
An Accelerated Algorithm for 3-Color Parity Games
with an Application to Timed Games⋆

In Proc. of CAV 2007: 19th International Conference on Computer Aided Verification,

Lectures Notes in Computer Science.c©Springer-Verlag, 2007.

Luca de Alfaro1 and Marco Faella2

1 Department of Computer Engineering, University of California, Santa Cruz, USA
2 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Italy

Abstract. Three-color parity games capture the disjunction of a Büchi and a
co-Büchi condition. The most efficient known algorithm forthese games is the
progress measures algorithm by Jurdziński. We present an acceleration technique
that, while leaving the worst-case complexity unchanged, often leads to consid-
erable speed-ups in games arising in practice. As an application, we consider
games played in discrete real time, where players should be prevented from stop-
ping time by always choosing moves with delay zero. The time progress condition
can be encoded as a three-color parity game. Using the tool TICC as a platform,
we compare the performance of a BDD-based symbolic implementation of the
progress measure algorithm with acceleration, and of the symbolic implementa-
tion of the classicalµ-calculus algorithm of Emerson and Jutla.

1 Introduction

The parity acceptance condition for automata and games enjoys many interesting prop-
erties. Everyω-regular language can be recognized by a deterministic parity automa-
ton [20]. The parity accepting condition is closed under complementation, and games
with parity accepting conditions admit memoryless optimalstrategies for both players.
Moreover, parity games have received a great deal of attention due to their equivalence
to the model checking of the modalµ-calculus. The complexity of this class of games
is known to be in NP∩ co-NP [11], and even in UP∩ co-UP [14].

We are especially interested in parity conditions with three colors. which can ex-
press the disjunction of Büchi and co-Büchi conditions. As we shall see, 3-color parity
games occur in the solution oftimedgames. For 3-color parity games, the algorithm
with the best worst-case complexity is the progress measurealgorithm of [13]. In this
paper, we present an acceleration technique that greatly improves the performance of
this algorithm in many cases, while retaining its worst-case behavior. We then show how
the algorithm can be implemented symbolically, and how it compares in performance
with more traditional,µ-calculus based algorithms [10].

We consider parity games with colors 0, 1, 2, where the goal ofPlayer 1 is to ensure
that the minimum color visited infinitely often is even. The progress measure algorithm
works by updating a function assigning an integer value to each state of the game,
called themeasureof that state. The measure of each state starts at zero; each iteration
of the algorithm can either increase the measure at a state, or leave it unchanged. If
the measure of a state exceeds the numbern1 of 1-color states, the state is losing for

⋆ This research was supported in part by the NSF grant CCR-0132780. The second author was
supported by a scholar mobility program from Università diNapoli “Federico II”.

Player 1. The algorithm stops when the progress measure reaches a fixpoint. Even in
the best case, the algorithm needs a number of iterations proportional ton1.

We propose an acceleration scheme based on the following result. Suppose that, at
a certain step of the algorithm, we find an integerk such that no state has measurek,
but some states have measure greater thank. Call k a “gap” in the measure. We prove
that all states having measure greater than the gapk are losing for Player 1; they can be
immediately be assigned measuren1 + 1. This enables us to solve many 3-color parity
games in much fewer thann1 iterations; as we shall see, this acceleration is especially
effective for timed games.

In the second part of this paper, we show how the accelerationtechnique for three-
color parity games can be applied to timed games, leading to efficient symbolic algo-
rithms. Timed games are games played in such a way as to make explicit reference
to the passage of time [15, 3]. Generally, the players of a timed game specify in their
moves both the action they want to execute and the time at which they want to execute
it. Moreover, in the literature such games are usually played on timed-automata-like
arenas, so that the game state is also made time-aware by the presence of clocks. As
for standard games, the objective for a player is to obtain a game run belonging to a
given set of desired runs, calledgoal. Common goals for timed games include reaching
a given set of states (reachability) or staying forever in a given set of states (safety).

Most formulations of timed games allow players to “stop the progress of time” by
proposing zero, or converging, time delays. Obviously, these physically impossible be-
haviors must be ruled out in order not to obtain artificial solutions to the game. Previous
approaches differ in how they deal with this problem. Some papers make sure that non-
physical behaviors cannot arise in the first place, by placing structural restrictions on
the games they are willing to treat [3, 12]. Other papers force a player to ensure time
divergence [15] as a prerequisite for winning, with the result that players are precluded
victory in many games where the goal can be achieved only withsome delay. Still other
papers ignore the issue, so that their solutions work only for sub-classes of games, such
as safety [17, 2] or reachability [5] games.

A technique that does not restrict the type of games that can be tackled is advo-
cated in [9, 7, 1]. The approach distinguishes between the original goalof the game and
thewinning condition, which is a suitable modification of the goal ensuring that time-
blocking strategies are not convenient for either player. The winning condition states,
roughly, that in addition to achieving the goal, a player must ensure that either time
diverges, or that the blame for stopping time lies with the other player [2, 7]. As we
shall see, for safety and reachability games, such winning condition can be captured by
a 3-color deterministic parity automaton. Thus, solving safety and reachability timed
games involves solving 3-color parity games.

We consider timed games played in discrete time, and we present a symbolic imple-
mentation of the progress measure algorithm, based on symbolic methods for updating
the progress measure, finding the gaps, and achieving acceleration. We show that the
acceleration is fundamental in achieving an efficient implementation of the progress
measure algorithm: in the examples we tested, we achieved speed-up factors of several
hundreds. We also compare the performance of the resulting algorithms with the clas-
sical µ-calculus-based fixpoint algorithm of [10]. The running times of the two algo-

2

rithms were, in our experiments, within a factor of two of each other, with the classical
µ-calculus algorithm generally being the fastest. However,our results are not conclu-
sive, since minor implementation details, such as the choice of variable ordering and
differences in the encoding of the game transition relation, seem to have a large effect
on the performance of the algorithms.

2 Algorithms for 3-color Parity Games

For an integerd > 0, a parity gamewith d colors is a tuple(S1, S2, E, c), whereS1

andS2 are the finite sets of states of Player 1 and Player 2, respectively. We require
S1 ∩ S2 = ∅ and we setS = S1 ∪ S2. E ⊆ S2 is the set of edges, andc : S →
{0, 1, . . . , d−1} is a function assigning a color to each state. For alli = 0, . . . , d−1, we
setCi = c−1(i). Moreover, letn = |S| andm = |E|. A strategyfor playeri ∈ {1, 2}
is a functionπ : S∗ → S such that, for allσ ∈ S∗, if the last state ofσ is s ∈ Si then
(s, π(σ)) ∈ E. Let Π1 andΠ2 denote the sets of strategies of Player 1 and Player 2,
respectively. Atrace is an infinite path in the directed graph(S, E). Given s ∈ S,
π1 ∈ Π1 andπ2 ∈ Π2, theoutcomeδ(s, π1, π2) of π1 andπ2 from s is the unique
traces0s1 . . . such thats0 = s and for allj > 0, sj = πi(s0s1 . . . sj−1) if and only if
sj−1 ∈ Si. We say that a strategyπ1 ∈ Π1 is winningfrom states iff for all π2 ∈ Π2,
the smallest color that appears infinitely often inδ(s, π1, π2) is even. We denote by
Win1 the set of states from which Player 1 has a winning strategy.

In the following, we examine two algorithms for solving parity games with three
colors. We consider a fixed parity game(S1, S2, E, c) with three colors. When dis-
cussing the complexity of the algorithms, we assume an adjacency list representation
for the game.

2.1 Emerson-Jutla’sµ-Calculus Algorithm

From [10], parity games can be solved using a fixpoint computation involving the so-
calledcontrollable predecessor operators.

Definition 1 (Controllable Predecessor Operator). For a set of statesX ⊆ S,
Cpre1(X) yields all states from which Player 1 can force the game intoX in one
step. Formally,

Cpre1(X) = {s ∈ S1 | ∃(s, t) ∈ E . t ∈ X} ∪ {s ∈ S2 | ∀(s, t) ∈ E . t ∈ X}.

For parity games with three colors, the set of winning statesWin1 can be charac-
terized using the following formula [10], written inµ-calculus notation:

Win1 = νZ.µY.νX.
[

(Cpre1(X) ∩ C2) ∪ (Cpre1(Y) ∩ C1) ∪ (Cpre1(Z) ∩ C0)
]

.

Such fixpoint can be computed by Picard iteration, using three nested loops; we will
refer to this algorithm as theEJ algorithm.An enumerative implementation of this
algorithm takes timeO(m · n2): the inner loop can be computed in timeO(m) (the
computation is analogous to the one used for solving safety games), while the outer
loops can be performed at mostn times each. On the other hand, a symbolic implemen-
tation requires timeO(m · n3), since the computation ofCpre1 takes timeO(m), and
it is performedO(n3) times.

3

2.2 Jurdziński’s Progress Measure Algorithm

An alternative algorithm for computingWin1 is the progress measurealgorithm
from [13]. For three-color parity games, this algorithm hasthe best worst-case com-
plexity of all known algorithms. Letn1 = |C1| andM = {0, 1, . . . , n1+1}. A progress
measureis a functionρ : S → M . The algorithm proceeds by building a monotonically
increasing sequence(ρi)i≥0 of progress measures, until a fixpoint is reached.

Forα ∈ M andj ∈ {0, 1, 2}, we define

Progr(α, j) =











0 if j = 0 andα < n1 + 1,

α + 1 if j = 1 andα < n1 + 1,

α otherwise.

(1)

We haveρ0(s) = 0 for all s ∈ S. For all i ≥ 0, the update fromρi to ρi+1, calledlift ,
is dictated by the following rule, wherea ⊔ b denotesmax{a, b}.

ρi+1(s) = ρi(s) ⊔

{

min(s,t)∈E Progr(ρi(t), c(s)) if s ∈ S1,

max(s,t)∈E Progr(ρi(t), c(s)) if s ∈ S2.
(2)

Denotingρ∗ the fixpoint of the sequence(ρi)i≥0, the set of winning statesWin1 is
characterized by:

Win1 = {s ∈ S | ρ∗(s) < n1 + 1}.

Given ρi, computingρi+1 requires timeO(m). Since at each step the measure of at
least one state increases by at least one, our formulation ofthe algorithm requires time
O(m · n2). Notice that, by applying the complexity bound cited in Theorem 11 of [13],
we obtain a time complexity ofO(m · n). The difference is due to the fact that our
formulation of the algorithm updates the progress measuresfor all states at once, while
the original algorithm only updates the progress measureone state at a time. Moreover,
theO(m ·n) complexity can only be achieved if we can somehow efficientlydetermine
which states need to be lifted. This presumably requires bookkeeping at every state and
lift propagation algorithms, that are incompatible with the symbolic implementation we
discuss in Section 5.

2.3 Gap Algorithm

We present thegap acceleration techniquefor the progress measure algorithm of Jur-
dziński. The resulting algorithm, which we call thegap algorithm,is often much faster
than the original progress measure algorithm, while retaining its worst case complexity.

Informally, the idea is as follows. At any step of the algorithm, letk be an integer in
{0, 1, . . . , n1} such that no state has progress measurek, but some states have progress
measure greater thank. We call such a value ofk a “gap”. We show that all states with
progress measure greater thank are losing. Therefore, we can immediately set their
measure ton1 +1, thus accelerating the convergence of the algorithm. In practice, after
each update of the progress measure, we will seek the minimumgapk, and we will set
to n1 + 1 the progress measure of all states having progress measure above the gapk.
The correctness of this optimization is proved by the following lemma and theorem.

4

Lemma 1. For all i ≥ 0 andk > 0, let Zk
i = {s ∈ S | ρi(s) ≥ k}. Then, for all

s ∈ Zk
i , Player 2 can enforce at leastρi(s) visits toC1. Moreover, only states inZk

i

are visited before the first visit toC1.

Proof. Notice that, for alli ≤ j, it holdsZk
i ⊆ Zk

j . We proceed by induction oni. For
i = 0, the statement is trivially true, sinceρ0(s) = 0 for all s ∈ S. For i > 0, we
distinguish the following cases.

– s ∈ C2. If s ∈ S1 (resp.s ∈ S2), then all (resp. at least one) of the successorst
of s are such thatρi−1(t) ≥ ρi(s) ≥ k; thus,t ∈ Zk

i−1. By inductive hypothesis,
Player 2 can enforce fromt at leastk visits toC1, and the first visit occurs before
Zk

i−1 is left. SinceZk
i−1 ⊆ Zk

i , the thesis applies tos.
– s ∈ C1. If s ∈ S1 (resp.s ∈ S2), then all (resp. at least one) of the successors

t of s are such thatρi−1(t) ≥ ρi(s) − 1 ≥ k − 1; thus,t ∈ Zk−1
i−1 . By inductive

hypothesis, Player 2 can enforce fromt at leastk − 1 more visits toC1. Therefore,
Player 2 can enforce froms at leastk visits toC1. The first visit toC1 beings itself,
it occurs trivially without leavingZk

i .
– s ∈ C0. Then,ρi(s) = 0 or ρi(s) = n1 + 1. If ρi(s) = 0, the result is trivial. If

ρi(s) = n1 + 1, the result follows by noticing that, ifs ∈ S1 (resp.s ∈ S2), then
all (resp. at least one) of the successorst of s are such thatρi(t) = n1 + 1.

Theorem 1. Giveni ≥ 0 andk > 0, assume thatρ−1
i (k − 1) = ∅. Then, each state

s ∈ Zk
i is a losing state for Player 1.

Proof. First, we show that, starting froms, Player 2 can enforce infinitely many visits
to C1, while remaining inZk

i at all times. In particular, ifs ∈ Zk
i ∩ C2, by Lemma 1,

Player 2 has a strategy to reachC1 while staying inZk
i at all times. If insteads ∈

Zk
i ∩C1, Player 2 can enforce that the next state is still inZk

i , as the following argument
shows. Ifs ∈ S1, all successorst of s satisfyρi(t) ≥ ρi−1(t) ≥ ρi(s) − 1 ≥ k − 1.
However, since it cannot beρi(t) = k − 1, it must beρi(t) ≥ k, and sot ∈ Zk

i .
Finally, if s ∈ S2, let t be the successor that maximizesProgr (ρi−1(t), c(s)). We have
ρi(t) ≥ ρi−1(t) = ρi(s) − 1 ≥ k − 1. As before, it must beρi(t) ≥ k and sot ∈ Zk

i .
It remains to be proved that, while visitingC1 infinitely often, C0 is not visited

infinitely often. Notice that for alls ∈ Zk
i ∩ C0, it holdsρi(s) = n1 + 1. Therefore, if

a state inC0 is ever visited, it is a losing state for Player 1.

It is not hard to devise an example where the gap accelerationdoes not decrease the
total number of iterations. For allk > 0, consider the gameGk in Figure 1(a). States
drawn as “3” belong toS1 while those drawn as “2” belong toS2. The numbers in the
states represent their color. The gameGk is a chain ofk states of color one, leading to
a sink state of color zero. The lock-step algorithm requiresk global lifts to reach the
fixpoint. During the process, the progress measure exhibitsno gaps, thus neutralizing
the proposed acceleration technique.

On the other hand, the gap acceleration technique can be responsible for an un-
bounded speed-up compared to both the original algorithm and our lock-step formula-
tion of it. For all k > 0, consider the gameH1,k from [13], depicted in Figure 1(b).
The game is essentially a bi-directional chain made ofk states of color one, alternating
with k + 1 states of color2. As proven in [13], the original algorithm has to lift each

5

1 1· · ·10

(a) The gameGk.

2 12 21 · · ·

(b) The gameH1,k.

Fig. 1.Two game families illustrating different performance gains offered by the gap acceleration.

statek times before acknowledging that all states are losing, thusreaching a complex-
ity of O(k2). Similarly, the lock-step formulation of the algorithm requiresk global
lifts, leading to a complexity ofO(k2). However, after two global lifts all states have
progress measure greater than zero. Therefore, if the gap acceleration is enabled, three
lifts are enough to reach the fixpoint, for a total time complexity of O(k).

3 Timed Interfaces with Variables

In this section, we present a model of real-time interfaces which is obtained from the
sociable interfacesof [6], by adding discrete clocks in the spirit of [9].

The state space of our timed interfaces is represented by variables, interpreted over
a given domainD. Given a set of variablesV , astateoverV is a mappings : V → D
that associates with eachx ∈ V a values(x) ∈ D. We denote by[[V]] the set of all
states overV . For a set of variablesV ′ ⊆ V , and a states ∈ [[V]], the restriction ofs to
V ′ is a states′ ∈ [[V ′]] denoted bys|V ′ . For two disjoint sets of variablesV ′ andV \V ′,
and two statess′ ∈ [[V ′]] ands′′ ∈ [[V \V ′]], the operation(s′ ·s′′) concatenates the two
states resulting in a new states ∈ [[V]]. For two setsA andB, we writef : A ⇉ B to
indicate thatf is a function with domainA and codomain2B.

Definition 2 (Timed Interface). A timed interface is a tuple M =
(ΣM , V G

M , V L
M , CM , τI

M , τO
M , ϕI

M , ϕO
M), where:

– ΣM is a set ofactions.
– V G

M is a set ofglobal variables, V L
M is a set oflocal variables, andCM is the set of

clock variables. Clock variables are interpreted over the setIN0 of natural numbers
including zero. We requireCM ⊆ V L

M andV G
M ∩V L

M = ∅. We setVM = V G
M ∪V L

M .
– For all actionsa ∈ ΣM , τI

M (a) : [[VM]] ⇉ [[VM]] is theinput transition relationof
a. We require this transition relation to bedeterministicw.r.t. variables inV L

M , that
is,

∀a ∈ ΣM , s ∈ [[VM]], ∀s1, s2 ∈ τI
M (a)(s). (s1|V L

M

= s2|V L

M

).

– For all actionsa ∈ ΣM , τO
M (a) : [[VM]] ⇉ [[VM]] is theoutput transition relation

of a.
– ϕI

M ⊆ [[VM]] is theinput invariant.
– ϕO

M ⊆ [[VM]] is theoutput invariant.

The set of states[[VM]] of a timed interfaceM is denoted bySM . For s ∈ SM ,
we denote bys + 1 the state which coincides withs, except that the clock variables
have been incremented by one. Formally,(s + 1)(v) = s(v) + 1 for all v ∈ CM , and
(s + 1)(v) = s(v) for all v ∈ VM \ CM .

6

The semantics of a timed interface is a game between players Input and Output. At
each step, both players propose a move and the state of the interface evolves according
to the following definitions. Each move can be(i) a state reachable from the current
one by taking an action,(ii) the request to let time advance (move∆1), or (iii) the null
move∆0. Each player can only play moves that maintain the player’s invariant. In the
following, we consider a fixed interfaceM .

Definition 3 (Moves). For all statess ∈ SM andi ∈ {I, O}, let Di(s) = {∆1} if
s + 1 ∈ ϕi

M , andDi(s) = ∅ otherwise. The set of possible moves for playeri ats is:

Γ i
M (s) =

(

⋃

a∈ΣM
τ i
M (a)(s) ∩ ϕi

M

)

∪ {∆0} ∪ Di(s).

We also defineΓ i
M =

⋃

s∈SM
Γ i

M (s).

Two Boolean variables blI and blO are used for specifying whether a player lets
time elapse or not (i.e. proposes a∆1 action). blI (blO) is true if and only if the action
proposed by the input (output) player is not∆1. An extended statês is a states ∈ SM

augmented with the truth values for the Boolean variables blO and blI . The set of all
extended states ofM is ŜM = SM × {T, F}2.

Definition 4 (Moves Outcome). For all statess ∈ SM and movesmI ∈ Γ I
M (s) and

mO ∈ Γ O
M (s), theoutcomeδM (s, mI , mO) of mI andmO at s is the set of extended

states defined by the following table, where rows represent choices formI and columns
represent choices formO.

∆0 ∆1 s′′

∆0 {(s, blI , blO)} {(s, blI ,¬blO)} {(s′′,¬blI , blO)}
∆1 {(s,¬blI , blO)} {(s + 1,¬blI ,¬blO)} {(s′′,¬blI , blO)}
s′ {(s′, blI ,¬blO)} {(s′, blI ,¬blO)} {(s′, blI ,¬blO), (s′′,¬blI , blO)}

Definition 5 (Strategy). A strategyfor player i ∈ {I, O} in M is a functionπi :
Ŝ∗

M → Γ i
M that associates, with every finite sequence of extended statesσ whose last

state isŝ = (s, blI , blO), a moveπi(σ) ∈ Γ i
M (s). We denote byΠI

M andΠO
M the set

of input and output strategies inM , respectively.

Definition 6 (Strategy Outcomes). Given a states ∈ SM , an input strategy
πI ∈ ΠI

M and an output strategyπO ∈ ΠO
M , the set ofoutcomeŝδM (s, πI , πO)

of πI and πO from s consists of all infinite sequences over extended states
σ = (s0, blI0, blO0), . . . , (si, blIi , blOi), . . . such thats0 = s, and for all i ≥ 0
(si+1, blIi+1, blOi+1) ∈ δM (si, π

I(σ≤i), π
O(σ≤i)) whereσ≤i denotes the prefix ofσ

up to thei-th extended state. Notice that blI
0 and blO0 are arbitrarily defined.

In the following, we usetick as a shorthand for¬blO ∧¬blI , which means that both
players propose a time elapse step. Furthermore, we use the LTL notation [16] to denote
sets of traces.

7

module Scheduling:

var cpu, activeA, activeB, doneA, doneB: bool

var cA, dA, cB, dB: clock

oinv: (activeA -> dA <= 3) & (activeB -> dB <= 5)

iinv: (cA <= 4) & (cB <= 9)

input startA : { local: ~doneA & ~activeA & ~cpu ==>

activeA’ := true, cpu’ := true, dA’ := 0 }

input startB : { local: ~doneB & ~activeB & ~cpu ==>

activeB’ := true, cpu’ := true, dB’ := 0 }

output stopA : { activeA ==> ~activeA’ & ~cpu’ & doneA’ }

output stopB : { activeB ==> ~activeB’ & ~cpu’ & doneB’ }

input periodA: { local: doneA & cA = 4 ==> cA’ := 0, doneA’ := false }

input periodB: { local: doneA & cB = 9 ==> cB’ := 0, doneB’ := false }

endmodule

Fig. 2. Timed interface representing the periodic scheduling problem of two non-preemptable
tasks.

As discussed in [7], in order to take into proper account illegal behaviors that would
lead to an artificial stopping of time, if playeri ∈ {I, O} has a certain goalgoal , he
should actually enforce the winning conditionWC i(goal), defined as follows:

WC I(goal) = (goal ∧ 23tick) ∨ 32blO

WCO(goal) = (goal ∧ 23tick) ∨ 32¬blO.

Intuitively, these conditions require a player to ensure that if time diverges, the goal is
realized, and if time fails to diverge, the blame lies with the adversary. The conditions
are asymmetrical, reflecting the fact that Input and Output do not behave in fully sym-
metrical ways during composition [9]. Givens ∈ SM , a strategyπI ∈ ΠI

M is I-winning
from s w.r.t. the goalgoal , iff ∀πO ∈ ΠO

M . δ̂(s, πI , πO) ⊆ WC I(goal). Similarly, a
strategyπO ∈ ΠO

M is O-winning from s w.r.t. goal , iff ∀πI ∈ ΠI
M . δ̂(s, πI , πO) ⊆

WCO(goal). A states ∈ SM is I-winning (resp. O-winning) iff there exists an In-
put strategy that is I-winning (resp. O-winning) froms. The set of all I-winning (resp.
O-winning) states is denoted byWinI

M (goal) (resp.WinO
M (goal)).

A particularly important game is thewell-formednessgame, where the goals of the
players are simplyT, so that their winning conditions areWinI

M (T) andWinO
M (T),

respectively. Intuitively, if a player can win the well-formedness game, it means that it
can “keep the system going”, without entering dead-end states from which time cannot
progress [9, 7].

8

4 Example: Scheduling as a Timed Game

We present an example of a periodical scheduling problem encoded as a timed interface.
In the timed interface, the actions of Input represent scheduler decisions, such as the de-
cision of starting a task. The actions of Output represent task nondeterminism, such as
the variability in task execution times. The goal of Input isto ensure that no deadline
is missed. If Input can win the game, the scheduler has a strategy that correctly sched-
ules the tasks, ensuring that no deadline is missed regardless of task nondeterminism.
Technically, the goal of not missing deadlines is a safety condition, stating that, while
the tasks’ execution has not completed, certain clocks should have values not exceed-
ing the deadlines. We take this safety condition as the Inputinvariant, thus saddling the
Input player, representing the scheduler, with the goal of meeting deadlines. We will
see that taking into account for time progress in the winningcondition is essential, if
we wish to encode scheduling problems as timed games. Indeed, if the requirement for
time progress is disregarded, the easiest way to ensure deadlines are met is to block the
progress of time: as time cannot progress, deadlines cannotbe missed!

The timed interface in Figure 2 encodes a periodical, non-preemptive scheduling
problem involving two tasks,A andB. TaskA has a period of 5s (measured by clock
cA), and lasts up to 3s (measured by clockdA); taskB has period 9s, and lasts up to 4s.
The output invariant enforces the fact that neither task canbe active for longer than
its specified maximal duration. The input invariant states that the values of the clocks
cA andcB cannot grow larger than the period lengths, namely, 5 and 9. This forces
the scheduler to reset these clocks, via actionsperiodA andperiodB, before they go
beyond values 5 and 9. The actionperiodA signals the start of a new period for task
A; its guarddoneA specifies thatperiodA can be taken only once the execution of task
A has completed. The situation for taskB is similar. Therefore, to avoid violating the
input invariant, Input (the scheduler) must issue actionsstartA, startB, periodA,
periodB with a timing ensuring that jobsA andB terminate no later than the end of
their respective periods. An Input strategy for doing this corresponds to a scheduling
strategy for the task set.

This example illustrates why the winning condition needs toaccount for time di-
vergence. Had we takenT as winning condition for Input, rather thanWinI(T) =
23tick∨32blO, Input could have won simply by stopping time progress, for instance,
by playing always move∆0.

5 Symbolic Solution of the Well-Formedness Game
Consider the winning condition for the input player in the well-formedness game.

WC I(T) = 23tick ∨ 32blO.

Being the disjunction of a Büchi and a co-Büchi condition,it can be expressed as a
parity condition with three colors, assigned as follows:

C0 = ¬blI ∧ ¬blO; C1 = blI ∧ ¬blO; C2 = blO.

If φ is a safety, reachability, Büchi, or co-Büchi formula, itis similarly possible to obtain
3-color deterministic parity automata encodingWC I(φ) andWC O(φ).

9

We note thatC1 consists of the states where Input is forced to play either anaction,
or the 0-delay move∆0. Thus, in a timed game, the gap is related to the maximal
number of times for which Input can be forced to play without letting time advance.
This number is generally much smaller than the number ofC1 states, as these chains
of forced 0-time transitions tend, in practical examples, to be fairly short (it is unusual
for them to be longer than a dozen transitions). This explains the very large speedup
provided by the gap acceleration in the analysis of timed games.

If we restrict the variable domainD to be finite, and we manage to let clock variables
also range over a finite set, we can apply the EJ and gap algorithms to the problem of
checking well-formedness of an interface. The tool TICC [8] allows the user to specify
timed interfaces using a convenient syntax based on guardedcommands. The tool is in
the process of being extended to discrete real-time. In TICC, clock variables can only
be compared to (or assigned from) constants. Under this assumption, it is well known
that, for each clockx, it is sufficient to consider the range of values going from zero to
the maximum constant to whichx is ever compared (or assigned from), plus one.

We implemented in TICC both the EJ and the gap algorithms; we experimented with
both algorithms for solving well-formedness games. In the tool, interfaces are internally
represented using Multi-valued Decision Diagrams [19] (MDDs) as implemented by
the CUDD library [18]. Therefore, in the following we discuss the issues regarding the
symbolic implementation of both algorithms.

5.1 Gap Algorithm

Since the progress measure algorithm is tailored to turn-based games, we have to em-
ulate the turns by providing separate transition relationsfor Input and Output. Input
moves from the original (orregular) states of the concurrent game, while Output moves
from intermediatevirtual states. Notice that, if from a regular states Input chooses to
reach states′ via actiona, Output in the next virtual state can decide to leta happen (by
picking move∆0), or rather take an alternative actionb from s. Thus, we have to store
in the virtual state both the start states and the proposed destinations′. Therefore, we
end up having three copies of the state variablesVM , which we callV , V ′, andV ′′. The
transition relation of Input in the turn-based game is represented by the predicateτI , of
typeV → V ′, V ′′, blI . The transition relation of Output is represented by the predicate
τO, of typeV ′, V ′′, blI → V, blO. We need an extra variableρ to represent the progress
measure.

Next, we need to represent the functionProgr from (1), used to update the progress
measure. For states of color one,Progr has to increment the value of the progress
measure by one. Consider the general problem of having a predicateα over the set of
variablesZ, and wanting to increment by one the variablez ∈ Z, unless the value ofz
is already equal to its maximum valuezmax . Using standard MDD operators, this can
be achieved by having an extra variablez′ and performing the following computation:

incr(α, z) = (∃z(α ∧ z′ = z + 1))[z/z′] ∨ (α ∧ z = zmax).

However, the above computation leads to very poor performance: sinceρ can have a
very high maximum value, the computation of the predicateρ′ = ρ + 1 alone requires

10

a very large amount of time. Thus, in place of the above computation, we developed a
specific increment operator, as follows. Letz0, z1, . . . , zk be the binary variables encod-
ing variablez, ordered from the least significant (z0) to the most. Forc ∈ {0, . . . , k},
and∼∈ {<,≤, >,≥}, let z∼c = {zj | j ∼ c}.

function Increment(α, z)
vars: r, α, α, pos, neg : MDD

r := false
α := α ∧ (z = zmax)
α := α ∧ (z 6= zmax)
for i := 0 to k do

neg :=¬z0 ∧ ¬z1 ∧ . . . ∧ ¬zi−1

pos :=z0 ∧ z1 ∧ . . . ∧ zi−1

r := r ∨
(

neg∧ zi ∧ ∃z≤i . (α ∧ pos∧ ¬zi)
)

done
return r ∨ α

Then, in order to implement the measure update step described by (2), we need the
following symbolic operation. Letα be a predicate over the set of variablesZ and
let z ∈ Z. For each assignment to the variables inZ \ {z}, α may contain several
different assignments toz. We want to preserve the minimum value ofz only. We call
this predicateminz α. In set notation, we have:

minz α =
{

s ∈ α | s(z) = min{s′(z) | s′ ∈ α}
}

.

No efficient implementation ofmin exists using standard MDD operators. We thus
developed a new “min” operator according to the following algorithm.

function Min (α, z)
vars: r : MDD

r := α
for i := k down to 0 do

r := r ∧
(

(¬zi ∧ ∃z>i . r) ∨ (zi ∧ ∀z≥i . (¬zi =⇒ ¬r))
)

done
return r

The “min” operator is also useful to determine the minimum gap in a measure. Ifα
is the predicate over variables(V, blI , blO, ρ) representing the measure of each regular
state in the game, the equationminρ ∀V ∀blI∀blO .¬α yields “false” if the measure has
no unused values, or otherwise a predicate of the typeρ = c, wherec is the minimum
unused value of the measure (and thus a good candidate to be a gap). Such predicate
can then be used to implement the acceleration technique presented in Section 2.3.

5.2 Emerson-Jutla’sµ-Calculus Algorithm

To apply the EJ algorithm of Section 2.1, we do not need to consider the turn-based
version of the game. Rather, we simply use as controllable predecessor operator the
following.

11

Definition 7 (Concurrent Controllable Predecessor Operator). CpreI : 2ŜM →
2SM assigns to each set of extended statesX , the set of states from which Input can
force the game intoX in one step. Formally,

CpreI(X) = {s ∈ SM | ∃mI ∈ Γ I
M (s) . ∀mO ∈ Γ O

M (s) . δM (s, mI , mO) ⊆ X}.

The transition predicatesτI andτO developed in the previous section can also be
used to obtain a symbolic implementation ofCpreI . Given a predicateα over variables
(V, blI , blO), we have:

CpreI(α) = ∃V ′∃V ′′∃blI . τI ∧
(

∀V ∀blO . τO =⇒ α
)

.

Given the symbolic implementation ofCpreI , the EJ algorithm can be implemented in
a straightforward manner, using three nested loops that compute the fixpoint by Picard
iteration.

5.3 Experimental Results
On the basis of the implementation discussed above, we compared the performance
of the EJ and gap algorithms. Our results indicate that the performance improvement
afforded by the gap acceleration is essential: for the scheduling example, for instance,
the acceleration reduces the number of iterations from at least 73,920 in the original
Jurdziński progress measure algorithm to 163 in the gap algorithm — a speed-up of
over 450. Without acceleration, we believe that the progress measure algorithm is highly
impractical for solving 3-color parity games.

Our results indicate that there is no clear winner between the EJ algorithm and the
gap algorithm. The running times of the two algorithms were,in our experiments, within
a factor of two of each other, with the EJ algorithm generallybeing the fastest. We sus-
pect that the BDD variable ordering, and other details of thesymbolic implementation,
have a large influence on the results, so that we do not believethat our experiments are
conclusive. For the scheduling example of Section 4, the input well-formedness of the
interface can be computed in 144s with the EJ algorithm, and 302s with the gap algo-
rithm, on an AMD Athlon 64 4400+ CPU running 32-bit linux. In the gap algorithm,
the main expense occurs in the “lift” operation; we are investigating more efficient sym-
bolic implementations of this operation.

In the same paper [13] that introduced the progress measure algorithm, the follow-
ing acceleration is mentioned: in place ofn1, it suffices to take the maximum number
n′

1 of C1-states belonging to a strongly-connected component (SCC)of the game graph
(S, E); clearly,n′

1 ≤ n1. In an enumerative setting, both this SCC-based acceleration,
and our gap-based acceleration, are of interest, and each provides greater speed-ups on
some games. In a symbolic setting, the time required to compute SCCs must be taken
into account; the straightforward symbolic algorithm may require a quadratic number of
iterations. In contrast, our gap-based acceleration can beperformed at negligible cost.

References

1. B. Adler, L. de Alfaro, and M. Faella. Average reward timedgames. InFORMATS 05: 3rd
Int. Conf. on Formal Modelling and Analysis of Timed Systems, volume 3829 ofLect. Notes
in Comp. Sci., pages 65–80. Springer-Verlag, 2005.

12

2. R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. InCONCUR 97:
Concurrency Theory. 8th Int. Conf., volume 1243 ofLect. Notes in Comp. Sci., pages 74–88.
Springer-Verlag, 1997.

3. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controllersynthesis for timed automata. In
Proc. IFAC Symposium on System Structure and Control, pages 469–474. Elsevier, 1998.

4. P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced timed game au-
tomata. InFSTTCS 04: Found. of Software Technology and Theoretical Comp. Sci., volume
3328 ofLect. Notes in Comp. Sci., pages 148–160. Springer-Verlag, 2004.

5. F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly algorithms for
the analysis of timed games. InCONCUR 05: Concurrency Theory. 14th Int. Conf., Lect.
Notes in Comp. Sci., pages 66–80. Springer-Verlag, 2005.

6. L. de Alfaro, L. Dias da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable interfaces.
In FROCOS 05: Frontiers of Combining Systems, volume 3717 ofLect. Notes in Comp. Sci.,
pages 81–105. Springer-Verlag, 2005.

7. L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games. InCONCUR 03: Concurrency Theory. 14th Int. Conf., volume 2761
of Lect. Notes in Comp. Sci., pages 144–158. Springer-Verlag, 2003.

8. L. de Alfaro, M. Faella, and A. Legay. An introduction to the toolTICC. In Proc. of Workshop
on Trustworthy Software. IBFI, Schloss Dagstuhl, Germany, 2006.

9. L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Timed interfaces. InEMSOFT 02: Proc.
of the 2nd Int. Workshop on Embedded Software, volume 2491 ofLect. Notes in Comp. Sci.,
pages 108–122. Springer-Verlag, 2002.

10. E.A. Emerson and C.S. Jutla. Tree automata, mu-calculusand determinacy (extended ab-
stract). InFOCS 91: Proc. 32nd IEEE Symp. Found. of Comp. Sci., pages 368–377. IEEE
Computer Society Press, 1991.

11. E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model checking for fragments ofµ-calculus. In
CAV 93: Computer-Aided Verification, Lect. Notes in Comp. Sci., pages 385–396. Springer-
Verlag, 1993.

12. M. Faella, S. La Torre, and A. Murano. Automata-theoretic decision of timed games. In
VMCAI 02: 3rd Int. Workshop on Verification, Model Checking and Abstract Interpretation,
volume 2294 ofLect. Notes in Comp. Sci., pages 94–108. Springer-Verlag, 2002.

13. M. Jurdziński. Small progress measures for solving parity games. InSTACS 00: Proc. of
17th Annual Symp. on Theor. Asp. of Comp. Sci., volume 1770 ofLect. Notes in Comp. Sci.,
pages 290–301. Springer-Verlag, 2000.

14. Marcin Jurdziński. Deciding the winner in parity gamesis in UP∩ co-UP. Information
Processing Letters, 68(3):119–124, 1998.

15. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.
In STACS 95: Proc. of 12th Annual Symp. on Theor. Asp. of Comp. Sci., volume 900 ofLect.
Notes in Comp. Sci., pages 229–242. Springer-Verlag, 1995.

16. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1991.

17. R. Segala, G. Gawlick, J. Søgaard-Andersen, and N. Lynch. Liveness in timed and untimed
systems.Information and Computation, 141(2):119–171, 1998.

18. F. Somenzi. CUDD: CU decision diagram package.
http://vlsi.colorado.edu/˜fabio/CUDD/cuddIntro.html.

19. A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manip-
ulation. In ICCAD 90: Proc. of IEEE Int. Conf. on Computer-Aided Design,pages 92–95,
1990.

20. W. Thomas. Automata on Infinite Objects.Handbook of Theoretical Computer Science.
Elsevier, 1990.

13

