Ticc: A Tool for Interface Compatibility and
Composition*

B. Thomas Adler!, Luca de Alfaro', Leandro Dias Da Silva2, Marco Faella3,
Axel Legay'#, Vishwanath Raman', and Pritam Roy!

L School of Engineering, University of California, Santa Cruz, USA
2 EE Department, Federal University of Campina Grande, Paraiba, Brasil
3 Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II”, Ttaly
4 Department of Computer Science, University of Liege, Belgium

Technical Report ucsc-crl-06-01
School of Engineering,
University of California, Santa Cruz.

January 27, 2006

Abstract. We present a brief overview of the tool Ticc (Tool for In-
terface Compatibility and Composition). In TICC, a component inter-
face describes both the behavior of a component, and the component’s
assumptions on the environment’s behavior. T1CC can check the com-
patibility of such interfaces, and analyze their emergent behavior, via a
symbolic implementation of game-theoretic algorithms.

1 Overview

Open systems are systems whose behavior is jointly determined by their internal
structure, and by the inputs that they receive from their environment. A com-
ponent of a larger system is, therefore, an open system, as its behavior depends
on the inputs it receives from the other system components. In previous work,
it has been argued that games constitute a natural model for open systems [1,
7,8,5,2]. We use games to represent the interaction between the behavior origi-
nating within a component, and the behavior originating from the component’s
environment. In particular, we model components as Input-Output games: the
moves of Input represent the behavior the component can accept from the envi-
ronment, while the moves of Output represent the behavior the component can
generate.

Unlike component models based on transition systems, models based on
games provide a notion of compatibility [7,8,5]. When two components P and
Q@ are composed, we can check whether the output behavior of P satisfies the

* This research was supported in part by the NSF CAREER grant CCR-0132780,
the NSF grant CCR-0234690, the ARP grants SC20050553 and SC20051123, and a
F.R.I.A grant.

input requirements of @), and vice-versa. However, we do not define P and @ to
be compatible only if their input requirements are always satisfied. Rather, we
recognize that the output behavior of P and @ can still be influenced by their
residual interaction with the environment (unless the composition of P and @ is
closed). Thus, we define P and @ to be compatible if there is some environment
under which their input assumptions are mutually satisfied, and we associate
with their composition P||@ the weakest (most general) assumptions about the
environment that guarantee mutual compatibility. In game-theoretic terms, P
and @ are compatible if, in their joint model, Input has a strategy to guaran-
tee that all outputs from P to) can be accepted by @, and vice-versa; the
environment assumption of P||@ is simply the most general such Input strategy.

These game-based component models have been called interface theories, and
two tools for interface theories predate Ticc. The asynchronous, action-based
interface theories of [7] are implemented as part of the Ptolemy toolset [10].
The tool CHIC implements synchronous, variable-based interface theories closely
modeled after [8, 4]. Our goal in developing TICC was to provide an asynchronous
model where components have rich communication primitives that facilitate the
modeling of software and distributed systems.

In Ticc, variables encode both the local state of the components (called
modules) and the global state of the system. Modules synchronize on actions;
the occurrence of actions can cause variables to be updated. Each global variable
can be updated by more than one module, so that it is both read and write-
shared; restrictions ensure that variable updates are free from race-conditions.
Actions in a module can appear both as input, and as output. If an action a
occurs in a module P as output, but not as input, then P can generate a, but
not accept it from other modules. If a occurs in P both as input and as output,
then P can both generate a, and accept it from other modules. This enables the
encoding of rich communication schemes, including exclusive, and many-to-many
schemes, and differentiates the modules of T1CC from other modules with more
restrictive communication primitives, such as I/O Automata [12] and Reactive
Modules [3]. The theory behind T1CC has been presented in [6]; here, we describe
the tool itself.

2 The Ticc Tool

Ticc parses interfaces, called modules, encoded in a guarded-command lan-
guage, and builds symbolic representations for these interfaces that are used
for compatibility checking and composition. Ticc is written in OCaml [11],
and the symbolic algorithms rely on the MDD/BDD Glue and Cudd pack-
ages [13]. The code of Ticc is freely available and can be downloaded from
http://dvlab.cse.ucsc.edu/dvlab/Ticc. This web site is an open Wiki that also
contains the documentation for the tool, and several additional examples.

2.1 A fire detector example

We illustrate the modeling language of TiCC by means of a simple example:
a fire detection system. The system is composed of a control unit and several

smoke detectors. When a detector senses smoke (action smoke), it reports it by
emitting the action fire. When the control unit receives action fire from any
of the detectors, it emits the action call_fd, corresponding to a call to the fire
department. Additionally, an input disable disables both the control unit and the
detectors, so that the smoke sensors can be tested without triggering an alarm.

Below, we provide the code for the control unit module (ControlUnit), for
one of the (several) fire detectors (FireDetectorl), as well as for a faulty detecor
that ignores the disable messages (Faulty FireDetector?2).

module ControlUnit:
var s: [0..3] // O=waiting, l=alarm raised, 2=fd called, 3=disabled

input fire: { local: s =0 | s=1==>5s" :=1
else s =2 ==> }
input disable: { local: true ==> s’ := 3 }
output call_fd: { s = => s’ =21}
endmodule

module FireDetectorl:
var s: [0..2] // O=idle, 1=smoke detected, 2=inactive

input smokel: { local: s =0 | s =1==>g’ :=1
else s =2 ==> } // do nothing if inactive
output fire: {s =1 =>g’ =213}
input fire: { } // other modules can detect fire too
input disable: { local: true ==> s’ := 2 }
endmodule

module Faulty_FireDetector2:
var s: [0..2] // O=idle, 1=smoke detected, 2=inactive

input smoke2: { local: s =0 | s =1==>3g’ :=1
else s =2 ==> } // do nothing if inactive
output fire: {s =1 =>g’ =213}
input fire: { } // other modules can detect fire too
// does not listen to disable action

endmodule

The body of each module starts with the list of its local variables; T1CC sup-
ports Boolean and integral range variables. The transitions are specified using
guarded commands guard = command, where guard and command are boolean
expressions over the local and global variables; as usual, primed variables refer
to the values after a transition is taken. For instance, the output transition fire
in module FireDetectorl can be taken only when the local variable s has value
1, and it leads to a state where s = 2.

When the modules ControlUnit and FireDetectorl are composed, they
synchronize on the shared actions fire and disable. Note that action fire is
present also as an input in FireDetectorl, indicating that FireDetectorl al-
lows other modules to output fire. When FireDetectorl and ControlUnit are
composed, differently from other synchronization schemes, the action fire will
survive in their composition both as an input and as an output, thus allowing
FireDetectorl | ControlUnit to be composed with other fire detectors.

The composition of ControlUnit and Faulty_FireDetectorl goes less
smoothly. When the composition receives a disable action, the control unit shuts
down (s = 3), while the faulty detector remains in operation. When the faulty
detector senses smoke (input smoke2), it will emit fire: if the control unit has
been disabled by the disable action, this causes an incompatibility. T1icc diag-
noses this incompatibility by synthesizing the following input restrictions:

— A restriction preventing the input disable if the faulty detector is in state
s = 1, that is, it has detected smoke and is about to issue fire.

— A restriction preventing the input smoke2 when ControlUnit is at s = 3
(disabled).

Since the actions disable and smoke2 should be acceptable at any time, the new
input restrictions for these actions are a strong indication that the composition
ControlUnit || Faulty_FireDetectorl does not work properly.

2.2 A house repair example

As another example, we describe a model of the interaction among contractors
fixing a house. The example is available from the Ticc wiki mentioned above. The
example models a house with four rooms: K(itchen), L(iving room), B(athroom),
(bed)R(oom). Each room may have undergoing repair work; this is tracked by
the following global variables:

var K_busy, L_busy, B_busy, R_busy: bool

In each room, four items might need repair: plumb(ing), electr(ical), floor, and
wall; their need for repair is tracked by the following global variables:

var K_plumb, K_electr, K_floor, K_wall: bool

Similar variables track the state of L(iving room), B(athroom), and
(bed)R(oom). The activity state of the four contractors is tracked by the fol-
lowing global variables:

var plumb_active, electr_active, floor_active, wall_active: bool

A module Breaks models plumbing and electrical failures. A typical action of
Breaks is as follows:

output break_K_plumb : { “K_plumb ==> K_plumb’ & K_floor’ & K_wall’ }

This action models the fact that, when the plumbing in the kitchen is not broken
(means “not”, and K_plumb tracks whether the K(itchen) plumbing works),
then it can break, generating the output action break K plumb, and signaling
that the kitchen plumbing, floor, and walls need repair. A module Caller calls
the repairmen when needed; the plumber is called using the following statement:

output call_plumb : { “plumb_active &
(K_plumb | L_plumb | B_plumb | R_plumb) ==> plumb_active’ }

The plumber (and similarly, the other contractors) keep track of whether they
are working (via a boolean variable working), as well as the room on which
they are working via the local boolean variables Kw, Lw, Bw, Rw. When called, the
plumber is initially not working on any room.

input call_plumb : {local: “plumb_active ==> working’ := false }

When an active plumber, not working on any room, sees that the K(itchen) is
unoccupied (K_busy) and needs repair (K_plumb), the plumber starts work on
the K(itchen):

output plumb_start_K : { plumb_active & “working
& K_plumb & “K_busy ==> working’ & Kw’ & K_busy’ }

(similarly for other rooms). While working on the kitchen, the plumber does not
expect anybody else to work in it (this is expressed by the guard Kw):

input electr_start_K : { local: “Kw ==> } // (%)

We considered two different electrician modules. A “correct” implementation,
Electrician, checks that the kitchen is free before starting work on the kitchen:

output electr_start_K : { electr_active & “working
& K_electr & “K_busy ==> working’ & Kw’ & K_busy’ }

Note that above, the variable Kw is local to the electrician, and indicates whether
the electrician is working on the kitchen; the equally-named variable Kw in (*) is
instead local to the plumber. An “incorrect” implementation of the electrician,
WElectrician, in the rush of getting things done, forgets to check whether
somebody else is already at work in the kitchen:

output electr_start_K : { electr_active & “working
& K_electr ==> working’ & Kw’ & K_busy’ }

Ticc is able to detect that the composition of Breaks, Caller, Plumber, and
Electrician is compatible, whereas it detects that the composition of Breaks,
Caller, Plumber, and WElectrician is not. Thus, the protocol violation can
be discovered before the complete system, consisting also of modules to repair
floors and walls, is constructed. In fact, a simple check would have revealed the
incompatibility already in the composition of Plumber and Welectrician. When
composing Plumber and Welectrician, Ticc automatically synthesizes the as-
sumption that (i) they are not both called to work, or (ii) no room needs to be
repaired by both of them. We also note that the protocol violation is revealed
thanks to the input assumption of the correct module Plumber. In the game-
based approach that underlies Ticc, the input assumptions of correct modules
constrain the protocol of modules that will be later composed into the system,
preventing the composition of “rogue” modules. The verification of the correct-
ness of interaction is simply a by-product of composition. This situation should
be contrasted to the usual, non-game-based approach to modeling and verifica-
tion. In the usual approach, detecting incompatibilities requires writing separate
specifications of correctness, and can usually be performed only once all compo-
nents are composed.

3

Using Ticc

Ticc is implemented as a set of functions that extends the capabilities of the
OCaml command-line. The incompatibility mentioned in the fire-detector exam-
ple of the previous section is exposed by the following series of OCaml commands:

open Ticc;;

parse "fire-detector-disable.si";;

let controlunit = mk_sym "ControlUnit";;

let wfire2 = mk_sym "Wrong_FireDetector2";;

print_input_restriction (compose controlunit wfire2) "disable";;
print_input_restriction (compose controlunit wfire2) "smoke2";;

The mk_sym function builds a symbolic representation of a module, given the
module name. The last two lines print how the input actions have been restricted
in the composition. TiCC provides a large set of primitives for the analysis of
open systems, in addition to the ones illustrated above, including verification
and simulation capabilities. We are considering developing a real-time extension
of the tool, based on the Timed Interfaces of [9]. This is a large and complex
endeavor, as the game-theoretic machinery of T1CcC will have to be replaced with
one suited to real-time games.

References

1.

2.

10.

11.
12.
13.

S. Abramsky. Semantics of interaction. In Trees in Algebra and Programming —
CAAP’96, LNCS 1059, Springer-Verlag, 1996.

S. Abramsky, D. Ghica, A. Murawski, and L. Ong. Applying game semantics to
compositional software modeling and verification. In Proceedings of TACAS 04,
LNCS, Springer-Verlag, 2004.

R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design,
15:7-48, 1999.

A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Synchronous
and bidirectional component interfaces. In Proceedings of CAV 02, LNCS 2404.
Springer-Verlag, 2002.

L. de Alfaro. Game models for open systems. In Proceedings of the International
Symposium on Verification (Theory in Practice)) LNCS 2772, Springer-Verlag,
2003.

L. de Alfaro, L. Dias da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable
interfaces. In Procedings of FROCOS 05, LNAI 3717. Springer-Verlag, 2005.

L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the 8th Eu-
ropean Software Engineering Conference and the 9th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM Press, 2001.

L. de Alfaro and T.A. Henzinger. Interface theories for component-based design.
In Proceedings of EMSOFT 01, LNCS 2211. Springer-Verlag, 2001.

L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Timed interfaces. In Proceedings
of EMSOFT 02, LNCS 2491. Springer-Verlag, 2002.

E. A. Lee and Y. Xiong. A behavioral type system and its application in Ptolemy
I1. Formal Aspect of Computing Journal, 2003.

Xavier Leroy. Objective caml. http://www.ocaml.org.

N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

Fabio Somenzi. Cudd: Cu decision diagram package.
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.

