In Proc. of CONCUR 2007: 18th International Conference on Gorency Theory,
Lectures Notes in Computer Scien@Springer-Verlag, 2007.

Solving Games via Three-Valued
Abstraction Refinement

Luca de Alfaro and Pritam Roy

Computer Engineering Department
University of California, Santa Cruz, USA

Abstract. Games that model realistic systems can have very large- state
spaces, making their direct solution difficult. We presesymbolic abstraction-
refinement approach to the solution of two-player gameseiGa property, an
initial set of states, and a game representation, our apprstarts by construct-
ing a simple abstraction of the game, guided by the predicptesent in the
property and in the initial set. The abstraction is then esfjruntil it is possible
to either prove, or disprove, the property over the inittatess. Specifically, we
evaluate the property on the abstract game in three-valsudn, computing
an over-approximation (thmay states), and an under-approximation (thast
states), of the states that satisfy the property. If this matation fails to yield

a certain yes/no answer to the validity of the property onitiitéal states, our
algorithm refines the abstraction by splittingcertainabstract states (states that
are may-states, but not must-states). The approach leedfsdt an efficient sym-
bolic implementation. We discuss the property requiredhefabstraction scheme
in order to achieve convergence and termination of our tigcien We present the
results for reachability and safety properties, as welbafuilly generalu-regular
properties.

1 Introduction

Games provide a computational model that is widely used jiggtions ranging from
controller design, to modular verification, to system desigd analysis. The main ob-
stacle to the practical application of games to design anttabproblems lies in very
large state space of games modeling real-life problemsydtem verification, one of
the main methods for coping with large-size problemabstraction.An abstraction
is a simplification of the original system model. To be use&ul abstraction should
contain sufficient detail to enable the derivation of themekssystem properties, while
being succinct enough to allow for efficient analysis. Fmdan abstraction that is
simultaneously informative and succinct is a difficult taskd the most successful ap-
proaches rely on the automated construction, and gradfiiaéneent, of abstractions.
Given a system and the property, a coarse initial abstradiconstructed: this initial
abstraction typically preserves only the information altbe system that is most im-
mediately involved in the property, such as the values o$th variables mentioned in
the property. This initial abstraction is then graduallydautomatically, refined, until
the property can be proved or disproved, in the case of a eaiifin problem, or until

* This research was supported in part by the NSF grant CCR7&082

the property can be analyzed to the desired level of accliracase of a quantitative
problem.

One of the most successful techniques for automated abistraefinement is the
technique otounterexample-guided refinememt CEGAR [2, 5, 3]. According to this
technique, given a system abstraction, we check whethealibgaction satisfies the
property. If the answer is affirmative, we are done. Othezwtise check yields aab-
stract counterexamplencoding a set of “suspect” system behaviors. The abswactc
terexample is then further analyzed, either yielding a ceteccounterexample (a proof
that the property does not hold), or yielding a refined abstra, in which that partic-
ular abstract counterexample is no longer present. Theepsomontinues until either a
concrete counterexample is found, or until the propertylmashown to hold (i.e., no
abstract counterexamples are left). The appeal of CEGARMithe fact that it is a fully
automatic technique, and that the abstraction is refinediesnand, in a property-driven
fashion, adding just enough detail as is necessary to peitfog analysis. The CEGAR
technique has been extended to gameoimterexample-guided contfd?2].

We propose here an alternative technique to CEGAR for refigiiame abstractions:
namely, we propose to usleree-valuednalysis [16, 17, 9] in order to guide abstraction
refinement for games. Our proposed technique works as fell@iven a game abstrac-
tion, we analyze it in three-valued fashion, computing #teof must-winstates, which
are known to satisfy the property, and the sene¥er-winstates, which are known not
to satisfy the property; the remaining states, for whichgdsfaction is unknown, are
called themay-winstates. If this three-valued analysis yields the desiréatimation
(for example, showing the existence of an initial state \&itfiven property), the analy-
sis terminates. Otherwise, we refine the abstraction in athatyreduces the number of
may-winstates. The abstraction refinement proceeds in a propepgrntlent way. For
reachabilityproperties, where the goal is to reach a set of target stategfine the ab-
straction at the may-must border, splitting a may-win arttstate into two parts, one of
which is known to satisfy the property (and that will beconmawst-win state). For the
dual case o$afetyproperties, where the goal is to stay always in a set of “ssifes,
the refinement occurs at the may-never border. We show tagirtiposed abstraction
refinement scheme can be uniformly extended to games wiily jpajectives: this en-
ables the solution of games with arbitrasyregular objectives, via automata-theoretic
transformations [19].

Our proposed three-valued abstraction refinement techrégn be implemented
in fully symbolic fashion, and it can be applied to games itth finite and infinite
state spaces. The technique terminates whenever the ganaefiniteregion algebra
(a partition of the state space) that is closed with resgeBoblean and controllable-
predecessor operators [10]: this is the case for many irapbctasses of games, among
which timed games [13, 8]. Furthermore, we show that thertiegle never performs
unnecessary refinements: the final abstraction is nevertfiaera region algebra that
suffices for proving the property.

Inits aim of reducing the number of may-states, our techamiguelated to the three-
valued abstraction refinement schemes proposed for CTLransition systems in [16,
17]. Differently from these approaches, however, we avio@explicit construction of
the tree-valued transition relation of the abstractiolyimg instead ormayand must

versions of the controllable predecessor operators. Qaroagh provides precision and
efficiency benefits. In fact, to retain full precision, thestitransitions of a three-valued
model need to be represented as hyper-edges, rather thaalredges [17,9, 18]; in
turn, hyper-edges are computationally expensive both tiveland to represent. The
may and must predecessor operators we use provide the sanisignr as the hyper-
edges, without the associated computational penalty. Fimdar reason, we show
that our three-valued abstraction refinement techniquegdone analysis is superior
to the CEGAR technique of [12], in the sense that it can progé/en property with
an abstraction that never needs to be finer, and that can loét@oarser. Again, the
advantage is due to the fact that [12] represents playerviemin the abstract model
via must-edges, rather than must hyper-edges. A final besfeditoiding the explicit
construction of the abstract model, relying instead on @cedsor operators, is that the
resulting technique is simpler to present, and simpler fgément.

2 Preliminary Definitions

A two-player game structur@ = (S, \, §) consists of:

— A state spacé.

— A turn function\ : S — {1,2}, associating with each statee S the player
A(s) whose turn it is to play at the state. We writd = 2, ~2 = 1, and we let
S1={seS|As)=1}andS; ={se€ S| A(s) = 2}.

— A transition functions : S ~ 2%\ (), associating with every statec S a non-
empty seb(s) C S of possible successors.

The game takes place over the state spcand proceeds in an infinite sequence of
rounds. At every round, from the current state S, playerA(s) € {1,2} chooses

a successor staté € §(s), and the game proceeds t6 The infinite sequence of
rounds gives rise to paths € S“: precisely, apath of GG is an infinite sequence
5 = sg, $1, S2, . . - Of states inS such that for allk > 0, we haves;1 € §(s). We
denote byr? the set of all paths.

2.1 Game Objectives

An objectived for a game structur& = (S, A, §) is a subse® C S of the sequences
of states ofz. A gam€G,P) consists of a game structu¢etogether with an objective
@ for a player. We consider winning objectives that consist-regular conditions [19];
in particular, we will present algorithms for reachabilisgfety, and parity objectives.
We often use linear-time temporal logic (LTL) notation [1dhen defining objectives.
Given a subsel” C S of states, theeachabilityobjective 0T = {sg, 1,82, - €
S« | 3k > 0.s;, € T} consists of all paths that rea@h the safetyobjectiveT =
{s0,81,82,--+ € S¥ | Vk > 0.s; € T} consists of all paths that stay ifi forever.
We also consideparity objectives: the ability to solve games with parity objeesiv
suffices for solving games with arbitrary LTL (or omega-rieguwinning objectives
[19]. A parity objective is specified via a partitiafBy, By, ..., B,) of S, for some
n > 0. Given a patts, letInfi(s) C S be the set of states that occur infinitely often
alongs, and letM azCol(5) = max{i € {0,...,n} | B; N Infi(s) # (0} be the index
of the largest partition visited infinitely often along theth. Then,, = {5 € 2 |
MaxCol(3) is ever}.

2.2 Strategies and Winning States

A strategyfor playeri € {1,2} in a gameG = (S, \,) is a mappingr; : S* x
S; — S that associates with every nonempty finite sequenoéstates ending itb;,
representing the past history of the game, a successor\&tatequire that, for alt €
S« andalls € S;, we haver;(as) € §(s). Aninitial states, € S and two strategies;,
7o for players 1 and 2 uniquely determine a sequence of staésomésg, 71, 72) =
S0, 1, S2, - - ., Where fork > 0 we havesy1 = m1(so, ..., sk) if sp € S1, andsg41 =
7w2(S0, - -, Sk) if sk € So.

Given an initial states; and a winning objectiv® C S“ for playeri € {1,2},
we say that state € S is winningfor playeri if there is a playet-strategyr; such
that, for all player~: strategiesr..;, we haveOutcomésg, 71, m2) € @. We denote by
(i)®@ C S the set of winning states for playefor objective® C S¢. A result by [11],
as well as the determinacy result of [15], ensures that fes-abgular goalsb we have
(1)@ = S\ (2)~P, where-® = S\ &. Givenasetl C S of initial states, and a property
& C 5S¢, we will present algorithms for deciding whettéan (:)@ # () or, equivalently,
whetherd C (i)®, fori € {1,2}.

2.3 Game Abstractions

An abstractionV of a game structur& = (S, \,§) consists of a set’ C 22°\0 of
abstract stateseach abstract state € V' is a non-empty subset C S of concrete
states. We requirg) V' = S. For subset§” C S andU C V, we write:

Ul=Upepr TP ={veV|vnT#0} T ={veV|vCT}

Thus, for a sel/ C V of abstract stated/| is the corresponding set of concrete
states. For a séf C S of concrete stated, 1 andT'11/ are the set of abstract states
that constitute over and under-approximations of the aetecsetl’. We say that the
abstractiorl/ of a state-spach is precisefor a setl’ C S of states if'17F = 717/

2.4 Controllable Predecessor Operators

Two-player games with reachability, safety,.aregular winning conditions are com-
monly solved usingontrollable predecessor operatoisle define thelayer-1 control-
lable predecessor operat@pre, : 2° — 2° as follows, for allX C S andi € {1,2}:

Cpre(X)={se€S;i|d(s)NX £0}U{s e Sv;|d(s) C X} (1)

Intuitively, for ¢ € {1,2}, the set CprgX) consists of the states from which player
1+ can force the game t& in one step. In order to allow the solution of games on the
abstract state spadé, we introduce abstract versions of CprAs multiple concrete
states may correspond to the same abstract state, we caimpti, on the abstract
state space, a precise analogous of Cgrbus, for player € {1,2}, we define two
abstract operators: threayoperator Cprﬁ"m : 2V 2V which constitutes an over-
approximation of Cprg and themustoperator Cprg™ : 2V — 2V, which constitutes
an under-approximation of Cprf9]. We let, forU C V and: € {1,2}:

Cpre ™™ (U) = Cpre (U)17 cpre”M(U) = Cpre(UNTY. (2)

By the results of [9], we have the duality
Cpre ™ (U) = v \ Cprel;"(V\ U).

The fact that Cpré™ and Cpré&*™ are over and under-approximations of the concrete
predecessor operator is made precise by the following easen: for allU C V and
i € {1,2}, we have Cprg™ (U)| C Cpré(U|) C Cpre"™(U)].

2.5 p-Calculus

We will express our algorithms for solving games on the au$tstate space ip-
calculus notation [11]. Consider a functign 2V — 2", monotone whe@V is consid-
ered as a lattice with the usual subset ordering. We denqig/by(Z) (resprZ.~(Z2))
theleast(resp.greates} fixpointof v, that is, the least (resp. greatest) &eC V' such
thatZ = +(Z). As is well known, sincé’ is finite, these fixpoints can be computed via
Picard iterationuuZ.y(Z) = lim, 0o ¥"(0) andvZ.y(Z) = lim, 0o ¥"*(V). In the
solution of parity games we will make use of nested fixpoirgrapors, which can be
evaluated by nested Picard iteration [11].

3 Reachability and Safety Games

We present our three-valued abstraction refinement teabrig applying it first to the
simplest games: reachability and safety games. It is coemeto present the arguments
first for reachability games; the results for safety gamestaen obtained by duality.

3.1 Reachability Games

Our three-valued abstraction-refinement scheme for rédlithgproceeds as follows.
We assume we are given a gafie= (S, \, §), together with an initial set C S and a
final setT” C S, and an abstractioW for G that is precise fof andT'. The question to
be decided isf N (1)OT = 0?

The algorithm proceeds as follows. Using the may and mustqmessor operators,
we compute respectively the 98t of may-winningabstract states, and the 8t of
must-winningbstract states. W;"Ng1y; = 0, then the algorithm answers the question
No; if WM N 9T€4 = (), then the algorithm answers the question Yes. Otherwige, th
algorithm picks an abstract statesuch that

v e (Wi \ Wity nCpre ™ (WM. 3)

Such a state lies at the border betwd&@’ and W{™. The statev is split into two
abstract states; andv,, where:

vy = v N Cpre (WM]) vy = v\ Cpre (WM]).

As a consequence of (3), we have thatv, # 0. The algorithm is given in detail
as Algorithm 1. We first state the partial correctness of fgeri¢thm, postponing the
analysis of its termination to Section 3.3.

Lemmal At Step 4 of Algorithm 1, we hav& | C (1)o7 C Wi |.

Algorithm 1 3-valued Abstraction Refinement for Reachability Games
Input: A concrete game structut@ = (S, A, ¢), a set of initial state@ C S, a set of target states

T C S, and an abstractioli C 22°\? that is precise fof andT".
Output: Yes if@ N (1)o7 # 0, and No otherwise.

1. while truedo

2 WM = py (T3 U Cpre ™ (Y))

3 Wi = pY.(TT} U Cpre ™ (Y))

4, if Wi N o1y = 0 then return No

5. else ifWM N oM +£ (then return Yes

6 else

7 choosey € (W™ \ W) n Cprel"™ (W)
8. letv; := v N Cprg (WlM)andvz == v\ v1
9. letV := (V\ {v}) U {vi,v2}

10. end if

11. end while

Bl

Va Vb Ve Vd

Fig. 1. Three-Valued Abstraction Refinement in Reachability Game

Theorem 1 (partial correctness) If Algorithm 1 terminates, it returns the correct an-

swer.
Example 1.As an example, consider the gar6eillustrated in Figure 1. The state

space of the game i§ = {1,2,3,4,5,6,7}, and the abstract state spacelis=
{Va, Vb, Ve, vq}, @s indicated in the figure; the player-2 states.$re= {2,3,4}. We
considerd = {1} andT = {7}. After Steps 2 and 3 of Algorithm 1, we have
Wi = {va, Vb, Ve, va}, andWM = {v.,v,}. Therefore, the algorithm can answer nei-
ther No in Steps 4, nor Yes in Step 5, and proceeds to refindgieaation. In Step 7, the
only candidate for splitting is = v, which is splitintov; = v,NCpre (WM |) = {3},
andvy = vy \ v1 = {2,4}. Itis easy to see that at the next iteration of the analysis,
andv, are added té¥, and the algorithm returns the answer s.

3.2 Safety Games

We next consider a safety game specified by a tdfgét S, together with an initial
conditiond C S. Given an abstractiol” that is precise fofl’ andd, the goal is to

Algorithm 2 3-valued Abstraction Refinement for Safety Games
Input: A concrete game structut@ = (S, A, ¢), a set of initial state@ C S, a set of target states

T C S, and an abstractioli C 22°\? that is precise fof andT".
Output: Yes if6 N (1)0O7 # 0, and No otherwise.

1. while truedo

2 WM = vy.(T1M nCpre” ™ (v))

3 "= vY.(T1y N Cpre "™ (V)

4, if Wi N o1y = 0 then return No

5. else ifWM N oM +£ (then return Yes

6 else

7 choosey € (W™ \ W) N Cpre"™(V \ Wi™)
8. letv; :=v N Cpre,(S\ (Wi"|)) andvz := v \ v;
9. letV := (V\ {v}) U {vi,v2}

10. end if

11. end while

answer the question of whethen (1)007 = (. As for reachability games, we begin
by computing the setV;™ of may-winning states, and the 8 of must-winning
states. Again, if¥/" N 17 = 0, we answer No, and iV, N 61 # (), we answer
Yes. In safety games, unlike in reachability games, we cagpld abstract states at
the may-must boundary. For reachability games, a may-stat@nly win by reaching
the goalT’, which is contained iV |: hence, we refine the may-must border. In a
safety game with objectivielT’, on the other hand, we haV&"| C T, and a state in
Wi | can be winning even if it never reachiB§" | (which indeed can be empty if the
abstraction is too coarse). Thus, to solve safety gamespliteabstract states at the
may-losing boundary, that is, at the boundary betw#gh and its complement. This
can be explained by the fact thahyOOT" = S \ (2)¢—T": the objectives1T and(—T
are dual. Therefore, we adopt farl’ the same refinement method we would adopt for
¢—T, and the may-must boundary f@)(—T is the may-losing boundary fdi)7
The algorithm is given below.

Lemma?2 At Step 4 of Algorithm 2, we hav& | C (1)OT € Wi |.

Theorem 2 (partial correctness) If Algorithm 2 terminates, it returns the correct an-
swer.

3.3 Termination

We present a condition that ensures termination of Algor#li and 2. The condition
states that, if there is a finite algebra of regions (sets ntieie states) that is closed
under Boolean operations and controllable predecessoatops, and that is precise for
the sets of initial and target states, then (i) Algorithmad 2 terminate, and (i) the
algorithms never produce abstract states that are finerthligaregions of the algebra
(guaranteeing that the algorithms do not perform unnecgssak). Formally, aregion
algebrafor a gameG = (S, A,) is an abstractio such that:

— U is closed under Boolean operations: for@jl uy € U, we haveu; Uuy € U
andS\u; €U.

— U is closed under controllable predecessor operators: fou a¢ U, we have
Cpre (u) € U and Cprg(u) € U.

Theorem 3 (termination) Consider a gamé/ with a finite region algebrd/. Assume
that Algorithm 1 or 2 are called with arguments 6, T', with 6, T € U, and with an
initial abstractionV C U. Then, the following assertions hold for both algorithms:

1. The algorithms, during their executions, produce alittstates that are all mem-
bers of the algebrd/.
2. The algorithms terminate.

The proof of the results is immediate. Many games, includimgd games, have the
finite region algebras mentioned in the above theorem [13, 10

3.4 Approximate Abstraction Refinement Schemes

While the abstraction refinement scheme above is fairly ig¢riemakes two assump-
tions that may not hold in a practical implementation:

— it assumes that we can compute Cp¥eand Cpré** of (2) precisely;
— it assumes that, once we pick an abstract statesplit, we can split it inta; and
vo precisely, as outlined in Algorithms 1 and 2.

In fact, both assumptions can be related, yielding a morehyidpplicable abstraction
refinement algorithm for two-player games. We present thdified algorithm for the
reachability case only; the results can be easily extenddtle dual case of safety

objectives. Our starting point consists in approximatesizers Cpr¥’m+, Cprqv"M’ :

2V — 2V of the operators Cp}e™, Cpre", fori e {1,2}. We require that, for all
U C Vandi € {1, 2}, we have:

Cpre"™(U) € Cpre"™"(U) cpre"™~(U) C Cpre"M(U) . (4)

With these operators, we can phrase a new, approximataatistr scheme for reacha-
bility, given in Algorithm 3. The use of the approximate ogiers means that, in Step 8,
we can be no longer sure that bath+# 0 andv \ v; # 0. If the “precise” split of Step 8
fails, we resort instead to an arbitrary split (Step 10). Téilowing theorem states
that the algorithm essentially enjoys the same properfidsed‘precise” Algorithms 1
and 2.

Theorem 4 The following assertions hold.

1. Correctnesdf Algorithm 3 terminates, it returns the correct answer.

2. Termination Assume that Algorithm 3 is given as input a gagheiith a finite re-
gion algebraU, and argumentd,T" € U, as well as with an initial abstraction
V C U. Assume also that the region algeliras closed with respect to the opera-
tors Cpre "~ and Cprg"™*, fori e {1, 2}, and that Step 10 of Algorithm 3 splits
the abstract states in regions . Then, Algorithm 3 terminates, and it produces

only abstract states iy in the course of its execution.

Algorithm 3 Approximate 3-valued Abstraction Refinement for Reaclitglilames
Input: A concrete game structut@ = (S, A, ¢), a set of initial state@ C S, a set of target states
T C S, and an abstractioli C 22°\? that is precise fof andT".

Output: Yes if@ N (1)o7 # 0, and No otherwise.

1. while truedo

2 WM~ = py (T ucpre ™™ (V)

3 Wi = WY (T13 U Cpre ™ (1))

4, if W’”+ NoTY = (Z) then return No

5. else |fWM’ N1 = ¢ then return Yes

6 else

7 choosey € (W™ \ WM~)nCpre" ™ (WM™)
8 letvy := v N Cpre, (W)

9 ifvy=00rov, =v

10. then split v arbitrarily into non-empty; andwvs
11. elsevy = r\ v1

12. end if

13. letV := (V \ {v}) U{v1, v2}

14. end if

15. end while

Fig. 2. Safety game, with objectivelT for T = {1, 2, 3,4}.

3.5 Comparision with Counterexample-Guided Control

It is instructive to compare our three-valued refinement rapgh with the
counterexample-guided contrapproach of [12]. In [12], an abstact game structure
is constructed and analyzed. The abstract game comtaisiransitions for player 1,
andmaytransitions for player 2. Every counterexample to the prigpespoiling strat-
egy for player 2) found in the abstract game is analyzed irctrerete game. If the
counterexample is real, the property is disproved; If thenterexample is spurious, it
is ruled out by refining the abstraction. The process coasnuntil either the property
is disproved, or no abstract counterexamples is found,ipgdhe property.

The main advantage of our proposed three-valued approagicounterexample-
guided control is, somewhat paradoxically, that we do nglieitly construct the ab-
stract game. It was shown in [17, 9] that, for a game abstiadt be fully precise,
themusttransitions should be represented as hyper-edges (ansxpespresentation,
space-wise). In the counterexample-guided approackeadsnormamustedges are

used: the abstract game representation incurs a loss d$iprecand more abstraction
refinement steps may be needed than with our proposed thleedvapproach. This is
best illustrated with an example.

Example 2.Consider the game structure depicted in Figure 2. The sfadeesis

S = {1,2,3,4,5,6}, with S; = {1,2,3,4} and S, = {5,6}; the initial states are

6 = {1, 2}. We consider the safety objectivel for T' = {1, 2, 3,4}. We construct the
abstractionV” = {v,, vy, v.} precise ford andT, as depicted. In the counterexample-
guided control approach of [12], hyper-must transitioresrast considered in the con-
struction of the abstract model, and the transitions betwganduv, are lost: the only
transitions fronv,, andv, lead tov.. Therefore, there is a spurious abstract counterex-
ample treev, — wv,; ruling it out requires splitting), into its constituent statesand

2. Once this is done, there is another spurious abstract emxample — v, — v,;
ruling it out requires splittings, in its constituent states. In contrast, in our approach
we have immediatelf¥V = {v,, v} andv,, v, € Cpre ™ ({va,v}), so that no
abstraction refinement is requirdd.

The above example illustrates that the counterexampleéegidontrol approach of
[12] may require a finer abstraction than our three-valuédement approach, to prove
a given property. On the other hand, it is easy to see that #traction suffices to
prove a property in the counterexample-guided control @gdr, it also suffices in our
three-valued approach: the absence of abstract countepdes translates directly in
the fact that the states of interest are must-winning.

4 Symbolic Implementation

We now present a concrete symbolic implementation of outratton scheme. We
chose a simple symbolic representation for two-player gamhbile the symbolic game
representations encountered in real verification systesms, (e.9.,[6,7]) are usually
more complex, the same principles apply.

4.1 Symbolic Game Structures

To simplify the presentation, we assume that all variabtesBaolean. For a seX of
Boolean variables, we denote (X) the set of propositional formulas constructed
from the variables inX, the constantsrue andfalse and the propositional connec-
tives -, A, V, —. We denote withp[)/x] the result of replacing all occurrences of the
variablez in ¢ with a formulay. For¢ € F(X) andz € X, we write {7 }.¢ for
oltrue/z]{[} ¢[false/x]. We extend this notation to se¥s= {y1,ys,...,y,} of vari-
ables, writingvY.¢ for Yy, .Vys. - - - Vy,,.¢, and similarly fordY.¢. For a setX of vari-
ables, we also denote by’ = {2’ | « € X} the corresponding set pfimedvariables;
for ¢ € F(X), we denote)’ the formula obtained by replacing everye X with z’.

A states over a setX of variables is a truth-assignmest: X — {T,F} for
the variables inX’; we denote withS[X] the set of all such truth assignments. Given
¢ € F(X)ands € S[X], we writes = ¢ if ¢ holds when the variables iX are
interpreted as prescribed by and we let[¢]x = {s € S[X] | s E ¢}. Given
¢ € F(XUX')ands,t € S[X], we write(s, t) |= ¢ if ¢ holds when: € X has value

s(z), anda’ € X’ has valueg(z). WhenX, and thus the state spaS¢X], are clear
from the context, we equate informally formulas and setstates. These formulas,
or sets of states, can be manipulated with the help of symbefiresentations such
as BDDs [4]. Asymbolic game structur€'s = (X, A;, A) consists of the following
components:

— A set of Boolean variableX .

— A predicated; € F(X) defining when it is player 1's turn to play. We define
Ay = =44,

— A transition functionA € F(X U X’), such that for alk € S[X], there is some
t € S[X]suchthais,t) = A.

A symbolic game structur€s = (X, A, A) induces a (concrete) game structGre=
(S, A\, 0y via S = S[X], and fors,t € S, A(s) = 1iff s = Ay, andt € §(s) iff
(s,t) = A. Given a formulap € F(X), we have

Cpre ([¢]x) = [[(/11 A FX (AN gb’)) \Y% (ﬂ/ll AVX' (A — ¢’))]]X.

4.2 Symbolic Abstractions

We specify an abstraction for a symbolic game structge= (X, A;, A) via a subset
X®* C X ofits variables: the idea is that the abstraction keep% toaty of the values

of the variables inX“; we denote byX¢ = X \ X“ the concrete-only variables. We
assume thatl; € 7(X), so that in each abstract state, only one of the two players ca
move (in other words, we considimrn-preservingabstractions [9]). With slight abuse
of notation, we identify the abstract state sp&ceith S[X], where, fors € S[X] and
veV,welets € viff s(z) = v(x) forall 2 € X*. On this abstract state space, the
operators Cpre™ and Cpr¢" can be computed symbolically via the corresponding
operators SCpie™ and SCpr§", defined as follows. Fap € F(X*),

SCprd ™ (6) = 3X°. (A1 A X" (AN) V (A2 AVX'(A = 6))) ()
SCprg " (¢) = vX*. ((Al AIX'(ANG))V (A2 AVX' (A — ¢'))) 6)

The above operators correspond exactly to (2). Alternigtivee can abstract the tran-
sition formulaA, defining:

m,=3X°3xA A¥. =vXe3IxXY.A.

These abstract transition relations can be used to compmpeoximate versions
SCprd"™" and SCpré™ ~ of the controllable predecessor operators of (5), (6):

Scprd" ™ (¢) = ((A1 AIXY (AT AG)) V (Ay AVXY (AT, — ¢')))
scprd~(¢) = ((A1 AIXY (AN A)V (Mg AYXY (AN, — ¢')))

These operators, while approximate, satisfy the condit{di, and can thus be used to
implement symbolically Algorithm 3.

Algorithm 4 3-valued Abstraction Refinement for Parity Games

Input: A concrete game structur@ = (S, A, d), a set of initial state8 C S, a parity condition
¢ = (Bo, B1, ... B,), and an abstractiolf C 22°\? that is precise fof, Bo, . . ., B..

Output: Yesif@ N (1)¢ # 0, and No otherwise.

1. while truedo

2 WM .= win(Cpre]"™, 0, n)

3. W1 := Win(Cpre/"™, (), n)

4, if Wi N o1y = 0 then return No

5 else ifWM N O1M £ § then return Yes

6. else

7. choosgv, v1, v2) from Split(V, W™, Wi n)
11. V =V \{v}) U{vi,v2}

13. end if

14. end while

4.3 Symbolic Abstraction Refinement

We replace the abstraction refinement step of Algorithms an#l 3 with a step that
adds a variable: € X° to the setX* of variables present in the abstraction. The
challenge is to choose a variablghat increases the precision of the abstraction in a
useful way. To this end, we follow an approach inspired diydwy [5].

Denote byv € S[X?] the abstract state that Algorithms 3 chooses for splitting a
Step 7, and let);” ~ € F(X*) be the formula defining the sﬁt’f”‘ in the same algo-
rithm. We choose: € X ¢ so that there are at least two statgss, € v that differ only
for the value ofr, and such that; |= SCprd™"" (¥} ~) ands, £ SCprd" " (vM~).
Thus, the symbolic abstraction refinement algorithm firatclees for a variable € X ¢
for which the following formula is true:

300\, (10 = (o = SCPd ™ (011))) v (. = (s SCPd ™ (041)).
wherey, is thecharacteristic formulaf v:
Xo = /\{:C |z e X*u(z) = T} A /\{ﬁx |z e X*v(x) = F} .

If no such variable can be found, due to the approximate cdaipu of SCpr%’m+ and

SCprqy’M_, thenz € X¢is chosen arbitrarily. The choice of variable for Algoritt2m
can be obtained by reasoning in dual fashion.

5 Abstraction Refinement for Parity Games

We now present a general abstraction-refinement algoritheolve an-color parity
game where the state-spa8eis partitioned inton disjoint subsetsBy, By, ..., By,.
Denoting the parity conditiofBy, . . ., B,) by ¢, the winning states can be computed
as follows [11]:

(Lo =1, Y, ...vYy.((Bo N Cpre (Yo)) U... U (B, NCpre (Yy))),

Algorithm 5 Split(V, U,,, U, k)

Input: An abstractionV’, may winning set/,,, C V, must winning set/»; C V, number of
colorsk.

Output: A set of tuples(v, v, v2) € V x 25 x 25,

1. if kodd:

2. then P = {(v,v1,v2) | v € {By, N (Um \ Unr) N Cpre"™ (Unr)},
v =vN Cprel(UM),w =v\ v, v1 # 0,v2 # 0}

3. elseP = {(v,v1,v2) | v € {Bi N (Um \ Unr) NCpre, ™ (V \ U},
v1 =vNCPre,(V \ Unm),v2 = v \ v1,v1 # 0, v2 # 0}

4, endif

5. if k=0thenreturn P

6. else

7. Wi .= Win(Cpre"™, Unr, k — 1)

8. return P U Split(V, W{*, U, k — 1))

9. endif

whereT; is v wheni is even, and i wheni is odd, fori € IN. Algorithm 4 describes

our 3-valued abstraction-refinement approach to solvindypgames. The algorithm

starts with an abstractidi that is precise foBy, ..., B,,. The algorithm computes the
setsW™ andW} using the following formula:

UU (BT N Op(Yz))
V\ﬁn(Op,U,k):TkYk....uYo. J .-
U (BoTy' N Op(Yo))

In the formula,U C V is a set of abstract states that are already known to be must-
winning; in Algorithm 4 we use this formula with Og- Cprqv"M to computeW M,
and with Op= Cpre”™ to computelV’/".

The refinement step relies on a recursive functgpiit (Algorithm 5) to obtain
a list of candidate splitv, v1, v2): each of these suggests to splitnto non-empty
v1 andwvsy. The functionSplitis called with a partial parity conditiofs, . . . , By, for
0 < k < n. The function first computes a candidate split in the cd¥gr if £ is even
(resp. odd), it proceeds as in Steps 7—8 of Algorithm 2 (r&kporithm 1). The function
then recursively computes the may-winning set of statesgarae withk — 1 colors,
where the states itXy, are already known to be must-winning, and computes addition
candidate splits in such— 1 color game. We illustrate the functi@plit with the help
of an example.

Example 3.Figure 3 shows how functio8plit (Algorithm 5) computes the candidate
splits in a Co-Buchi game with colorBy, By (the objective of player 1 consists in
eventually forever staying if3y). The candidate splits iB; are given by:

b = {(7’, 7’1,7’2) | re BN (Wlnl \ Wllu) n Cpre‘l/m(wllu)v
r=rnNCpre(WM),ro =r\r}

('//Vm Bo
ARG

Fig. 3. Abstraction refinement for co-Buchi games

To compute the candidate splits iy, the algorithm considers a safety game with goal
OBy, with WM as set of states that are already considered to be winniagnty-
winning states in this game até, = vY,. (WM U (B, N Cpre ™ (Yy))). Thus, the
algorithm computes the following candidate splitsip:

Py = {(v,v1,v2) | v € By (Vi \ WM) N Cpre ™ (V \ Vi),
v =vNCpre,(V\Vpy),v2 =v\ v}

The function Split return®; U P, as the set of candidate splits for the given co-Biichi
gamell

Lemma 3 At Step 4 of Algorithm 4, we hav& | C (1)p C Wi|.

Theorem 5 If Algorithm 4 terminates, it returns the correct answer. fglaver, con-
sider a gamé- with a finite region algebrd/. Assume that Algorithm 4 is called with an
initial abstractionV' C U. Then, the algorithms terminates, and during its execyfton
produces abstract states that are all members of the alggbra

6 Conclusion and Future Work

We have presented a technique for the verification of gampepties based on the
construction, three-valued analysis, and refinement ofegaistractions. The approach
is suitable for symbolic implementation and, being basditain on the evaluation of
predecessor operators, is simple both to present and teingpit. We plan to imple-
ment the approach as part of the Ticc toolset of interfacepomition and analysis [1],
applying it both to the untimed interface composition pesbl(which requires solving
safety games), and to the timed interface composition prol§vhich requires solving
3-color parity games).

References

1. B. Adler, L. de Alfaro, L. D. D. Silva, M. Faella, A. Legay, Raman, and P. Roy. TICC: a
tool for interface compatibility and composition. GAV 06: Proc. of 18th Conf. on Computer
Aided Verificationvolume 4144 of_ect. Notes in Comp. S¢pages 59-62. Springer-Verlag,
2006.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Alur, A. Itai, R. P. Kurshan, and M. Yannakakis. Timingrification by successive ap-
proximation. Inf. Comput, 118(1):142-157, 1995.

. T.Balland S. Rajamani. The SLAM project: Debugging systeftware via static analysis.

In Proceedings of the 29th Annual Symposium on Principles off@mming Languages
pages 1-3. ACM Press, 2002.

. R. Bryant. Graph-based algorithms for boolean functi@mipulation. IEEE Transactions

on ComputersC-35(8):677-691, 1986.

. E.Clarke, O. Grumberg, Y. Lu, and H. Veith. Counterexavglided abstraction refinement.

In CAV 00: Proc. of 12th Conf. on Computer Aided Verificatibact. Notes in Comp. Sci.
Springer-Verlag, 2000.

. L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Madar, F. Mang, C. Meyer-

Kirsch, and B. Wang. Mocha: A model checking tool that exslaesign structure. In
ICSE 01: Proceedings of the 23rd International Conferent&oftware Engineeringrages
835-836, 2001.

. L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, avidSorea. Sociable interfaces.

In FROCOQOS: Frontiers of Combining Systems, Proc. of the 5thWirkshop volume 3717
of Lect. Notes in Comp. Sgpages 81-105. Springer-Verlag, 2005.

. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and Mod&inga. The element of

surprise in timed games. IBONCUR 03: Concurrency Theory. 14th Int. Conblume
2761 ofLect. Notes in Comp. Scpages 144-158. Springer-Verlag, 2003.

. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Threesdadbstractions of games: Uncer-

tainty, but with precision. IfProc. 19th IEEE Symp. Logic in Comp. Sgiages 170-179,
2004.

L. de Alfaro, T. Henzinger, and R. Majumdar. Symbolicasithms for infinite-state games.
In CONCUR 01: Concurrency Theory. 12th Int. Cohfct. Notes in Comp. Sci. Springer-
Verlag, 2001.

E. Emerson and C. Jutla. Tree automata, mu-calculusetedninacy (extended abstract).
In Proc. 32nd IEEE Symp. Found. of Comp. Spages 368-377. IEEE Computer Society
Press, 1991.

T. Henzinger, R. Jhala, and R. Majumdar. Counterexaiguuided control. In30th Int.
Colloquium on Automata, Languages, and Programming (ICA#lume 2719, pages 886—
902. LNCS, 2003.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis smite controllers for timed systems.
In Proc. of 12th Annual Symp. on Theor. Asp. of Comp, 8ciume 900 ofLect. Notes in
Comp. Sci.pages 229-242. Springer-Verlag, 1995.

Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent SystemsifSpec
cation Springer-Verlag, New York, 1991.

D. Martin. An extension of Borel determinadinnals of Pure and Applied Logid9:279—
293, 1990.

S. Shoham. A game-based framework for CTL counter-elesgmd 3-valued abstraction-
refinement. INCAV 03: Proc. of 15th Conf. on Computer Aided Verificatibect. Notes in
Comp. Sci., pages 275-287. Springer-Verlag, 2003.

S. Shoham and O. Grumberg. Monotonic abstraction-ranéfor CTL. INTACASvolume
2988 ofLect. Notes in Comp. Scpages 546-560. Springer-Verlag, 2004.

S. Shoham and O. Grumberg. 3-valued abstraction: Megion at less cost. IAroc. 21st
IEEE Symp. Logic in Comp. Scpages 399-410, 2006.

W. Thomas. Automata on infinite objects. In J. van Leeyweelitor, Handbook of Theo-
retical Computer Scienc&olume B, chapter 4, pages 135-191. Elsevier Science$hains
(North-Holland), Amsterdam, 1990.

