. To il-
We introduce two notions of refinement: one between a lustrate symbolic cost algebras, we introduce a specific ex-
system and a specification; the other between two specifi-ample, themaxlin cost algebra, which enables the expres-
cations. Both notions are quantitative. The refinement dis-sion of piecewise-linear concave cost functions (which en-
tanced(I, F') between a systethand a specificatiof’ cor- code convex utility functions). We show that in this alge-
responds to the maximum cost, accordindtoof a behav-  bra, composition, hiding, and refinement distances can all
ior of I. The refinement distanaeé F, F’) between a speci- be computed in polynomial time. As a result, we obtain a
fication F' and a more abstract specificatibhmeasuresthe  compositional and efficiently computable theory for quanti
maximumrelative cost increase fronk” to F’ incurred by tative reasoning about component-based systems.

anybehavior (in particular;(F, F') = 1). We focus on the E le 1 We illustrat h ith a simpl |
relative distance between specifications, rather than en th xampie ¢ fiustrate ourtheory with a sSimple example.
Consider a factory receiving orders from a client that re-

absolute one, because it leads to a theory that is more ro-

bust to disturbances. For instance, if the cost assigned b)guwes just-in-time delivery. At time, the factory receives

F' can grow unboundedly large for undesirable behaviors, 2" order, and the client expects the dellyery at a certain
then the absolute distance betweermnd1.01 - F is infi- time, say, 7 days after ordering. If the delivery occurs ear-

nite, while the relative distance is 1.01. Moreover, thatel Iier.than .that, the cIient has to pay stocking costs, andéf.th
tive distance is less sensitive to an increase in costs fhat a _dr(ra]hvefry IS I?r:e, fthet chejnt ne(;.-dsc;o dtehl‘?: thel_prciQucltm:je.ll
fect already high costs, and that are thus less likely to be erefore, the Tactory s contract wi € cient includes
paid by actual implementations. a p_enalty_, Wh|(_:h the fac'Fory has to pay if an order placed
With these definitions, we are able to cast in a quantita- at timez is delivered at timev. The factory budgets a pro-

tive setting the classical theorems relating compositih a duction cost of(z, z) = a + |z —x — 7, consisting of a

refinement. In particular, the classical rule for compositi f!xed ]E)OI‘IIOE O% anlddalpenalty ofz ;;Cd_ 7|. Thus, d(_avrlla-d .
ality of boolean refinement, thd@t< F andJ < G implies tions from the ideal delivery time o ays are punished in

1]l < F||G (wherel < F means T implementsF™), cor- a linear fashion. A systethin this setting is a set of behav-

responds in our quantitative setting to the two inequalitie lors specifyi_ng a p_roductio_n schedule, indicatir_lg when the
P q g d orders acquired will be delivered. Thus, the refinement dis-

d(I||J, F||G) < max{d(I, F),d(J,G)}, 1) tanced(I, G) represents what the factory targets to spend
P , , on the schedulé.

r(FIG, FIE) < max{r(F, F),r(G, ¢}, (2) The factory has subcontracted the three production
where and J are systems, and’ and I’ are specifica-  phases —processing, packaging, and shipment— and stip-
tions. The classical rule allows the decomposition of a re- ylates three contract&;, G2, and G5 with the subcon-
finement problem into two simpler problems: in order to tractors. As the combined contra@ || G||G'3 accumulates
prove that a composite systeifi/ implements”||G, itsuf-  the costs of the individual contracts, their composition is
fices to prove independently thaimplementst’, and that  formed by takingt for the operator®. Note thatd(I, G;)
J implementsG. Similarly, the quantitative rules suggest a is the maximum cost of contra6; under scheduld, and
compositional approach to optimization problems: they pro (1, G, |G»||Gs) is the maximum total cost of combina-
vide bounds on the optimality of a global solution in terms tion of contracts under that schedule. More interestingly,
of bounds on the optimality of partial solutions for the in- (G, |G2|/G3, G) measures to what extent the subcontrac-
dividual components. Moreover, the transitivity of boalea  tors together meet the planned production costs. The tran-

refinement, thal < F'andF < I implies] < F”, corre-  sitivity rule (3 and 4) shows that for every schediljeve
sponds in our setting to the two inequalities haved(I,G) < d(I,G4||G2|Gs)-r(G1||G2||Gs, G). So, if
" < ) / r(G1]|G2||Gs, G) is, say,1.05, then the factory is guaran-
AU, F) < A1, F) - v (F F), 3) teed that the costs realized by the subcontractors will be at
r(E,F") <r(F,F')-r(F',F"), 4) most 5% more than the targeted costs.



The paper is organized as follows. In Section 2, we pro-
vide the basic definitions of system, specification, and com-
position, as well as variable hiding. In Section 3, we define
our two notions of quantitative refinement, and we charac-
terize the relationship between composition, hiding, and r

finement, giving (among other results) precise statements

of (1)—(4). In Section 4, we introduce symbolic cost alge-

Yy
Figure 1.
b € R such thatr(s) > bforall s € S[Vr]. We omit

bras, and as a particular example, the maxlin algebra. Wethe subscripF when clear from the context.

show that the maxlin algebra allows polynomial-time com-
putation of composition, hiding, and refinement distances.
In Section 5, we extend our setting to dynamic systems.

2. Systems and Specifications

Variables and assignmenttet Varsbe a fixed set of vari-
ables; each variable € Vars has an associated domain
D,. Given a sety C Vars of variables, astate over V

is a functions € II,cyD, that assigns to each variable
x € V avalues(z) € D,. We denote byS[V] the set of
all states ovelV. Given a states € S[V] andW C V,
we denote by, € S[W] the restriction of s to WV, de-
fined by s|w(z) = s(x) for all x € W. Given a state
s € S[V], a variablex € Vars and a valuel € D, for

x, we denote by(s o [z — d]) € S[V U {z}] the state de-
fined by (s o [z — d])(y) = s(y) fory € V\ {z}, and by
(so [z d)(z) =d.

SystemsA systen? = (V;, By) consists of a sf; of vari-
ables! and of a subseB; C S[V;] of states ovel;. We
omit the subscripf when clear from the context. We de-
fine system composition and hiding as follows.

e Composition. Given two systemg and.J, theircom-
position I||.J is defined byV;; = Vr UV;, and
B]”J = {S € S[V} U VJ] | SlVI € Br A S|VJ € BJ}

Hiding. Given a systeni and a variable: € Vars we
define the resultlide, (1) of hidingz in I by I itself if
x ¢ Vr, and otherwise by = (V;, B;), whereV; =
Vi\{z}andB; = {s € S[V,]|3d € Dy.(so [z —
d)) € Br}.ForX = {x1,x9,...,z,} C Vars we de-
fine Hidex (1) = Hide,, (Hide,, (- - - Hide,, ())).

SpecificationsLet IR >, be the set of nonnegative real num-
bers together withxo. A specificationF = (Vg,cr) con-
sists of a seVy of variables, and a functiofy : S[Vr| —
IR> that assigns to each statec S[Vr] a real number
cr(s) € R>¢. The valuecr(s) can be interpreted as the
cost of realizings. We require that the cost be bounded away
from O: for each specificatioR, there is a positive constant

Often, a system model distinguishes between input andubwpi-
ables. However, no such distinction is necessary for theldpment
of the theory presented in this paper.

One easily shows thatide,, (Hide,, (I)) = Hide,, (Hidez, (I)).

To define the composition of two specifications, we need
an operator to combine costs.cmbination operator :
R2, — IR is a binary function that satisfies the follow-
ing properties: (1) is monotonic, commutative, and asso-
ciative, and (2)p subdistributes over multiplication: for all
a,b,c € R>o, we have(a-b) @ (a-c) <a-(b®dc). Com-
mon choices for are+ andmax. For a fixed combination
operatorb, we define hiding and composition of specifica-
tions as follows.

e Composition. Given two specificationg’ andG, we
define theircompositionF||G by Vp ¢ = Vr U Vg,
andforalls € S[Vr UVg], bycrc(s) = cr(slv.)®
CG(S|VG)'

Hiding. Given a specificatiort” and a variabler €
Vars, we define the resulfide, (F') of hidingz in F'

by F itself if x ¢ Vp, and otherwise bx = (Vg, ci),
whereVs = Vp \ {2z} and, for alls € S[Vg], by
ca(s) = infgep, cp(s o [z — d]). In other words,
Hide,(F') is equal to the minimum off" over all
values ofz. Once we hide a variable in F, the
specificationF’ no longer cares about the variabie
and hence the cost is minimal over all valuesaof
Also note that by defining hiding as above, we ob-
tain the boolean theory as a special case. ko0&
{z1,22,...,2,} C Vars we defineHidex (F)
Hide,, (Hide,, (- - - Hide,, (F))).

With abuse of notation, given a specificatidfy a state

s € S[V],andVp C V, we writecg(s) for cp(s|v, ). We il-
lustrate these notions giving a simple example.

Example 2 The circuit in Figure 1 implements an AND
gate as the composition of a NAND gath
({x,y,u}, By) and an inverterly = ({u,z}, Ba). This
means thatB; consists of all valuations satisfying =

T -y. and B, contains all valuations satisfying = 4. As
their costs, we consider the worst-case time-to-settist, th
is, the maximal time it takes for changes at the input ports
to propagate to the output ports. Since the time-to-settle
of this system is the sum of the settle times of the compo-
nents, we interpretb as +. In both gates, raising edges
take at most 35ns to settle and falling edges take 33ns. This
means that it = 0 in the first gatel;, then the worst time-
to-settle is 33. Either there has been a change from high
voltage to low voltage, or there was no change at all, in
which case the settle time is 0. Thus the cost specifications



Fl = <{‘Tay7u}acl> for Il! andF2 = <{U72},CQ> for IQ,

are given by
33 ifu=0, {33 if 2 =0,
CQ(U,Z) =

35 ifu=1,

cl(ar,y,u)—{ 35 ifz=1

The composition; || 5 is ({x,y,z,u}, B), where B con-
tains all valuations oveKz,y, z,u} satisfyingu = T~y
andz = 4. The compositiod? || Fo = ({z,y, z,u}, c) is

66 fu=2z2=0,
c(z,y,2z) =470
68 otherwise.

ifu=z2=1,

Further, if we hide the variable in the composition, then
Hide, (11 ||12) is {({z, y, 2z}, Byy-), whereB,,,, contains all
valuations withz = z - y. Similarly, Hide, (F} || F>) is given
by {z,y, 2}, cay=), With czy- (2, y,2) = 66 if z = 0, and
68if z = 1.

3. Refinement

Proof. We have

ca(s) . cu(s)

sup sup
sesivr) CF(8)  sespe) ¢a(s)

2 SUPses[Vr] EI;—ESS; = T(Fv H);

r(F,G) -r(G,H) =

the inequality follows fromVg C V. Moreover,

d(I,F)-r(F,G) = sup cp(s) - sup c6(s)
sEBr s€ES[VF] CF(S)
> sup,ep, ca(s) = d(I,G). ]

Compositionality of refinemenilo prove the composition-
ality of refinement, we will need the following lemma.

Lemmal Leta,b,c,d € R>p ande,d # 0. Then(a @
b)/(c®d) < max{a/c,b/d}.

Proof. Leta = a-candb = 3-d. Without loss of generality
leto > 3. Then we have
adb a-cof-d
cdd cdd

a-cha-d
chd

a-(cdd)
cdd
= max{a/c,b/d}.

(e

We introduce two notions of refinement: refinement be- The second inequality follows from subdistributivity of
tween a system and a specification, and refinement betwee@ver multiplication

specifications. The refinement between a system and a specFhe next theorem states the compositionality of refinement.
ification measures the cost of a system according to a spec
ification; the refinement between two specifications mea-

sures the relative cost difference between the specifitatio

Refinement between systems and specificati@iven a
system/ = (V;, By) and a specificatiod = (Vp,cp)
with Vr C V;, we define the refinement distandel, F')
betweenl andF' as follows:

d(I,F) = sup cp(s).
seBy

Refinement between specificatio@ven two specifica-
tions F' and G with Vg C Vp, we define the relative re-
finement distance(F, G) betweenF andG as follows:

r(F,G) = sup CG(S).
ses[vr] CF(8

Refinement hierarchiesThe following theorem provides a
form of triangular-inequality law formulated for relative

distances. This law is the quantitative analogue of the-tran d(I, F') and d(I|J,G)

sitivity of boolean refinement.

Theorem 1 Consider three specifications, G, and H,
and a systen?, such thatVy C Vg C Vg C V; and
Vy # (0 and By # (0. The following two assertions hold:

r(F,H) <r(F,G) r(G,H),
d(I,G) <d(I,F)-r(F,QG).

Theorem 2 Consider four specifications, F’, G, andG’
with Vg C Vr andVg C Vg, and two systems and J
with Vr C Vi, Vg CVy, Ve # 0, andVg # (0. Then:

r(F||G, F'||G") < max{r(F, F"),r(G,G")},
d(I)|J, FI|G) < d(I,F) & d(J,G).
Proof. The first assertion can be proved as follows:

(PIG PG~ sp ) Ocal)
seS[VrLve] CF(8) @ ca(s)

. . { cr(s) co(s) }

seS[VrUVa] CF(S)
< max sup CFl(S), sup ca(s)
sesvr] CF(5) sesvg) ca(s)
= max{r(F, F"),r(G,G")}.

< sup

The first inequality follows from Lemma 1.

For the second assertion, first note thf||J, ') <
< d(J,G). This is because
SUP,ep,,, CF(s) < sup,cp, cr(s). Hence we have

AN FIG) = sup (er(s) ® cals))

SEB[H,]

sup cr(s) @ sup ca(s)
SGBIHJ SGBIHJ

d(I||J, F) @ d(I]|J,G)
d(I,F) & d(J,G).
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The first inequality follows from the monotonicity af. i Similarly, if we implement;, by an inverter/; taking in-

We note that the theorem is not symmetric with respectto  PUts from[—1,1] and realizingz = —1.3 - y, we obtain
andd: implementation refinementsare composed wittp, d_(I% Fy) = a+0.3. The combined |mplementat|d$p||12_ IS
while specification refinements are composed witkx. In givenbyy = —0.9-zandz = —1.3-y = 1.22.x. By taking

particular, the theorem does not hold if in the second asseri1ax as @, the cost function of the combined specification
tion we replacep with max. It may also be noted that given  F1llF2 is givenbye(z, y, z) = a+max{lz+yl, [y+2(}. As
systems with boolean variables; specifications that assign! "eorem 2 predicts, we hawer0.22 = d(1y |12, F1[| F3) <

cost 1 to states with desired values of variables and assigﬁnaXd(Ilv F1),d(Iy, F2) = a4 0.3.

cost 2 otherwise; and witmax as the combination opera- Hiding and refinementThe following theorem states that
tors we can obtain the boolean theory as a special case ohiding variables of an implementation, or of a lower-level
the present quantitative theory. specification, does not change the distance with respect to a

Example 3 Consider the system defined in Example 2. The higher-level specification.

cost of[; and I, are given byd(I1, Fy) = d(Is, F») = 35, Theorem 3 LetI be a system, and |ét andG be two spec-
indicating the maximum cost for any state. We also see thatifications such thaVe C V;, andVg C Vi, andVg # 0.
d(I,||I, F1 ||F>) = 68, because the worst time-to-settle in Consider a variable: such that ifz € Vr, thenx ¢ Vg;
I,|| I, is obtained by a falling edge and a raising edge. As andifz € Vg, thenz ¢ V. Consider a variable € Vars.
stated in Theorem 2, we see th#df; || I, 1 || F») = 68 < The following assertions hold:

d(I1, F1) @ d(I2, F5) = 35+ 35 = 70. That is, the costs of

ittr;esizgpr);ments provide a bound on the cost of the compos- rd((l—||_::jdeim((1:“,;: g; ; f((f,” g))” 83
Suppose now that we upgrade the gates by faster ver- d, H!dey(G)) < d(,G), (3)

sions with the same behavior. Let the cost specifications r(F, Hide,(G)) < r(F, G). (4)

of the new components ilg = ({z,y,u},é;) and F» = Parts (1) and (2) of Theorem 3 are basic requirements of a

({u, z}, &), with compositional theory. These results require that hiding of
variablex for specifications is defined as thef over the

- 31 ifu=0, _ 31 ifz=0, values ofz; they do not hold ifsup is used in place aifnf.

@, y,u) = {32 ifu=1, Ca(u, 2) = {32 if 2 =1. The theorem leads to the following corollary, stating that
hiding the same variable in a specification and a system, or

Then, fori e {1,2}, we haved(l;,F;) = 31 and in two specifications, yields a lesser or equal distance.

r(F, F;) = max{0.94,0.91} = 0.94. As formulated  Corollary 1 Consider an implementatiohand two speci-

in Theorem 1, we obtaiBl = d(I;, F;) < d(l;, ;) ficationsF, G with Vo C Vp, andVs C Vy, andVg # 0.

r(F;, F;) = 35-0.94 = 32.8. That is, the new worst-case For all = ¢ Vars, the following two assertions hold:
settle times are bounded by the old settle times multipfed b

the relative increase of the new gates with respect to the old d(l—!ideI(I), H?dew(G)) < d(I,G),
ones. Moreover, we see that, in accordance with Theorem 2, r(Hide, (F), Hide,(G)) < r(F,G).
r(F1|[Fy, F1|[Fy) = 0.94 < max{r(Fy, 1), r(F2, F2)} = Example 5 For Example 2, we have

0.94, formalizing the intuition that the relative increase in ) )
the cost in the composite system with the new components d(Hide, (11[|I2),Hide, (F1[| F2)) = 66

over the old system is bounded by (in this case equal to) the < d(Li|| Iz, F1 || F2)) = 68.

maximum relative increase for any new component over it grom Corollary 1 it follows that, given a sequence of spec-

old version. ifications Gy, G1, ..., G, from the most concrete to the

Example 4 As a second example, consider a specification MOSt abstract, when approximating the distan@y, Gi».)

Fy = ({z,y}, c1) for an inverter with inputz and outputy via the product of the stepwise refinement distances, as
y I I . . n—1 . .

Its cost function; (z,y) = a + | + y| measures the dis- N 7(Go,Gn) < [[;Z; 7(Gi, Gis1), we obtain a tighter

tance from the perfect inverter = —z, with a minimum ~ bound by first h|d|hg_ fronGy, ..., G, all the \(erables

fixed costr > 0. The specificatiorf’, for the second in-  that do not appear in the most abstract specificaion

verter is the same, except that it haas inputand: as out- ~ More precisely, forl < i < n, letW; = Vg, \ Vg, be

put. We can implement the specificatibnby an inverter ~ the variables present i&; but not inG,, and letG; =

I, that takes inputs froni—1,1] and realizes the behav- Hidew, (G;). We haver(Go, Gr) < [[\ (G}, Giyy) <
iory = —0.9 - . We see thati(I;, F1) = « + 0.1 mea- H;:Ol r(G;, Giy1). A similar result holds for refinement hi-
sures the cost of the maximal deviation from the ideal in- erarchies in which the most concrete element is a system,
vertery = —zx, which occurs when = 1 andy = —0.9. rather than a specification.



Example 6 To obtain an identity gate from the inverters in
Example 4, we hide the variabjen both 1, || I, and F || 5.
We writel = Hide, (11| I>) and F' = Hide, (F} || F»). Since
the value ofy that minimizesy + max{|xz + y|, |y + 2|} is

y = —(z+2)/2, the cost functionr is a+|z —x|/2, which
represents the distance from the identity gate x. Theo-
rem 3 shows thak+0.11 = d(I, F) < d([1||I2, F1|| F2) =

a + 0.22.

4. Symbolic Cost Algebras

a finite sety C Vars alinear term~ overV is an ex-
pression of the formb + > |, « - a,, whereb € Q and

a, € Qforz € V. Fors € S[V], we write y(s) for

the value of the linear term when eache V takes the
real values(v). We denote byLin (V) the set of all linear
terms ovel. Given a setb of linear terms oveV, we write

Poly(®) =, ca{s € SV] | 7(s) > 0} for the convex
polyhedron defined by the inequalities> 0.

Maxlin systems and specificationiset A C;, B denote
that A is a finite subset of3. A maxlin systems a pair
(V, ®) consisting of a finite seV Cy;, Vars of variables

Static systems and specifications are infinite semantic ob-and a finite se® C¢;,, Lin(V) of linear terms oved’. The
jects: even when variables have finite domains, there issemantics is defined yV, ®)] = (V, Poly(®)).

still an uncountable number of possible cost functions. In
this section, we introduceymbolic cost algebraswvhich
are symbolic representations for restricted classes of sys

We say that a se@ C¢;,, Lin(V) is positiveif for ev-
erys € S[V], there isy € Q with v(s) > 0. A maxlin spec-
ificationis a pair(V, ), whereV Cy;, Vars andQ Cy,,,

tems and cost functions that are closed under composi-Lin()), and() is positive. We letMaz g (s) = max{~(s) |
tion and hiding. We also present algorithms that operate ony € Q} for all s € S[V], and[(V, Q)] = (V, Mazq); it
such symbolic representations, and compute refinement disis easy to see thdtfaz, is bounded away from 0. As a re-

tances, compositions, and the result of hiding variables.
A cost algebraVars, B, F, @, [-]) consists of a sé¥ars

of typed variables, a countable set of symbolic system rep-

resentationd3, a countable set of symbolic cost represen-
tationsF, a computable combination operator and of a
semanticg[-]. Each element o8 and F must have a fi-
nite representation. The semantjel maps symbolic rep-
resentations to systems and specifications: specifically, f
B € B, [B] is a system, and fof € F, [F] is a specifi-
cation. We require that the cost algebra is effectivelyatbs
with respect to composition and hiding:

e For allB,B’ € B, there isB” ¢ B effectively com-
putable fromB andB’ such tha{B]||[B'] = [B"]; for
allF,F’ € F, there isF” € F effectively computable
from F andF’ such thaflF]||[F'] = [F"].

For all B € B and allz € Vars there isB’' €

B effectively computable fromB and z such that
Hide,([B]) = [B']; for all F € F and allz € Vars

there isF’ € F effectively computable fronfF andz

such thatide, ([F]) = [F'].

4.1. Maximum of Linear Terms Algebra
Many interesting examples of static cost systems involve

numerical variables representing physical measures, an
convex utility functions encoded by piecewise linear con-

cave cost functions that assign higher cost to systems whos
behaviors are farther away from a set of desired values for
the variables. As an example of a symbolic cost algebra

which is geared towards such systems, we considenthe
imum of linear terms algebrémaxlin algebra, in short).

In this cost algebra, we fix a countable set of real-valued
variablesVars so thatD, = IR for all + € Vars For

mark, notice that the factory example from the introduction
the time-to-settle example (Example 2), and the inverter ex
ample (Example 4) can be modeled in the maxlin algebra,
as their cost functions only involve absolute value and lin-
ear functions.

Maxlin systems and specifications can be concretely rep-
resented by listing the coefficients of the linear terms that
define them. For a maxlin systefmand specificatiorn?’,
we write || and|F| for the length of such coefficient lists.
We assume that arithmetic operations on rationals are per-
formed in constant time, so that our complexity results es-
sentially measure the number of arithmetic operations.

For the maxlin algebra, the combinatercan be either
max or +. The algebra is obviously closed under composi-
tion when® is max. To see that it is also closed when

is +, it suffices to note that, fof, ..., v, V1, -, Vi €
Lin(V), we have
max{y1,...,Yn} +max{yy,..., v}

=max{y; +7} |1 <i<nandl <j<m}.

We next show that the maxlin algebra is also effectively
closed under hiding.

Hiding in a maxlin systemTo hide the variable: in a
axlin systeml = (V U {z}, ), we proceed as follows
11]. For eachy € &, we examine the constraigt > 0.
et a, be the coefficient of: in ¢. There are three possi-
le cases. Leby, &_, andd . be the least sets such that:

e If a, =0, then®, containsy.

e If a, > 0, then the constraint can be put in the form
z > 6, whered = —b/ay — > Y - ay/as. In this
case, the seb_ contains).



e If a,; < 0, then the constraint can be put in the form Proof. We show thaty(s) = max{v(s,z;;(s)) |
x < 6, whered = —b/a, — 3 .,y - ay/az. In this (i, 7) is a counter-slope pgir Lemma 2 shows thaj(s) is
case, the seb_ contains). one of the elements in the set on the right-hand side. It
remains to be shown that it is the maximal element. As-
sume thaty(s) = (s, zi ;(s)) andz(s) = z;;(s). For
all &k = 1,...,n, we know thaty(s) > ~x(s,z(s)).
Now, if ~;(s,z; ;(s)) is smaller than the maximum, by
Lemma3,thereis € {1,...,n} suchthaty(s, z; ;(s)) <
Vi(s, 2 ;(s)). We then obtain the contradictiog(s) =
vi(s,xi () < v(s,2i;(s)) = vu(s,z(s)). Intuitively,
Theorem 4 For every maxlin systeth = (V U {z}, ®), a the contradiction is that the poiit(s),y(s)) lies beneath
maxlin systeny such that].J] = Hide,([I]) can be com-  the liney.

Consider the sed’ = &q U {04 —d_ | 0_ € P_ andd; €
®, }. Then, we can show that

Hide, ([(V U {z}, ®)]) = [(V\ {x}, )].

Moreover, computin@®’ requires time quadratic if|.

puted in time quadratic if/|. Thus, to compute the representatiortide, ([£]) for a
L ) maxlin specificatiorF’ = (V, {~1,...,7.}), we check each

We WriteH'deI«V U {z}, ®)) for the maxlin systen{) \ pair of indices(i, j) € {1,...,n}?. If (4, ) form a counter-

{z}, 2°). slope pair, we compute the coefficientsgfs, =, ;(s)), and

Hiding in a maxlin specificationFor the sake of simplic- we add the corresponding linear term to the result. This pro-
ity, we restrict ourselves to maxlin specifications whose cedure terminates in time quadratic|#i|. B
defining constraints have all nonzero coefficients. Eet
(V U {z},Q) be such a specification, whete ¢ V and 4.2. Computing Refinement Distances
Q = {7,7%,-..,7} To show that the maxlin specifica-
tions are effectively closed under hiding, we need some pre-Refinement between a maxlin system and a maxlin specifica-
liminary definitions. tion. Consider a maxlin systeth= [(V, ®)] and a maxlin

Given a pair(i, j) € {1,...,n}? of indices, we say that  specificationF = [(V’, Q)]. For simplicity we present al-
they form acounter-slope paiif the = coefficient is nega-  gorithms for the case whew = V’; they can be extended
tive in y; and positive iny;. For a counter-slope pa(, 7), to the general case whéah #£ V'. LetQ = {~1,...,%};
ands € S[V], letz; ;(s) be the unique value of that sat- ~ we haveMazq(s) = max{vy;(s) | 1 < i < n}. The re-
isfiesv;(s,x) = v;(s,x). Fors € S[V], letz(s) denote  finementdistancé(I, F') = sup,c4 Mazo(s) can be com-
the value ofd that minimizesMazq(s o [x +— d]), that puted by solving the following linear-programming prob-
is, z(s) = argmingeg Mazq(s o [x — d]). Finally, let lems. For alll <i <mn, let
y(s) = Mazq(s o [x — x(s)]).

m; = max 7;;

Lemma 2 For every states € S[V], there is a counter- subject to the constraint sét
slope pair (i, 5) such thatz(s) = =;;(s) and y(s) =
vi(s, xi j(8)). Thend(I, F) = max{m, |1 <i <n}.

Refinement between two maxlin specificaticd@snsider
two maxlin specifications = [(V,Q)] and F/ =
[(V',Q)]. As before, we can assume without loss of gener-
ality thaty = V'. LetQ = {m, ...,y } With Mazq(s) =
max{v;(s) | 1 < j < n};andQ’ = {~{,...,7,,} with
Lemma 3 Let (i,5) and (i,;') be two counter-slope Mazo/(s) = max{y;(s) [ 1 < i < m}. To compute
pairs. For every states ¢ S[V], if yi(s,zi;(s)) < r(F, F") we consider the following - m optimization prob-
~vir(s,zy 1 (s)), then there is ak’ e {i’,;'} such that lems.Foralll <i<mandl<j <n,let

Vi(s, @i (8)) < ver (8, @i 5(s))-

Intuitively, the lemma states that the pofe{s), y(s)) is al-
ways located at the intersection of two counter-slope lines
This can be shown by simple arguments regarding minimiz-
ing a linear function over a convex polyhedron.

/
" . . . . . m;j = max ﬁ;
Intuitively, this lemma states that if the intersectionmioi Vi
between two counter-slope lines is lower than the intersec- subjectto v} >, foralll <k <m,
tion point of another pair, the first point lies beneath one of v; >y foralll <i<n.
the defining lines. This can be shown by a simple case anal-
ysis. Intuitively, if the pairy; € Q" and~y; € Q maximizes the
value of r(F, F"), thenm,; calculates the corresponding
Theorem 5 For every maxlin specificatiod® = (V U value. Hence we have(F, F’) = max{m;; | 1 < ¢ <
{z},Q), a maxlin specificationG such that[G] = mandl < j < n}.Inthe optimization problems the objec-
Hide, ([F]) can be computed in time quadratic|if|. tive function to maximize is a ratio of two linear functions.



Such objective functions can be easily reduced to linear ob-Dynamic specificationsA dynamic specificationF’ =
jectives as follows. The optimization problem (L,Vr,cr,dr) consists of a seL. of locations, a seVp

. of variables, a functiornr(l) : S[Vr] — IR>o that as-
' +d signs to every locatioh and states € S[Vr| a real num-
it f bercp(l)(s) € R>o, and a.transition relatiof C L x L.
subjecttoGZ < /i and A% — b The vaIuecF(l).(s) can be mt_erpreted as the cost of real-

izing s at locationl. We require that the cost be bounded

can be reduced to an equivalent linear-programming prob- away from 0: for each specificatiofi, there is a constant
lem described as: b € R>¢ such thateg(1)(s) > b for all statess € S[Vp]
and locationd € L. We omit the subscript’ when clear
from the context. For a fixed combination operatarwe
define hiding and composition of specifications as follows.

max

max &L + JE;

Gij—hZ<0 and Aj — b7 =0,

&j+ fz=1and 2> 0. e Composition. Given two specificationg” and G, we
define theircompositionF||G by Vp ¢ = Vr U Vg,
where the location and transition relation is obtained
as the usual synchronous product (as in the case of dy-
namic systems), and for all € S[Vp|¢], we have
crjc(ln, l2)(s) = cr(l)(slve) ® callz)(slve)-

¢ Hiding. Given a specificatiorf” and a variabler €
Vars we define the resullide, (F') of hiding z in F'
by Fitselfif z ¢ Vr, and otherwise b7 = Vg, ca),
whereVe = Vp \ {z} and, for alls € S[V¢], by
ca()(s) = infgep, cr()(s o [x — d]). In other
words, Hide, (F') is equal to the minimum of" over
all values ofx. ForX = {1, 2a,...,2z,} C Vars we
defineHidex (F) = Hide,, (Hide, (- - - Hide,, (F))).

Traces and trace distance# tracer; of a dynamic system
'I'is an infinite sequenc@y, I1, Iz, . . .) of locations such that
(li,li+1) € 6; forall i > 0. A tracerr of a dynamic spec-
ification F' is defined similarly. Given a dynamic system
and a dynamic specificatiafi, we denote by7; and7r the
set of all traces of and F', respectively. Given a system
Dynamic systemsA dynamic systend = (L, Vy, By, dr) I, and two specifications’ andG with Vo C Vi C Vy,
consists of a sell of locations, a se¥; of variables, afunc- |t 7 = (ol la,.. )y TR = (o, 11,1,...), and7g =
tion B; : L — 251l that assigns for every locatidre L a (o, 11 72 ..) be traces ofl, F', andG, respectively. The
subsetB, (1) C S[V,] of states oveV’;, and a transition re- .20 distances are defined as follows:
lationé; C L x L. We omit the subscript when clear from
the context. We define composition and hiding for dynamic
systems as follows.

subject to {

The equivalence of the two optimization problems is easy
to establish by letting/ = qu andz = + -. Since

=
linear programming is solvable in ponnomlaI time [17] we
have proved the following result.

Theorem 6 For a maxlin systend and two maxlin specifi-
cationsF' and G, the refinement distance$[ ], [¥]) and
r([F], [G]) can be computed in time polynomial in the size
of the inputs.

5. Dynamic Systems and Specifications

So far, we have developed the theory for the static context,
where a system is an assignment to variables. We now ex-
tend our theory to the dynamic context, where behaviors are.
infinite temporal sequences of valuations, and specificatio
assign costs to temporal sequences.

td(rr, ) = sup sup cp(ly)(s),

€N SEB}([T',)
I;
td(TF,Tq) = sup sup M

e Composition. Given two dynamic systems and J, L )(S).

their composition/||.J is defined by ; = Vi UVy,

Ly =Ly x Ly, Bryy: Ly — 25Pnvl such that  Note that for each locatioh € Lj, the tuplel(l) defined

Byl l2) = {s € SVl | slv; € Br(li)Asly, €
Bjy(la)}, andop; = {((l,l2), (14,13)) | (L, 1}) €
or A <12,lé> S 5}}

Hiding. Given a systeni and a variable: € Vars we
define the resullide, (1) of hidingx in I by I itself if
x ¢ Vr, and otherwise by = (V;, B;), whereV; =

Vi\{z}andB,(l) = {s € S[V,] | 3d € Dy.(so[x —
d)) € Bi(l)}. ForX = {x1,22,...,2,} C Vars we
defineHidex (1) = Hide,, (Hide,, (- - - Hide,, (1))).

by I(l) = (Vr,B;(l)) is a static system. Similarly, for
each locatiorl € Lp, the tupleF(I) defined byF(l) =
(Vr,cr(l)) is a static specification, and we have

td(rr,7r) = supd(I(;), F (1)),

€N
td(rr, 7¢) = supr(F (1), G(I;)).
€N

We illustrate the theory of dynamic systems and specifi-
cations with a simple, theoretical example. To make the cal-
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Figure 2. Dynamic system I; and specifica-
tions Iy and Fj.

culations easier, we reuse some material from previous ex-2€4 <5 ieN

amples.

Example 7 Figure 2 displays the dynamic systein =
(Ly,{z,y,u}, By,01), and the dynamic specificatidn =
<Llla {Ia Y, u}a C1, 6i>’ where

33 ifu=0,
35 fu=1,
31 ifu=0
I} = ’
er(I5)(z, v, w) {34 1
61(1/3)(175 yvu) = 38.
From Example 4, we know thai(l(l1), Fi(l})) =
35. Similarly, we haved(I;(l2), F1(l5)) = 31 and
d(I,(l2), F1(14)) = 38. Thus, the distance from the trace
T =l1lalily ... of I to the tracer, = 1j151115 ... of Fy is
td(r,72) = sup d(I,(l;), F1(l})) = max(35,31) = 35.
=1,2

i=

cl(lll)(xayvu) = {

Similarly, the distance from to the tracers = 17150115 . ..
of Fy is

td(r,73) = sup d(I(l;), Fi(l})) = max(35,38) = 38.
i=1,3

Refinement between dynamic systems and specifications.

Given a dynamic systerh and a dynamic specificatioR
with Vi C V;, we define the refinement distand€, F')
betweenl andF' by

d(I,F) = sup inf td(r7,7r),

€T TFrETR
e., itis the Hausdorff distance betwegandF'.

Refinement between dynamic specificatidbisen two dy-
namic specifications’ andG with Vg C Vg, we define the
relative refinement distane¢ F, G) betweenF’ andG by

r(F,G) = sup inf td(rr,7q),

€T TG cTa
e., itis the Hausdorff distance betwerandG.

Example 8 From Example 7 we obtain that the tracgis
the trace ofF; that has the minimal distance from The
only other tracep = l511151; . .. of I; also has a trace of;
at (minimal) distance 35, namely, = 51;151; ... Thus,
d(I, F1) = max{td(r,12), td(p, p2)} = 35.

Compositionality of refinementVe start with a technical
lemma to generalize the results of compositional reasoning
to dynamic systems and specifications. In the following,
andb represent sequences of real numbers, @ndnd b;
their i-th elements.

Lemma 4 LetA, A’, B, andB’ be sets of sequences of reall
numbers bounded away froin Then:

b/
f
) (s jugsun 1)

- a; a;
sup Sup max
a€A,a' €A’ bEB b’e€B’ jeN b b/

< max

sup inf sup =< (sup inf sup —
acAVEB’ jeN

f sup 2 f i
sup inf sup —, sup inf sup — Lo
acAbEB jeN by /e AVEB’ jeN b;

The first part of Lemma 4 and arguments similar to the proof
of Theorem 1 yield Theorem 7. This theorem provides a
form of triangular-inequality law for relative distances f
dynamic systems and specifications.

Theorem 7 Given three dynamic specificatioss G, and
H, and a dynamic systethsuch thatVy C Vg C Vg C
V; andVy # 0 and B; # 0, the following assertions hold:

r(F,H) <r(F,G) r(G,H),
d(I,G) <d(I,F)-r(F,G).

Part 2 of Lemma 4 and arguments similar to the proof of
Theorem 2 yield Theorem 8, which states the composition-
ality of refinement for dynamic systems and specifications.

Theorem 8 Given four dynamic specifications, F’, G,
and G’ with Vg C Ve and Vg C Vg, and two dynamic
systemd and J with Vr C V;, Vg C Vy, Vi # 0, and
Vo # 0, we have:

r(F||G, F'||G") < max{r(F, F"),r(G,G")},
d(I)J, FI|G) < d(I, F) ® d(J,G).

The analogue Theorem 3 and the corresponding corollary
also generalize to dynamic systems and specifications in a
straight-forward way. Furthermore, for cost functions@pe
fied in the maxlin algebra, refinement distances can be com-
puted through quantifier elimination in the theory of reals
with addition and multiplication [11].

Example 9 Consider the second, dynamic specification
Fy = (Ly,{z,y,u}, ¢, d) from Figure 2, where
cl(l )(‘T Y, u )—cl(li)(x,y,u),
a5 (z,y,u) = 36.
For the static specifications, (11), F1 (1), F1 (1)),
and Fy (1%), we have
(R, B () =1,
r(FL (1), Fi (1)) = max{30, 33} = 2
(F1(15), F1(13)) = 55

Fi (1),

r



For a trace ofF; starting in locationl}, the closest trace of
F is the one starting at locatiotf’. The traces of} con-
taining I, have the largest minimal distance Iq. For in-

stance, the trace df closest td}l5l}1 ... isl/1411Y ...,

(6]
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ing the future in systems theory. IBALP, vol. 2719 ofLect.
Notes in Comp. Scipages 1022—-1037. Springer, 2003.

and lies at distancé®. Thus,r(Fy, Fy) = 2.
Itis easy to see thak(I;, Fl) = 36. Thus, in accordance 7]
with Theorem 7, we havé(l,, Fy) = 36 < d(I1,F1) -

T(Fl,Fl) =35- %
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6. Conclusion

We focused on the basic features of a modular approacHlO] lattic

to quantitative reasoning, and illustrated them with a sim- ?gf?’fgg“;% Ola;’(e)(')%d Markov processesinfo. Comp,

ple concrete symbolic cost algebra. We studied both a static (1):160-200, i -

setting, where behaviors are sets of variable valuations, a [11] J. Ferrante and C. Rackoff. A decision procedure for the
- . . ' first-order th f real additi ith orde3lIAM J. C .

a dynamic setting, where behaviors are sets of sequences of s -order “heoty ot reataddition with or omR

bl luati he definiti d its of thi 4(1):69-76, 1975.
variable valuations. The definitions and results of this pa- [12] O. Grumberg and D. Long. Model checking and modular

per can be extended to more general settings. For exam- | ./ification. ACM Trans. Prog. Lang. Sysl6(3):843-871,
ple, we can restrict the domains of cost functions of speci- 1994,

fications using constraints. For the maxlin cost algebra and[13] M. Huth and M. Kwiatkowska. Quantitative analysis and
linear constraints, our algorithms from Section 4 general- model checking. IrLICS, pages 111-122. IEEE Computer
ize in a straight-forward way. Also, while we have studied Society Press, 1997.
a relative notion of refinement, similar results may be ob- [14] A. Lluch-Lafuente and U. Montanari. Quantitative-
tained for an absolute notion, where the distance between calculus and CTL defined over constraint semiringigeor.
two specifications is the difference rather than the ratio of Comp. Sci.346(1):135-160, 2005.
costs. While we have not discussed symbolic cost algebrag15] A.Mclver and C. Morgan. Games, probability, and thergua
for the dynamic setting, we can extend the maxlin algebra ~fitative u-calculus gMu. In LPAR vol. 2514 ofLect. Notes
to use automata labeled by linear constraints and linear cos " Comp. Sci.pages 292-310. Springer, 2002.
functions. [16] R. Milner. An algebraic definition of simulation betwee

In general, we expect that when the framework proposed grogr?mié;r;JCAl, pages 481-489. The British Computer
in this paper is applied to concrete problems, the notion of ocie. ' : .

- . [17] A. Schrijver. Theory of Linear and Integer Programming
state, the cost combinatay, and the symbolic cost alge- i
. . Wiley, 1987.

bra need to be adapted according to the semantics of the
given problem. Our purpose was to illustrate the existence
of compositional frameworks for quantitative reasonind an
optimization, rather than advocate one specific way of as-
signing, composing, and refining cost functions.
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