An Introduction to the Tool Ticc *

Luca de Alfard, Marco Faelld, and Axel Legay

1 Department of Computer Engineering, Universitity of Gatifia, Santa Cruz, USA
2 Dipartimento di Scienze Fisiche, Universita di Napoli tlegico 11, Italy
3 Department of Computer Science, University of Liege, Rety

Technical report ucsc-crl-06-14
School of Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064, USA

Abstract. This paper is a tutorial introduction to the sociable irdeef model of
[12] and its underlying tool Tcc [1]. The paper starts with a survey of the theory
of interfaces and then introduces the sociable interfacaitbat is a game-based
model with rich communication primitives to facilitate theodeling of software
and distributed systems. The model and its main featureshareintensivelly
discussed and illustrated using the tootT.

1 Introduction

The prevalent trend in software and system engineeringnartts component-based
design: systems are designed by combining small compoirgatbigger ones. Com-
ponents offer thus the unit in which complex design probleas be decomposed,
allowing the reduction of a single complex design probleto ismaller design prob-
lems, more manageable in complexity, that can be solvedrallpbby design teams.
Components also provide a unit of reuse, defining the bougsl@rwhich functionality
can be packaged, documented and reused.

Components are designed to work as parts of larger systeayarake assumptions
on their environment, and they expect that these assungptidhbe met in the actual
environment. In other words, a component is typically annopestem which has some
free inputs provided by others components and which in tuowigdes inputs to other
components. It is thus obvious that the effective reuse fifvaoe requires adequate
documentation of the component’s behavior and the comditimder which it can be
used along with methods for checking that components aegrdded in an appropriate
way. Such a documentation is commonly referred to asntieefaceof the component.

There have been many works on the design and implementdtgooad interfaces
for components. Most of those works focus on capturingddia dimensiorof inter-
faces (“What are the value constraints on data communidatdeen components?”)
[21]. We describe here interface theories [13—15] a fornaéibom of component inter-
faces that use games to represent the interaction betweeeltavior originating within

* This research was supported in part by the NSF grants CCR&6923and CCR-0132780, by
the ARP awards SC2005553 and SC20051123, and by a F.R.I#.Gra

a component, and the behavior originating from the comptsenvironment. Such an
interface model is able to capture dynamic aspects of cosmganteraction which
makes it similar to a type system: indeed, it could be termxthavioral” type system
for component interaction. In previous works, interfacedties have been introduced
for various aspects of component interaction: [13, 8, 712bconsider thegrotocoldi-
mension of interfaces (“What are the temporal ordering tairds on communica-
tion events between components?”), [16] considers thengrdimension of interfaces
(“what are the real-time constraints on communication &/batween components?”),
and [5] deals with constraints on the resource usage of tiipooent.

In this paper, we focus on trsociable interfacemodel introduced in [12], and on
the corresponding tool calleddc [1]. We present the underlying ideas of the model,
and show how it can be used to capture the protocol dimensitwelen components.
All the concepts are intensively illustrated withCE for which this paper constitutes
an introduction.

Two tools for interface theories predatect. The asynchronous, action-based in-
terface theories of [13] are implemented as part of the Riglolset [19]. The tool
CHic [6] implements synchronous, variable-based interfacertae modeled after
[14]. Our goal in developing I is to provide an asynchronous model where compo-
nents have rich communication primitives that facilitdte toncise, natural modeling
of software and distributed systems. InC€, components are modeled both via vari-
ables (to describe state) and actions (to describe synidatam); its communication
primitives enable the modeling of complex communicatidmesnes. The implementa-
tion of Ticc relies on symbolic methods, yielding efficient algorithros €omponent
and system analysis.

2 Interface Theories

Before going to the details of the sociable interfaces modelfirst summarize and
illustrate the basic features of Interface theories. Tlaelee is referred to [17, 10, 18,
12] for more details.

Interface Specification and Well-formedness

An interface specifies how a component interacts with itsrenwment. It describes the
input assumptions that the component makes on the envinurame the output guar-
antees it provides. Interfaces capture the /O behaviorohaponent by an automaton
whose syntax is similar to the I/O automata of [21]. In theteahof software design,
inputs are used to model procedures or methods that can lee,cahd the receiving
end of communication channels, as well as the return logsfimm such a calls. Out-
puts are used to model procedure or method calls, messagnissions, the act of
returning after a call or method terminates, and exceptivaisarise during method ex-
ecution. Unlike traditional models of open systems, amohigivl/O automata, that at
every state must be receptive to every possible input eirentterfaces it is possible
that inputs are illegal (cannot be accepted) at some stHtes, an interface describes

the behavior of a component only with respect to some enments. In this way, envi-
ronment restrictions can be used to encode restrictionseartder of method calls, and
on the types of return values and exceptions. This is howfades capture the proto-
col dimension of components. Another advantage of makip{i@kassumptions about
the environment is that it gives rise to an optimistic conipktly test when interface
are composed: two interfaces are compatible if there eaistsast one environment
in which they can work together. Finally, from a practicalmi®f view, the ability to
forbid inputs removes the need to specify “what happens’nhking an undesirable
input. Such a specification has been pointed to as one of thredrawbacks of input-
enabled approaches. Since we can make input assumptiohswedo ensure that the
interface iswell-formed i.e. that there exists at least one environment that seigf
input assumptions.

Interfaces as Games

An interface is naturally modeled as a game between the ddpput and Output.
Input represents the environment: the moves of Input repteke inputs accepted from
the environment. Output represents the component: the srai@utput represent the
possible outputs generated by the component. Then, afficicgeis well-formed if the
Input player has a winning strategy in the game, which mdaatsthe environment can
meet all input assumptions. Games provides a model for phelitndependent sources
of nondeterminism and keep the distinction between inpudiscautputs. Hence, even if
the syntax of interfaces is close to the one of /O autombgy, differ in the way that
the operations on the models are defined. In this paper, wenaihly mainly focus on
the operation of composition between two or more interfaces

Interface Composition and Compatibility

The game-like nature of interfaces becomes apparent whetomsider the operation
of composition. In their original formulation, interfacegeract through the synchro-
nization of common input and output events. The interpi@taif inputs and outputs as
assumptions and guarantees, respectively, implies th&i womposing two interfaces
P andQ, we have to ensure th&s output guarantees satisy's input assumptions
and vice versa. Concretely, consider the two interfd@sd Q, in one state of the
composition. IfP wants to emit an output that cannot be accepte®by that state
(i.e. an output guarantee that violates an input assumptizen aocal incompatibility
occurs. While many approaches would be pessimistic anddemthe two interfaces
to be incompatible, the interface approach is optimistycekpecting the environment
to steer away from locally incompatible states. Thus, twerfiaces areompatibleif
there exists an environmentto use the components togatiteensure that the assump-
tions of both are met. Component composition thus congissymthesizing the most
liberal input strategy in the composite system that avdide@ally incompatible states.
This can be done by classical game-theoretic algorithms.optimistic approach sup-
ports incremental design: the compatibility of two compatsean be checked without
specifying interfaces for all components of the systemwighout closing the system.

disable?

(a)C: Control Unit (b) D1: Smoke Detector (c) Dy: Faulty
Smoke Detec-
tor

Fig. 1. Sociable interface automata for a fire detection system.

Incremental designs also ensure that compatible compsnantbe put together in any
order.

An Example

We illustrate the previous concepts with the help of a sineplemple: a fire detection
system. The system is composed of a control unit and severaites detectors. The
interfaces for this example are reported in Figur®1.:s one of the smoke detectors
(there could be more), ar@lis the control unit.

When a detector senses smoke (input esembke), it reports it by emitting the
output evenfirel. When the control unit receives the input evéirg? from any of the
detectors, it issues a call for the fire department (outpantsall_fd!). Additionally,
an input eventisable? disables both the control unit and the detectors, so that th
smoke sensors can be tested without triggering an alarmldt/sappose the existence
of faulty smoke detectors, i.e., smoke detectors that gtioe disablemessage. The
interface for a faulty smoke detector is presented in Fiducg.

A patrticularity in the design is that some (but not all) stadee input-enabled. As an
example, state 1 & is still receptive to the input evefite? after receiving the smoke
alarm. This is because detectors are independent and théras no reason for one
detector to be forbidden to send output efiesl if this has already been done by some
other detector. Another example is state Dafwhich is receptive to the input events
fire? andsmoke?. Note that the possibility of having the same name for iapdtoutput
events is proper of sociable interfaces model and not atlawether interface models
presented in [13, 8, 7, 15], or even transition based modath(as 1/0 automata). This

illustrates the multiple ways of communicating that areva#d by the model (see [12]
for a discussion). Note th&t, D1, andD; are well-formed.

Itis easy to see that all the states in the composition bettreecontrol uniC and
the fire detectob; will be compatible if the two interfaces communicate via gdvent
fire. As an example, i€ is in state 1 an@®; in state 2, then the output evdine! emitted
by D1 can be caught by the input evdime? of C. The output eventall_fd! emitted by
C does not need to be caught DBy since the two interfaces do not synchronize on this
action.

However, the composition betwe€andD, goes less smoothly. When the compo-
sition receives the input evedisable?, the control unit shuts dows £ 3) and makes
the assumption that the environment cannot emit any outyhile the faulty detector
remains in operation. When the faulty detector senses sifigiet eventsmoke?), it
emits the output everftre!: if the control unit has been disabled, this causes a local
incompatibility in statg3,1). Hence, a winning strategy for player Input to stay away
from locally incompatible states can be realized by theofeihg input restrictions:

— A restriction preventing the input evedisable? if the faulty detector is in state
s=1, thatis, it has detected smoke and is about to issue thetoipntfire!.

— A restriction preventing the input evesinoke2 whenControlUnit is ats= 3
(disabled).

Since the actiondisableandsmokezZhould be acceptable at any time, the new input
restrictions for these actions are a strong indicationtthetomposition betweeband

D, does not work properly in all environments. However, if wasider an environment
that never issuedisable then the two interfaces can work together in a proper way.

3 The Sociable Interfaces Model

This section sketches the main elements of a sociableactend the game it induces.
The reader is referred to [12] for more details. A sociabteriiaceM is composed of
the following elements.

— A set ofglobal actions At and a set ofocal actions Act.

— A set ofvariables \A which is partitioned into a set dbcal variables \- and a
set ofglobal variables \B, with VE V' = 0. Local variables are used to describe
the internal states of the interface, while global variatdes used to describe the
global state of the system. Among the set of global variablesdistinguish be-
tweenhistory andhistory-freevariables. This distinction, which will be discussed
in Section 5, allows us to limit the number of actions an ifatee should include.
The set of history variables is denoted\y.

— A set of input and outpuransitions Each global actiom € Act® is associated to
an input and an output transition that are respectively tiehioyp' () andp©(a).

An output transition specifies how variables are updatedwthe interface emits
the action. An input transition is the conjunction of two tga1) an input global

4 In general, checking well-formedness requires solvingetggame [12]

transitionp'®(a) that specifies constraints on how other interfaces can agtiat
global variables when emitting, and(2) an input local transitiop'- (a) that can
update the local variables of the interface when otherfiatess emit. The reason
to split the input transitions in two parts will be discusse&ections 4 and 5.

— A set oflocal transitions Each local actiom e Act- is associated with a transition
p'(a), which can modify the value of local variables. Local traiesis cannot be
synchronized with transitions of other interfaces. Notleat local transitions were
not present in the original model of [12].

— An input and an output invariant, respectively denoted/byand ¢/°. Invariants
are sets of states that are used to constrain the input apdtdtansitions of the
interface. Precisely, input transitions must maintain ithgut invariant true, and
output transitions must maintain the output invariant true

— An initial condition| that describes the initial constraints on the set of local va
ables of the interface.

For an interfacévl, we say that a&tateof M is a value assignment to the variables
inval,
Note that in Ticc, the term “sociable interface” is replaced by “module”, buhodule
is no more than the description of a sociable interface inrthet language of the tool.

Example 1.The Control UnitC of the fire detection system described in the previous
section is a sociable interface with 3 actiofige, disable call_fd. Its internal state can
be encoded with a local variatdeso that a state & assigns a value between 0 and 3 to
s. The actiorfire has input transitions from states- 0,s= 1,s= 2, but not froms = 3.
The action has no output transition meaning that the interfannot emit the actidire.

The actioncall_fd has an output transition fros= 1 to s= 2, but no input transition.
Hence, the interface makes the assumption that the env@oican never issuzall_fd.
Notice that we can follow the same reasoning for the (fadigpke detectors.

The Game Underlying the Model

As mentioned in the introduction, a sociable interface oetua turn-based game be-
tween the Input and the Output players. The definitions oftleges, outcomes, and
strategies of this game have been described in [12]. In #pep the reader only needs
to know how moves are defined.

The moves of the Input and Output players are those inducetthéynput and
the output transitions (the game model supposes that betlinfut and the output
transitions are conjoined with their corresponding ireats). In addition, each player
owns a stuttering move to ensure that the runs of the gamaefamia.

The definition of the stuttering move is straightforward floe Output player: this
is the identity transition. For the Input player the defmitiis slightly different: the
stuttering move is an additional transition that can motliy value of global history
free variables. The stuttering move of the Input player temfreferenced to as the
environment transitionit is automatically added by I€c when specifying a sociable
interface.

Well-Formedness

Given a sociable interfadd, it is possible to compute the set of stagqresp.So)
from which the Input (resp. Output) player has a strategyli@gs stay in the set of
states that satisfy the input (resp. output) invariant, teder the Output (resp. Input)
player does. A sociable-interface is well-formed if eachcieable stats of M belongs
to SNSo, and moreovey' = § andy® = So; see [12] for a detailed explanation.

The tool Ticc automatically ensures that modules are well-formed befthogving
the user to manipulate them. To this end¢c@ may add extra conditions to the initial
condition and the input/output invariants that are defingdhle user. Hence, the user
does not need to take care of the notion of well-formednesbwe will not elaborate
onitin the rest of the paper.

The Tool Ticc

Ticc is a tool that allows users to specify sociable interfacalied “modules”, us-

ing a textual language based on guarded commands, perfaratams on the mod-
ules, and verify properties of modulesICE is implemented as a set of functions
that extend the capabilities of the OCaml [20] command:-lifiee tool is released
under the GPL. The code ofid@c is freely available and can be downloaded from
http://dvlab.cse.ucsc.edu/dvlab/Tidthis web site is a Wiki that also contains the docu-
mentation for the tool, as well as several examples inclytliose that will be presented

in this paper. Internally, IccC relies on a representation of modules which is based the
MDD/BDD Glue and Cudd packages [22]. The source files of tiokdoe organized as
follows:

1. The root contains files with the basic information aboattthol. There is README
file that describes the files of the root.

2. The directoryexamples contains a series of examples and a tutorial. Again, there
is aREADME file that can be consulted for more information.

3. The directorysrc contains the code itself; it is composed of three sub direego
glu-2.0, mlglu, andticc. Directoriesglu-2.0, andmlglu contain the code
needed to adapt the MDD/BDD Glu package to work with tcc. Aecliorydoc
contains automatically-generated documentation fordbé tn particular, the file
doc/api/Ticc.html (automatically generated froerc/ticc/ticc.mli) doc-
uments all the commands available to the user.

4 Starting with Ticc

This section is an introduction to the use afT. It presents very simple examples, to
illustrate the process of entering a program, and runniagahl.

To use Tcc, first ensure that the executable file “ticc” is in your pathem, invoke
it in interactive mode simply by typing:

ticc

The result of this operation is an Ocaml profmfsbm where one must type:
open Ticc;;

At this point the functions in the module ofidc become available at the top level.
These functions are documented in thefiibe/doc/api/Ticc.htmIMost of them will be
described in the rest of this paper.

The next operation is to provideid@c with a Ticc program. TCC programs are
entered in files with the extension .si that standsSuociablel nterface. The syntax of
Ticc programs will be presented in the following sections. Paoyffiles are parsed
with the command

parse "MyTiccProgram.si";;

Theparse function reads in a .si file describing modules and globahtdes, and
places these definition into a global namespace. If theesiléies not follow the syntax
of the input language, the function reports an appropriate enessage. Parsing multi-
ple files is allowed and viewed as an incremental processteelarations are added to
the existing ones. This implies that one cannot declare tadutes with the same name
in different files, and that one only needs to declare glohehbles once. After parsing
at least one Tcc program, one can perform operations on and between moditles o
program.

Notice that one can also writeript filesfor Ticc. A script file is a file that groups
a set of commands that can be executed in one step. Figurprdiiies an example of
the content of a script file whose namesisample. in. At this point, the reader should
be able to interpret lines 1 and 2. Lines 3 and 4 will be exgldilater. One can invoke
Ticc to execute the script file with the following command from giell prompt:

ticc example.in

We dedicate the rest of this section tocT programs that illustrate some of the
main features of the input language of the tool. Operationamd between modules
will be described in the next sections.

4.1 Getting to Know Ticc Programs

As a first example, we consider the translation of the fire diete system to a Itc
program. The file for the correspondingCt program is given in Figure 2(a) and is
nameddetector.si.

The program consists in the declaration of three moduleslW&ControlUnit,
FireDetectorl, andFaulty FireDetector2 respectively correspond to interfaces
C, D1, andD; of Figure 1. Let us consider modulentrolUnit. This module shows
some of the very basic elements of T module. It contains:

— Local variable declarations. The module declares a vaiabihose value is an
integer between 0 and 3:dc supports Boolean and integer range variables.

5 Remember thatiEc is implemented as a set of functions that extend the cafiabitif Ocaml.

NNNNNNNNNRPRPRPRPEPRPERPERPRRERE
O~NOUTPRARWNRPROOONOUDNMNWNRERPOOONOOOR~WNEPER

A WN P

module ControlUnit:
var s: [0..3] // O=waiting, l=alarm raised, 2=fd called, 3=disabled

input fire: { local: s =0 | s=1==>35s’ :=1
else s = 2 ==
input disable: { local: true ==> s’ := 3 }
output call_fd: { s =1 ==>s’ =2 }
endmodule

module FireDetectoril:
var s: [0..2] // O=idle, 1=smoke detected, 2=inactive

input smokel: { local: s =0 | s =1==>3s’ :=1
else s =2 == } // do nothing if inactive
output fire: { s =1 =>g’ =21}
input fire: { } // accepts (and ignores) fire inputs
input disable: { local: true ==> s’ := 2 }

endmodule

module Faulty_FireDetector2:
var s: [0..2] // O=idle, 1=smoke detected, 2=inactive

input smoke2: { local: s =0 | s=1==>s’ :=1
else s =2 ==> } // do nothing if inactive
output fire: { s =1 =>g’ =21}

input fire: { } // accepts (and ignores) fire inputs
// does not listen to disable action
endmodule

(a) Ticc modeling of a fire detector systeretector.si.

open Ticc;;

parse "detector.si';;

let controlunit = mk_sym "ControlUnit";;

let faulty = mk_sym "Faulty_FireDetector2";;

(b) A script file that parsegetector.si.

Fig. 2.

~NOoO b WNBE

10
11
12
13
14
15
16

17
18
19
20

(* open the functionnalities of the tool *)
open Ticc;;

(* parse the file in where modules are described *)
parse "detector.si";;

(* create the symbolic representations for the three modules declared
in fire-detector.si *)

let firel = mk_sym "FireDetectorl";;

let faulty = mk_sym "Faulty_FireDetector2";;

let controlunit = mk_sym "ControlUnit";;

(* print the input and output invariants of symbolic module firel *)
print_symmod_iinv firel;;
print_symmod_oinv firel;;

(* print the transition rule corresponding to action "fire" in module
P P g

firel *)
print_symmod_rules firel "fire" ;;

(* print the entire symbolic module firel *)
print_symmod firel;;

Fig. 3. The Ticc scriptdetector. in for the fire detector system.

— Input and output transitions. The transitions are specifgédg guarded commands
guard = commandwhereguard andcommandare Boolean expressions over the
local and global variables; as usual, primed variablesr ref¢he values after a
transition is taken. For instance, the output transitanl_fd can be taken only
whens has value 1; the transition leads to a state wisete?. The declaration of
the local part of an input starts with the keywdrdcal (and so the global starts
with global). This declaration has a particular structure, to ensuaettie local
part of the rule is deterministic (see next section for €ilzation).

The code ofietector. si presents other features that will be extensively discussed

in other examples.

An example of a script file for the fire detection system is giwe Figure 3. The

name of this file isletector. in. Let us briefly describe what happens when executing
ticc detector.infrom the shell.

Code between lines 1 and 5 has already been described eadi@pen the tool

and parse a itc program specified in a file called fire-detector.si. At thignpoTicc
contains an enumerative representation of the modulestendlobal variables that
have been declared.

The commanadk_sym used in lines 8, 9, and 10 converts the enumerative repre-

sentation of modules into a symbolic representation baseéd®Ds [23]. An MDD is
similar to a BDD [4], extended to work on integer ranged Valga instead of Boolean

10

ones. Given a constraint on a set of integer ranged variged DD is a representation
of all the values of the variables that satisfy the constsain

The initial condition and the input/output invariants of adale are sets of con-
straints on its variables; they can thus be represented MidiDs. Since transition
relations express constraints between the values of thabkas before and after the
transitions have been applied, they can also be represeitteiDDs. The symbolic
representation is in general more compact and efficientdhanumerative one;ITc
operations can be easily implemented symbolically, asaémxed in [12].

The rest of the fileletector. si illustrates some of the printout functions available
in Ticc. As an example, in lines 13 and 14 the user askCTo print out the input and
output invariants of the symbolic modutere1. In this example, both invariants have
valuetrue. In line 17 the user asksI@c to print the transition rule corresponding to
actionfire of moduleFireDetectorl. The printout produced by this command is:

PRINTING the rule(s) for the action fire of
SYMBOLIC MODULE: FireDetectorl.
[input part]:
modified vars:
{1}
[input global part]:
(¢D)
[input local part]:
(¢D)
[output part]:
Owned by module FireDetectoril
modified vars:
{ FireDetectorl.s }
(
(FireDetectorl.s = 1)(
(FireDetectorl.s’ = 2)))

When performing a printout, [€C describes the input and output transitions corre-
sponding to the action, as well as the variables that ardviadoNotice that a condition
which istrue is denoted by Tcc as “(1)”. For more printout functions, consult the
documentation filegicc/doc/api/Ticc.html

4.2 A More Elaborate Example

We now present a more elaborate example mfcTmodule, that makes use of most
features of the input language. An Anti-blocking System Al an automotive com-
ponent that tries to prevent wheel slippage by modulatieghitaking force. In Fig-
ure 4, we present a model of an abstract ABS, comprising twdutes. Module
ABS controller is intended to be periodically invoked by the environmerihgis
the actiontick. When it receives that action, the module moves to the iatestate
state=1 and sets the global variabd®s_on to true. Then, it checks the current ac-
celeration of the vehicle against the current pressure efuter on the brake pedal.
If the module establishes that the situation requires AB8riention, it emits action
do_it, otherwise it goes back to internal stateate=0 via the actiorreset.

11

var b_pedal, b_force: [0..5]
var accel: [0..10]
var abs_on: bool

module ABS_controller:
var state: [0..2]

©Coo~NOOULA, WN R

stateless accel, b_pedal

10

11 initial: state = 0

12

13 input update_b_force: { global: abs_on ==> b_force’ = b_force }
14 input tick: { global: abs_on ==> b_force’ = b_force

15 local: state = 0 ==> state’ := 1

16 else true ==> }

17 output do_it: {

18 state = 1 & (b_pedal > 0 & accel > 4) ==> state’ = 2 & abs_on’
19 }

20 output reset: {

21 state = 1 & (b_pedal = 0 | accel <= 4) ==> state’ = 0 & “abs_on’
22 }

23 input done: { local: state = 2 ==> state’ := 0 }

24

25 endmodule

26

27

28 module ABS_actuator:

29 var turn, state: bool

30

31 stateless b_pedal, b_force

32

33 initial: turn = false & state = false

34

35 oinv: true

36 iinv: true

37

38 input do_it: { local: “state ==> state’ := true }

39 output done: {

40 state & turn ==> b_force’ = b_pedal & “turn’ & “state’;
41 state & “turn ==> b_force’ = 0 & turn’ & “state’

42 }

43 endmodule

Fig. 4. Ticc modeling of an Anti-blocking System.

12

Module ABS_actuator, instead, accepts an input sigral_it. At that time, it
moves to a different internal state characterizedtyte=true. Whenstate=true,
the module controls the brakes according to a simplifiedlalptiking algorithm.

In the following, let M be the sociable interface corresponding to module
ABS_actuator.

Global variables.Global variables are declared outside modules. As we wél| sail-
tiple modules can read and modify the value of global vaeiabl

In our case, the system comprises four global variafles:on indicates whether
the ABS is currently controlling the brakes,pedal is the amount of pressure that
the driver is currently applying on the brake pedalorce is the amount of pressure
that the brake pads are currently applying to the brake sptordaccel is the current
acceleration of the vehicle. SinceClc does not support negative ranges, we assume
that values okiccel smaller than 4 represent negative accelerations.

In Ticc, the set of global variables used by a module is automatid¢alilt by
collecting all global variables that are mentioned in amaysition rule. Thus, as far as
moduleABS _actuator is concerned, we obtaWG = {b_pedal,b_force}.

History-free variables.By default, a module remembers the value of its global vari-
ables, and expects to know all actions that can modify theoreNrecisely, by default,
global variables in a module afdstory variables. The module assumes that, unless
some input or output action modifies their value, these dlblstory variables retain
their value through time. To enable reasoning about theireyaf a global variable is

a history variable in a moduli, all the actions that can modify this variable must be
known toM (declared as input).

This requirement can potentially require a module to passesy many input ac-
tions. There are two solutions to this problem. Oniglcard actionswill be described
later. The other solution consists in declaring some véggto behistory-free In this
case, the module does not track their value, and does nottadatbw (declare) all
actions that modify their value.

In the case of moduléBS_actuator, bothb_pedal andb_force are declared to
be history-freeb_pedal is naturally history-free, since we can make no assumptions
on how the driver is going to use the brake pedatorce is also left history-free, as
we assume that the actuator does not care if other modulegetliis value. Since no
other global variable is mentioned by the module, we ob¢gin= 0.

Local variables. Local variables are declared inside a module, using the sgmiex
of global ones. A local variable is only visible in the moditles declared in.

Module ABS actuator declares two local variables of type bool, so thgt =
{state,turn}. state is true when the module is ready to emit its output actiarrn
is used to implement the following simplified anti-blockiafgorithm: whenturn is
true, the actuator lets the driver decide the amount of hrgkivhenturn is false, the
actuator sets the braking force to zero.

Actions. In Ticc, actions are not specifically declared. One can directNadea tran-
sition rule and label it with a new or pre-existing action rarihe tool collects all the

13

var x, y: [0..10]

module Test:

oinv: x + y <= 15

output a: { true ==> x> =x + 1 }
endmodule

Fig. 5. A module with a non-trivial output invariant.

actions used by a module in a set of module actions.
For moduleABS_actuator, we haveAct = {do_it,done} andActy = 0.

Initial condition. A module can declare its initial condition using the keyword
initial. The initial condition is expressed by a Boolean expressiar the set of
local variables.

In our case, modulgBS_actuator starts withturn andstate equals tofalse.

Invariants. An invariant is a condition over the state space of a modhk, is con-
stantly satisfied. Following the input/output duality winis proper of interfaces, mod-
ules can have two invariants: an input invariant and an dutpariant. The output
invariant defines a set of states that will not be left by aroal@r output transition.
In practice, each local or output transition rule is imglicconjoined with the output
invariant of the module. Dually, a module assumes that kgrenment does not violate
its input invariant. In practice, all input transition relare implicitly conjoined with
the input invariant of the module. Note that, since modulesveell-formed, the Input
(resp. Output) player can ensure that the input (resp. dutpariant is never left. This
indicates that no output transition leads from a statefgatig both invariants to a state
satisfying the output, but not the input, invariant. Symmcetly, no input transition can
lead from a state satisfying both invariants to a statefgatis the input, but not the
output, invariant.

The invariants ofABS_actuator are both equals tarue. In fact, specifying a
true invariant is equivalent to specifying no invariant at al§ done by module
ABS_controller. Invariants are useful to express certain relationshipsdoen vari-
ables. As instance, consider the example in Figure 5, camngra moduleTest, to-
gether with two global variables.

The output invariant expresses the property that this neodill always enforce that
the sum ofx andy is at most 15. This implies that modufest will not emit action
a when the current sum of andy is at least 15. As we will see later, the main use of
invariants is in compaosition: input invariants will be ugedexpress the constraints on
the environment that guarantee the compatibility of the abeslbeing composed.

Transition rules. Ticc supports three types of transition: input, output and |treetsi-
tions. Output transitions are the ones that users are nke$t to be familiar with. They
describe a possible behavior of the module, consisting ittiegian action, while pos-
sibly changing the value of global and local variables. lloé@sitions can be thought

14

of as a special type of output transition, where the modubaig allowed to update its
local variables. Moreover, local transitions are invisibd other modules, so that the
name of the action labeling a local transition is irrelevaiitey can be declared using
the syntax:

local a: { guard ==> command }

Module ABS_actuator can only emit one output action, callé@dne. As previ-
ously said, the corresponding transition rule is expressed sequence of guarded
commands. In this case, the first guarded command (line &#®ssthat if bothstate
andturn are true, actiomone can be performed. As a consequence, the next value of
b_force will be equal to the current value efpedal, and bothstate andturn will
have value false. The second guarded command (line 18y statbthe transition can
also be taken if state is true and turn is false. In this caseneéxt value of the global
variableb_force will be zero, while the local variablesirn andstate will have value
true and false, respectively. In this case, the two guamlsnartually exclusive. In gen-
eral, more than one guard can be true at a given time: at m@-any of those guards
can be selected nondeterministically.

Notice that actiordone occurs only as output inBS_actuator. This implies that
the module does not accept it as input.

One feature of Tcc guarded commands that might surprise at first is that the dis-
tinction between guard and command is purely conventiohguard and its corre-
sponding command are internally conjoined, so that

guard ==> command
is always equivalent to:
true ==> guard & command

This holds for output rules, local rules, and the globalisecdf input rules. The local
section of input rules follows a different syntax, as expéal later in this section.

For instance, consider again moddiest in Figure 5. The transition rule corre-
sponding to actiond” seems to state that modulest can always emitd”, whose
effect will be to increase the value af However, according to the principle we just
stated, the action cannot in fact be emitted wkeno.

Input transition rules are split in two sections. Tglebal section describes assump-
tions about how other modules can change the value of gla@hles when emitting
certain outputs. Théocal section describes how this module reacts when receiving a
certain action. The reaction of the module to an input hasitwmrtant restrictions(i)
it can only update local variables, aii) it must do so in aeterministidashion. These
restrictions are due to the theoretical assumption thdt si@p is driven by the module
carrying out the output action. In turn, this ensures thatstamantics of the model is a
turn-based game rather than a concurrent one. As a conserjuenhave the following
special syntax for the local part of input rules:

guardl ==> varll’ := exprll, varl2’ := expril?2,
else guard2 ==> var22’ := expr2l, var22’ := expr22,

15

To ensure determinism, commands can only include assigisnterocal variables.
Moreover, theelse keyword is inserted to remind the user that in this contextrded
commands will be evaluated in the order in which they aretenit(i.e.,guard?2 is
evaluated only iguard1i is false, and so on).

The only input action that moduleBS_actuator can accept is calledo_it. The
corresponding transition rule has no global section, nrepttiat the module makes no
assumptions on the current and next value of global vasablendo_it is received.
The local section states that, whebate is false anchbs_on is true, the next value
of state will be true. We may wonder what happens when the conditions set by
the guard fail (i.e.state is true orabs_on is false). The answer is that the condition
expressed by the guard becomes an input assumption andlag soigratesto the
global part of the rule, as witnessed by a printout of the nedwn other words, the
input rule corresponding to acti@_it is equivalent to the following:

input do_it: {
global: "state ==> true
local: true ==> state’ := true

4.3 Arithmeticin Ticc

Ticc allows the declaration of Boolean and integer range vagmtiBoth of those dec-
laration have previously been illustrated. However, duaéobounded size of the vari-
ables, dealing with integer range variables implies som@dmentation choices that
are worth summarizing.

From the previous section, we learned that integer rangablas allow to build
numerical expressions, while Boolean variables allow tiddbBoolean expressions.
The two types of expressions are combined in guarded comsnaitld the classical
Boolean and numerical comparison operators. The questisesaof how to interpret
the arithmetical operators and— on a finite range type. A common choice is to im-
plement modulo arithmetic: for instancexfandy have range [0.m— 1], then the
expressionx+ Yy is evaluated tdx+y modm. This is the choice followed, for instance,
in Mocha [3, 11]. There are two drawbacks in following thisote. The first is that
comparisons behave in a counterintuitive way, making ttetesy prone to modeling
errors. For instance, the two comparisons1 > y andx > y— 1 arenot equivalent:
the first returns an unexpected result witk- 3, the second whep= 0. The second
drawback is that it is difficult to come up with consistent amtditive typing rules for
expressions including variables with different ranges;ifistance, it is not clear how
to evaluatex+ y+z= wi if all of x, y, z andw have different ranges. Indeed, the tool
Mocha avoided this problem by forcing expressions to comgisne range type only,
which is a rather restrictive requirement.

In Ticc, we follow a different choice, based on the following tworpmiples:

1. Numerical expressions are always evaluated in a rangjéstlzaige enough so that
no roll-over, or overflow, occurs.
2. Negative numbers are not considered.

16

Let us illustrate the consequences of these principlessi@enthe expression:
x? =y+z-3
and assume that the ranges are as follows:

var x: [0..4]
var y: [0..5]
var z: [0..5]

The design decisions imply that:

1. The sum ofy andzis evaluated in a temporary range type that is at Igast(d, so
that no overflow can occur.

2. If the result of the expression is negative, it is consdatifferent from the result
of any other expression, and in particukarso that the overall expression will be
false.

The expression is thus evaluated as follows:

— If xis 4,yis 4, andzis 3, then the expressich=y+ z— 3 will be true, as expected.
In fact, 44 3 will give 7, and 7— 3= 4: no overflow occurs.

— If xis 1,yis 4, andzis 5, the expression is false, ag-% — 3= 6, which is different
from 1. Note in particular that roll-over does not occur:etleough 6 mod 5= 1,
the expression on the right hand side is considered to hdue 8anot 1, in spite
of the left hand side having rand@..4.

— If yis 1, andzis 1, the expression will be false, since the right hand sidesyise
to a negative number.

The evaluation of an expression proceeds by evaluatingegplessions and by com-
bining the obtained results. In general, one could suppueifta sub-expression is
evaluated to false, then the entire expression is evaltatiedse. As an example, con-
sider the following expression:

x? =y-z+3

If X is 2,yis 2, andz is 3, then the expression would yield value false becguse
Z represents a negative number. However, we have tha2- 3+ 3, meaning that
the evaluation of the whole expression is true! To mitigdtet (hot eliminate) this,

after parsing, Tcc tries to reorder the expressions, so that whenever poseitdative

results are avoided. For instance, the above expressiolillWweunternally transformed
into the following expression:

x? =y+3 -2z

so that a negative result would occur only if the total remultegative. Tcc can do
basic expression simplification, and it reorders the terhassoim so that positive terms
occur before negative terms. A good way for the user to knaedfdering occurred is
to print the syntactic representation of a module afteripgris.

17

open Ticc;;
parse "fire-detector-disable.si" ;;
let controlunit = mk_sym "ControlUnit";;

let firel = mk_sym "FireDetectorl";;
let wfire2 = mk_sym "Faulty_FireDetector2";;

let c
let d

compose firel controlunit;;
compose wfire2 controlunit;;

print_symmod c;;
print_symmod d;;

print_input_restriction c "disable";;
print_input_restriction d "disable";;

print_input_restriction c "smokel";;
print_input_restriction d "smoke2";;

Fig. 6. A script file illustrating the composition of the modules fbe fire detector example of
Figure 2(a).

5 Composing Sociable Interfaces iTicc

In Ticc, the main operation on modules é@mposition.Composition synchronizes
two modules on their shared actions, and returns a new modydeesenting the joint

behavior of the two original modules, along with the envirant assumptions required
to guarantee the correct functioning of the original modul&hile composing modules,
Ticc checks theicomposabilityandcompatibility:

— Composabilityis a condition involving the sets of variables and actiona afod-
ule, and that can be checked statically, and extremely efilgi. Essentially, two
modules are composable if it makes sense to consider thet efftheir communi-
cation.

— Compatibilityis a condition about the behavior of the modules. Two modaites
compatible if there is some environment in which they cankwointly together,
with all their input assumptions being satisfied. Checkingpatibility requires
solving a game between the Input and Output player; theisalaf the game
yields the input assumptions for the composition of the tvaaloles.

The Ticc command:ompose checks composability and compatibility of two modules,
and if both tests are positive, computes a symbolic moduiesponding to their com-
position. If incompatibilities arise, [Ec can provide diagnostic information to detect
the reason.

Example 2.The script file given in Figure 6 illustrates the compositaperation for
the fire detector example mentioned in Section 2 and Figuke 2(

18

In the sociable interface model, and thus irc@, the composition is done in four
steps. First, one checks that the modules can be compose®éstion 5.1). If the
modules are composable, then the next step is to build thduptdetween them (see
Section 5.2). At this point, the product can contains batbsta.e. states that exhibit
a local incompatibility (see Section 5.3). The last stephaf tomposition consists in
synthesizing a strategy for the Input player to stay awaynftbe set of bad states
whatever the Output player does (see Section 5.4).

This section describes how those four steps are conductem More informa-
tion about the theory behind the operations can be founddh [1

We remark that the composition of two modules ircT only works on their sym-
bolic representation. In what follows, we consider two spiitomodulesM; and My
whereM; = (Act®, Act, V.G,V VI ol pO ok ¢!, @), and we implicitly refer to their
corresponding sociable interfaces.

5.1 The Composability Condition

To facilitate composition, Tcc ensures that modules have distinct local actions and
local variables by automatically renaming local varialaled local actions: a local vari-
ablex of moduleM is renamed td/.x upon parsing the moduld.

We say that the two modul®4; andM, arecomposablé they satisfy the following
non-interference condition: if an actiane Actf (respectivelyAct?) of module My
(resp.Mz) can modify a history variable of modub, (resp.M;), thena € Actg (resp.
Act).

Since output transitions are the only ones that can modify#tue of a global vari-
ablé®, the condition boils down to checking that if modili has an output transition
for actiona that modifie$ a history global variable of moduM,, then modulél, must
have an input transition for actian

The non-interference condition is the main motivation fatidguishing between
history and history-free variables. The non-interferecordition states that a mod-
ule should know all actions of other modules that modify iistdry variables. If we
dropped the distinction, requiring that a module knowsetiloms of other modules that
can change any of its variables (history or history-freed,amuld greatly increase the
number of actions that must be known to the module. Wildcatibas, as described
later, is another method.

Example 3.Consider the composition of the modules in the Anti-blogkBystem
(ABS) described in Section 4.2. The global variabl€orce is a history variable
for moduleABS_controller. Since moduleABS_actuator has an output transition
for action done that modifies this variable, moduleBS_controller mustaccept
done as input. In this case, the input transition of actidene states that module
ABS_controller agrees on all modifications that could be done to the variable
Another consequence of the non-interference conditiomesfollowing. Denote
ABSthe module obtained by composing the two ABS modules. Iflagrahodule wants

6 Input transitions only make assumptions on those values.
7 Where “modifies” means that the the variable appears primete command of the output
transition.

19

to modify variableb_force and be composed withBS it is forced to do so using one
of the remaining inputs cABS namelytick andupdate b_force. Both those input
transitions impose the condition thatdbs_on is true, the value ob_force is not
modified. Thus, the non-interference condition allows meslto effectively control a
global variable, when needed.

5.2 The Product

The product describes how elementdvbf andM, are combined to give rise to a new
moduleM;, representing their joint behavior.

First, the set of local, global, and history variables ar@awied by taking the unions
of those of the two modulewd! = V2l uva! vE =VvEiuv), andvll =V UVt The
same stands for the set of actionet®, = Actf UAct; andAct;, = Act; UAct. The
input and output invariants dfl;» are obtained by conjoining those gy andM,, and
so for the initial condition.

The most crucial part in the definition of the product consghe transitions associ-
ated to the actions dfl1,. Those transitions are a suitable combination of the ttiansi
of My andMs.

Similarly to other interface models, for each shared actioa output transition of
M; synchronizes with the input transition bf,, and symmetrically, the output transi-
tion of My is synchronized with the input transition ;. This models communication,
and gives rise to output transitions in the product. The titgansitions ofM; andM,
corresponding to the same shared action are also synchdhrand lead to an input
transition in the product. Output transitions, on the otiaard, are not synchronized be-
tween them: if bottM; andM, can emit a shared acti@ythey do so asynchronously, so
that their output transitions interleave. As usual, the uleslinterleave asynchronously
on transitions labeled by non-shared actions. We now desarimore details the inter-
leaving on shared actions.

If M1 has an input transitiop! (a), andM; has an input transitiop}(a), thenM
has an input transitiop},(a). The local and global part gf} ,(a) are obtained by con-
joining those ofp! andp}, i.e.,pl5(a) = pi- (a) A p)- (a) andplS (a) = piC(a) A piC(a).
This models the fact thafl; andM, can react jointly to inputs from the environment.

The situation is more complicated for output transitiongpi®se thaM; has an
output transitiono?(a), andM, has an input transitiop)(a). The result of the two
transitions is an output transitigri(a) in My, obtained by conjoining}-(a) with
pP(a).

' The reader could wonder why the new output transition is btdioed by conjoin-
ing alsopiC (a) with pO(a). The reason is the definition of input and output transitions
output transitions can modify global variables, while inpansitions can only make
assumptions on them. The assumptions expressed by thd geh@n of input rules
will be taken into account in the next phase of composition.

5.3 Locally Incompatible States

The product defined in the previous section can contaally incompatible states.
In a locally incompatible state, one of the modules being posed wants to issue

20

an output transition labeled by a shared action, while theromodule does not have
a corresponding global input transition from that stateclhagrees with the output
transition on the updates of global variables. In pracficec computes the set of good
statesGood which is simply the complement of the set of locally incottilple states.

Example 4.Consider the fire detector example of Section 2, illustrateeigure 2(a).
In the composition oControlUnit andFaulty FireDetector2, the state where
ControlUnit.s = 3 andFaulty FireDetector2.s = 1 is locally incompatible:
moduleFaulty FireDetector2 can issue the output actiafire, which module
ControlUnit, being disabled, cannot accept.

5.4 Synthesizing a Strategy

After computing the product of the two modules and the setaafdgstates, the next
operations is to compute the set of stafés from which the Input player oM,
has a strategy to always stay @ood This is done by playing a safety game whose
objective isGood The result of the game is used to restrict the input invagdthe
product (use the commandint_input restriction to see how the new invariant
restrict the Input transitions of the composition). Henlse tomposition of the two
modules can only works in environments that satisfy theigtet! input invariant. This
can be considered an optimistic approach, since two moduesot considered to be
incompatible if they cannot work in one particular enviram

The setWinis also conjoined with the initial condition of the produgiying rise
to the initial condition of the composition. If the resulimitial condition is empty, the
two modules are definitely incompatible.

Example 5.Consider again the fire detector example of Section 2, ibbstl in Fig-
ure 2(a). The module®ntrolUnit andFaulty FireDetector2 are compatible: in
fact, there is an environment that avoids all locally incemifple states. For instance, to
avoid the state wheréontrolUnit.s = 3 andFaulty FireDetector2.s = 1, the
environment can simply avoid issuing the actigvke?2 if disable has already been
issued, or can avoid to issue actidgtsable if smoke2 has already been issued.

Of course, such a compatibility masks the fact that it do@snake sense to restrict
the environment’s ability to issue actioasoke2 — a fire can start at any time! The
user can discover the problem by asking @ to print therestrictionof actionsmoke2,
via the command

print_input_restriction d "smoke2";;
which generates the following output:

Restriction of input action smoke2:
(
(Faulty_FireDetector2.s = 0) (
(ControlUnit.s = 3)))

This indicates that, after the composition, actiavke2 can no longer be accepted if
no smoke has been detected yetlty FireDetector2.s = 0) and the controller
has been disable@¢ntrolUnit.s = 3).

21

Similarly, the user can print the restriction of actiétsable in the composition of
ControlUnit andFaulty FireDetector2 to discover how the ability of accepting
disable has been restricted by the composition.

6 Composition: A Concrete Example

In this section we present a concrete example of the useaxf ®n a large program.
We consider a model of the interaction among contractonsdigihouse. The example
illustrates how Tcc can verify the compatibility of the interaction protocol ang
communicating entities.

The example models a house with four rooms: a K(itchen) \ang), a B(athroom),
and a (Bed) R(oom). Each room can suffer from electrical adnchping problems
that can be fixed by a plumb(er) and an electr(ician). Dependf the problem that
occurred, contractors are also needed to repair the damagsed on the wall and on
the floor. After the repairs, the room has to be cleaned. Amroare small, only one
contractor at a time can work in a room.

We wish to know if the contractors can work together and fix gh&blems. This
question can be answered inCT by modeling each contractor as a module, and by
considering additional modules that simulate faults, drad tall the contractors to fix
things. The contractors can work together if the compasibiall the modules is com-
patible.

The Ticc program corresponding to the example is as follows. Eacmmay have
ongoing repair work; this is tracked by the following globatiables:

var K_busy, L_busy, B_busy, R_busy: bool

In each room, four items might need repair: plumb(ing), ®{exl), floor, and wall.
Moreover, the room may need to be clean(ed). For the kitadhemeed for repair and
the need to clean are tracked by the following global vaeslfwhere aruevariable
means that the corresponding item is broken):

var K_plumb, K_electr, K_floor, K_wall, K_clean: bool

Similar variables track the state of L(iving room), B(atbna), and (bed)R(oom). The
activity state of the five contractors is tracked by the fwllg global variables:

var plumb_active, electr_active, floor_active,
wall_active, clean_active: bool

At the start, one supposes that there is no ongoing work inab, meaning that the
contractors are not working.

stateset initcond: "K_busy & “L_busy & "B_busy & "R_busy & “plumb_active
& “electr_active & “floor_active & “wall_active & “clean_active

After these declarations, we declare the modules. The r@debks models plumbing
and electrical failures. The code for this module is giverFigure 7. The body of
the module contains a series of declarations of outputitians. As an example, the

22

module Breaks:
stateless
K_plumb, K_electr, K_floor, K_wall, K_clean,
L_plumb, L_electr, L_floor, L_wall, L_clean,
B_plumb, B_electr, B_floor, B_wall, B_clean,
R_plumb, R_electr, R_floor, R_wall, R_clean

oO~NO UL WNE

output break_K_plumb : { “K_plumb ==> K_plumb’ & K_floor’ & K_wall’
& K_clean’ }

9 output break_L_plumb : { “L_plumb ==> L_plumb’ & L_floor’ & L_wall’
& L_clean’ }

10 output break_B_plumb : { “B_plumb ==> B_plumb’ & B_floor’ & B_wall’
& B_clean’ }

11 output break_R_plumb : { “R_plumb ==> R_plumb’ & R_floor’ & R_wall’
& R_clean’ }

12

13 output break_K_electr : { "K_electr ==> K_electr’ & K_wall’ &
K_clean’ }

14 output break_L_electr : { "L_electr ==> L_electr’ & L_wall’ &
L_clean’ }

15 output break_B_electr : { "B_electr ==> B_electr’ & B_wall’ &
B_clean’ }

16 output break_R_electr : { "R_electr ==> R_electr’ & R_wall’ &
R_clean’ }

17 endmodule

Fig. 7. Module Breaks for the house example.

following transition models the fact that, when the pluntgpimthe kitchen is not broken
(~ means “not”, an&_plumb tracks whether the kitchen plumbing works), then it can
break, generating the output transitisreak K_plumb, and signaling that the kitchen
plumbing, floor, and walls need repair. Moreover, the rooedseo be cleaned.

output break_K_plumb : { “K_plumb ==> K_plumb’ & K_floor’ &
K_wall’ & K_clean’}

All global variables are history free for this module.

The moduleCalls calls the repairmen and the cleaner when needed (the code of
this module is given in Figure 8); as an example, the plunmbealled using the follow-
ing statement:

output call_plumb : { “plumb_active &
(K_plumb | L_plumb | B_plumb | R_plumb) ==> plumb_active’ }

Note that all the variables are history free for this moddleis choice is quite
obvious since, as an example, there is no reasorc4ais to track the value of
plumb_active after it has called the plumber. If global variables where metory
free, then one would be forced to add many new input rulesgartbdule.

23

1 module Calls:

2 stateless

3 K_plumb, K_electr, K_floor, K_wall, K_clean,

4 L_plumb, L_electr, L_floor, L_wall, L_clean,

5 B_plumb, B_electr, B_floor, B_wall, B_clean,

6 R_plumb, R_electr, R_floor, R_wall, R_clean,

7 plumb_active, electr_active, floor_active, wall_active,
clean_active

(e¢]

9 output call_plumb : { “plumb_active & (K_plumb | L_plumb | B_plumb |
R_plumb) ==> plumb_active’ }

10 output call_electr : { “electr_active & (K_electr | L_electr |
B_electr | R_electr) ==> electr_active’ }

11 output call_floor : { “floor_active & (K_floor | L_floor | B_floor |
R_floor) ==> floor_active’ }

12 output call_wall : { “wall_active & (K_wall | L_wall | B_wall
R_wall) ==> wall_active’ }

13 output call_clean : { “clean_active & (K_clean | L_clean | B_clean |
R_clean) ==> clean_active’ }

14

15 endmodule

Fig. 8. ModuleCal1ls for the house example. The module calls the repairmen anci¢haer.

After the declaration of the modul@seaks andCalls, come the declarations of
the modules for the five contractors.

The plumber, whose part of the code is given in Figure 9, aaather contractors
keep track of whether they are working via a Boolean variableking. Also, they
keep track of the room on which they are working via the locabBan variable&w,
Lw, Bw, Rw. W hen called, the plumber is initially not working on any noo

input call_plumb : { local: “plumb_active ==> working’ := false }

When an active plumber, not working on any room, sees tha¢liehen) is unoccu-
pied (K_busy) and needs repaik(plumb), the plumber starts to work in the K(itchen):

output K_start_plumb
{ plumb_active & “working & K_plumb & “K_busy

working’ & Kw’ & K_busy’ }

and similarly for the other rooms.

While working in the kitchen, the plumber does not expecthay else to work
in it. Thus, we have to define input transitions correspogtiirnthe actions of the other
contractors. As an example, the following rule forbids thecgician to start working
in the kitchen if the plumber is still working there.

input K_start_electr : { local: “Kw == T

24

©Coo~NOOULA, WN R

e
)

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

module Plumber:

var working: bool

var Kw, Lw, Bw, Rw: bool

initial: “working & "Kw & "Lw & "Bw & "Rw

stateless
K_plumb, K_electr, K_floor, K_wall, K_clean,
L_plumb, L_electr, L_floor, L_wall, L_clean,
B_plumb, B_electr, B_floor, B_wall, B_clean,
R_plumb, R_electr, R_floor, R_wall, R_clean

input call_plumb : {local: “plumb_active ==> working’ := false }
output done_plumb : { plumb_active & “working & “K_plumb & ~L_plumb

& “B_plumb & “R_plumb ==> “plumb_active’ T

output K_start_plumb : { plumb_active & “working & K_plumb & “K_busy

==> working’ & Kw’ & K_busy’ }

output L_start_plumb : { plumb_active & “working & L_plumb & “L_busy

==> working’ & Lw’ & L_busy’ }

output B_start_plumb : { plumb_active & “working & B_plumb & ~B_busy

==> working’ & Bw’ & B_busy’ }

output R_start_plumb : { plumb_active & “working & R_plumb & “R_busy

==> working’ & Rw’ & R_busy’ }

output K_done_plumb : { plumb_active & Kw ==> "K_plumb’ &
K_busy’ & “working’ }

output L_done_plumb : { plumb_active & Lw ==> “L_plumb’ &
L_busy’ & “working’ }

output B_done_plumb : { plumb_active & Bw ==> "B_plumb’ &
B_busy’ & “working’ }

output R_done_plumb : { plumb_active & Rw ==> "R_plumb’ &

R_busy’ & “working’ }

input K_* : { local: “Kw ==

input L_* : { local: “Lw ==>

input B_* : { local: "Bw ==>

input R_* : { local: "Rw ==
endmodule

N

Fig. 9. Module describing the plumber.

25

“Kw’ & ~

“Lw’ & ~

“Bw’ & ~

“Rw’ & ~

One of the main drawbacks of this formalization is that weehvdefine many input
transitions that differ only by their name but not by theimtents. To simplify the
declaration of such inputs,1@c allows the use of wildcard action names. Figure 9
shows how wildcard inputs can simplify the description @& thoduleP1lumber. Using
the special character”, input transition rules can be defined to match a set of astio
instead of one action only. For instance, the patkeson line 24 of Figure 9 matches
any action whose name starts with

In modulePlumber, variableplumb_active is a history variable, as the module
plans to control its value. Variabl&sbusy, L_busy, B_busy, andR_busy are also his-
tory variables. This choice, combined with the declaratibthe input transitions, en-
sures that the value of those variables can be changed by otiiules only if the
plumber is not working in the corresponding room.

We considered two different electrician modules. A “cottdmplementation,
Electrician, checks that the kitchen is free before starting to work:in it

output K_start_electr :

{ electr_active & “working & K_electr & “K_busy
==>
working’ & Kw’ & K_busy’ }

Note that above, the variabler is local to the electrician, and indicates whether the
electrician is working on the kitchen; the equally-namedalae Kw in (*) is instead
local to the plumber. An “incorrect” implementation of tHe@rician,WElectrician,

in the rush of getting things done, forgets to check whetberebody else is already at
work in the kitchen:

output K_start_electr :
{ electr_active & “working & K_electr ==> working’ & Kw’ & K_busy’ }

Ticc is able to detect that the composition Bfeaks, Calls, Plumber, and
Electricianis compatible (see lines from 14 to 16 of Figure 10), wheredstects
that the composition oBreaks, Calls, Plumber, andWElectrician is not. Thus,
the protocol violation can be discovered before the coregstem, consisting also of
modules to repair floors and walls, is constructed. In fasipgle check would have
revealed the problem already in the compositiorPbiimber andWElectrician (as
computed in line 18 of Figure 10). When composkigimber andWElectrician,
Ticc automatically synthesizes the assumption that (i) theyatéoth called to work,
or (ii) no room needs to be repaired by both of them.

We also note that the protocol violation is reveatlednks to the input assumption
of the correct modul@lumber. In the game-based approach that underliescTthe
input assumptions of correct modules constrain the prétoicoodules that will be
later composed into the system, preventing the compositidrogue” modules. The
verification of the correctness of interaction is simply agrgduct of composition. This
situation should be contrasted to the usual, non-gamedtzgg@oach to modeling and
verification. In the usual approach, detecting incompliiis requires writing separate
specifications of correctness, and can usually be perfoongdonce all components
are composed.

26

open Ticc;;

parse "house.si";;

let breaks = mk_sym "Breaks";;
let calls = mk_sym "Calls";;
let plumber = mk_sym "Plumber";;

oO~NO UL WNE

let electrician = mk_sym "Electrician";;
9 let rudelectr mk_sym "RudeElectrician";;

10 1let floors = mk_sym "Floors";;
11 1let walls = mk_sym "Walls";;
12 1let clean = mk_sym "Clean";;
13

14 1let cO = compose breaks calls;;
15 1let cl = compose cO plumber;;
16 1let c2 = compose cl electrician;;

18 1let d2 = compose cl rudelectr;;

Fig. 10. Ticc script for the house exampleouse. in.

7 Additional Tool Features

While composition is certainly the most important openatiloat Ticc can perform on
modules, it is not the only one. This section is a brief intrctibn to the other features
of the tool.

7.1 Symbolic Operations, Model Checking, and Simulation

A set of states, in Tcc, can be defined via a formula specifying constraints on theega

of the variables. Tcc can parse such formulas, and construct a symbolic repeesent
tion (an MDD) that enables it to manipulate the satc@ can combine such sets with
the usual Boolean operators, via the functiaes or, set_and, set_implies, and
set_not; sets can also be compared usiet_is_subset andset_equal. A set of
states can be printed using the commandnt_stateset (printing is not optimized,
and can lead to exponentially large printouts)c@ also contains an implementation
of the classical CTL operators [9], allowing the user to fyeproperties of models via
model checking. As usual, the CTL operators are documentigti/api/Ticc.html.

Example 6.Consider the fire detection system given in Figure 2(a), hadstript file

in Figure 11. Line 11 builds the symbolic representation ekt consisting of the
states wher€ontrolUnit.s = 2, i.e., the firemen have been called. Line 13 prints
the set of states that satisfy the CTL formdka g, and line 15 prints the set of states
that satisfy the CTL formul&< @.

Ticc can also perform random simulation on symbolic moduleseraing an
HTML file with the result of the simulation. This is particubla useful in the early
stages of model construction, to confirm that the model behas intended.

27

open Ticc;;
parse "fire-detector-disable.si";;

let firel = mk_sym "FireDetectorl';;
let controlunit = mk_sym "ControlUnit";;
let comp = compose firel controlunit;;

oO~NO UL WNE

let clone_firel = sym_clone firel;;
9 simulate comp "Firel.s = 0 & ControlUnit.s = O", 5, "detector.html";;

11 1let called_firemen = parse_stateset ("ControlUnit.s = 2");;
12 print_string "Can call the firemen:";;

13 print_stateset (ctl_e_f comp called_firemen);;

14 print_string "Always calls the firemen:";;

15 print_stateset (ctl_a_f comp called_firemen);;

Fig. 11. A script file illustrating individual operations.

7.2 Closure

Ticc allows the user to close a module with respect to the occoerefiinput tran-
sitions. After several modules have been composed, tharelaperation can be used
to say that the environment is no longer able to provide aagerput. The follow-
ing example illustrates the use of the closure operatioméncontext of CTL model
checking.

Example 7.We consider a simple dining philosophers model, wimgskilosophers are
sitting at a round table. Set between each pair of neighbqinlosophers are forks,
so that all philosophers have a fork on their left, and onéneir tight. Each philosopher
can either think or try to eat. To be able to eat, philosopH®g rather clumsy, have
to use both forks on their sides.

Each philosopherhil can be in one of 7 internal states that are enumerated with a
local variables. In s=0, Phil is thinking; a transition te@=1 indicates the philosopher’s
desire for food. In state=4 the philosopher eats. To go fros¥1 to s=4, Phil has
to grab the two forks. This can be done in any order (requitiregaddition of two
intermediate states=2 ands=3, depending on which fork has been chosen first). After
having eatenPhil releases the forks in nondeterministic order, and stantitig
again.

The Ticc program of Figure 12 and its corresponding script file giveRigure 13
show an example of dining philosophers with- 2 philosophers and thus 2 forks. The
program can easily be extended to a greater number of ppihess. In the program,
the philosophers are represented by modateil 1 andPhil2, while the forks with
Boolean global variableBi1, F2, andF3, whose value isrue if the fork is available,
andfalse otherwise. The actions of grabbing and releasing forks aréeted by the
actionsGrabFx andgivebackFx, wherex € {1,2} identifies the fork. Since a fork is
shared between two philosophers, each philosopher musblbigput these actions, and

28

1
2
3

4
5
6
7
8
9

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

var F1, F2: bool
stateset initcond: F1 & F2

module Phill:
var s: [0..6]
initial: s = 0

input *: {}
local no_moves: { true ==> }
local wants_to_eat: { s =0 ==>5s’> =1}

output grabFl: { s =1 & F1 ==> s’ = 2 & “F1’;
s =3&Fl==>s"=4% “F1’ }

output grabF2: { s =1 & F2 ==> s’ = 3 & "F2’;
s =2&F2==>s"=4% “F2’ }

output givebackFl: { s = 4 ==> s’ =5 & F17;
s=6==>s’=04&F1’}

output givebackF2: { s = 4 ==> s’ = 6 & F2’;
s =5==>g8>=04&F2 }

endmodule

module Phil2:
var s: [0..6]
initial: s = 0

input *: {}

local no_moves: { true ==> }

local wants_to_eat: { s = 0 ==> s’ =1}
output grabF2: { s =1 & F2 ==> s’ = 2 & "F2’;

s =3&F2==>s"=4% “F2’ }
output grabFl: { s =1 & F1 ==> s’ = 3 & “F1’;
s=2§&Fl==>s=4% F1’}

output givebackF2: { s = 4 ==> s’ = 5 & F27;
s =6==>s’=04&F2 }

output givebackFl: { s = 4 ==> s’ =6 & F1’;
s =5==>gs>=04&F1’}

endmodule

Fig. 12.A Ticc dining philosophers modetining. si.

29

open Ticc;;
parse "phil.si";;
let phill = mk_sym "Phill";;

let phil2 = mk_sym "Phil2";;
let comp_phils = compose phill phil2;;

oO~NO UL WNE

9 1let initial = parse_stateset "Phill.s = 0 & Phil2.s = 0 & F1 & F2 ";;
10 1let bad_fork = parse_stateset "Phill.s = 0 & Phil2.s = 0 & "F2";;

12 1let can_reach_bad_fork_exists = ctl_e_f comp_phils bad_fork;;
13 1let result = set_and can_reach_bad_fork_exists initial;;
14 print_stateset result;;

16 let comp_phils_close = close comp_phils "*";;

18 1let can_reach_bad_fork_exists = ctl_e_f comp_phils_close bad_fork;;
19 1let result = set_and can_reach_bad_fork_exists initial;;
20 print_stateset result;;

Fig. 13. A Ticc script for the dining philosophers.

be able to accept them as input from other philosophers. iEhise purpose of the
wildcard inputinput *.

The problem is that, oncdehil1l andPhil2 are composed, their composition can
still accept the actionsrabFx and givebackFx from the environment. It is as if
passers-by were allowed to pick up and put down forks! Indeethe composition
of Phill andPhil2, we can start from the state whePeill andPhil2 are both
thinking andF2 is available and reach a state where the philosophers drhistking
butF2 is not available, as it has been “picked up” by the environmgms is shown by
the fact that the stateset printed at line 14 is not empty.

This clearly does not make sense: oRa&11 andPhil2 are composed, we should
be able to say that the forks are no longer in the environmeetch. To this end, we
closethe composition oPhil1 andPhil2 with respect to all input actiorfsOnce this
is done, the state where both philosophers are thinking'bu$ not available is no
longer reachable, and indeed the printout from line 20 isthety set (represented as
().

8 Conclusions

Interface theories are the subject of many recent works.sble@ble interface model
presented in this paper is only one of them. Interface mdtatsappeared before socia-

8 In general, we can close a module with respect to any set infact

30

ble interfaces include interface automata [13, 15] andfiate modules [14, 8]. Those
models were based on a communication with either actionsriables, but not both.

Sociable interfaces do not break new ground in the conckfteary of interface
models. However, by allowing both actions and variablekéndommunication process,
they take advantage of the existing models and provide nafngunication primitives.

The tool Ticc is certainly not the first tool that implements an interfacedel,
and even not the most complete. As an example, the teiot €hat implements a syn-
chronous, variable-based interface theory is able to legmithdown games whiladc
cannot.

However, one major difference betweerc® and its predecessors is its ability to
use rich communication primitives to model components ieiy xompact and natural
way. Another strong point of the tool is its symbolic implemtegtion which makes it
very efficient and easily extensible.

Ticc is a tool in constant evolution, and so is the sociable iat&fmodel. As an
example, we are currently developing a real-time extensfaihe tool, based on the
Timed Interface®f [16]. This is a large and complex endeavor, as the gamardtie
machinery of Tcc will have to be replaced with one suited to real-time gamesthAer
direction we are considering is the implementation of therahting-time temporal
logic of [2]. This logic is more suitable to model check opgatems than CTL.

References

1. B. Adler, L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, Raman, and P. Roy. Ticc, a tool
for interface compatibility and composition. Rroceedings 18th International Conference
on Computer Aided Verification (CAWolume 4144 of ecture Notes in Computer Science
Springer, 2006. to appear.

2. R. Alur, T.A. Henzinger, and O. Kupferman. Alternatingi temporal logic. IrProc. 38th
IEEE Symp. Found. of Comp. Sgages 100-109. IEEE Computer Society Press, 1997.

3. R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. R&ai, and S. Tasiran. Mocha:
modularity in model checking. I@AV 98: Proc. of 10th Conf. on Computer Aided Verifica-
tion, volume 1427 ot.ect. Notes in Comp. Sgpages 521-525. Springer-Verlag, 1998.

4. R.E.Bryant. Graph-based algorithms for boolean funati@nipulationlEEE Transactions
on ComputersC-35(8):677-691, 1986.

5. A. Chackrabarti, L. de Alfaro, T.A. Henzinger, and M. Sioga. Resource interfaces. In
EMSOFT 03: 3rd Intl. Workshop on Embedded Softwamume 2855 ofLect. Notes in
Comp. Sci.pages 117-133. Springer-Verlag, 2003.

6. A. Chackrabarti, L. de Alfaro, M. Jurdzihski, K. Chajes, T.A. Henzinger,
and F.Y.C. Mang. CHIC: Checker for interface compatibjlit2003. WWW-
cad.eecs.berkeley.edu/ tah/chic/.

7. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, Marcin Jamiftski, and F.Y.C. Mang. Interface
compatibility checking for software modules. GAV 02: Proc. of 14th Conf. on Computer
Aided Verification volume 2404 ofLect. Notes in Comp. Scipages 428-441. Springer-
Verlag, 2002.

8. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.CaMy. Synchronous and bidirec-
tional component interfaces. @AV 02: Proc. of 14th Conf. on Computer Aided Verification
volume 2404 oL ect. Notes in Comp. Scpages 414-427. Springer-Verlag, 2002.

9. E.M. Clarke, O. Grumberg, and D.A. Pelédodel CheckingMIT Press, 1999.

31

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.
22.

23.

L. de Alfaro. Game models for open systems?taceedings of the International Symposium
on Verification (Theory in Practice)olume 2772 ofLect. Notes in Comp. Scgpringer-
Verlag, 2003.

L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, RapMmdar, F. Mang, C. Meyer-
Kirsch, and B.Y. Wang. Mocha: A model checking tool that eXgl design structure. In
ICSE 01: Proceedings of the 23rd International Conferenec&oftware Engineering?001.

L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Royday. Sorea. Sociable interfaces.
In Proceedings of 5th International Workshop on Frontiers ofhiining Systemsolume
3717 ofLecture Notes in Computer Scienpages 81-105. Springer, 2005.

L. de Alfaro and T.A. Henzinger. Interface automataPinceedings of the 8th European
Software Engineering Conference and the 9th ACM SIGSOFPp&iom on the Founda-
tions of Software Engineering (ESEC/FSEages 109-120. ACM Press, 2001.

L. de Alfaro and T.A. Henzinger. Interface theories fomponent-based design. HM-
SOFT 01: 1st Intl. Workshop on Embedded Softweméume 2211 ot ect. Notes in Comp.
Sci, pages 148-165. Springer-Verlag, 2001.

L. de Alfaro and T.A. Henzinger. Interface-based desigrEngineering Theories of Soft-
ware Intensive Systems, proceedings of the Marktoberdwmning&r SchooKluwer, 2004.

L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Timeckiriaces. IrProceedings of the Sec-
ond International Workshop on Embedded Software (EMSOBZ)20ect. Notes in Comp.
Sci., pages 108-122. Springer-Verlag, 2002.

L. de Alfaro and M. Stoelinga. Interfaces: A game-th&ofeamework to reason about open
systems. IFFOCLASA 03: Proceedings of the 2nd International Workshopa@undations
of Coordination Languages and Software Architectugs03.

M. Faella and A. Legay. Some models and tools for opemsyst Technical report, Univer-
sity of Santa Cruz, 2005. Proceedings of FIT05.

E. A. Lee and Y. Xiong. A behavioral type system and itdiappon in Ptolemy Il.Formal
Aspect of Computing Journa2003.

Xavier Leroy. Objective caml. http://caml.inria.fc&ml/index.en.html.

N.A. Lynch. Distributed Algorithms Morgan-Kaufmann, 1996.

Fabio Somenzi. Cudd: Cu decision diagram package.//utf.colorado.edu/ fabio/CUD-
D/cuddintro.html.

A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algonth for discrete function manipu-
lation. InProceedings International Conference CAD (ICCAD;21990.

32

