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Abstract. Three-color parity games capture the disjunction of a Biachl a
co-Buchi condition. The most efficient known algorithm tbese games is the
progress measures algorithm by Jurdzinski. We presentaatexation technique
that, while leaving the worst-case complexity unchangégndeads to consid-
erable speed-ups in games arising in practice. As an afiplicave consider
games played in discrete real time, where players shoulddvepted from stop-
ping time by always choosing moves with delay zero. The tinogess condition
can be encoded as a three-color parity game. Using the tod ds a platform,
we compare the performance of a BDD-based symbolic impléatien of the
progress measure algorithm with acceleration, and of théslic implementa-
tion of the classicali-calculus algorithm of Emerson and Jutla.

1 Introduction

The parity acceptance condition for automata and gameg®njany interesting prop-
erties. Everyw-regular language can be recognized by a deterministitypastoma-
ton [20]. The parity accepting condition is closed under ptamentation, and games
with parity accepting conditions admit memoryless optistedtegies for both players.
Moreover, parity games have received a great deal of attedtie to their equivalence
to the model checking of the modaicalculus. The complexity of this class of games
is known to be in NR co-NP [11], and even in UP co-UP [14].

We are especially interested in parity conditions with ¢hcelors. which can ex-
press the disjunction of Biichi and co-Biichi conditions.we shall see, 3-color parity
games occur in the solution ¢timed games. For 3-color parity games, the algorithm
with the best worst-case complexity is the progress meadgogithm of [13]. In this
paper, we present an acceleration technique that greagisoiras the performance of
this algorithm in many cases, while retaining its worstedashavior. We then show how
the algorithm can be implemented symbolically, and how ihpares in performance
with more traditional-calculus based algorithms [10].

We consider parity games with colors 0, 1, 2, where the goRlafer 1 is to ensure
that the minimum color visited infinitely often is even. Th@gress measure algorithm
works by updating a function assigning an integer value hestate of the game,
called themeasureof that state. The measure of each state starts at zero;tesation
of the algorithm can either increase the measure at a stateawe it unchanged. If
the measure of a state exceeds the numbeaf 1-color states, the state is losing for
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Player 1. The algorithm stops when the progress measurbagacfixpoint. Even in
the best case, the algorithm needs a number of iteratiop®ional ton .

We propose an acceleration scheme based on the followinlj.r8sppose that, at
a certain step of the algorithm, we find an integesuch that no state has measkre
but some states have measure greater th&all & a “gap” in the measure. We prove
that all states having measure greater than thé:gap losing for Player 1; they can be
immediately be assigned measure+ 1. This enables us to solve many 3-color parity
games in much fewer tham iterations; as we shall see, this acceleration is espgciall
effective for timed games.

In the second part of this paper, we show how the accelerag@mique for three-
color parity games can be applied to timed games, leadinffitde@t symbolic algo-
rithms. Timed games are games played in such a way as to makeitereference
to the passage of time [15, 3]. Generally, the players of adigame specify in their
moves both the action they want to execute and the time atwh&y want to execute
it. Moreover, in the literature such games are usually playe timed-automata-like
arenas, so that the game state is also made time-aware byetbenpe of clocks. As
for standard games, the objective for a player is to obtaiaraggrun belonging to a
given set of desired runs, callgdal. Common goals for timed games include reaching
a given set of states (reachability) or staying forever iivamset of states (safety).

Most formulations of timed games allow players to “stop thegpess of time” by
proposing zero, or converging, time delays. Obviouslyséhghysically impossible be-
haviors must be ruled out in order not to obtain artificialisioins to the game. Previous
approaches differ in how they deal with this problem. Sonpepamake sure that non-
physical behaviors cannot arise in the first place, by ptasinuctural restrictions on
the games they are willing to treat [3, 12]. Other papersd@@layer to ensure time
divergence [15] as a prerequisite for winning, with the tethat players are precluded
victory in many games where the goal can be achieved onlyseithe delay. Still other
papers ignore the issue, so that their solutions work onlgdb-classes of games, such
as safety [17, 2] or reachability [5] games.

A technique that does not restrict the type of games that eatadkled is advo-
catedin[9, 7, 1]. The approach distinguishes between tiginat goal of the game and
thewinning condition which is a suitable modification of the goal ensuring thaeti
blocking strategies are not convenient for either playbe Winning condition states,
roughly, that in addition to achieving the goal, a player trerssure that either time
diverges, or that the blame for stopping time lies with thieeotplayer [2, 7]. As we
shall see, for safety and reachability games, such winronglition can be captured by
a 3-color deterministic parity automaton. Thus, solvinfegaand reachability timed
games involves solving 3-color parity games.

We consider timed games played in discrete time, and we prasgymbolic imple-
mentation of the progress measure algorithm, based on digmbethods for updating
the progress measure, finding the gaps, and achieving saitete We show that the
acceleration is fundamental in achieving an efficient imatation of the progress
measure algorithm: in the examples we tested, we achiewstisypp factors of several
hundreds. We also compare the performance of the resultjogitams with the clas-
sical y-calculus-based fixpoint algorithm of [10]. The running ¢isnof the two algo-



rithms were, in our experiments, within a factor of two of leather, with the classical

p-calculus algorithm generally being the fastest. Howewer,results are not conclu-
sive, since minor implementation details, such as the ehofosariable ordering and

differences in the encoding of the game transition relati@em to have a large effect
on the performance of the algorithms.

2 Algorithms for 3-color Parity Games

For an integedl > 0, a parity gamewith d colorsis a tuple(Sy, S2, E, ¢), whereS;
and .S, are the finite sets of states of Player 1 and Player 2, respictiVe require
S1 NSy = and we setS = S; US,. E C S?%is the set of edges, and: S —
{0,1,...,d—1} is afunction assigning a color to each state. Foi &ll0, ..., d—1, we
setC; = ¢~ 1(i). Moreover, leth = |S| andm = |E|. A strategyfor playeri € {1,2}
is a functionr : S* — S such that, for alb € S*, if the last state of is s € S; then
(s,m(0)) € E. Let II'* andII? denote the sets of strategies of Player 1 and Player 2,
respectively. Atrace is an infinite path in the directed gragls, E). Givens € S,
7l € II' andn? € II?, theoutcomes(s, nt, w2) of 7! and=? from s is the unique
tracespsi ... such thatsy = s and for allj > 0, s; = 7(s¢s1 . ..s;_1) if and only if
sj—1 € S;. We say that a strategy* € IT* is winningfrom states iff for all 72 € 172,
the smallest color that appears infinitely oftensify, 7%, 72) is even. We denote by
Win' the set of states from which Player 1 has a winning strategy.

In the following, we examine two algorithms for solving ggrgames with three
colors. We consider a fixed parity ganig,, Sa, E, ¢) with three colors. When dis-
cussing the complexity of the algorithms, we assume an ad@clist representation
for the game.

2.1 Emerson-Jutla’sp-Calculus Algorithm

From [10], parity games can be solved using a fixpoint contmtanvolving the so-
calledcontrollable predecessor operators

Definition 1 (Controllable Predecessor Operator). For a set of states{ C S,
Cpre'(X) yields all states from which Player 1 can force the game ikitin one
step. Formally,

Cpre*'(X) ={s€ S1|3(s,t) eE.t€ X} U {s€Sy|V(s,t) EE.t € X}

For parity games with three colors, the set of winning stdtés' can be charac-
terized using the following formula [10], written im-calculus notation:

Win' = vZ.uYvX.|(Cpre'(X) N Cs) U (Cpre’ (Y)NCy) U (Cpre*(Z) N CO)]

Such fixpoint can be computed by Picard iteration, usingetimested loops; we will
refer to this algorithm as th&J algorithm.An enumerative implementation of this
algorithm takes timeO(m - n?): the inner loop can be computed in timi&m) (the
computation is analogous to the one used for solving safatyeg), while the outer
loops can be performed at mastimes each. On the other hand, a symbolic implemen-
tation requires tim&(m - n?), since the computation afpre' takes timeO(m), and

it is performedO(n?) times.



2.2 Jurdzinski's Progress Measure Algorithm

An alternative algorithm for computingVin' is the progress measuralgorithm

from [13]. For three-color parity games, this algorithm lias best worst-case com-
plexity of all known algorithms. Let, = |C;|andM = {0,1,...,n;+1}. A progress
measuras a functionp : S — M. The algorithm proceeds by building a monotonically
increasing sequendg; );>o of progress measures, until a fixpoint is reached.

Fora € M andj € {0,1, 2}, we define

0 if 7 =0anda < ny + 1,
Progr(a,j) = a+1 if j=1anda <n; +1, 1)
@ otherwise.

We havep,(s) = 0 forall s € S. For alli > 0, the update from; to p;+1, calledlift,
is dictated by the following rule, wherell b denotesnax{a, b}.

wing, o er Progr(pi(t). c(s) if s € S,

pi+1(s) = pi(s) U { (2)

max, e Progr(pi(t),c(s)) if s € S.

Denotingp* the fixpoint of the sequendg;)i>o, the set of winning statedVin' is
characterized by:
Win' = {s € S| p*(s) <ni +1}.

Given p;, computingp;+1 requires timeO(m). Since at each step the measure of at
least one state increases by at least one, our formulatitveatlgorithm requires time
O(m - n?). Notice that, by applying the complexity bound cited in Then 11 of [13],

we obtain a time complexity of(m - n). The difference is due to the fact that our
formulation of the algorithm updates the progress meadures| states at once, while
the original algorithm only updates the progress meas@rstate at a time. Moreover,
theO(m -n) complexity can only be achieved if we can somehow efficietiiermine
which states need to be lifted. This presumably require&keaping at every state and
lift propagation algorithms, that are incompatible witk #fymbolic implementation we
discuss in Section 5.

2.3 Gap Algorithm

We present thgap acceleration techniguer the progress measure algorithm of Jur-
dzifski. The resulting algorithm, which we call tgap algorithmjs often much faster
than the original progress measure algorithm, while retgiits worst case complexity.
Informally, the idea is as follows. At any step of the alglomit, let be an integer in
{0,1,...,n1} such that no state has progress measubeit some states have progress
measure greater than We call such a value df a “gap”. We show that all states with
progress measure greater thamre losing. Therefore, we can immediately set their
measure tm; + 1, thus accelerating the convergence of the algorithm. lotjoe, after
each update of the progress measure, we will seek the minigayi, and we will set
to n; + 1 the progress measure of all states having progress medsare the gap:.
The correctness of this optimization is proved by the follmpMdemma and theorem.



Lemmal. Foralli > 0 andk > 0, let ZF = {s € S | pi(s) > k}. Then, for all
s € ZF, Player 2 can enforce at leag(s) visits toC;. Moreover, only states iir*
are visited before the first visit 10 .

Proof. Notice that, for alli < j, it holds Z}* C Z¥. We proceed by induction ah For

i = 0, the statement is trivially true, singg(s) = 0 forall s € S. Fori > 0, we
distinguish the following cases.

— s €y If s €5 (resp.s € 57), then all (resp. at least one) of the successors
of s are such thap;_1(t) > pi(s) > k; thus,t € ZF . By inductive hypothesis,
Player 2 can enforce fromat leastk visits to Cy, and the first visit occurs before
ZF | isleft. SinceZk | C ZF, the thesis applies ta

—s € (Cq.If s € S (resp.s € S3), then all (resp. at least one) of the successors
t of s are such thap; 1 (t) > pi(s) — 1 > k — 1; thus,t € Z"~'. By inductive
hypothesis, Player 2 can enforce fromit leastc — 1 more visits toC; . Therefore,
Player 2 can enforce fromat leastk visits toC; . The first visit toC; beings itself,
it occurs trivially without leavingZ.

— s € Cp. Then,p;(s) = 00rp;(s) = ny + 1. If p;(s) = 0, the result is trivial. If
pi(s) = n1 + 1, the result follows by noticing that, ¥ € S; (resp.s € S2), then
all (resp. at least one) of the succesgou§ s are such thap; (t) = n; + 1.1

Theorem 1. Giveni > 0 andk > 0, assume thap; '(k — 1) = (). Then, each state
s € ZF is alosing state for Player 1.

Proof. First, we show that, starting from Player 2 can enforce infinitely many visits
to C1, while remaining inZ¥ at all times. In particular, it € Z* N Cy, by Lemma 1,
Player 2 has a strategy to reaCh while staying inZF at all times. If insteads €
ZFN Oy, Player 2 can enforce that the next state is stilffiy as the following argument
shows. Ifs € Sy, all successorsof s satisfyp;(t) > pi—1(t) > pi(s) =1 > k — 1.
However, since it cannot bg;(t) = k — 1, it must bep;(t) > k, and sot € ZF.
Finally, if s € Sa, lett be the successor that maximizRsgr(p;—1(t), c(s)). We have
pi(t) > pi—1(t) = pi(s) — 1 > k — 1. As before, it must be;(t) > k and sot € ZF.

It remains to be proved that, while visiting; infinitely often, Cy is not visited
infinitely often. Notice that for alk Zf N Cy, it holdsp;(s) = ny + 1. Therefore, if
a state inCy is ever visited, it is a losing state for Playeil.

Itis not hard to devise an example where the gap accelerdties not decrease the
total number of iterations. For all > 0, consider the gamé';, in Figure 1(a). States
drawn as ©” belong to.S; while those drawn ag™” belong to.Ss. The numbers in the
states represent their color. The ga@gis a chain ofk states of color one, leading to
a sink state of color zero. The lock-step algorithm requiregobal lifts to reach the
fixpoint. During the process, the progress measure exhibitgaps, thus neutralizing
the proposed acceleration technique.

On the other hand, the gap acceleration technique can bensbfe for an un-
bounded speed-up compared to both the original algoritharoan lock-step formula-
tion of it. For allk > 0, consider the gamé/; ;, from [13], depicted in Figure 1(b).
The game is essentially a bi-directional chain madk stfates of color one, alternating
with k£ + 1 states of coloR. As proven in [13], the original algorithm has to lift each
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(a) The game7,,. (b) The gameH .

Fig. 1. Two game families illustrating different performance gaiffered by the gap acceleration.

statek times before acknowledging that all states are losing, teashing a complex-
ity of O(k?). Similarly, the lock-step formulation of the algorithm reéces % global
lifts, leading to a complexity of)(k?). However, after two global lifts all states have
progress measure greater than zero. Therefore, if the gapeaation is enabled, three
lifts are enough to reach the fixpoint, for a total time commjtjeof O(k).

3 Timed Interfaces with Variables

In this section, we present a model of real-time interfach&kvis obtained from the
sociable interfacesf [6], by adding discrete clocks in the spirit of [9].

The state space of our timed interfaces is represented @bles, interpreted over
a given domairD. Given a set of variableg, astateoverV is a mapping : V. — D
that associates with eache V a values(xz) € D. We denote byV] the set of all
states ovel/. For a set of variableE” C V, and a state € [V], the restriction o to
V'is astates’ € [V'] denoted by|y. For two disjoint sets of variabldé’ andV \ V’,
and two states’ € [V'] ands” € [V'\ V'], the operatiotis’ - s"”) concatenates the two
states resulting in a new state= [V]. For two setsd andB, we writef : A = B to
indicate thatf is a function with domaim and codomair2?.

Definition 2 (Timed Interface). A timed interface is a tuple M =
(X, VG, Vi, Cory i, 780, 04, 05)), where:

— X is a set ofactions

- Vj\cj is a set ofglobal variables Vi is a set ofocal variables andC), is the set of
clock variablesClock variables are interpreted over the B&t of natural numbers
including zero. We requir€y; C Vi andV,GN Vi = 0. We setly, = VGUVE.

— Forall actions: € Xy, 7i,(a) : [Vm] = [Va] is theinput transition relationof
a. We require this transition relation to lbleterministiow.r.t. variables inv/j;, that
is,

Ya € X, s € [Var], Vs1, 82 € Tip(a)(s). (s1lvz = salyz).

— For all actionsz € Xy, 7§ (a) : [Vir] = [Vas] is theoutput transition relation
of a.

— ¢!, C [Va] is theinput invariant

- ¢§; C [Var] is theoutput invariant

The set of state§Vy/] of a timed interfacel is denoted byS)y,. Fors € Sy,
we denote bys + 1 the state which coincides with except that the clock variables
have been incremented by one. Formallys+ 1)(v) = s(v) + 1 forallv € Cy, and
(s +1)(v) = s(v) forallv € Vs \ Ciy-



The semantics of a timed interface is a game between playeus &nd Output. At
each step, both players propose a move and the state of énfagd evolves according
to the following definitions. Each move can Lig a state reachable from the current
one by taking an actiortii) the request to let time advance (maxe), or (iii) the null
move Aq. Each player can only play moves that maintain the playavariant. In the
following, we consider a fixed interfacd .

Definition 3 (Moves). For all statess € Sy, andi € {I,0}, let Di(s) = {4} if
s+ 1€ ¢, andD’(s) = 0 otherwise. The set of possible moves for playat s is:

Tii(5) = (Uaesy, Thr(@)(5) Nl ) U {40} U Di(s).
We also defind, = U,cg,, /()

Two Boolean variables bland bf’ are used for specifying whether a player lets
time elapse or not (i.e. proposegia action). bl (bl) is true if and only if the action
proposed by the input (output) player is ndt. An extended statg is a states € Sy,
augmented with the truth values for the Boolean variabl€sanid bf. The set of all
extended states off is Sy = Sy x {T, F}2.

Definition 4 (Moves Outcome). For all statess € Sj; and movesn! ¢ F]Q(s) and
m© € I'{)(s), theoutcomeiy (s,m!, m?) of m! andm© at s is the set of extended
states defined by the following table, where rows repredauites form’ and columns
represent choices fon© .

I Ao | Ay |
Ao {(s,blF,bI?)} | {(s,bl",=bl?)} {(s”, bl bI?)}
A1 {(s,—bl!,bI®)} [{(s +1,-bl’,=bl®)} {(s”,=bl",bI?)}
s |{(s',bI",=bI?)}  {(s',bI",=bI?)} |{(s',bI*,=bI?), (s”,=bI", bI®)}

Definition 5 (Strategy). A strategyfor playeri € {I,0} in M is a functionr® :
S%, — I, that associates, with every finite sequence of extendeesstavhose last
state iss = (s,bl’,bl?), a mover' (o) € I'i;(s). We denote byiTi, andII$, the set
of input and output strategies i, respectively.

Definition 6 (Strategy Outcomes). Given a states € Sy, an input strategy

7! e IT, and an output strategy® < II$), the set ofoutcomesiy (s, 7, 7°)

of 7/ and 7© from s consists of all infinite sequences over extended states
o = (so,bll,bI9), ..., (5,0l bI?), ... such thats, = s, and for alli > 0
(si+1,blL 1, 0IZ 1) € dar(si, 7wl (0<i), 70 (0<;)) whereo<; denotes the prefix of

up to thei-th extended state. Notice thaf,tend bf are arbitrarily defined.

In the following, we useick as a shorthand forbl® A —bl?, which means that both
players propose a time elapse step. Furthermore, we us@theoltation [16] to denote
sets of traces.



module Scheduling:
var cpu, activeA, activeB, doneA, doneB: bool
var cA, dA, cB, dB: clock

oinv: (activeA -> dA <= 3) & (activeB -> dB <= 5)
iinv: (cA <= 4) & (cB <= 9)

input startA : { local: “doneA & ~activeA & “cpu ==>

activeA’ := true, cpu’ := true, dA’ := 0 }
input startB : { local: “doneB & “activeB & “cpu ==>

activeB’ := true, cpu’ := true, dB’ := 0 }
output stopA : { activeA ==> “activeA’ & “cpu’ & doneA’ }
output stopB : { activeB ==> ~activeB’ & “cpu’ & doneB’ }
input periodA: { local: doneA & cA = 4 ==> cA’ := 0, doneA’ := false }
input periodB: { local: doneA & cB = 9 ==> cB’ := 0, doneB’ := false }

endmodule

Fig. 2. Timed interface representing the periodic scheduling lprabof two non-preemptable
tasks.

As discussed in [7], in order to take into proper accoungdldehaviors that would
lead to an artificial stopping of time, if playérc {/,O} has a certain goajoal, he
should actually enforce the winning conditidfiC"* (goal), defined as follows:

W' (goal) = (goal A OOtick) v ©ObI
W (goal) = (goal A OStick) vV ©O-bIC.

Intuitively, these conditions require a player to ensugd thtime diverges, the goal is
realized, and if time fails to diverge, the blame lies witk #idversary. The conditions
are asymmetrical, reflecting the fact that Input and Outputat behave in fully sym-
metrical ways during composition [9]. Givene Sy, a strategyr! € II1, is1-winning
from s w.r.t. the goalgoal, iff V7€ € IT$; . §(s, 7!, 7°) € WC'(goal). Similarly, a
strategyr© e I1S, is O-winningfrom s W.r.t. goal, iff V2! e IIL, . §(s,n%,7°) C
WCO(goal). A states € Sy is I-winning (resp. O-winning) iff there exists an In-
put strategy that is I-winning (resp. O-winning) framThe set of all I-winning (resp.
O-winning) states is denoted B¥in’, (goal) (resp.Win$; (goal)).

A particularly important game is theell-formednesgame, where the goals of the
players are simplyr, so that their winning conditions ar@in’,(T) and Win$, (1),
respectively. Intuitively, if a player can win the well-foedness game, it means that it
can “keep the system going”, without entering dead-ené@staom which time cannot
progress [9, 7].



4 Example: Scheduling as a Timed Game

We present an example of a periodical scheduling problemdattas a timed interface.
In the timed interface, the actions of Input represent saleediecisions, such as the de-
cision of starting a task. The actions of Output represesit teondeterminism, such as
the variability in task execution times. The goal of Inputasensure that no deadline
is missed. If Input can win the game, the scheduler has a&gtrdhat correctly sched-
ules the tasks, ensuring that no deadline is missed regardfg¢ask nondeterminism.
Technically, the goal of not missing deadlines is a safetyditin, stating that, while
the tasks’ execution has not completed, certain clocksldhimave values not exceed-
ing the deadlines. We take this safety condition as the lmpatiant, thus saddling the
Input player, representing the scheduler, with the goal eéting deadlines. We will
see that taking into account for time progress in the winmiogdition is essential, if
we wish to encode scheduling problems as timed games. Inddled requirement for
time progress is disregarded, the easiest way to ensurértesadre met is to block the
progress of time: as time cannot progress, deadlines cherratssed!

The timed interface in Figure 2 encodes a periodical, n@&mptive scheduling
problem involving two tasks4 and B. Task A has a period of 5s (measured by clock
ch), and lasts up to 3s (measured by clda; task B has period 9s, and lasts up to 4s.
The output invariant enforces the fact that neither tasklmmactive for longer than
its specified maximal duration. The input invariant states the values of the clocks
cA and cB cannot grow larger than the period lengths, namely, 5 andhi& fbrces
the scheduler to reset these clocks, via actignsi odA andperiodB, before they go
beyond values 5 and 9. The actipariodA signals the start of a new period for task
A; its guarddoneA specifies thaperiodA can be taken only once the execution of task
A has completed. The situation for taskis similar. Therefore, to avoid violating the
input invariant, Input (the scheduler) must issue actigtisrtA, startB, periodA,
periodB with a timing ensuring that jobd and B terminate no later than the end of
their respective periods. An Input strategy for doing thesresponds to a scheduling
strategy for the task set.

This example illustrates why the winning condition needadoount for time di-
vergence. Had we taken as winning condition for Input, rather thaiin! (1) =
Ootick v < Obl?, Input could have won simply by stopping time progress, fistance,
by playing always move),.

5 Symbolic Solution of the Well-Formedness Game
Consider the winning condition for the input player in thdlviermedness game.
wel (1) = ootick v ©abl@.

Being the disjunction of a Blichi and a co-Biichi conditidn;an be expressed as a
parity condition with three colors, assigned as follows:

Cy = —bl! A =bl%; Cy = bl A =bl?; Cy =bl®.

If ¢ is a safety, reachability, Buchi, or co-Buchi formulasisimilarly possible to obtain
3-color deterministic parity automata encodifigC’ (¢) and WC© ().



We note that’; consists of the states where Input is forced to play eithercéion,
or the 0-delay move),. Thus, in a timed game, the gap is related to the maximal
number of times for which Input can be forced to play withaeitihg time advance.
This number is generally much smaller than the numbefr'obtates, as these chains
of forced O-time transitions tend, in practical exampled¢ fairly short (it is unusual
for them to be longer than a dozen transitions). This expl#ie very large speedup
provided by the gap acceleration in the analysis of timedegam

If we restrict the variable domaih to be finite, and we manage to let clock variables
also range over a finite set, we can apply the EJ and gap &lguito the problem of
checking well-formedness of an interface. The toa d[8] allows the user to specify
timed interfaces using a convenient syntax based on guaatathands. The tool is in
the process of being extended to discrete real-time.itrc;Tclock variables can only
be compared to (or assigned from) constants. Under thigrgs#an, it is well known
that, for each clocl, it is sufficient to consider the range of values going fromoze
the maximum constant to whichis ever compared (or assigned from), plus one.

We implemented in Tcc both the EJ and the gap algorithms; we experimented with
both algorithms for solving well-formedness games. In twd, tinterfaces are internally
represented using Multi-valued Decision Diagrams [19] (M as implemented by
the CUDD library [18]. Therefore, in the following we disauthe issues regarding the
symbolic implementation of both algorithms.

5.1 Gap Algorithm

Since the progress measure algorithm is tailored to tusedhgames, we have to em-
ulate the turns by providing separate transition relatfomdnput and Output. Input
moves from the original (megular) states of the concurrent game, while Output moves
from intermediatevirtual states. Notice that, if from a regular staténput chooses to
reach state’ via actiona, Output in the next virtual state can decide toddtappen (by
picking move4), or rather take an alternative actibfrom s. Thus, we have to store
in the virtual state both the start statand the proposed destinatieh Therefore, we
end up having three copies of the state variablgswhich we callV’, V’/, andV”. The
transition relation of Input in the turn-based game is repnéed by the predicaté, of
typeV — V', V", bl’. The transition relation of Output is represented by theljoate
70, of typeV’, V", bll — V,bl®. We need an extra variableto represent the progress
measure.

Next, we need to represent the functiBrogr from (1), used to update the progress
measure. For states of color on@rogr has to increment the value of the progress
measure by one. Consider the general problem of having acpted. over the set of
variablesZ, and wanting to increment by one the variable Z, unless the value of
is already equal to its maximum value,,,. Using standard MDD operators, this can
be achieved by having an extra variableand performing the following computation:

incr(a, z) = (Fz(a N2 =24 1))[z/2'| V(@A 2 = zmaz)-

However, the above computation leads to very poor perfoc@asincep can have a
very high maximum value, the computation of the predigéte: p + 1 alone requires
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a very large amount of time. Thus, in place of the above coatjmut, we developed a
specific increment operator, as follows. gt 21, . . ., zx be the binary variables encod-
ing variablez, ordered from the least significantj to the most. For € {0,..., k},
and~e {<,<,>,>},letzo. = {z; | j ~ c}.

function Increment(a, 2)
vars: r, @, a, pos neg : MDD
r = false
a:=a(z=2zmas)
a:=aN(z+# zZma)
fori:=0to k do
neg :=—zp A—z1 A... A"z
POS :=zp Az1 Ao . N 2Zi—q
ri=rV (negA z; A Jz<; . (@ A POSA —z;))
done
return r va

o

Then, in order to implement the measure update step deddopé2), we need the
following symbolic operation. Letr be a predicate over the set of variablésand
let = € Z. For each assignment to the variableszn, {z}, « may contain several
different assignments to. We want to preserve the minimum valuezobnly. We call
this predicatenin, «. In set notation, we have:

min; o = {s € a| s(z) = min{s'(z) | s’ € a}}.

No efficient implementation ofnin exists using standard MDD operators. We thus

developed a newttiin” operator according to the following algorithm.

function Min (a, 2)
vars: r : MDD
r.=o
for ¢ := k down to 0 do
ri=rA ((ﬁzi ANTzsi . T)V (2 AV2>; . (2 = ﬁr)))
done
return r

The “min” operator is also useful to determine the minimurp gaa measure. If

is the predicate over variablé®, bl’, bl°, p) representing the measure of each regular
state in the game, the equatioiin , YVVbl! bl . —a yields “false” if the measure has
no unused values, or otherwise a predicate of the typec, wherec is the minimum
unused value of the measure (and thus a good candidate to dy®.aSgich predicate
can then be used to implement the acceleration techniqeemted in Section 2.3.

5.2 Emerson-Jutla’sp-Calculus Algorithm

To apply the EJ algorithm of Section 2.1, we do not need to idenshe turn-based
version of the game. Rather, we simply use as controllatddqumessor operator the
following.

11



Definition 7 (Concurrent Controllable Predecessor Operato). Cpre! : 28m
29M assigns to each set of extended stateghe set of states from which Input can
force the game int& in one step. Formally,

Cpre’ (X) = {s € Sar | Im! € T},(s) .Ym® € I'{}(s) . dar(s,m!,m°) C X}.

The transition predicates’ and~© developed in the previous section can also be
used to obtain a symbolic implementation@jre’. Given a predicate: over variables
(V, bl*, bl?), we have:

Cprel (o) = 3V'3V"30l . 71 A (VVVblO 79 = a).

Given the symbolic implementation @fpre!, the EJ algorithm can be implemented in
a straightforward manner, using three nested loops thapaterhe fixpoint by Picard
iteration.

5.3 Experimental Results

On the basis of the implementation discussed above, we aeahphe performance
of the EJ and gap algorithms. Our results indicate that tifopeance improvement
afforded by the gap acceleration is essential: for the sdmedexample, for instance,
the acceleration reduces the number of iterations fromast 83,920 in the original
Jurdzihski progress measure algorithm to 163 in the gapritign — a speed-up of
over 450. Without acceleration, we believe that the pragmesasure algorithm is highly
impractical for solving 3-color parity games.

Our results indicate that there is no clear winner betweerithalgorithm and the
gap algorithm. The running times of the two algorithms wareur experiments, within
a factor of two of each other, with the EJ algorithm generadling the fastest. We sus-
pect that the BDD variable ordering, and other details ofsffrabolic implementation,
have a large influence on the results, so that we do not bahet®ur experiments are
conclusive. For the scheduling example of Section 4, thatimgll-formedness of the
interface can be computed in 144s with the EJ algorithm, &2 3vith the gap algo-
rithm, on an AMD Athlon 64 4400+ CPU running 32-bit linux. Ine gap algorithm,
the main expense occurs in the “lift” operation; we are itigeging more efficient sym-
bolic implementations of this operation.

In the same paper [13] that introduced the progress meakomaethm, the follow-
ing acceleration is mentioned: in placerof, it suffices to take the maximum number
n} of C;-states belonging to a strongly-connected component (8€@g game graph
(S, E); clearly,n} < nj.In an enumerative setting, both this SCC-based accalerati
and our gap-based acceleration, are of interest, and eaciups greater speed-ups on
some games. In a symbolic setting, the time required to céenPGCs must be taken
into account; the straightforward symbolic algorithm meguire a quadratic number of
iterations. In contrast, our gap-based acceleration cgretfermed at negligible cost.
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