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Abstract

We consider two-player infinite games played on graphs.
The games are concurrent, in that at each state the
players choose their moves simultaneously and indepen-
dently, and stochastic, in that the moves determine a
probability distribution for the successor state. The
value of a game is the maximal probability with which
a player can guarantee the satisfaction of her objective.
We show that the values of concurrent games with ω-
regular objectives expressed as parity conditions can be
decided in NP ∩ coNP. This result substantially im-
proves the best known previous bound of 3EXPTIME.
It also shows that the full class of concurrent parity
games is no harder than the special case of turn-based
stochastic reachability games, for which NP ∩ coNP is
the best known bound.

While the previous, more restricted NP ∩ coNP re-
sults for graph games relied on the existence of partic-
ularly simple (pure memoryless) optimal strategies, in
concurrent games with parity objectives optimal strate-
gies may not exist, and ε-optimal strategies (which
achieve the value of the game within a parameter ε > 0)
require in general both randomization and infinite mem-
ory. Hence our proof must rely on a more detailed
analysis of strategies and, in addition to the main re-
sult, yields two results that are interesting on their own.
First, we show that there exist ε-optimal strategies that
in the limit coincide with memoryless strategies; this
parallels the celebrated result of Mertens-Neyman for
concurrent games with limit-average objectives. Sec-
ond, we complete the characterization of the memory re-
quirements for ε-optimal strategies for concurrent games
with parity conditions, by showing that memoryless
strategies suffice for ε-optimality for coBüchi conditions.
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1 Introduction

We consider infinite recursive games played between
two players over a graph [23, 10, 17]. The games proceed
in an infinite number of rounds. In each round, the
players choose moves; the two moves, together with
the current state, determine a probability distribution
for the successor state. An outcome of the game,
or a play, consists of the infinite sequence of states
visited. These graph games can be broadly classified
into turn-based and concurrent games. In turn-based
games, in any given round only one player can choose
among multiple moves: effectively, the set of states of
the graph can be partitioned into the states where it
is player 1’s turn to play, and the states where it is
player 2’s turn to play. In concurrent games, both
players may have multiple moves available at each state,
and the players choose their moves simultaneously and
independently. Concurrent games provide a natural
framework to model reactive systems with synchronous
interactions [1].

An important class of winning conditions are the
ω-regular languages. In such games, the goal of player 1
is to ensure that the play belongs to a specified ω-
regular language; the goal of player 2 is to ensure
that the play does not belong to the language. The
games are thus zero-sum: the objectives of the two
players are complementary. The ω-regular languages
are the generalization to infinite words of the classical
regular languages [25]; the properties expressible by
ω-regular languages include safety, reachability, and
fairness. Games with ω-regular winning conditions
have been applied to system synthesis [3, 22, 20] and
verification [9, 1]. Of particular interest are ω-regular
languages that are given as parity conditions on game
graphs; this is because every ω-regular game can be
converted into a parity game [19, 26]. Hence concurrent
games with parity conditions provide an adequate model
for the synthesis of synchronous reactive systems.

Given a recursive game and an ω-regular lan-
guage L, the value 〈〈1〉〉val (L)(s) of the game for player 1
at a state s is equal to the maximal probability with
which player 1 can ensure that the play lies in L; the
value 〈〈2〉〉val (L)(s) of the game for player 2 at s is equal
to the maximal probability with which player 2 can en-
sure that the play lies outside L. Martin’s determinacy



theorem ensures that 〈〈1〉〉val (L)(s) + 〈〈2〉〉val (L)(s) = 1
[15]. Except for the special case of turn-based games,
little has been known about the computational complex-
ity of finding the value for a recursive game with an
ω-regular winning condition. In the turn-based case,
it is known that the value of games with parity condi-
tions can be computed in NP ∩ coNP. This result was
obtained for turn-based deterministic parity games, in
which each move determines uniquely (instead of prob-
abilistically) the successor state, in [9], and for turn-
based stochastic reachability games in [6]; the case of
turn-based stochastic parity games was shown in [4].

Concurrent games are substantially more complex
than turn-based games in several respects. To see this,
consider the structure of optimal strategies, which are
strategies that achieve the value of a given game. For
turn-based stochastic ω-regular games, there always
exist pure (deterministic) optimal strategies, which do
not rely on randomized choice [4, 16]; in the case of
turn-based stochastic parity games, moreover, there are
always pure memoryless optimal strategies, where the
choice of move depends only on the current state, rather
than also on the past history of the game. It is this
observation that led to the NP ∩ coNP results for turn-
based parity games.

By contrast, in concurrent games, already for reach-
ability conditions, players must in general play with ran-
domized (non-pure) strategies, which prescribe, in each
round, a probability distribution over the moves to be
played. Furthermore, optimal strategies may not ex-
ist: rather, for every real ε > 0, the players have ε-
optimal strategies, which achieve the value of the game
within ε. Even for relatively simple parity winning con-
ditions, such as Büchi conditions, ε-optimal strategies
need both randomization and infinite memory [8]. It
is therefore not inconceivable that the complexity of
concurrent parity games might be considerably worse
than NP ∩ coNP. The only known previous algorithm
for computing the value of concurrent parity games is
triple-exponential [8]: it was obtained via a reduction to
the theory of the real closed fields, and then using deci-
sion procedures for the theory of reals with addition and
multiplication.[24, 2]. Even for the simpler Büchi win-
ning conditions the previously known complexity was
EXPTIME [8].

In this paper, we show that the problem of com-
puting the value of a concurrent parity game is in NP
∩ coNP. More precisely, as the value of a concurrent
game at a state can be an irrational number, we show
that given an encoding of the game, and a rational r,
for all rationals ε > 0, whether the value of the game
is in the interval [r − ε, r + ε] can be decided in NP
∩ coNP. This result generalizes the best known upper

bound (NP ∩ coNP) for very restricted cases, such as
turn-based deterministic parity games and turn-based
stochastic reachability games, to the class of all concur-
rent parity games.1

The basic idea behind the proof, which can no
longer rely on the existence of pure memoryless optimal
strategies, is as follows. We call a value class the set of
states where the game has the same value for player 1.
By the results of [7] on qualitative winning (i.e., winning
with probability 1), if the (player 1) value of the game
is not constant 1 or 0, then there are two non-empty
value classes W1 and W2 where the value is 1 and 0,
respectively. We show that if the players play ε-optimal
strategies, then W1 ∪ W2 is reached with probability 1.
Through a detailed analysis of the branching structure
of the stochastic process of the game, we go on to show
that we can construct an ε-optimal strategy by stitching
together strategies, one per each value class. This gives
us a polynomial witness for the resulting strategy and
proves membership in NP. Membership in NP ∩ coNP
follows from the fact that the problem is symmetric in
players 1 and 2.

A detailed analysis of our proof gives us several
new results about the structure of ε-optimal strategies
in concurrent parity games. First, we show that con-
current games with coBüchi winning conditions admit
memoryless ε-optimal strategies. This result completes
the characterization of the memory requirements of the
ε-optimal strategies for concurrent ω-regular games:
it was previously known that safety and reachability
games admit memoryless ε-optimal strategies [11, 8],
and that Büchi conditions may require infinite mem-
ory [8]. Second, we show that in concurrent parity
games, the limit of the ε-optimal strategies for ε → 0 is a
memoryless strategy (which in general is not optimal).
This result parallels the celebrated result of Mertens-
Neyman [18] for concurrent games with limit-average
objectives.

2 Definitions

Notation. For a countable set A, a probability dis-
tribution on A is a function δ : A → [0, 1] such that∑

a∈A δ(a) = 1. We denote the set of probability distri-
butions on A by D(A). Given a distribution δ ∈ D(A),
we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the support
of δ.

Definition 2.1. (Concurrent Game Structures)
A (two-player) concurrent game structure

1For turn-based deterministic parity games a bound of UP ∩

coUP is also known [12], but for turn-based stochastic reachability
and turn-based stochastic parity games NP ∩ coNP is the best
known bound.



G = 〈S,M , Γ1, Γ2, δ〉 consists of the following compo-
nents:

• A finite state space S and a finite set M of moves.

• Two move assignments Γ1, Γ2 : S → 2M \ ∅. For
i ∈ {1, 2}, the move assignment Γi associates with
each state s ∈ S the non-empty set Γi(s) ⊆ M of
moves available to player i at state s.

• A probabilistic transition function δ : S×M ×M →
D(S), which gives the probability δ(s, a1, a2)(t) of a
transition from s to t when player 1 plays move a1

and player 2 plays move a2, for all s, t ∈ S and
a1 ∈ Γ1(s), a2 ∈ Γ2(s).

We define the size of the game structure G to be equal
to the size of the transition function δ; specifically,
|G| =

∑
s∈S

∑
a∈Γ1(s)

∑
b∈Γ2(s)

∑
t∈S |δ(s, a, b)(t)|,

where |δ(s, a, b)(t)| denotes the space to specify the
probability distribution. We write n to denote the
size of the state space, i.e., n = |S|. At every state
s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simul-
taneously and independently player 2 chooses a move
a2 ∈ Γ2(s). The game then proceeds to the successor
state t with probability δ(s, a1, a2)(t), for all t ∈ S. A
state s is called an absorbing state if for all a1 ∈ Γ1(s)
and a2 ∈ Γ2(s) we have δ(s, a1, a2)(s) = 1. In other
words, at s for all choices of moves of the players the
next state is always s. A state s is a turn-based state if
there exists i ∈ { 1, 2 } such that |Γi(s)| = 1. Moreover,
if |Γ2(s)| = 1 then the state s is a player-1 turn-based
state since the choice of moves for player 2 is trivial; and
if |Γ1(s)| = 1 then it is a player-2 turn-based state. For
all states s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s),
we indicate by Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the
set of possible successors of s when moves a1, a2 are
selected.

Plays. A path or a play ω of G is an infinite sequence
ω = 〈s0, s1, s2, . . .〉 of states in S such that for all k ≥ 0,
there are moves ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) with

δ(sk, ak
1 , ak

2)(sk+1) > 0. We denote by Ω the set of all
paths and by Ωs the set of all paths ω = 〈s0, s1, s2, . . .〉
such that s0 = s, i.e., the set of plays that start from
the state s.

Randomized strategies. A selector ξ for player
i ∈ { 1, 2 } is a function ξ : S → D(M ) such that for all
s ∈ S and a ∈ M , if ξ(s)(a) > 0 then a ∈ Γi(s). We
denote by Λi the set of all selectors for player i ∈ {1, 2}.
A selector ξ is pure if for every s ∈ S there exists a ∈ M
such that ξ(s)(a) = 1; we denote by ΛP

i ⊆ Λi the set
of pure selectors for player i. A strategy for player 1
is a function σ : S+ → Λ1 that associates with every
finite non-empty sequence of states, representing the

history of the play so far, a selector. Similarly we define
strategies π for player 2. A strategy σ for player i is pure
if it yields only pure selectors, that is, if it is of type
S+ → ΛP

i . A memoryless strategy is independent of
the history of the play and depends only on the current
state. Memoryless strategies coincide with selectors,
and we often write σ for the selector corresponding to a
memoryless strategy σ. A strategy is pure memoryless
if it is pure and memoryless. We denote by Σ and
Π the set of all strategies for player 1 and player 2,
respectively.

Once the starting state s and the strategies σ and
π for the two players have been chosen, the game is
reduced to an ordinary stochastic process. Hence, the
probabilities of events are uniquely defined, where an
event A ⊆ Ωs is a measurable set of paths. For an
event A ⊆ Ωs, we denote by Prσ,π

s (A) the probability
that a path belongs to A when the game starts from s
and the players follow the strategies σ and π. For i ≥ 0,
we also denote by Θi : Ωs → S the random variable
denoting the i-th state along a path.

Objectives. We specify objectives for the players by
providing the set of winning plays Φ ⊆ Ω for each
player. In this paper we study only zero-sum games
[21, 11], where the objectives of the two players are
strictly competitive. In other words, it is implicit that
if the objective of one player is Φ, then the objective of
the other player is Ω\Φ. Given a game graph G and an
objective Φ ⊆ Ω, we write (G, Φ) for the game played
on the graph G with the objective Φ for player 1.

A general class of objectives are the Borel objec-
tives [13]. A Borel objective Φ ⊆ Sω is a Borel set
in the Cantor topology on Sω. In this paper we con-
sider ω-regular objectives [26], which lie in the first
21/2 levels of the Borel hierarchy (i.e., in the inter-
section of Σ3 and Π3). The ω-regular objectives, and
subclasses thereof, can be specified in the following
forms. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define
Inf(ω) = { s ∈ S | sk = s for infinitely many k ≥ 0 } to
be the set of states that occur infinitely often in ω.

• Reachability and safety objectives. Given a set
T ⊆ S of “target” states, the reachability objective
requires that some state of T be visited. The
set of winning plays is thus Reach(T ) = { ω =
〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥ 0 }.
Given a set F ⊆ S, the safety objective requires
that only states of F be visited. Thus, the set of
winning plays is Safe(F ) = { ω = 〈s0, s1, s2, . . .〉 ∈
Ω | sk ∈ F for all k ≥ 0 }.

• Büchi and coBüchi objectives. Given a set B ⊆ S
of “Büchi” states, the Büchi objective requires
that B is visited infinitely often. Formally, the
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set of winning plays is Büchi(B) = { ω ∈ Ω |
Inf(ω) ∩ B 6= ∅ }. Given C ⊆ S, the coBüchi
objective requires that all states visited infinitely
often are in C. Formally, the set of winning plays
is coBüchi(C) = { ω ∈ Ω | Inf(ω) ⊆ C }.

• Parity objectives. For c, d ∈ N, we let [c..d] =
{ c, c + 1, . . . , d }. Let p : S → [0..d] be a function
that assigns a priority p(s) to every state s ∈ S,
where d ∈ N. The Even parity objective is defined
as Parity(p) = { ω ∈ Ω | min

(
p(Inf(ω))

)
is even },

and the Odd parity objective as coParity(p) =
{ ω ∈ Ω | min

(
p(Inf(ω))

)
is odd }. Informally

we say that a path ω satisfies the parity objective,
Parity(p), if ω ∈ Parity(p). Note that for a
priority function p : V → { 0, 1 }, an even
parity objective Parity(p) is equivalent to the Büchi
objective Büchi(p−1(0)), i.e., the Büchi set consists
of the states with priority 0. Hence Büchi and
coBüchi objectives are simpler and special cases of
parity objectives.

Given any parity objective, we write Ωe to denote
Parity(p); this set is measurable for any choice of
strategies for the two players [27]. Similarly we write
Ωo to denote coParity(p). Note that Ωe ∩ Ωo = ∅ and
Ωe∪Ωo = Ω. Given a state s we write Ωes to denote Ωs∩
Ωe and similarly we write Ωos to denote Ωs∩Ωo. Hence,
the probability that a path satisfies objective Parity(p)
starting from state s ∈ S, given the strategies σ, π for
the players is Prσ,π

s (Ωes). Given a state s ∈ S and a
parity objective, Parity(p), we are interested in finding
the maximal probability with which player 1 can ensure
that Parity(p) and player 2 can ensure that coParity(p)
holds from s. We call such probability the value of the
game G at s for player i ∈ {1, 2}. The value for player 1
and player 2 are given by the function 〈〈1〉〉val (Ωe) :
S → [0, 1] and 〈〈2〉〉val (Ωo) : S → [0, 1], defined for
all s ∈ S by 〈〈1〉〉val (Ωe)(s) = supσ∈Σ infπ∈Π Prσ,π

s (Ωes)
and 〈〈2〉〉val (Ωo)(s) = supπ∈Π infσ∈Σ Prσ,π

s (Ωos). Note
that the objectives of the players are complementary
and hence we have a zero-sum game. Concurrent
games satisfy a quantitative version of determinacy [15],
stating that for all parity objectives, and all s ∈ S, we
have 〈〈1〉〉val (Ωe)(s) + 〈〈2〉〉val (Ωo)(s) = 1. A strategy
σ for player 1 is optimal if for all s ∈ S we have
infπ∈Π Prσ,π

s (Ωes) = 〈〈1〉〉val (Ωe)(s). For ε > 0, a
strategy σ for player 1 is ε-optimal if for all s ∈ S
we have infπ∈Π Prσ,π

s (Ωes) ≥ 〈〈1〉〉val (Ωe)(s) − ε. We
define optimal and ε-optimal strategies for player 2
symmetrically. Note that the quantitative determinacy
of concurrent games is equivalent to the existence of ε-
optimal strategies for both players, for all ε > 0, at all
states s ∈ S.

The branching structure of plays. Many of the ar-
guments developed in this paper rely on a detailed anal-
ysis of the branching process resulting from the strate-
gies chosen by the players, and from the probabilistic
transition relation of the game. In order to make our
arguments precise, we need some definitions. A play is
feasible if each of its transitions could have arisen ac-
cording to the transition relation of the game.

Definition 2.2. (Feasible plays and outcomes)
Given two strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible in a concurrent
game structure G if for every k ∈ N the following
conditions hold for some a1 ∈ Γ1(sk) and a2 ∈ Γ2(sk):
(1) sk+1 ∈ Dest(sk, a1, a2); (2) σ(s0, s1, . . . , sk)(a1) >
0; and (3) π(s0, s1, . . . , sk)(a2) > 0. Given strategies
σ ∈ Σ and π ∈ Π, and a state s, we denote by
Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that
start from s, given the strategies σ and π.

In order to make precise statements about the branching
process arising from a play, we define trees labeled by
game states.

Definition 2.3. (Infinite trees, S-labeled
trees, and trees for events) An infinite tree is a
set Tr ⊆ N∗ such that (a) if x · i ∈ Tr, where x ∈ N∗

and i ∈ N, then x ∈ Tr; (b) for all x ∈ Tr there exists
i ∈ N such that x · i ∈ Tr. We refer to x · i as a
successor of x. We call the elements in Tr as nodes
and the empty word ε is the root of the tree. An infinite
path τ of Tr is a set τ ⊆ Tr such that (a) ε ∈ τ ; (b)
for every x in τ there is an unique i ∈ N such that
x · i ∈ τ . Note that for every i ∈ N, there is an unique
element x ∈ τ such that |x| = i. We denote by τi the
element x ∈ τ such that |x| = i. Given an infinite
tree Tr and a node x ∈ Tr, we denote by Tr(x) the
sub-tree rooted at node x. Formally, Tr(x) denotes the
set { x′ ∈ Tr | x is a prefix of x′ }.

A S-labeled tree T is a pair (Tr, 〈·〉), where Tr is a
tree and 〈·〉 : Tr → S maps each node of Tr to a state
s ∈ S. Given a S-labelled tree T , and a infinite path
τ ⊆ Tr, we denote by 〈τ〉 the play 〈s0, s1, s2, . . .〉, such
that s0 = 〈ε〉 and for all i > 0 we have si = 〈τi〉. A
S-labeled tree Ts = (Trs, 〈·〉), where 〈ε〉 = s, represents
a set of infinite paths, denoted as L(Ts) ⊆ Ωs, such
that L(Ts) = { ω = 〈s0 = s, s1, s2, . . .〉 ∈ Ωs | ∃τ ⊆
Trs. 〈τ〉 = ω }. A S-labeled tree Ts represents an event
A ⊆ Ωs if and only if L(Ts) = A.

Trees for outcomes and events. Let T = (Tr, 〈·〉)
be a S-labeled tree and consider x ∈ Tr such that
|x| = n. We denote by xi the prefix of x of length
i. We denote by hist(x) = (〈ε〉, 〈x1〉, . . . , 〈xn〉) the



history represented by the path from the root to
the node x. Given strategies σ and π, and a state
s, a S-labelled tree T σ,π

s = (Trσ,π
s , 〈·〉) to represent

Outcome(s, σ, π) is defined as follows: (a) 〈ε〉 = s;
(b) for x ∈ Trσ,π

s , let |x| = n, and consider the set U =⋃
{ σ(hist(x))(a1)>0,π(hist(x))(a2)>0 } Dest(〈xn〉, a1, a2).

The set of successors for x in the tree is x · j for
j ∈ { 1, 2, . . . , |U | }, and the labeling function 〈·〉 is a
bijection from the successors of x to the set U of states.
For an event A, the stochastic tree, T σ,π

A,s = (Trσ,π
A,s, 〈·〉)

is constructed from T σ,π
s by retaining the set of paths

A ∩ Outcome(s, σ, π).2 We denote by Cone(x) = { ω =
〈s0, s1, s2, . . .〉 | 〈xi〉 = si for all 0 ≤ i ≤ n } the set
of paths with the prefix hist(x). Given a measurable
event A ⊆ Ωs along with strategies σ and π such
that Prσ,π

s (A) > 0, consider the S-labeled tree T σ,π
A,s

to represent A ∩ Outcome(s, σ, π). Consider the event
Anil = {Cone(x) | x ∈ Trσ,π

A,s. Prσ,π
s (Cone(x) ∩ A) = 0}.

Since Anil is the countable union of measurable sets
each with measure 0 we have Prσ,π

s (Anil ∩ A) = 0.
Hence in the sequel, without loss of generality, given
any event A we only consider the event A \ Anil , and
with a little abuse of notation we use T σ,π

A,s to represent

the stochastic tree T σ,π

(A\Anil ),s
. Furthermore, again

without loss of generality, we assume that for any
x ∈ Trσ,π

A,s we have Prσ,π
s (Cone(x)∩A) > 0. Henceforth,

for any x ∈ Trσ,π
A,s we write Prσ,π

x (B | A) to denote
Prσ,π

s (B | Cone(x),A).

Definition 2.4. (Perennial ε-optimal strategies)
Given ε > 0, a strategy σ is a perennial ε-optimal
strategy for player 1, from state s, if for all strategies π
and for all nodes x in the stochastic tree Trσ,π

s , we have
Prσ,π

x (Ωes) ≥ 〈〈1〉〉val (Ωe)(〈x〉)− ε, i.e., in the stochastic
sub-tree rooted at x player 1 is ensured the value of
the game at 〈x〉 within ε. The perennial ε-optimal
strategies for player 2 are defined analogously. We
denote by Σε and Πε the sets of perennial ε-optimal
strategies for player 1 and player 2, respectively.

The ε-optimal strategies constructed for parity objec-
tives in [8] are perennial ε-optimal strategies. This leads
to the following result.

Proposition 2.1. For all ε > 0, we have Σε 6= ∅ and
Πε 6= ∅.

3 Results

In this section we construct polynomial witnesses for
perennial ε-optimal strategies and describe a polyno-
mial procedure to verify the witnesses. As an immedi-
ate consequence, the values of concurrent parity games

2Note that the stochastic tree T
σ,π

A,s
is not constructed by

extending every finite prefix of paths.

can be decided within ε-precision in NP ∩ coNP. Since
the values can be irrational, one can only hope to ε-
approximate the values. Our proof techniques reveal
several key characteristics of perennial ε-optimal strate-
gies. In general, perennial ε-optimal strategies require
infinite memory [7, 8]. We show that even though the
perennial ε-optimal strategies require infinite memory
in general, there exist perennial ε-optimal strategies
that in the limit for ε → 0 converge to memoryless
strategies. This result parallels with the celebrated re-
sult of Mertens-Neyman [18] for concurrent games with
limit-average objectives, which states that there exist ε-
optimal strategies that in the limit coincide with mem-
oryless strategies (the memoryless strategy correspond
to the memoryless optimal strategies in the discounted
game with discount factor very close to 0). However, the
memoryless strategies to which the ε-optimal strategies
converge are not necessarily ε-optimal themselves.

In concurrent games with safety objectives, opti-
mal memoryless strategies always exist, and the optimal
strategies in general require randomization [11]. In case
of concurrent games with reachability objectives, opti-
mal strategies need not exist, but memoryless ε-optimal
strategies exist for all ε > 0 [11] and the ε-optimal
strategies require randomization. In case of concurrent
games with Büchi objectives, ε-optimal strategies re-
quire infinite memory in general [7]. In contrast, we
show that for all ε > 0, memoryless ε-optimal strate-
gies exist for all concurrent games with coBüchi objec-
tives; it follows from the simpler case of reachability
objectives that optimal strategies need not exist and
ε-optimal strategies require randomization. It follows
from the results on Büchi objectives that for concurrent
parity games with with 3 or more priorities, ε-optimal
strategies require in general infinite memory. Our re-
sults thus complete the characterization of the memory
requirements of ε-optimal strategies in concurrent par-
ity games.

Reachability properties. Several key properties of
perennial ε-optimal strategies will follow by analyzing
the behavior of the strategies with respect to some
reachability and safety objectives. In the sequel, we
consider stochastic trees T σ,π

A,s such that Prσ,π
s (A) > 0.

Given a stochastic tree T σ,π
A,s , let κ be a subset of

nodes, i.e., κ ⊆ Trσ,π
A,s. Analogous to the definition of

reachability and safety we define the following notions
of reachability and safety in the stochastic tree:

1. Reachability in tree. For a set κ ⊆
Trσ,π

A,s, let ReachTree(κ) = { 〈τ〉 |

τ is an infinite path in Trσ,π
A,s such that exists i ∈

N. τi ∈ κ }, denote the set of paths that reach the
subset κ of nodes.

5



2. Safety in tree. For a set κ ⊆
Trσ,π

A,s, let SafeTree(κ) = { 〈τ〉 |

τ is an infinite path in Trσ,π
A,s such that for all i ∈

N. τi ∈ κ }, denote the set of paths that stay safe
in the subset κ of nodes.

Given a positive integer k and a set κ ⊆ Trσ,π
A,s, we define

by ReachTreek(κ) = { 〈τ〉 | ∃ x ∈ τ. ∃ i ≤ k. xi ∈ κ },
i.e., the set of paths that reaches κ within k steps.

Lemma 3.1. (Reachability Lemma) Let T σ,π
A,s be a

stochastic tree.

1. For a set κ ⊆ Trσ,π
A,s, if

infx∈Trσ,π

A,s
Prσ,π

x (ReachTree(κ) | A) > 0, then

Prσ,π
x (ReachTree(κ) | A) = 1, for all nodes

x ∈ Trσ,π
A,s.

2. For a set U ⊆ S, if infx∈Trσ,π

A,s
Prσ,π

x (Reach(U) |

A) > 0, then Prσ,π
x (Reach(U) | A) = 1, for all

nodes x ∈ Trσ,π
A,s.

Proof. We prove the first case and show that the second
case is an immediate consequence.

1. Let 0 < c ≤ infx∈Trσ,π

A,s
Prσ,π

x (ReachTree(κ) | A).

Chose 0 < c′ < c. For every node x ∈ Trσ,π
A,s, there

exists kx such that Prσ,π
x (ReachTreekx(κ) | A) ≥ c′.

Consider k1 = kε (recall that ε is the root of
the tree) and consider the frontier F1 of Trσ,π

A,s at

depth k1. Given a frontier F at depth k, let F
be the set of nodes x in F such that the path
from the root to x has not visited a node in κ,
i.e., none of ε, x1, x2, . . . , x|x| is in κ. For a frontier

Fi, define ki+1 = max{kx | x ∈ Fi}. Inductively,

define the frontier Fi+1 at depth
∑i+1

j=1 kj . It

follows that for k =
∑n

i=1 ki we have Prσ,π
s (Ω \

ReachTreek(κ) | A) ≤ (1− c′)n. Since limn→∞(1−
c′)n = 0, the desired result follows for the root
of the tree. Since infx∈Trσ,π

A,s
Prσ,π

x (ReachTree(κ) |

A) > 0, it follows that for all nodes x ∈ Trσ,π
A,s we

have infx1∈Trσ,π

A,s
(x) Prσ,π

x1
(ReachTree(κ) | A) > 0.

Arguing similarly for the subtree rooted at the node
x the desired result follows.

2. Observe that with κ = { x ∈ Trσ,π
A,s | 〈x〉 ∈ U },

we have Reach(U) = ReachTree(κ). The result is
immediate from part 1.

Notation. Let A ⊆ Ωs be a measurable event such
that Prσ,π

s (A) > 0. For a set B ⊆ S, let InfSet(B) =
{ω | Inf(ω) ⊆ B} and InfSetEq(B) = {ω | Inf(ω) = B}.
Given a node x in Trσ,π

A,s, and ε > 0, we define Cσ,π
A,ε(x)

as Cσ,π
A,ε(x) = { B ⊆ S | Prσ,π

x (InfSet(B) | A) ≥ 1 − ε }.

Note that for ε1 > 0 and ε2 > 0 such that ε1 ≤ ε2, for all
nodes x ∈ Trσ,π

A,s, if B ∈ Cσ,π
A,ε1

(x) then B ∈ Cσ,π
A,ε2

(x). We

define by Cσ,π
A (x) = limε→0 C

σ,π
A,ε(x). The monotonicity

property of Cσ,π
A,ε with respect to ε ensures that Cσ,π

A (x)

exists for every x ∈ Trσ,π
A,s.

Lemma 3.2. For all nodes x ∈ Trσ,π
A,s, there is a unique

minimal element of Cσ,π
A (x) under ⊂ ordering.

We define the function Mσ,π
A : Trσ,π

A,s → 2S that

assigns to every node x ∈ Trσ,π
A,s the minimum element of

Cσ,π
A (x). Formally, we have Mσ,π

A (x) =
⋂

B∈Cσ,π

A
(x) B =

limε→0

⋂
B∈Cσ,π

A,ε
(x) B.

Proposition 3.1. For every x ∈ Trσ,π
A,s and for every

successor x1 of x we have Mσ,π
A (x1) ⊆ Mσ,π

A (x).

Lemma 3.3. Given a S-labeled tree T σ,π
A,s , for all nodes

x ∈ Trσ,π
A,s, for all ε > 0, there is a set B ⊆ S, and x1 ∈

Trσ,π
A,s(x), such that Prσ,π

x1
(InfSetEq(B) | A) ≥ 1 − ε.

Proof. The proof is by induction on |Mσ,π
A (x)|.

Base Case. If |Mσ,π
A (x)| = 1, let Mσ,π

A (x) = {s}. Then
for all nodes x1 ∈ Trσ,π

A,s(x) we have Prσ,π
x1

(InfSet({s}) |
A) ≥ 1 − ε, for all ε > 0. Thus for all nodes x1 ∈
Trσ,π

A,s(x), for all ε > 0, we have Prσ,π
x1

(InfSetEq({s}) |
A) ≥ 1 − ε.
Inductive Case. Suppose there exists a node x1 ∈
Trσ,π

A,s(x) such that Mσ,π
A (x1) ( Mσ,π

A (x), then

|Mσ,π
A (x1)| < |Mσ,π

A (x)| and the result follows
by inductive hypothesis at x1. Otherwise for ev-
ery node x1 ∈ Trσ,π

A,s(x) we have Mσ,π
A (x1) =

Mσ,π
A (x). Let the set Mσ,π

A (x) be B. We have
limε→0

⋂
x1∈Trσ,π

A,s
(x)

( ⋂
D∈Cσ,π

A,ε
(x1)

D
)

= B.

• Suppose we have infx1∈Trσ,π

A,s
(x) Prσ,π

x1
(Reach({ s }) |

A) > 0, for all states s ∈ B. Then it follows from
Lemma 3.1 that for all nodes x1 ∈ Trσ,π

A,s(x) we have
Prσ,π

x1
(Reach({ s }) | A) = 1. Hence, for all nodes

x1 ∈ Trσ,π
A,s(x) we have Prσ,π

x1
(InfSetEq(B) | A) = 1.

• Otherwise, consider a state s ∈ B such that
infx1∈Trσ,π

A,s
(x) Prσ,π

x1
(Reach({s}) | A) = 0. For every

ε > 0, there must be a node x1 ∈ Trσ,π
A,s(x) such that

Prσ,π
x1

(InfSet(B \ { s }) | A) ≥ 1− ε. Thus, we have
limε→0

⋂
x1∈Trσ,π

A,s
(x)

( ⋂
D∈Cσ,π

A,ε
(x1)

D
)
⊆ B \ { s }.

This is a contradiction to the fact that for all
nodes x1 ∈ Trσ,π

A,s(x) we have Mσ,π
A (x1) = B (i.e.,

limε→0

⋂
x1∈Trσ,π

A,s
(x)

( ⋂
D∈Cσ,π

A,ε
(x1)

D
)

= B). The

desired result follows.

Lemma 3.4. For every stochastic tree T σ,π
A,s , for every

node x ∈ Trσ,π
A,s one of the following conditions hold: (a)



for all ε > 0, there is a node x1 ∈ Trσ,π
A,s(x) such that

Prσ,π
x1

(Ωes | A) ≥ 1 − ε; or (b) for all ε > 0, there is a
node x1 ∈ Trσ,π

A,s(x) such that Prσ,π
x1

(Ωos | A) ≥ 1 − ε.

Lemma 3.4 is an easy consequence of Lemma 3.3. In the
sequel, we denote by W1 = {s | 〈〈1〉〉val (Ωe)(s) = 1} and
W2 = { s | 〈〈2〉〉val (Ωo)(s) = 1 } the set of states where
player 1 and player 2 can achieve value 1, respectively.
We will prove that if both players play one of their
perennial ε-optimal strategies, with ε → 0, then the
play reaches W1 ∪ W2 with probability 1. For a set
T ⊆ S we denote by T the set S \ T . Given a state
s and a set T of vertices we write Safes(T ) to denote
Safe(T ) ∩ Ωs and Reachs(T ) to denote Reach(T ) ∩ Ωs.

Lemma 3.5. (Reachability with ε-optimal
strategies) Given a game structure G, consider a
strategy pair (σ, π) ∈ Σε × Πε, for sufficiently small ε.
For all states s and for all nodes x ∈ Trσ,π

s we have
Prσ,π

x (Safes(W1 ∪ W2)) = 0.

Proof. Fix η > 0, such that 0 < 2 · η < α =
min{〈〈1〉〉val (Ωe)(s), 〈〈2〉〉val (Ωo)(s) | s ∈ W1 ∪ W2}, i.e.,
α is the least positive value for player 1 or player 2. Con-
sider a strategy pair (σ, π) ∈ Ση×Πη, i.e., the strategies
are perennial η-optimal strategies. Let Uσ,π

s = {x ∈
Trσ,π

s | s ∈ W1 ∪ W2 and Prσ,π
x (Safes(W1 ∪ W2)) > 0}.

If Uσ,π
s is empty the desired result follows.
Assume for the sake of contradiction that Uσ,π

s

is non-empty. Let x be a node in Uσ,π
s and con-

sider the S-labeled subtree T σ,π
s (x) rooted at

x. Since Prσ,π
x (Safes(W1 ∪ W2)) > 0, we must

have infx1∈Trσ,π
s (x) Prσ,π

x1
(Reachs(W1 ∪ W2)) = 0,

or supx1∈Trσ,π
s (x) Prσ,π

x1
(Safes(W1 ∪ W2)) = 1.

In fact, from Lemma 3.1 we have that
infx1∈Trσ,π

s (x) Prσ,π
x1

(Reachs(W1 ∪ W2)) > 0 implies
Prσ,π

x (Reachs(W1 ∪ W2)) = 1.
Consider a node x1 ∈ Trσ,π

s (x) such that
Prσ,π

x1
(Safes(W1 ∪ W2)) ≥ 1 − η. Let A be the event

Safes(W1 ∪ W2). Since σ and π are perennial η-optimal
strategies, and Prσ,π

x1
(A) ≥ 1 − η, it follows that for ev-

ery node x2 ∈ Trσ,π
A,s(x1) we have Prσ,π

x2
(Ωes | A) ≥ c1 ≥

(α − 2η) > 0 and Prσ,π
x2

(Ωos | A) ≥ c2 ≥ (α − 2η) > 0.
This implies that for all nodes x2 ∈ Trσ,π

A,s(x1) we have
Prσ,π

x2
(Ωes | A) ≤ 1 − c2 and Prσ,π

x2
(Ωos | A) ≤ 1 − c1.

It follows from Lemma 3.4 that for every ε > 0, there
is a node x2 ∈ Trσ,π

A,s(x1) such that either Prσ,π
x2

(Ωes |
A) ≥ 1 − ε or Prσ,π

x2
(Ωos | A) ≥ 1 − ε. Since c1 and c2

are constants greater than 0, we have a contradiction.
Hence Uσ,π

s = ∅ and the result follows.

Reduction to qualitative witness. The notion of
local optimality plays an important role in our con-
struction of polynomial witnesses. Informally, a selec-
tor function ξ is locally optimal if it is optimal in the

one-step matrix game where each state is assigned a re-
ward value 〈〈1〉〉val (Ωe)(s). A locally optimal strategy is
a strategy that consists of locally optimal selectors. A
locally ε-optimal strategy is a strategy that has a to-
tal deviation from locally-optimal selectors of at most
ε. Locally optimal selectors and strategies play a role
in the construction of polynomial witnesses, since local
optimality is a notion that can be checked in polynomial
time.

We note that local ε-optimality and ε-optimality are
very different notions. Local ε-optimality consists of the
approximation of a local selector; a locally ε-optimal
strategy provides no guarantee of yielding a probability
of winning the game close to the optimal one. On the
other hand, an ε-optimal strategy is a strategy that
guarantees a probability of winning close to the optimal
one; there are no constraints on its local structure. Our
polynomial witnesses will consist in strategies that are
locally ε-optimal (which can be checked in polynomial
time), and that have a particular structure that ensures
their global ε-optimality.

Definition 3.1. (Locally ε-optimal selectors
and strategies) A selector ξ is locally optimal if for
all s ∈ S and a2 ∈ Γs(s) we have E[〈〈1〉〉val (Ωe)(Θ1) |
s, ξ(s), a2] ≥ 〈〈1〉〉val (Ωe)(s). We denote by Λ` the
set of locally-optimal selectors. A strategy σ is lo-
cally optimal if for every history 〈s0, s1, . . . , sk〉 we have
σ(s0, s1, . . . , sk) ∈ Λ`, i.e., player 1 plays a locally op-
timal selector at every stage of the play. We denote by
Σ` the set of locally optimal strategies. A strategy σε is
locally ε-optimal if for every strategy π ∈ Π and for ev-
ery ω = 〈s0, s1, s2, . . . , 〉 ∈ Outcome(s, σε, π) we have∑∞

k=0

(
max{(〈〈1〉〉val (Ωe)(sk) − E[〈〈1〉〉val (Ωe)(Θk+1) |

sk, σε(ωk), π(ωk)]), 0}
)
≤ ε, where ωk = 〈s0, s1, . . . , sk〉.

We denote by Σ`
ε the set of locally ε-optimal strategies.

Observe that a strategy that at each round i chooses a
locally optimal selector with probability at least (1−εi),
with

∑∞
i=0 εi ≤ ε, is a locally ε-optimal strategy. A

value class of the game is the set of all states where the
game has a given value. A value class VC(r) is the set of
states s such that the value for player 1 is r. Formally,
VC(r) = {s | 〈〈1〉〉val (Ωe)(s) = r}. Intuitively, we can
picture the game as a “quilt” of value classes. Two of the
value classes correspond to values 1 (player 1 wins with
probability arbitrarily close to 1) and 0 (player 2 wins
with probability arbitrarily close to 1); the other value
classes correspond to intermediate values. We construct
a polynomial witness in a piece-meal fashion. We first
show that we can construct, for each intermediate value
class, a strategy that with probability arbitrarily close
to 1 guarantees either leaving the class, or winning
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without leaving the class. Such a strategy can be
constructed using results from [7], and has a polynomial
witness. Second, we show that the above strategy can
be constructed so that when the class is left, it is left
via a locally ε-optimal selector. By stitching together
the strategies constructed in this fashion for the various
value classes, we will obtain a single polynomial witness
for the complete game. The construction of a strategy
in a value class relies on the following reduction.

Reduction. Let G = (S,M , Γ1, Γ2, δ) be a concurrent
game with parity objectives Parity(p) and coParity(p)
for player 1 and player 2 respectively, and let the
priority function be p. For a state s ∈ S, we define
the set of allowable supports OptSupps(s) = { γ ⊆
Γ1(s) | ∃ξ`

1 ∈ Λ` . Supp(ξ`
1) = γ } to be the set of

supports of locally optimal selectors. For every s ∈ S,
we assume that we have a fixed way to enumerate
OptSupps(s) = { γ1, γ2, . . . , γn }. Consider a value class
VC(r) with 0 < r < 1. We construct a concurrent

game G̃r = (S̃r, M̃ , Γ̃1, Γ̃2, δ̃) with a priority function p̃
as follows:

1. State space. S̃r = { s̃ | s ∈ VC(r) } ∪ { w1, w2 } ∪{
(s̃, i)

∣∣ s ∈ VC(r), i ∈ { 1, 2, . . . , |OptSupps(s)| }
}
.

2. Priority function. (a) p̃(s̃) = p(s) for all s ∈ VC(r);

(b) p̃((s̃, i)) = p(s) for all (s̃, i) ∈ S̃r; and (c)
p̃(w1) = 0 and p̃(w2) = 1.

3. Moves assignment.

(a) Γ̃1(s̃) = {1, 2, . . . , |OptSupps(s)|} and Γ̃2(s̃) =

{ a2 }. Note that every s̃ ∈ S̃r is a player-1
turn-based state.

(b) Γ̃1((s̃, i)) = { i } ∪ (Γ1(s) \ γi), where
OptSupps(s) = { γ1, γ2, . . . , γn }, and

Γ̃2((s̃, i)) = Γ2(s). At state (s̃, i) all the moves
in γi are collapsed to one move i, and all the
moves not in γi are still available.

4. Transition function.

(a) The states w1 and w2 are absorbing states.
Observe that player 1 has value 1 at state w1,
and value 0 at state w2.

(b) For any state s̃ we have δ̃(s̃, i, a2)((s̃, i)) = 1:
at state s̃, player 1 can decide which element
of OptSupps(s) to play, and if player 1 chooses
move i the game proceed to state (s̃, i).

(c) Transition function at state (s̃, i). Let
OptSupps(s) = { γ1, γ2, . . . , γn }.

i. For all moves a2 ∈ Γ2(s), if there is a1 ∈
γi such that

∑
s′ 6∈VC(r) δ(s, a1, a2)(s

′) >

0, then δ̃((s̃, i), i, a2)(w1) = 1.

The above transition specifies that, when
a pair of moves a1, a2 with a1 ∈ γi is
played, if the game G proceeds with posi-
tive probability to a different value class,
then the game G̃r proceeds to the state
w1, which has value 1 for player 1. Note
that since a1 ∈ γi and γi ∈ OptSupps(s),
if the game G proceeds to a different value
class with positive probability, it proceeds
to

⋃
k>r VC(k) with positive probability.

ii. For all moves a2 ∈ Γ2(s), if for all a1 ∈ γi

we have
∑

s′∈VC(r) δ(s, a1, a2)(s
′) = 1,

then δ̃((s̃, i), i, a2)(s̃′) =
∑

a1∈γi
ξ`
1(a1) ·

δ(s, a1, a2)(s
′), where ξ`

1 is a locally op-
timal selector with Supp(ξ`

1) = γi.

iii. For all moves a1 ∈ (Γ1(s) \ γi) and

a2 ∈ Γ2(s) we let δ̃((s̃, i), a1, a2)(s̃′) =
δ(s, a1, a2)(s

′) for s′ ∈ VC(r); fur-

thermore, we let δ̃((s̃, i), a1, a2)(w2) =∑
s′ 6∈VC(r) δ(s, a1, a2)(s

′).

Lemma 3.6. For all 0 < r < 1 and all s ∈ VC(r), the
state s̃ is limit-sure winning for player 1 in the game
G̃r, i.e., from state s̃ player 1 can win with probability
arbitrarily close to 1.

Limit-sure witness. The witness strategy for a limit-
sure game constructed in [7] consists of two parts: a
ranking function of the states, and a ranking function
of the actions at a state. These ranking functions were
described by a µ-calculus formula. At the round k of a
play, the witness strategy σ plays at a state s the actions
with least rank with positive-bounded probabilities, and
the other actions with vanishingly small probabilities
as ε → 0. Hence, the strategy σ can be described as
σ = (1 − εk)σ` + εk · σd(εk), where σ` is a memoryless
strategy such that, at each state s, Supp(σ`(s)) is the set
of actions with least rank at s. We denote by limit-sure
witness move set the set of actions with the least rank,
i.e., at each s the set of moves Supp(σ`(s)). It follows
from the above construction that as ε → 0, the limit-
sure winning strategy σ converges to the memoryless
selector σ`.

Lemma 3.7. In the game G̃r, there is a limit-sure win-
ning strategy with support i ∈ {1, 2, . . . , |OptSupps(s)| }
at s̃, and with limit-sure witness move set γi at (s̃, i).

Definition 3.2. (Value-class qualitative ε-
optimal strategies) For ε > 0, a strategy σε

is a value-class qualitative ε-optimal strategy for
a value-class VC(r), with 0 < r < 1, if (a) σε

is locally ε-optimal, and (b) for all nodes x in



Trσε,π
s with 〈x〉 ∈ VC(r) and all π ∈ Π we have

Prσε,π
x (Ωes | Safe(VC(r))) ≥ 1 − ε. A strategy σε is

value-class qualitative ε-optimal if it is value-class
qualitative ε-optimal for all value classes VC(r), for all
0 < r < 1.

Lemma 3.8 states that the value-class qualitative ε-
optimal strategies for different value classes can be
“stitched” or composed together to produce a perennial
ε-optimal strategy. This allows us to produce witness
for individual value classes and compose them to obtain
a witness for perennial ε-optimal strategy. The key
argument is as follows: given a value-class qualitative
ε-optimal strategy for any strategy π for player 2 if
the game stays in a value class then player 1 wins with
probability at least 1−ε; otherwise, the game leaves the
value class according to the locally ε-optimal strategy,
and reaches W1 with probability at least the value of
the game, within ε-precision.

Lemma 3.8. (Stitching Lemma) Let σε be a value-
class qualitative ε-optimal strategy that is also perennial
ε-optimal for all states in W1. Then σε is a perennial
ε-optimal strategy.

Theorem 3.1 follows from existence of memory-
less limit-sure winning strategies for concurrent games
with coBüchi objectives [7] and the existence of peren-
nial ε-optimal strategies obtained by composing value-
class qualitative ε-optimal strategies across value classes
(Lemma 3.8).

Theorem 3.1. (Memoryless ε-optimal strate-
gies for coBüchi objectives) For every real ε > 0,
memoryless ε-optimal strategies exist for all coBüchi ob-
jectives on all concurrent game structures.

Theorem 3.2 states that there exist perennial ε-
optimal strategies that in the limit coincide with a
locally optimal selector, i.e., a memoryless strategy
with locally optimal selectors. The result follows from
Lemma 3.8, which proves the existence of perennial ε-
optimal strategies as value-class qualitative ε-optimal
strategies, and from the properties of limit-sure winning
strategies.

Theorem 3.2. (Limit of ε-optimal strategies)
For all concurrent game structures with parity objec-
tives, for every real ε > 0, there exists a perennial
ε-optimal strategy σε ∈ Σε such that the sequence of
the strategies σε converges to a locally optimal selector
σ as ε → 0, i.e., limε→0 σε = σ, for σ ∈ Σ`.

Witness for perennial ε-optimal strategies. The
witness for a perennial ε-optimal strategy σε is pre-
sented as a value-class qualitative ε-optimal strategy

(from Lemma 3.8). The existence of a value-class qual-
itative ε-optimal strategy follows from Lemma 3.6 and
Lemma 3.7. The witness consists of the limit-sure win-
ning strategy witness in the game G̃r, for all 0 < r < 1,
and of a locally ε-optimal strategy. The witness can be
described as follows:

• Limit-sure witness. The limit-sure witness in the
game G̃r, for r > 0, is constructed as the witness
described in [7]. Observe that the game G̃r can
be exponential in the size of the game G, since
the set OptSupps(s) can be exponential. To obtain
efficient polynomial witness we make the following
key observation: at every state s̃ there is a pure
memoryless move i for player 1 (Lemma 3.7) in
the limit-sure witness strategy. Hence player 1
constructs a game G̃′

r such that every state s̃ there
is only a single successor (s̃, i), where i is a pure

memoryless move in the limit-sure witness in G̃r.
The graph G̃′

r is linear in the size of the game
G. The witness in state (s̃, i) is the witness as
described in [7]: the witness consists of a ranking
function of the actions and a ranking function of
the state space. The witness is polynomial and can
be verified in polynomial time in size of the game
graph.

• Locally ε-optimal witness. The locally ε-optimal
witness consists of: the values of the game at all
state s, within ε-precision and the locally optimal
selector σ ∈ Σ`. The selector σ may specify prob-
abilities that are irrational. The locally optimal
selector σ is ε-approximated by a k-uniform selec-
tor σk, where a k-uniform selector is a selector such
that the associated probabilities of the distribution
are multiple of 1

j
, j ≤ k. It follows from [5, 14],

that k is polynomial in the size of the game graph
and 1

ε
. The strategy σk must satisfy the constraint

that Supp(σk) is exactly the set of actions with the
least rank as described by the limit-sure witness.
The verification of the witness can be achieved in
polynomial time, since checking local optimality in-
volves verifying that σk is optimal for the “one-
step” game with respect to the values at every
state.

It follows from above that there are polynomial witness
for perennial ε-optimal strategies and the witness can
be verified in polynomial time. This shows that the
values of concurrent parity games can be decided with
in ε-precision in NP. Since concurrent parity games are
closed under complementation the decision procedure
is also in coNP. The previous best known algorithm to
approximate values is triple exponential in the size of
the game graph and logarithmic in 1

ε
[8].
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Theorem 3.3. (Complexity of concurrent par-
ity games) For all concurrent game structures G, for
all parity objectives Ωe and Ωo, and for all rationals
ε > 0,

1. for all rationals r, whether 〈〈1〉〉val (Ωe)(s) ∈ [r −
ε, r + ε] can be decided in NP ∩ coNP;

2. the value functions 〈〈1〉〉val (Ωe) and 〈〈2〉〉val (Ωo) can
be approximated with precision ε-precision in time
exponential in |G| and polynomial in 1

ε
.

References

[1] R. Alur, T.A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. Journal of the ACM,
49:672–713, 2002.

[2] S. Basu. New results on quantifier elimination over real
closed fields and applications to constraint d atabases.
Journal of the ACM, 46:537–555, 1999.
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