
Magnifying-Lens Abstraction for Markov

Decision Processes

Luca de Alfaro and Pritam Roy

Computer Engineering Department
University of California, Santa Cruz, USA

Technical Report ucsc-crl-06-15
School of Engineering

University of California, Santa Cruz
October 17, 2006

Abstract. We present a novel abstraction technique which allows the
analysis of reachability and safety properties of Markov decision pro-
cesses with very large state spaces. The technique, called magnifying-
lens abstraction, copes with the state-explosion problem by partitioning
the state-space into regions, and by computing upper and lower bounds
for reachability and safety properties on the regions, rather than on the
states. To compute these bounds, magnifying-lens abstraction iterates
over the regions, considering the concrete states of each region in turn,
as if one were sliding across the abstraction a magnifying lens which
allowed viewing the concrete states. The algorithm adaptively refines
the regions, using smaller regions where more detail is needed, until the
difference between upper and lower bounds is smaller than a specified ac-
curacy. We provide experimental results illustrating that magnifying-lens
abstractions can provide accurate answers, with drastic savings in mem-
ory requirements, in many cases where previous abstraction techniques
yield no benefit.

1 Introduction

Markov decision processes (MDPs) provide a model for systems with both prob-
abilistic and nondeterministic behavior, and they are widely used in probabilistic
verification, planning, optimal control, and performance analysis. In probabilis-
tic verification and performance evaluation, the nondeterminism can be used
to model concurrency and external inputs, while probability captures random-
ization or unpredictability [13, 23]. In planning and optimal control, the nonde-
terminism represents the choice of control action, while probability models the
uncertainty in the evolution of the controlled system [10, 4].

Markov decision processes that model realistic systems tend to have very
large state spaces, and the main challenge in their analysis consists in devising al-
gorithms that work efficiently on such large state spaces. In the non-probabilistic
setting, abstraction techniques have been successful in coping with large state-
spaces: abstraction enables to answer questions about a system by considering a

smaller, more concise abstract model. This has spurred research into the use of
abstraction techniques for probabilistic systems [7, 15, 19, 16]. We present a novel
abstraction technique, called magnifying-lens abstraction (MLA), for the analy-
sis of reachability and safety properties of MDPs with very large state spaces.
MLA starts from a coarse, and concise, abstraction of an MDP, and gradually
refines the abstraction in an adaptive (and automatic) fashion, adding detail
where most needed, until reachability and safety questions can be answered to
the desired degree of accuracy. We show that the technique can lead to sub-
stantial space and time savings in the analysis of MDPs, and we show that the
savings extend to cases where previous abstraction techniques yield no benefit.

An MDP is defined over a state space S. At every state s ∈ S, one or more
actions are available; with each action is associated a probability distribution
over the successor states. In this paper, we focus on safety and reachability prop-
erties of MDPs. A safety property specifies that the MDP’s behavior should not
leave a safe subset of states T ⊆ S; a reachability property specifies that the
behavior should reach a set T ⊆ S of target states. A controller can choose the
actions available at each state so as to maximize, or minimize, the probability
of satisfying reachability and safety properties. Magnifying-lens abstraction en-
ables the computation of converging upper and lower bounds for the maximal
reachability or safety probability; the minimal probabilities can be obtained by
duality. In its ability to provide both upper and lower bounds for the quantities
of interest, MLA is similar to [16].

In the analysis of large MDPs, the main challenge lies in the representation
of the value v(s) of the reachability or safety probability at all s ∈ S. In con-
trast, actions and transition probabilities from each state s can usually be either
computed on the fly, or represented in a compact fashion, via Kronecker rep-
resentations or probabilistic guarded commands [20, 8, 14]. The goal of MLA is
to reduce the space required for storing v and, secondarily, the running time of
the analysis. To this end, MLA partitions the state space S of the MDP into
regions; for each region r, it stores upper and lower bounds v+(r), v−(r) for the
maximal reachability or safety probability. The values v+(r), v−(r) constitute
bounds for all states s ∈ r. In order to update these estimates, MLA iterates
over the regions, “magnifying” one of them at a time. When the region r is
magnified, MLA computes v+(s), v−(s) at all concrete states s ∈ r via value
iteration, and then summarizes these results by setting v+(r) = maxs∈r v+(s)
and v−(r) = mins∈r v−(s). Figuratively, MLA slides a magnifying lens across
the abstraction, enabling the algorithm to see the concrete states of one region
at a time when updating the region values. Given a desired accuracy ε for the
answer, MLA periodically splits regions r with v+(r) − v−(r) > ε into smaller
regions. In this way, the abstraction is refined in an adaptive fashion: smaller
regions are used where finer detail is needed, guaranteeing the convergence of
the bounds, and larger regions are used elsewhere, saving space. When split-
ting regions, MLA takes care to re-use information gained in the analysis of the
coarser abstraction in the evaluation of the finer one. MLA can be adapted to

2

8 16 24

24

16

8

1
1

(a) Initial Abstraction

8 16 24

24

16

8

1
1

(b) Final Abstraction

Fig. 1. Initial, and final refined abstraction, for the problem of motion planning in a
24 × 24 minefield. The circles denote the mines.

the problem of computing a control strategy by recording the optimal actions
for the concrete states of interest, when they are magnified.

The ability of MLA to group states based on value, and the ability to split
regions individually, tailoring the detail to the needs of different portions of the
state space, make MLA effective in cases where previous abstraction techniques
yield no benefits. This is best illustrated via a simple example. We consider the
problem of navigating an n × n minefield; the robot starts at the corner (1, 1),
and must reach the target corner (n, n); the problem, for n = 24, is illustrated in
Figure 1. Some mines are distributed randomly in the minefield. At each internal
state s, there are four actions available: Up, Down, Left, Right; border states
lack the actions that would lead out of the minefield. When an action is taken,
the robot moves one square in the chosen direction with probability 1−p(s), and
blows up with probability p(s); the probability p(s) is high close to mines, and
very low elsewhere (we will provide the precise equations for this model later in
the paper).

Intuitively, it is desirable to group the 8 × 8 states in the top-middle area
into a single region r0: since no mines are nearby, the robot can freely roam in
r0, so that the maximal probability of reaching the target corner is essentially
constant across r0. Indeed, to a human trying to determine a best path to the
target corner, the states in r0 are essentially equivalent. When the 8×8 concrete
states are grouped in r0, MLA leads to accurate results, since it can analyze the
dynamics inside r0 when r0 is magnified. Previous abstraction techniques for
probabilistic systems, such as [7, 19, 16], are based on probabilistic simulation
[24], and they are unable to provide accurate results. Such techniques associate
with r0 a summary of the transition structure from states s ∈ r0, and use that
summary to analyze the abstraction. The problem is that the states in r0, while
similar in value, are not similar in transition structure: the states on the border
of r0 can transition outside of r0, while those in the interior cannot. In the
abstraction, the probability of going from r0 to the region at the right hand side

3

will be modeled as being in an interval [0, q], for some q close to 1 (all mines are
far away). Consequently, previous techniques would have yielded a lower bound
of 0, and an upper bound close to 1, for the maximum probability of reaching
the target corner. We note that iterative abstraction refinement does not help:
it would repeatedly strip off the borders from regions, until there are as many
regions as there are states. The precision of traditional abstraction approaches
can be improved by relying on weak simulation [24, 2, 21] rather than regular, or
strong, simulation. The stumbling block, in this approach, turns out to be the
high computational cost of building the abstractions; we discuss this in detail in
the conclusions. We also note how, in this example, the ability of MLA to refine
the abstraction adaptively is crucial, as depicted in Figure 1(b). MLA is able to
use small regions close to mines, and large regions elsewhere; if we insisted on a
uniform region size, then we would have to adopt the smallest size throughout,
and no space savings would be possible. One of the benefits of MLA is that the
abstraction is refined dynamically, depending on the required accuracy of the
analysis; there is no need to “guess” the right state partition in advance.

The memory requirements of MLA are proportional not only to the number
of regions, but also to the maximum number of states in a region, due to the
“magnifying-lens” computation. This makes it impossible to use MLA for the
analysis of infinite-state systems: indeed, for a system with |S| states, the best we
can achieve is memory consumption proportional to

√

8|S|. This contrasts with
the technique of [16], where the space savings are in principle unbounded, and
with [19], where abstract-interpretation techniques are applied to the analysis of
infinite-state systems. We experimented with MLA on 256 × 256 and 512 × 512
instances of the minefield example. In the 512 × 512 case, MLA reduced space
usage by a factor between 30 and 60, approximately, depending on the desired
accuracy of the analysis (10−1 to 10−3).

In addition to the space savings, MLA is also faster than traditional value
iteration: for the 512×512 example, the speedup factor was between 5 and 7. The
reason for the speedup is that MLA avoids magnifying and re-analyzing a region,
when none of its neighbors have changed. Moreover, MLA can perform different
numbers of value iterations for each region. While the speedup is relatively minor,
it shows that the space savings of MLA are not associated with a speed penalty,
compared to classical value iteration.

Related work. We have already discussed the differences between MLA and meth-
ods for MDP abstraction based on simulation or abstract interpretation [7, 15,
19, 18, 16]. MLA is reminiscent to methods that represent value functions via
ADDs or MTBDDs [6, 1] with an approximation factor used to merge leaves.
The similarity, however, is superficial: MLA leads to far more precise results in
the analysis; we discuss this in the conclusions, where the appropriate notation
will be available. MLA is also loosely reminiscent of adaptive mesh refinement
(AMR) methods used in the solution of partial differential equations [3]. There
are, however, two important differences between MLA and AMR. In AMR, sep-
arate lower and upper bounds are not kept. Due to the continuous nature of
differential equations, the computation over a coarse mesh can be performed

4

independently of the computation for finer meshes, and splitting is done by
comparing the results for different mesh sizes. In particular, AMR methods per-
form computation at the finest mesh sizes only where needed. In MLA, due
to the discrete nature of MDPs, we have no way of computing over a “coarse
mesh” only: to update valuations over a region, we need to “magnify” the re-
gion to its individual states. MLA then summarizes the computation over the
individual states into lower and upper bounds, and uses the difference between
these bounds to decide which regions to split. Thus, MLA is forced to consider
the individual states over the whole system, and it summarizes and returns the
results in terms of lower and upper bounds, which are well-suited to answering
verification questions.

Paper organization. The paper is organized as follows. In Section 2, we give
preliminary definitions. In Section 3 we recall the standard value-iteration algo-
rithms for solving MDPs, and in Section 4 we present magnifying-lens abstrac-
tion. In Section 5, we provide detailed experimental results on MLA applied
to the minefield navigation problem, and we compare MLA with the game-
abstraction method of [16] over a model of the ZeroConf protocol, which is the
case study considered in [16]. We conclude with some final observations, and
considerations on future work.

2 Preliminary Definitions

For a countable set S, a probability distribution on S is a function p : S 7→ [0, 1]
such that

∑

s∈S p(s) = 1; we denote the set of probability distributions on S

by D(S). A valuation over a set S is a function v : S 7→ R associating a real
number v(s) with every s ∈ S. For valuations v, u over S, we define operators
and inequalities in pointwise fashion: for instance, we define v+u by (v+u)(s) =
v(s)+u(s) for all s ∈ S, and we write v ≤ u if v(s) ≤ u(s) at all s ∈ S. For x ∈ R,
we denote by x the valuation with constant value x; for T ⊆ S, we indicate by
[T] the valuation having value 1 in T and 0 elsewhere. For two valuations v, u

on S, we define ||v − u|| = maxs∈S |v(s) − u(s)|.
A partition of a set S is a set R ⊆ 2S, such that

⋃{r|r ∈ R} = S, and such
that for all r, r′ ∈ R, if r 6= r′ then r ∩ r′ = ∅. For s ∈ S and a partition R of
S, we denote by [s]R the element r ∈ R with s ∈ r. We say that a partition R′

is finer than a partition R if the elements of R can be written as unions of the
elements of R′.

Definition 1 (Markov decision process). A Markov decision process (MDP)
M = 〈S, A, Γ, p〉 consists of the following components:

– A finite state space S.

– A finite set A of actions (moves),

– A move assignment Γ : S → 2A \ ∅.
– A probabilistic transition function p : S × A → D(S).

5

Algorithm 1 ValIter(T, f, g, εfloat) Value iteration

1. v := [T]
2. repeat

3. v̂ := v

4. for all s ∈ S do v(s) := f
“

[T](s), g
˘
P

s′∈S
p(s, a, s′) · v̂(s′)

˛

˛ a ∈ Γ (s)
¯

”

5. until ||v − v̂|| ≤ εfloat

6. return v

At every state s ∈ S, the controller can choose an action a ∈ Γ (s); the MDP
then proceeds to the successor state t with probability p(s, a)(t), for all t ∈ S. A
path of G is an infinite sequence s = s0, s1, s2, . . . of states of S; we denote by Sω

the set of all paths, and we denote by sk the k-th state sk of s = s0, s1, s2,
We model the choice of actions, on the part of the controller, via a strategy
(strategies are also variously called schedulers [23] or policies [10]). A strategy is
a mapping π : S+ 7→ D(A): given a past history σs ∈ S+ for the MDP, a strategy
π chooses each action a ∈ Γ (s) with probability π(σs)(a); we obviously require
π(σs)(b) = 0 for all b ∈ A\Γ (s). Thus, strategies can be both history-dependent,
and randomized. We denote by Π the set of all strategies.

We consider safety and reachability goals. Given a subset T ⊆ S of states,
the reachability goal ♦T = {s ∈ Sω | ∃k.sk ∈ T } consists in the paths that reach
T , and the safety goal �T = {s ∈ Sω | ∀k.sk ∈ T } consists in the paths that stay
always in T . These sets of paths are measurable [25], so that given a strategy
π ∈ Π , we can define the probabilities Prπ

s (♦T), Prπ
s (�T) of following a path in

these sets from an initial state s ∈ S under strategy π. By choosing appropriate
strategies, the controller can maximize or minimize these probabilities. Thus, we
consider the problem of computing, at all s ∈ S, the quantities:

V max
�T (s) = max

π∈Π
Prπ

s (�T) V max
♦T (s) = max

π∈Π
Prπ

s (♦T)

V min
�T (s) = min

π∈Π
Prπ

s (�T) V min
♦T (s) = min

π∈Π
Prπ

s (♦T).

The fact that on the right-hand side we have max, min rather than sup, inf is
a consequence of the existence of optimal (and memoryless) strategies [10]. In
the remainder of the paper, unless explicitly noted, we present algorithms and
definitions for a fixed MDP M = 〈S, A, Γ, p〉.

3 Value Iteration Algorithms for Reachability and Safety

Reachability and safety probabilities on an MDP can be computed via a clas-
sical value-iteration scheme [10, 4, 9]. The algorithm, depicted as Algorithm 1,
is parameterized by two operators f, g ∈ {max, min}. The operator f specifies
how to merge the valuation of the current state with the expected next-state
valuation; we use f = max for reachability goals, and f = min for safety ones.

6

The operator g specifies whether to select the action that maximizes, or mini-
mizes, the expected next-state valuation; we use g = max to compute maximal
probabilities, and g = min to compute minimal probabilities, The algorithm is
also parameterized by εfloat > 0: this is the threshold below which we consider
value iteration to have converged. The following theorem states the correctness
of the algorithm.

Theorem 1. For all MDPs M = 〈S, A, Γ, p〉 and all T ⊆ S, the following
assertions hold.

1. Termination. For all εfloat > 0 and for all f, g ∈ {min, max}, the call
ValIter(T, f, g, εfloat) terminates.

2. (Partial) correctness. Consider any g ∈ {max, min} and any 4 ∈ {�, ♦},
and let f = min if 4 = �, and f = max if 4 = ♦. The following holds. For
all δ > 0, there is εfloat > 0 such that, at all s ∈ S:

v(s) − δ ≤ V
g
4T (s) ≤ v(s) + δ

where v = ValIter(T, f, g, εfloat).

We note that, in a call to ValIter(T, f, g), the value-iteration converges to the
limit from below if f = max, and from above if f = min (see, e.g., the fixpoints in
[9]). Consequently, we can replace statement 1 with the following initialization:

if f = max then v := 0 else v := 1

We will use this observation in the presentation of magnifying-lens abstraction.

4 Magnifying-Lens Abstraction

Magnifying-lens abstractions (MLA) is a technique for the analysis of reacha-
bility and safety properties of MDPs. Let v∗ be the valuation on S that is to
be computed: v∗ is one of V min

�T
, V max

�T
, V min

♦T , V max
♦T . Given a desired accuracy

εabs > 0, MLA enables the computation of upper and lower bounds for v∗, spaced
less than εabs . To save space, rather than using a valuation v over S, MLA starts
from an initial partition R of S, and computes the lower and upper bounds as
valuations u− and u+ over R. To compute u− and u+, MLA iteratively consid-
ers each r in turn, and improves the estimates for u−(r) and u+(r) using value
iteration on all s ∈ r. Once u− and u+ are computed, if u+(r)−u−(r) ≤ εabs for
all r ∈ R, the algorithm terminates. Otherwise, the algorithm refines some of the
partitions in R, and starts over. The algorithm is guaranteed to terminate: in
the worst case, the partition is refined to the point in which every region consists
of a single state, so that u+ and u− coincide.

The MLA algorithm is presented as Algorithm 2. The algorithm has pa-
rameters T , f , g, which have the same meaning as in Algorithm ValIter. The
algorithm also has parameters εfloat > 0 and εabs > 0. Parameter εabs indicates
the maximum difference between the lower and upper bounds returned by MLA.

7

Algorithm 2 MLA(T, f, g, εfloat , εabs) Magnifying-Lens Abstraction

1. R := some initial partition.
2. if f = max then u− := 0; u+ := 0 else u− := 1; u+ := 1

3. loop

4. repeat

5. û+ := u+; û− := u−;
6. for r ∈ R do

7. u+(r) := MagnifiedIteration(r, R, T, û+, û−, û+, max, f, g, εfloat)
8. u−(r) := MagnifiedIteration(r, R, T, û−, û−, û+, min, f, g, εfloat)
9. end for

10. until ||u+ − û+|| + ||u− − û−|| ≤ εfloat

11. if ||u+ − u−|| ≥ εabs

12. then R, u−, u+ := SplitRegions(R, u−, u+, εabs)
13. else return R, u−, u+

14. end if

15. end loop

Algorithm 3 MagnifiedIteration(r, R, T, u, u−, u+, h, f, g, εfloat)

v: a valuation on r

1. if f = max
2. then for s ∈ r do v(s) = u−(r)
3. else for s ∈ r do v(s) = u+(r)
4. repeat

5. v̂ := v

6. for all s ∈ r do

v(s) = f

[T](s), g

X

s′∈r

p(s, a, s
′) · v̂(s′) +

X

s′∈S\r

p(s, a, s
′) · u([s]R)

˛

˛

˛

˛

a ∈ Γ (s)

ff

!

7. until ||v − v̂|| ≤ εfloat

8. return h{v(s) | s ∈ r}

Parameter εfloat , as in ValIter, specifies the degree of precision to which the lo-
cal, magnified value iteration should converge. MLA should be called with εabs

greater than εfloat by at least one order of magnitude: otherwise, errors in the
magnified iteration can cause errors in the estimation of the bounds. Statement
2 initializes the valuations u− and u+ according to the property to be computed:
reachability properties are computed as least fixpoints, while safety properties
are computed as greatest fixpoints [9]. A useful time optimization, not shown in
Algorithm 2, consists in executing the loop at lines 6–9 only for regions r where
at least one of the neighbor regions has changed value by more than εfloat .

4.1 Magnified Iteration

The algorithm for value iteration on the magnified region is given as Algorithm 3.
The algorithm is very similar to Algorithm 1, except for three points.

8

First, the valuation v (which here is local to r) is initialized not to [T], but
rather, to u−(r) if f = max, and to u+(r) if f = min. This is an important
optimization. If f = max, value iteration converges from below, and u−(r) is a
better starting point than [T], since [T](s) ≤ u−(r) ≤ v ∗ (s) at all s ∈ r. The
case for f = min is symmetrical.

Second, for s ∈ S \ r, the algorithm uses, in place of the value v(s) which
is not available, the value u−(r′) or u+(r′), as appropriate, where r′ is such
that s ∈ r′. In other words, the algorithm replaces values at concrete states
outside r with the “abstract” values of the regions to which they belong. To this
end, we need to be able to efficiently find the “abstract” counterpart [s]R of a
state s ∈ S. A general scheme, which works well for a wide variety of models,
is as follows. Most commonly, the state-space S of a system consists in value
assignments to a set of variables X = {x1, x2, . . . , xl}. We represent a partition
R of S, together with the valuations u+, u−, via a decision tree. The nodes of
the tree are labeled by variables in X ; the edges outgoing a node with label x

are labeled with conditions on x. For instance, the top node for the partition of
Figure 1(a) could be labeled with x (the horizontal coordinate), and have three
descendants, with the edges labeled x ≤ 4, 5 ≤ x ≤ 8, 9 ≤ x. The leaves of the
tree correspond to regions, and they are labeled with u−, u+ values. Given s,
finding [s]R in such a tree requires following the tree, from root to leaf. If the
splits are balanced (see the section below on partition refinement), this requires
time logarithmic in |S|.

Third, once the concrete valuation v is computed at all s ∈ r, Algorithm 3
returns the minimum (if h = min) or the maximum (if h = max) of v(s) at all
s ∈ r, thus providing a new estimates for u−(r), u+(r), respectively.

4.2 Adaptive Abstraction Refinement

If the lower and upper bounds u− and u+ computed for a partition R differ by
more than εabs at some r ∈ R, MLA refines the partition R by splitting some
regions. We have compared experimentally various criteria for selecting which re-
gions to split. In our experiments, the best criterion (in terms of running time and
space) was also the simplest: split all regions r ∈ R with u+(r) − u−(r) > εabs .
We considered an alternative criterion that split the regions where the precision
of the computation suddenly degrades — the regions r that have large spread
u+(r) − u−(r), even though their neighbours have on average low spread. This
alternative criterion yielded a slight decrease in the number of regions in the final
abstraction, but caused an increase in the running time of the algorithm. Once
the regions to be split have been selected, it remains to decide how to split them.
In the minefield example, each region is squarish (horizontal and vertical sizes
differ by at most 1); we split each such squarish region into 4 smaller squarish
regions. In more general cases, the following heuristic is widely applicable, and
has worked well for us. The user specifies an ordering x0, x1, . . . , xl for the state
variables defining the state-space S: this defines a priority order for splitting
regions. As previously mentioned, we represent a partition R via a decision tree,
whose leaves correspond to the regions. To split a region r, we look at the label

9

xi of its parent, and at the conjunction φ of all conditions on xi on a path to r.
If φ is satisfied only by one value of xi, then we split r according to the values of
xi+1: we label r with xi+1, and we create children of r in the tree, labeling the
edges from r to the children with conditions on xi+1. If φ is satisfied by multiple
values of xi, then we label r with xi, and we create children of r in the tree,
labeling the edges from r to the children with conditions on xi.

Once a region r has been split into regions r1, . . . , rk, we set u−(rj) = u−(r)
and u+(rj) = u+(r) for all 1 ≤ j ≤ k. A call to SplitRegions(R, u+, u−, εabs)

returns a triple R̃, ũ−, ũ+, consisting of the new partition with its upper and
lower bounds for the valuation.

4.3 Correctness

The following theorem summarizes MLA correctness.

Theorem 2. For all MDPs M = 〈S, A, Γ, p〉, all T ⊆ S, and all εabs > 0, the
following assertions hold.

1. Termination. For all εfloat > 0, and for all f, g ∈ {min, max}, the call
MLA(T, f, g, εfloat, εabs) terminates.

2. (Partial) correctness. Consider any g ∈ {max, min}, any εabs > 0, and any
4 ∈ {�, ♦}, and let f = min if 4 = �, and f = max if 4 = ♦. The
following holds. For all δ > 0, there is εfloat > 0 such that:

∀r ∈ R : u+(r) − u−(r) ≤ εabs

∀s ∈ S : u−([s]R) − δ ≤ V
g
4T (s) ≤ u+([s]R) + δ

where (R, u−, u+) = MLA(T, f, g, εfloat, εabs).

We note that the theorem establishes the correctness of lower and upper bounds
only within a constant δ > 0, which depends on εfloat . This limitation is inherited
from the value-iteration scheme used over the magnified regions (cfr. Theorem 1).
If linear programming [10, 4] were used instead, then MLA would provide true
lower and upper bounds. However, in practice value iteration is preferred over
linear programming, due to its simplicity and great speed advantage, and the
concerns about δ are solved — in practice, albeit not in theory — by choosing
a small εfloat > 0.

5 Experimental Results

In order to evaluate the time and space performance of MLA, we have imple-
mented the algorithm, and we have used it for two case studies: a minefield
navigation problem, and the ZeroConf protocol for the autonomous configura-
tion of IP addresses [5]. This latter example had been used as the test-case in
[16], and it will enable us to compare MLA with the game-based abstraction
algorithms presented there.

10

When comparing MLA to ValIter, we compute the space and time needs of
the algorithms as follows. For ValIter, we take the space requirement to be equal
to |S|, the domain of v. For MLA, we take the space requirement to be the
maximum value of 2 · |R|+maxr∈R |r| that occurs every time MLA is at line 4 of
Algorithm2: this gives the maximum space required to store the valuations u+,
u−, as well as the values v for the largest magnified region. A simple calculation
yields that for a system with N states, the space usage is at least

√
8N . We

measure the running time of the algorithms in terms of valuation updates, where
a valuation update is the act of updating the value of v at a state, or the values
of u− or u+ at a region, in any of the algorithms. Updating these valuations is
where the algorithms spend most of the time. We measure the running time for
a version of MLA that includes the optimization of re-evaluating a region, only
when the value in some neighboring region changes by more than εfloat .

5.1 Minefield Navigation

We consider the problem of navigating an n×n minefield. The minefield contains
m mines, each with coordinates (xi, yi), for 1 ≤ i ≤ m, where 1 ≤ xi < n,
1 ≤ yi < n. We consider the problem of computing the maximal probability with
which a robot can reach the target corner (n, n), from all n×n states. At interior
states of the field, the robot can choose among four actions: Up, Down, Left,
Right; at the border of the field, actions that lead outside of the field are missing.
We model this example by an MDP with state space S = {1, . . . , n}2 ∪ {ssink}.
From a state s = (x, y) ∈ {1, . . . , n}2 with coordinates (x, y), each action causes
the robot to move to square (x′, y′) with probability q(x′, y′), and to “blow up”
(move to the sink state ssink) with probability 1− q(x′, y′). For action Right, we
have x′ = x + 1, y′ = y; similarly for the other actions. The probability q(x′, y′)
depends on the proximity to mines, and is given by

q(x′, y′) =
∏m

i−1
exp

(

−0.7 ·
(

(x′ − xi)
2 + (y′ − yj)

2
))

.

We experimented with two minefields: one of size 256× 256, with 20 mines in it,
and the other of size 512 × 512, with 100 mines in it. In both cases, the mines
were distributed in a pseudo-random fashion across the field. The performance
of algorithms ValIter and MLA are compared in Table 2. From the tables, in
the 512× 512 case we see that the savings range from 61.45, when εabs = 10−1,
to 28.33, when εabs = 10−3. The theoretical minimum, when no region needs
splitting, is

√
8 · 5122 = 1448, and we see how our results are not too far off from

this bound. For this same example, the number of valuation updates required by
MLA is less than that required by ValIter by a factor of 5 to 7, approximately.
While this is in part offset by other bookkeeping calculations performed by MLA,
we see that the space savings come at no performance hit.

5.2 The ZeroConf Protocol

MLA and game-based abstraction [16] have different strengths and weaknesses:
game-based abstraction is applicable to some systems with extremely large, and

11

n = 256, εabs = 10−1

m = 20, εfloat = 10−2

Algorithm Space Updates

ValIter 65,536 33,488,896
MLA 1,248 5,764,830

MLA Iteration Details

#Abs |R| max∆ Updates

1 256 0.528 3,097,996
2 316 0.528 215,943
3 376 0.528 101,924
4 436 0.497 79,538
5 496 0.067 57,829

n = 256, εabs = 10−2

m = 20, εfloat = 10−4

Algorithm Space Updates

ValIter 65,536 33,488,896
MLA 1,872 3,712,081

MLA Iteration Details

#Abs |R| max∆ Updates

1 256 0.528 3,164,812
2 325 0.528 246,678
3 412 0.528 118,825
4 568 0.497 104,647
5 808 0.001 77,119

n = 256, εabs = 10−3

m = 20, εfloat = 10−6

Algorithm Space Updates

ValIter 65,536 33,488,896
MLA 2262 3,827,678

MLA Iteration Details

#Abs |R| max∆ Updates

1 256 0.528 3,232,396
2 334 0.528 273,694
3 442 0.528 137,897
4 643 0.497 101,761
5 1,003 0.0009 81,930

n = 512, εabs = 10−1

m = 100, εfloat = 10−2

Algorithm Space Updates

ValIter 262,144 268,173,312
MLA 4276 23,545,536

MLA Iteration Details

#Abs |R| max ∆ Updates

1 576 0.778 18,879,885
2 876 0.582 2,273,902
3 1,173 0.583 865,780
4 1,470 0.583 562,006
5 1,767 0.524 473,213
6 1,896 0.072 490,750

n = 512, εabs = 10−2

m = 100, εfloat = 10−4

Algorithm Space Updates

ValIter 262,144 268,173,312
MLA 7,216 32,350,918

MLA Iteration Details

#Abs |R| max ∆ Updates

1 576 0.777 26,501,993
2 906 0.583 2,743,462
3 1,278 0.583 974,042
4 1,798 0.583 771,216
5 2,673 0.525 788,025
6 3,366 0.003 572,180

n = 512, εabs = 10−3

m = 100, εfloat = 10−6

Algorithm Space Updates

ValIter 262,144 268,173,312
MLA 9136 35,832,505

MLA Iteration Details

#Abs |R| max∆ Updates

1 576 0.777 28,374,281
2 939 0.583 3,487,939
3 1,392 0.583 1,420,126
4 2,127 0.583 1,110,869
5 3,431 0.525 806,507
6 4,326 0.0009 632,783

Fig. 2. Comparision between MLA and ValIter for 256×256 and 512×512 minefields,
for εabs = 10−1, 10−2, 10−3. n is the dimension of the minefield, m the number of
mines, #Abs is the number of abstraction steps (number of loops 3–15 of MLA), and
max ∆ = maxr∈R(u+(r) − u−(r)).

12

even infinite, state spaces, but can fail to provide benefits in cases where MLA
is effective, as in the minefield example. In order to compare the two approaches
in a case where they are both applicable, we considered the ZeroConf protocol
case study considered in [16]. The ZeroConf protocol is used for the dynamic self-
configuration of a host joining a network. We consider a network with n existing
hosts, and m total IP addresses; protocol messages have a certain probability of
being lost during transmission. We use the same model as in [16], taking n = 4
and m = 32. The model has the following state variables:

– s ∈ [0..4] denoting the protocol state of the process joining the network;
– ip0 ∈ [0..m] is the IP address chosen by the new host;
– x0 ∈ [0..20] is a local clock;
– probes ∈ [0..4] is the number of IP-probing messages sent.

In game-based abstraction, the authors of [16] manually selected the abstract
state space, which consisted of 737 states. The most important protocol prop-
erty they analyzed was the probability that the new host would eventually be
correctly configured (this is a reachability property, where the target set T con-
sists of the states where the new host has been configured. In addition, [16]
considered various time-bounded properties.

To construct the abstraction in MLA, it sufficed to choose a variable priority
ordering for splitting regions: from high to low priority, we chose s, ip0, x0,
probes. We used MLA to compute the probability that the new host would
eventually be correctly configured. MLA needed to split according to s and ip0,
thus considering 5 · 33 = 165 regions (the actual count was lower, since some of
these regions are unreachable from the initial state of interest).

While it may appear that MLA is more economical in constructing the ab-
straction, the difference is explained by the fact that MLA did not need to split
according to the values of clock x0, as the property considered was not a bounded
reachability property. Rather, there were three main differences between the two
verification approaches as applied to the ZeroConf protcol.

– The abstraction had to be selected manually in game-based abstraction,
whereas it was constructed automatically (except for specifying the variable
ordering) in MLA.

– Once an appropriate abstraction is devised, game-based abstraction is able
to cope with larger state spaces than MLA, as it is not limited by the square-
root lower-bound on the number of states considered by MLA.

– Game-based abstraction requires the use of game-theoretic algorithms for
solving the abstract model. On the other hand, MLA can use standard MDP
techniques, which are easier to implement and more efficient.

6 Discussion

A natural question about MLA is the following: why does MLA consider the con-
crete states at each iteration, as part of the “magnification” steps, rather than

13

constructing an abstract model once and for all, and then analyze it, as other
approaches to MDP abstraction do [7, 15, 19, 16]? The answer has two parts.
First, we cannot build an abstract model once and for all: our abstraction refine-
ment approach would require the computation of several abstractions. Second,
we have found that the cost of building abstractions that are sufficiently precise,
without resorting to a “magnification” step, is substantial, negating any benefits
that might derive from the ability to perform computation on a reduced system.

To understand the performance issues in constructing precise abstractions,
consider the problem of computing the maximal reachability probability. To sum-
marize the maximal probability of a transition from a region r to r1, we need to
compute P+

r (r1) = mins∈r maxπ∈Π Prπ
s (r U r1), where U is the “until” operator

of linear temporal logic [17]; this quantity is related to building abstractions via
weak simulation [24, 2, 21]. These probability summaries are not additive: for
r1 6= r2, we have that P+

r (r1) + P+
r (r2) ≤ P+(r1 ∪ r2), and equality does not

hold in general. Indeed, these probability summaries constitute capacities, and
they can be used to analyze maximal reachability properties via the Choquet
integral [22, 11, 12]. To construct a fully precise abstraction, one must compute
P+

r (R′) for all R′ ⊆ R, clearly a daunting task. In practice, in the minefield
example, it suffices to consider those R′ ⊆ R that consist of neighbors of r. To
further lower the number of capacities to be computed, we experimented with
restricting R′ to unions of no more than k regions, but for all choices of k, the
algorithm either yielded grossly imprecise results, or proved to be markedly less
efficient than MLA.

The space savings provided by MLA are bounded by a square-root function
of the state space. We could improve this bound by applying MLA hierarchically,
so that each magnified region is studied, in turn, with a nested application of
MLA. It is unclear whether this approach is beneficial in practice. If the size N

of the state space is such that a reduced abstraction of size
√

8N does not fit in
memory, it is likely that even if the space requirements were tamed via hierar-
chical approaches, the time requirements would make the analysis unfeasible.

Symbolic representations such as ADDs and MTBDDs [6, 1] have been used
for representing the value function compactly [8, 14]. The space savings are lim-
ited by the fact that the value function is usually slightly different at different
states. MLA is loosely reminiscent of approaches that cluster MTBDD leaves
with values within a specified ε > 0. However, the similarity is superficial: such
leaf-clustering corresponds in MLA to taking εabs = εfloat = ε, and yields consid-
erably poorer results than clustering according to εabs , and computing according
to εfloat , as MLA does. In particular, MTBDD leaf-clustering approaches do not
yield lower and upper bounds for the property of interest. The decision-tree
structure used by MLA to represent regions and abstract valuations is closely
related to MTBDDs, and in future work we intend to explore symbolic imple-
mentations of MLA, where separate MTBDDs will be used to represent lower
and upper bounds.

Acknowledgements. We thank Pascale Garaud (AMS Department, UC Santa
Cruz) for an insightful discussion on adaptive mesh refinement algorithms.

14

References

1. R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their applications. Journal of Formal Methods in
System Design, 10(2/3):171–206, 1997.

2. C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes. In
CAV 97, volume 1254 of LNCS, pages 119–130, Springer-Verlag, 1997.

3. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of Computational Physics, 53:484–512, 1984.

4. D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
1995. Volumes I and II.

5. S. Cheshire, B. Adoba, and E. Gutterman. Dynamic configuration of ipv4 link
local addresses (internet draft).

6. E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation. In Inter-
national Workshop for Logic Synthesis, 1993.

7. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In Proc. of PAPM/PROBMIV,
volume 2165 of LNCS, pages 39–56. Springer-Verlag, 2001.

8. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Sym-
bolic model checking of concurrent probabilistic processes using MTBDDs and the
Kronecker representation. In TACAS 00, volume 1785 of LNCS, pages 395–410.
Springer-Verlag, 2000.

9. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games.
Journal of Computer and System Sciences, 68:374–397, 2004.

10. C. Derman. Finite State Markovian Decision Processes. Academic Press, 1970.
11. I. Gilboa. Expected utility with purely subjective non-additive probabilities. Jour-

nal of Mathematical Economics, 16:65–88, 1987.
12. I. Gilboa and D. Schmeidler. Additive representations of non-additive measures

and the choquet integral. Discussion Papers 985, Northwestern University, Center
for Mathematical Studies in Economics and Management Science, 1992. available
at http://ideas.repec.org/p/nwu/cmsems/985.html.

13. H. Hansson. Time and Probabilities in Formal Design of Distributed Systems.
Real-Time Safety Critical Systems Series. Elsevier, 1994.

14. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for
automatic verification of probabilistic systems. In TACAS 06, volume 3920 of
LNCS, pages 441–444. Springer-Verlag, 2006.

15. M. Huth. On finite-state approximations for probabilistic computational-tree logic.
Theor. Comp. Sci., 346(1):113–134, 2005.

16. M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for markov
decision processes. In Proc. of QEST: Quantitative Evaluation of Systems, pages
157–166. IEEE Computer Society, 2006.

17. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

18. A. McIver and C. Morgan. Abstraction, Refinement, and Proof for Probabilistic
Systems. Monographs in Computer Science. Springer-Verlag, 2004.

19. D. Monniaux. Abstract interpretation of programs as Markov decision processes.
Science of Computer Programming, 58(1–2):179–205, 2005.

20. B. Plateau. On the stochastic structure of parallelism and synchronization models
for distributed algorithms. In SIGMETRICS ’85: Proceedings of the 1985 ACM

15

SIGMETRICS conference on Measurement and modeling of computer systems,
pages 147–154, New York, NY, USA, 1985.

21. A. Plilippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems.
In CONCUR 00, volume 1877 of LNCS, pages 334–349. Springer-Verlag, 2000.

22. D. Schmeidler. Integral representation without additivity. Proceedings of the Amer-
ican Mathematical Society, 97:255–261, 1986.

23. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, 1995. Technical Report MIT/LCS/TR-676.

24. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
CONCUR 94, volume 836 of LNCS, pages 481–496. Springer-Verlag, 1994.

25. M. Vardi. Automatic verification of probabilistic concurrent finite-state systems.
In Proc. 26th IEEE Symp. Found. of Comp. Sci., pages 327–338. IEEE Computer
Society Press, 1985.

16

