
Solving Games via Three-Valued
Abstraction Refinement⋆

In Proc. of CONCUR 2007: 18th International Conference on Concurrency Theory,

Lectures Notes in Computer Science.c©Springer-Verlag, 2007.

Luca de Alfaro and Pritam Roy

Computer Engineering Department
University of California, Santa Cruz, USA

Abstract. Games that model realistic systems can have very large state-
spaces, making their direct solution difficult. We present asymbolic abstraction-
refinement approach to the solution of two-player games. Given a property, an
initial set of states, and a game representation, our approach starts by construct-
ing a simple abstraction of the game, guided by the predicates present in the
property and in the initial set. The abstraction is then refined, until it is possible
to either prove, or disprove, the property over the initial states. Specifically, we
evaluate the property on the abstract game in three-valued fashion, computing
an over-approximation (themaystates), and an under-approximation (themust
states), of the states that satisfy the property. If this computation fails to yield
a certain yes/no answer to the validity of the property on theinitial states, our
algorithm refines the abstraction by splittinguncertainabstract states (states that
are may-states, but not must-states). The approach lends itself to an efficient sym-
bolic implementation. We discuss the property required of the abstraction scheme
in order to achieve convergence and termination of our technique. We present the
results for reachability and safety properties, as well as for fully generalω-regular
properties.

1 Introduction

Games provide a computational model that is widely used in applications ranging from
controller design, to modular verification, to system design and analysis. The main ob-
stacle to the practical application of games to design and control problems lies in very
large state space of games modeling real-life problems. In system verification, one of
the main methods for coping with large-size problems isabstraction.An abstraction
is a simplification of the original system model. To be useful, an abstraction should
contain sufficient detail to enable the derivation of the desired system properties, while
being succinct enough to allow for efficient analysis. Finding an abstraction that is
simultaneously informative and succinct is a difficult task, and the most successful ap-
proaches rely on the automated construction, and gradual refinement, of abstractions.
Given a system and the property, a coarse initial abstraction is constructed: this initial
abstraction typically preserves only the information about the system that is most im-
mediately involved in the property, such as the values of thestate variables mentioned in
the property. This initial abstraction is then gradually, and automatically, refined, until
the property can be proved or disproved, in the case of a verification problem, or until

⋆ This research was supported in part by the NSF grant CCR-0132780.

the property can be analyzed to the desired level of accuracy, in case of a quantitative
problem.

One of the most successful techniques for automated abstraction refinement is the
technique ofcounterexample-guided refinement,or CEGAR [2, 5, 3]. According to this
technique, given a system abstraction, we check whether theabstraction satisfies the
property. If the answer is affirmative, we are done. Otherwise, the check yields anab-
stract counterexample,encoding a set of “suspect” system behaviors. The abstract coun-
terexample is then further analyzed, either yielding a concrete counterexample (a proof
that the property does not hold), or yielding a refined abstraction, in which that partic-
ular abstract counterexample is no longer present. The process continues until either a
concrete counterexample is found, or until the property canbe shown to hold (i.e., no
abstract counterexamples are left). The appeal of CEGAR lies in the fact that it is a fully
automatic technique, and that the abstraction is refined on-demand, in a property-driven
fashion, adding just enough detail as is necessary to perform the analysis. The CEGAR
technique has been extended to games incounterexample-guided control[12].

We propose here an alternative technique to CEGAR for refining game abstractions:
namely, we propose to usethree-valuedanalysis [16, 17, 9] in order to guide abstraction
refinement for games. Our proposed technique works as follows. Given a game abstrac-
tion, we analyze it in three-valued fashion, computing the set ofmust-winstates, which
are known to satisfy the property, and the set ofnever-winstates, which are known not
to satisfy the property; the remaining states, for which thesatisfaction is unknown, are
called themay-winstates. If this three-valued analysis yields the desired information
(for example, showing the existence of an initial state witha given property), the analy-
sis terminates. Otherwise, we refine the abstraction in a waythat reduces the number of
may-winstates. The abstraction refinement proceeds in a property-dependent way. For
reachabilityproperties, where the goal is to reach a set of target states,we refine the ab-
straction at the may-must border, splitting a may-win abstract state into two parts, one of
which is known to satisfy the property (and that will become amust-win state). For the
dual case ofsafetyproperties, where the goal is to stay always in a set of “safe”states,
the refinement occurs at the may-never border. We show that the proposed abstraction
refinement scheme can be uniformly extended to games with parity objectives: this en-
ables the solution of games with arbitraryω-regular objectives, via automata-theoretic
transformations [19].

Our proposed three-valued abstraction refinement technique can be implemented
in fully symbolic fashion, and it can be applied to games withboth finite and infinite
state spaces. The technique terminates whenever the game has a finiteregion algebra
(a partition of the state space) that is closed with respect to Boolean and controllable-
predecessor operators [10]: this is the case for many important classes of games, among
which timed games [13, 8]. Furthermore, we show that the technique never performs
unnecessary refinements: the final abstraction is never finerthan a region algebra that
suffices for proving the property.

In its aim of reducing the number of may-states, our technique is related to the three-
valued abstraction refinement schemes proposed for CTL and transition systems in [16,
17]. Differently from these approaches, however, we avoid the explicit construction of
the tree-valued transition relation of the abstraction, relying instead onmayandmust

versions of the controllable predecessor operators. Our approach provides precision and
efficiency benefits. In fact, to retain full precision, the must-transitions of a three-valued
model need to be represented as hyper-edges, rather than normal edges [17, 9, 18]; in
turn, hyper-edges are computationally expensive both to derive and to represent. The
may and must predecessor operators we use provide the same precision as the hyper-
edges, without the associated computational penalty. For asimilar reason, we show
that our three-valued abstraction refinement technique forgame analysis is superior
to the CEGAR technique of [12], in the sense that it can prove agiven property with
an abstraction that never needs to be finer, and that can oftenbe coarser. Again, the
advantage is due to the fact that [12] represents player-1 moves in the abstract model
via must-edges, rather than must hyper-edges. A final benefitof avoiding the explicit
construction of the abstract model, relying instead on predecessor operators, is that the
resulting technique is simpler to present, and simpler to implement.

2 Preliminary Definitions
A two-player game structureG = 〈S, λ, δ〉 consists of:

– A state spaceS.
– A turn functionλ : S → {1, 2}, associating with each states ∈ S the player
λ(s) whose turn it is to play at the state. We write∼1 = 2, ∼2 = 1, and we let
S1 = {s ∈ S | λ(s) = 1} andS2 = {s ∈ S | λ(s) = 2}.

– A transition functionδ : S 7→ 2S \ ∅, associating with every states ∈ S a non-
empty setδ(s) ⊆ S of possible successors.

The game takes place over the state spaceS, and proceeds in an infinite sequence of
rounds. At every round, from the current states ∈ S, playerλ(s) ∈ {1, 2} chooses
a successor states′ ∈ δ(s), and the game proceeds tos′. The infinite sequence of
rounds gives rise to apath s ∈ Sω: precisely, apath of G is an infinite sequence
s = s0, s1, s2, . . . of states inS such that for allk ≥ 0, we havesk+1 ∈ δ(sk). We
denote byΩ the set of all paths.

2.1 Game Objectives

An objectiveΦ for a game structureG = 〈S, λ, δ〉 is a subsetΦ ⊆ Sω of the sequences
of states ofG. A game(G,Φ) consists of a game structureG together with an objective
Φ for a player. We consider winning objectives that consist inω-regular conditions [19];
in particular, we will present algorithms for reachability, safety, and parity objectives.
We often use linear-time temporal logic (LTL) notation [14]when defining objectives.
Given a subsetT ⊆ S of states, thereachabilityobjective♦T = {s0, s1, s2, · · · ∈
Sω | ∃k ≥ 0.sk ∈ T } consists of all paths that reachT ; the safetyobjective�T =
{s0, s1, s2, · · · ∈ Sω | ∀k ≥ 0.sk ∈ T } consists of all paths that stay inT forever.
We also considerparity objectives: the ability to solve games with parity objectives
suffices for solving games with arbitrary LTL (or omega-regular) winning objectives
[19]. A parity objective is specified via a partition〈B0, B1, . . . , Bn〉 of S, for some
n ≥ 0. Given a paths, let Infi(s) ⊆ S be the set of states that occur infinitely often
alongs, and letMaxCol(s) = max{i ∈ {0, . . . , n} | Bi ∩ Infi(s) 6= ∅} be the index
of the largest partition visited infinitely often along the path. Then,ϕn = {s ∈ Ω |
MaxCol(s) is even}.

2.2 Strategies and Winning States

A strategyfor player i ∈ {1, 2} in a gameG = 〈S, λ, δ〉 is a mappingπi : S∗ ×
Si 7→ S that associates with every nonempty finite sequenceσ of states ending inSi,
representing the past history of the game, a successor state. We require that, for allσ ∈
Sω and alls ∈ Si, we haveπi(σs) ∈ δ(s). An initial states0 ∈ S and two strategiesπ1,
π2 for players 1 and 2 uniquely determine a sequence of statesOutcome(s0, π1, π2) =
s0, s1, s2, . . ., where fork > 0 we havesk+1 = π1(s0, . . . , sk) if sk ∈ S1, andsk+1 =
π2(s0, . . . , sk) if sk ∈ S2.

Given an initial states0 and a winning objectiveΦ ⊆ Sω for player i ∈ {1, 2},
we say that states ∈ S is winning for playeri if there is a player-i strategyπi such
that, for all player∼i strategiesπ∼i, we haveOutcome(s0, π1, π2) ∈ Φ. We denote by
〈i〉Φ ⊆ S the set of winning states for playeri for objectiveΦ ⊆ Sω. A result by [11],
as well as the determinacy result of [15], ensures that for all ω-regular goalsΦ we have
〈1〉Φ = S\〈2〉¬Φ, where¬Φ = S\Φ. Given a setθ ⊆ S of initial states, and a property
Φ ⊆ Sω, we will present algorithms for deciding whetherθ∩〈i〉Φ 6= ∅ or, equivalently,
whetherθ ⊆ 〈i〉Φ, for i ∈ {1, 2}.

2.3 Game Abstractions

An abstractionV of a game structureG = 〈S, λ, δ〉 consists of a setV ⊆ 22
S\∅ of

abstract states:each abstract statev ∈ V is a non-empty subsetv ⊆ S of concrete
states. We require

⋃

V = S. For subsetsT ⊆ S andU ⊆ V , we write:

U↓ =
⋃

u∈U u T ↑m
V = {v ∈ V | v ∩ T 6= ∅} T ↑M

V = {v ∈ V | v ⊆ T }

Thus, for a setU ⊆ V of abstract states,U↓ is the corresponding set of concrete
states. For a setT ⊆ S of concrete states,T ↑m

V andT ↑M
V are the set of abstract states

that constitute over and under-approximations of the concrete setT . We say that the
abstractionV of a state-spaceS is precisefor a setT ⊆ S of states ifT ↑m

V = T ↑M
V .

2.4 Controllable Predecessor Operators

Two-player games with reachability, safety, orω-regular winning conditions are com-
monly solved usingcontrollable predecessor operators.We define theplayer-1 control-
lable predecessor operatorCpre1 : 2S 7→ 2S as follows, for allX ⊆ S andi ∈ {1, 2}:

Cprei(X) = {s ∈ Si | δ(s) ∩X 6= ∅} ∪ {s ∈ S∼i | δ(s) ⊆ X}. (1)

Intuitively, for i ∈ {1, 2}, the set Cprei(X) consists of the states from which player
i can force the game toX in one step. In order to allow the solution of games on the
abstract state spaceV , we introduce abstract versions of Cpre·. As multiple concrete
states may correspond to the same abstract state, we cannot compute, on the abstract
state space, a precise analogous of Cpre·. Thus, for playeri ∈ {1, 2}, we define two
abstract operators: themayoperator CpreV,m

i : 2V 7→ 2V , which constitutes an over-
approximation of Cprei, and themustoperator CpreV,M

i : 2V 7→ 2V , which constitutes
an under-approximation of Cprei [9]. We let, forU ⊆ V andi ∈ {1, 2}:

CpreV,m
i (U) = Cprei(U↓)↑m

V CpreV,M
i (U) = Cprei(U↓)↑M

V . (2)

By the results of [9], we have the duality

CpreV,M
i (U) = V \ CpreV,m

∼i (V \ U).

The fact that CpreV,m
· and CpreV,M

· are over and under-approximations of the concrete
predecessor operator is made precise by the following observation: for allU ⊆ V and
i ∈ {1, 2}, we have CpreV,M

i (U)↓ ⊆ Cprei(U↓) ⊆ CpreV,m
i (U)↓.

2.5 µ-Calculus

We will express our algorithms for solving games on the abstract state space inµ-
calculus notation [11]. Consider a functionγ : 2V 7→ 2V , monotone when2V is consid-
ered as a lattice with the usual subset ordering. We denote byµZ.γ(Z) (resp.νZ.γ(Z))
the least(resp.greatest) fixpointof γ, that is, the least (resp. greatest) setZ ⊆ V such
thatZ = γ(Z). As is well known, sinceV is finite, these fixpoints can be computed via
Picard iteration:µZ.γ(Z) = limn→∞ γn(∅) andνZ.γ(Z) = limn→∞ γn(V). In the
solution of parity games we will make use of nested fixpoint operators, which can be
evaluated by nested Picard iteration [11].

3 Reachability and Safety Games

We present our three-valued abstraction refinement technique by applying it first to the
simplest games: reachability and safety games. It is convenient to present the arguments
first for reachability games; the results for safety games are then obtained by duality.

3.1 Reachability Games

Our three-valued abstraction-refinement scheme for reachability proceeds as follows.
We assume we are given a gameG = 〈S, λ, δ〉, together with an initial setθ ⊆ S and a
final setT ⊆ S, and an abstractionV for G that is precise forθ andT . The question to
be decided is:θ ∩ 〈1〉♦T = ∅?

The algorithm proceeds as follows. Using the may and must predecessor operators,
we compute respectively the setWm

1 of may-winningabstract states, and the setWM
1 of

must-winningabstract states. IfWm
1 ∩θ↑m

V = ∅, then the algorithm answers the question
No; if WM

1 ∩ θ↑M
V 6= ∅, then the algorithm answers the question Yes. Otherwise, the

algorithm picks an abstract statev such that

v ∈ (Wm
1 \WM

1) ∩ CpreV,m
1 (WM

1). (3)

Such a state lies at the border betweenWM
1 andWm

1 . The statev is split into two
abstract statesv1 andv2, where:

v1 = v ∩ Cpre1(W
M
1 ↓) v2 = v \ Cpre1(W

M
1 ↓).

As a consequence of (3), we have thatv1, v2 6= ∅. The algorithm is given in detail
as Algorithm 1. We first state the partial correctness of the algorithm, postponing the
analysis of its termination to Section 3.3.

Lemma 1 At Step 4 of Algorithm 1, we haveWM
1 ↓ ⊆ 〈1〉♦T ⊆Wm

1 ↓.

Algorithm 1 3-valued Abstraction Refinement for Reachability Games
Input: A concrete game structureG = 〈S, λ, δ〉, a set of initial statesθ ⊆ S, a set of target states
T ⊆ S, and an abstractionV ⊆ 22

S\∅ that is precise forθ andT .
Output: Yes if θ ∩ 〈1〉♦T 6= ∅, and No otherwise.

1. while truedo
2. W M

1 := µY.(T↑M
V ∪ CpreV,M

1 (Y))

3. W m
1 := µY.(T↑m

V ∪ CpreV,m
1 (Y))

4. if W m
1 ∩ θ↑m

V = ∅ then return No
5. else ifW M

1 ∩ θ↑M
V 6= ∅ then return Yes

6. else
7. choosev ∈ (W m

1 \ W M
1) ∩ CpreV,m

1 (W M
1)

8. letv1 := v ∩ Cpre1(W
M
1 ↓) andv2 := v \ v1

9. letV := (V \ {v}) ∪ {v1, v2}
10. end if
11. end while

1

2

4

5

6 73

va vb vc vd

Fig. 1. Three-Valued Abstraction Refinement in Reachability Game

Theorem 1 (partial correctness) If Algorithm 1 terminates, it returns the correct an-
swer.
Example 1.As an example, consider the gameG illustrated in Figure 1. The state
space of the game isS = {1, 2, 3, 4, 5, 6, 7}, and the abstract state space isV =
{va, vb, vc, vd}, as indicated in the figure; the player-2 states areS2 = {2, 3, 4}. We
considerθ = {1} and T = {7}. After Steps 2 and 3 of Algorithm 1, we have
Wm

1 = {va, vb, vc, vd}, andWM
1 = {vc, vd}. Therefore, the algorithm can answer nei-

ther No in Steps 4, nor Yes in Step 5, and proceeds to refine the abstraction. In Step 7, the
only candidate for splitting isv = vb, which is split intov1 = vb∩Cpre1(W

M
1 ↓) = {3},

andv2 = vb \ v1 = {2, 4}. It is easy to see that at the next iteration of the analysis,v1
andva are added toWM

1 , and the algorithm returns the answer Yes.

3.2 Safety Games

We next consider a safety game specified by a targetT ⊆ S, together with an initial
conditionθ ⊆ S. Given an abstractionV that is precise forT andθ, the goal is to

Algorithm 2 3-valued Abstraction Refinement for Safety Games
Input: A concrete game structureG = 〈S, λ, δ〉, a set of initial statesθ ⊆ S, a set of target states
T ⊆ S, and an abstractionV ⊆ 22

S\∅ that is precise forθ andT .
Output: Yes if θ ∩ 〈1〉�T 6= ∅, and No otherwise.

1. while truedo
2. W M

1 := νY.(T↑M
V ∩ CpreV,M

1 (Y))

3. W m
1 := νY.(T↑m

V ∩ CpreV,m
1 (Y))

4. if W m
1 ∩ θ↑m

V = ∅ then return No
5. else ifW M

1 ∩ θ↑M
V 6= ∅ then return Yes

6. else
7. choosev ∈ (W m

1 \ W M
1) ∩ CpreV,m

2 (V \ W m
1)

8. letv1 := v ∩ Cpre2(S \ (W m
1 ↓)) andv2 := v \ v1

9. letV := (V \ {v}) ∪ {v1, v2}
10. end if
11. end while

answer the question of whetherθ ∩ 〈1〉�T = ∅. As for reachability games, we begin
by computing the setWm

1 of may-winning states, and the setWM
1 of must-winning

states. Again, ifWm
1 ∩ θ↑m

V = ∅, we answer No, and ifWM
1 ∩ θ↑M

V 6= ∅, we answer
Yes. In safety games, unlike in reachability games, we cannot split abstract states at
the may-must boundary. For reachability games, a may-statecan only win by reaching
the goalT , which is contained inWM

1 ↓: hence, we refine the may-must border. In a
safety game with objective�T , on the other hand, we haveWm

1 ↓ ⊆ T , and a state in
Wm

1 ↓ can be winning even if it never reachesWM
1 ↓ (which indeed can be empty if the

abstraction is too coarse). Thus, to solve safety games, we split abstract states at the
may-losing boundary, that is, at the boundary betweenWm

1 and its complement. This
can be explained by the fact that〈1〉�T = S \ 〈2〉♦¬T : the objectives�T and♦¬T
are dual. Therefore, we adopt for�T the same refinement method we would adopt for
♦¬T , and the may-must boundary for〈2〉♦¬T is the may-losing boundary for〈1〉�T .
The algorithm is given below.

Lemma 2 At Step 4 of Algorithm 2, we haveWM
1 ↓ ⊆ 〈1〉�T ⊆Wm

1 ↓.

Theorem 2 (partial correctness) If Algorithm 2 terminates, it returns the correct an-
swer.

3.3 Termination

We present a condition that ensures termination of Algorithms 1 and 2. The condition
states that, if there is a finite algebra of regions (sets of concrete states) that is closed
under Boolean operations and controllable predecessor operators, and that is precise for
the sets of initial and target states, then (i) Algorithms 1 and 2 terminate, and (ii) the
algorithms never produce abstract states that are finer thanthe regions of the algebra
(guaranteeing that the algorithms do not perform unnecessary work). Formally, aregion
algebrafor a gameG = 〈S, λ, δ〉 is an abstractionU such that:

– U is closed under Boolean operations: for allu1, u2 ∈ U , we haveu1 ∪ u2 ∈ U
andS \ u1 ∈ U .

– U is closed under controllable predecessor operators: for all u ∈ U , we have
Cpre1(u) ∈ U and Cpre2(u) ∈ U .

Theorem 3 (termination) Consider a gameG with a finite region algebraU . Assume
that Algorithm 1 or 2 are called with argumentsG, θ, T , with θ, T ∈ U , and with an
initial abstractionV ⊆ U . Then, the following assertions hold for both algorithms:

1. The algorithms, during their executions, produce abstract states that are all mem-
bers of the algebraU .

2. The algorithms terminate.

The proof of the results is immediate. Many games, includingtimed games, have the
finite region algebras mentioned in the above theorem [13, 10].

3.4 Approximate Abstraction Refinement Schemes

While the abstraction refinement scheme above is fairly general, it makes two assump-
tions that may not hold in a practical implementation:

– it assumes that we can compute CpreV,m
∗ and CpreV,M

∗ of (2) precisely;
– it assumes that, once we pick an abstract statev to split, we can split it intov1 and
v2 precisely, as outlined in Algorithms 1 and 2.

In fact, both assumptions can be related, yielding a more widely applicable abstraction
refinement algorithm for two-player games. We present the modified algorithm for the
reachability case only; the results can be easily extended to the dual case of safety
objectives. Our starting point consists in approximate versions CpreV,m+

i ,CpreV,M−
i :

2V 7→ 2V of the operators CpreV,m
i , CpreV,M

i , for i ∈ {1, 2}. We require that, for all
U ⊆ V andi ∈ {1, 2}, we have:

CpreV,m
i (U) ⊆ CpreV,m+

i (U) CpreV,M−
i (U) ⊆ CpreV,M

i (U) . (4)

With these operators, we can phrase a new, approximate abstraction scheme for reacha-
bility, given in Algorithm 3. The use of the approximate operators means that, in Step 8,
we can be no longer sure that bothv1 6= ∅ andv \v1 6= ∅. If the “precise” split of Step 8
fails, we resort instead to an arbitrary split (Step 10). Thefollowing theorem states
that the algorithm essentially enjoys the same properties of the “precise” Algorithms 1
and 2.

Theorem 4 The following assertions hold.

1. Correctness.If Algorithm 3 terminates, it returns the correct answer.
2. Termination.Assume that Algorithm 3 is given as input a gameG with a finite re-

gion algebraU , and argumentsθ, T ∈ U , as well as with an initial abstraction
V ⊆ U . Assume also that the region algebraU is closed with respect to the opera-
tors CpreV,M−

i and CpreV,m+

i , for i ∈ {1, 2}, and that Step 10 of Algorithm 3 splits
the abstract states in regions inU . Then, Algorithm 3 terminates, and it produces
only abstract states inU in the course of its execution.

Algorithm 3 Approximate 3-valued Abstraction Refinement for Reachability Games
Input: A concrete game structureG = 〈S, λ, δ〉, a set of initial statesθ ⊆ S, a set of target states
T ⊆ S, and an abstractionV ⊆ 22

S\∅ that is precise forθ andT .
Output: Yes if θ ∩ 〈1〉♦T 6= ∅, and No otherwise.

1. while truedo
2. W M−

1 := µY.(T↑M
V ∪ CpreV,M−

1 (Y))

3. W m+

1 := µY.(T↑m
V ∪ CpreV,m+

1 (Y))
4. if W m+

1 ∩ θ↑m
V = ∅ then return No

5. else ifW M−
1 ∩ θ↑M

V 6= ∅ then return Yes
6. else
7. choosev ∈ (W m+

1 \ W M−
1) ∩ CpreV,m+

1 (W M−
1)

8. letv1 := v ∩ Cpre1(W
M−
1 ↓)

9. if v1 = ∅ or v1 = v

10. then split v arbitrarily into non-emptyv1 andv2

11. elsev2 = r \ v1

12. end if
13. letV := (V \ {v}) ∪ {v1, v2}
14. end if
15. end while

21 3 4

5 6

θ

va vb

vc

Fig. 2. Safety game, with objective�T for T = {1, 2, 3, 4}.

3.5 Comparision with Counterexample-Guided Control

It is instructive to compare our three-valued refinement approach with the
counterexample-guided controlapproach of [12]. In [12], an abstact game structure
is constructed and analyzed. The abstract game containsmusttransitions for player 1,
andmaytransitions for player 2. Every counterexample to the property (spoiling strat-
egy for player 2) found in the abstract game is analyzed in theconcrete game. If the
counterexample is real, the property is disproved; If the counterexample is spurious, it
is ruled out by refining the abstraction. The process continues until either the property
is disproved, or no abstract counterexamples is found, proving the property.

The main advantage of our proposed three-valued approach over counterexample-
guided control is, somewhat paradoxically, that we do not explicitly construct the ab-
stract game. It was shown in [17, 9] that, for a game abstraction to be fully precise,
themusttransitions should be represented as hyper-edges (an expensive representation,
space-wise). In the counterexample-guided approach, instead, normalmustedges are

used: the abstract game representation incurs a loss of precision, and more abstraction
refinement steps may be needed than with our proposed three-valued approach. This is
best illustrated with an example.

Example 2.Consider the game structure depicted in Figure 2. The state space is
S = {1, 2, 3, 4, 5, 6}, with S1 = {1, 2, 3, 4} andS2 = {5, 6}; the initial states are
θ = {1, 2}. We consider the safety objective�T for T = {1, 2, 3, 4}. We construct the
abstractionV = {va, vb, vc} precise forθ andT , as depicted. In the counterexample-
guided control approach of [12], hyper-must transitions are not considered in the con-
struction of the abstract model, and the transitions between va andvb are lost: the only
transitions fromva andvb lead tovc. Therefore, there is a spurious abstract counterex-
ample treeva → vc; ruling it out requires splittingva into its constituent states1 and
2. Once this is done, there is another spurious abstract counterexample2 → vb → vc;
ruling it out requires splittingvb in its constituent states. In contrast, in our approach
we have immediatelyWM

1 = {va, vb} andva, vb ∈ CpreV,M
1 ({va, vb}), so that no

abstraction refinement is required.

The above example illustrates that the counterexample-guided control approach of
[12] may require a finer abstraction than our three-valued refinement approach, to prove
a given property. On the other hand, it is easy to see that if anabstraction suffices to
prove a property in the counterexample-guided control approach, it also suffices in our
three-valued approach: the absence of abstract counterexamples translates directly in
the fact that the states of interest are must-winning.

4 Symbolic Implementation

We now present a concrete symbolic implementation of our abstraction scheme. We
chose a simple symbolic representation for two-player games; while the symbolic game
representations encountered in real verification systems (see, e.g.,[6,7]) are usually
more complex, the same principles apply.

4.1 Symbolic Game Structures

To simplify the presentation, we assume that all variables are Boolean. For a setX of
Boolean variables, we denote byF(X) the set of propositional formulas constructed
from the variables inX , the constantstrue and false, and the propositional connec-
tives¬,∧,∨,→. We denote withφ[ψ/x] the result of replacing all occurrences of the
variablex in φ with a formulaψ. For φ ∈ F(X) andx ∈ X , we write

{

∀
∃

}

x.φ for
φ[true/x]

{

∧
∨

}

φ[false/x]. We extend this notation to setsY = {y1, y2, . . . , yn} of vari-
ables, writing∀Y.φ for ∀y1.∀y2. · · · ∀yn.φ, and similarly for∃Y.φ. For a setX of vari-
ables, we also denote byX ′ = {x′ | x ∈ X} the corresponding set ofprimedvariables;
for φ ∈ F(X), we denoteφ′ the formula obtained by replacing everyx ∈ X with x′.

A states over a setX of variables is a truth-assignments : X 7→ {T, F} for
the variables inX ; we denote withS[X] the set of all such truth assignments. Given
φ ∈ F(X) ands ∈ S[X], we write s |= φ if φ holds when the variables inX are
interpreted as prescribed bys, and we let[[φ]]X = {s ∈ S[X] | s |= φ}. Given
φ ∈ F(X ∪X ′) ands, t ∈ S[X], we write(s, t) |= φ if φ holds whenx ∈ X has value

s(x), andx′ ∈ X ′ has valuet(x). WhenX , and thus the state spaceS[X], are clear
from the context, we equate informally formulas and sets of states. These formulas,
or sets of states, can be manipulated with the help of symbolic representations such
as BDDs [4]. Asymbolic game structureGS = 〈X,Λ1, ∆〉 consists of the following
components:

– A set of Boolean variablesX .
– A predicateΛ1 ∈ F(X) defining when it is player 1’s turn to play. We define
Λ2 = ¬Λ1.

– A transition function∆ ∈ F(X ∪ X ′), such that for alls ∈ S[X], there is some
t ∈ S[X] such that(s, t) |= ∆.

A symbolic game structureGS = 〈X,Λ1, ∆〉 induces a (concrete) game structureG =
〈S, λ, δ〉 via S = S[X], and fors, t ∈ S, λ(s) = 1 iff s |= Λ1, and t ∈ δ(s) iff
(s, t) |= ∆. Given a formulaφ ∈ F(X), we have

Cpre
1
([[φ]]X) = [[

(

Λ1 ∧ ∃X ′.(∆ ∧ φ′)
)

∨
(

¬Λ1 ∧ ∀X ′.(∆→ φ′)
)

]]X .

4.2 Symbolic Abstractions

We specify an abstraction for a symbolic game structureGS = 〈X,Λ1, ∆〉 via a subset
Xa ⊆ X of its variables: the idea is that the abstraction keeps track only of the values
of the variables inXa; we denote byXc = X \ Xa the concrete-only variables. We
assume thatΛ1 ∈ F(Xa), so that in each abstract state, only one of the two players can
move (in other words, we considerturn-preservingabstractions [9]). With slight abuse
of notation, we identify the abstract state spaceV with S[Xa], where, fors ∈ S[X] and
v ∈ V , we lets ∈ v iff s(x) = v(x) for all x ∈ Xa. On this abstract state space, the
operators CpreV,m

1 and CpreV,M
1 can be computed symbolically via the corresponding

operators SCpreV,m
1 and SCpreV,M

1 , defined as follows. Forφ ∈ F(Xa),

SCpreV,m
1 (φ) = ∃Xc.

(

(

Λ1 ∧ ∃X ′.(∆ ∧ φ′)
)

∨
(

Λ2 ∧ ∀X ′.(∆→ φ′)
)

)

(5)

SCpreV,M
1 (φ) = ∀Xc.

(

(

Λ1 ∧ ∃X ′.(∆ ∧ φ′)
)

∨
(

Λ2 ∧ ∀X ′.(∆→ φ′)
)

)

(6)

The above operators correspond exactly to (2). Alternatively, we can abstract the tran-
sition formula∆, defining:

∆m
Xa = ∃Xc.∃Xc′.∆ ∆M

Xa = ∀Xc.∃Xc′.∆ .

These abstract transition relations can be used to compute approximate versions
SCpreV,m+

1 and SCpreV,M−
1 of the controllable predecessor operators of (5), (6):

SCpreV,m+

1 (φ) =
(

(

Λ1 ∧ ∃Xa′.(∆m
Xa ∧ φ′)

)

∨
(

Λ2 ∧ ∀Xa′.(∆m
Xa → φ′)

)

)

SCpreV,M−
1 (φ) =

(

(

Λ1 ∧ ∃Xa′.(∆M
Xa ∧ φ′)

)

∨
(

Λ2 ∧ ∀Xa′.(∆M
Xa → φ′)

)

)

These operators, while approximate, satisfy the conditions (4), and can thus be used to
implement symbolically Algorithm 3.

Algorithm 4 3-valued Abstraction Refinement for Parity Games
Input: A concrete game structureG = 〈S, λ, δ〉, a set of initial statesθ ⊆ S, a parity condition
ϕ = 〈B0, B1, . . . Bn〉, and an abstractionV ⊆ 22

S\∅ that is precise forθ, B0, . . . , Bn.
Output: Yes if θ ∩ 〈1〉ϕ 6= ∅, and No otherwise.

1. while truedo
2. W M

1 := Win(CpreV,M
1 , ∅, n)

3. W m
1 := Win(CpreV,m

1 , ∅, n)
4. if W m

1 ∩ θ↑m
V = ∅ then return No

5. else ifW M
1 ∩ θ↑M

V 6= ∅ then return Yes
6. else
7. choose(v, v1, v2) from Split(V,W m

1 , W M
1 , n)

11. V = (V \ {v}) ∪ {v1, v2}
13. end if
14. end while

4.3 Symbolic Abstraction Refinement

We replace the abstraction refinement step of Algorithms 1, 2, and 3 with a step that
adds a variablex ∈ Xc to the setXa of variables present in the abstraction. The
challenge is to choose a variablex that increases the precision of the abstraction in a
useful way. To this end, we follow an approach inspired directly by [5].

Denote byv ∈ S[Xa] the abstract state that Algorithms 3 chooses for splitting at
Step 7, and letψM−

1 ∈ F(Xa) be the formula defining the setWM−
1 in the same algo-

rithm. We choosex ∈ Xc so that there are at least two statess1, s2 ∈ v that differ only
for the value ofx, and such thats1 |= SCpreV,m+

1 (ψM−
1) ands2 6|= SCpreV,m+

1 (ψM−
1).

Thus, the symbolic abstraction refinement algorithm first searches for a variablex ∈ Xc

for which the following formula is true:

∃(Xc\x).

(

(

χv →
(

x ≡ SCpreV,m+

1 (ψM−
1)

)

)

∨
(

χv →
(

x 6≡ SCpreV,m+

1 (ψM−
1)

)

)

)

,

whereχv is thecharacteristic formulaof v:

χv =
∧

{

x | x ∈ Xa.v(x) = T
}

∧
∧

{

¬x | x ∈ Xa.v(x) = F
}

.

If no such variable can be found, due to the approximate computation of SCpreV,m+

1 and
SCpreV,M−

1 , thenx ∈ Xc is chosen arbitrarily. The choice of variable for Algorithm2
can be obtained by reasoning in dual fashion.

5 Abstraction Refinement for Parity Games

We now present a general abstraction-refinement algorithm to solve an-color parity
game where the state-spaceS is partitioned inton disjoint subsetsB0, B1, . . . , Bn.
Denoting the parity condition〈B0, . . . , Bn〉 by ϕ, the winning states can be computed
as follows [11]:

〈1〉ϕ = ΥnYn. . . . νY0.
(

(B0 ∩ Cpre1(Y0)) ∪ . . . ∪ (Bn ∩ Cpre1(Yn))
)

,

Algorithm 5 Split(V, Um, UM , k)
Input: An abstractionV , may winning setUm ⊆ V , must winning setUM ⊆ V , number of
colorsk.
Output: A set of tuples(v, v1, v2) ∈ V × 2S × 2S .

1. if k odd:
2. then P = {(v, v1, v2) | v ∈ {Bk ∩ (Um \ UM) ∩ CpreV,m

1 (UM)},
v1 = v ∩ Cpre

1
(UM), v2 = v \ v1, v1 6= ∅, v2 6= ∅}

3. elseP = {(v, v1, v2) | v ∈ {Bk ∩ (Um \ UM) ∩ CpreV,m
2 (V \ Um)},

v1 = v ∩ Cpre2(V \ Um), v2 = v \ v1, v1 6= ∅, v2 6= ∅}
4. end if
5. if k = 0 then return P

6. else
7. W m

1 := Win(CpreV,m
1 , UM , k − 1)

8. return P ∪ Split(V,W m
1 , UM , k − 1))

9. end if

whereΥi is ν wheni is even, and isµ wheni is odd, fori ∈ IN. Algorithm 4 describes
our 3-valued abstraction-refinement approach to solving parity games. The algorithm
starts with an abstractionV that is precise forB0, . . . ,Bn. The algorithm computes the
setsWm

1 andWM
1 using the following formula:

Win(Op, U, k) = ΥkYk. . . . νY0.







U ∪
(

Bk↑
M
V ∩ Op(Yk)

)

∪ · · ·
∪

(

B0↑
M
V ∩ Op(Y0)

)






.

In the formula,U ⊆ V is a set of abstract states that are already known to be must-
winning; in Algorithm 4 we use this formula with Op= CpreV,M

i to computeWM
1 ,

and with Op= CpreV,m
i to computeWm

1 .
The refinement step relies on a recursive functionSplit (Algorithm 5) to obtain

a list of candidate splits(v, v1, v2): each of these suggests to splitv into non-empty
v1 andv2. The functionSplit is called with a partial parity conditionB0, . . . , Bk, for
0 ≤ k ≤ n. The function first computes a candidate split in the colorBk: if k is even
(resp. odd), it proceeds as in Steps 7–8 of Algorithm 2 (resp.Algorithm 1). The function
then recursively computes the may-winning set of states in agame withk − 1 colors,
where the states inUM are already known to be must-winning, and computes additional
candidate splits in suchk − 1 color game. We illustrate the functionSplit with the help
of an example.

Example 3.Figure 3 shows how functionSplit (Algorithm 5) computes the candidate
splits in a Co-Büchi game with colorsB0, B1 (the objective of player 1 consists in
eventually forever staying inB0). The candidate splits inB1 are given by:

P1 = {(r, r1, r2) | r ∈ B1 ∩ (Wm
1 \ WM

1) ∩ CpreV,m
1 (WM

1),

r1 = r ∩ Cpre1(W
M
1), r2 = r \ r1}

S

B0

B1

W 1
m W 1

M

Vm

r

v

r1

r2

v1

v2

Fig. 3. Abstraction refinement for co-Büchi games

To compute the candidate splits inB0, the algorithm considers a safety game with goal
�B0, with WM

1 as set of states that are already considered to be winning; the may-
winning states in this game areVm = νY0. (WM

1 ∪ (B0 ∩ CpreV,m
1 (Y0))). Thus, the

algorithm computes the following candidate splits inB0:

P0 = {(v, v1, v2) | v ∈ B0 ∩ (Vm \WM
1) ∩ CpreV,m

2 (V \ Vm),

v1 = v ∩ Cpre
2
(V \ Vm), v2 = v \ v1}.

The function Split returnsP1 ∪ P0 as the set of candidate splits for the given co-Büchi
game.

Lemma 3 At Step 4 of Algorithm 4, we haveWM
1 ↓ ⊆ 〈1〉ϕ ⊆Wm

1 ↓.

Theorem 5 If Algorithm 4 terminates, it returns the correct answer. Moreover, con-
sider a gameGwith a finite region algebraU . Assume that Algorithm 4 is called with an
initial abstractionV ⊆ U . Then, the algorithms terminates, and during its execution, it
produces abstract states that are all members of the algebraU .

6 Conclusion and Future Work

We have presented a technique for the verification of game properties based on the
construction, three-valued analysis, and refinement of game abstractions. The approach
is suitable for symbolic implementation and, being based entirely on the evaluation of
predecessor operators, is simple both to present and to implement. We plan to imple-
ment the approach as part of the Ticc toolset of interface composition and analysis [1],
applying it both to the untimed interface composition problem (which requires solving
safety games), and to the timed interface composition problem (which requires solving
3-color parity games).

References

1. B. Adler, L. de Alfaro, L. D. D. Silva, M. Faella, A. Legay, V. Raman, and P. Roy. TICC: a
tool for interface compatibility and composition. InCAV 06: Proc. of 18th Conf. on Computer
Aided Verification, volume 4144 ofLect. Notes in Comp. Sci., pages 59–62. Springer-Verlag,
2006.

2. R. Alur, A. Itai, R. P. Kurshan, and M. Yannakakis. Timing verification by successive ap-
proximation.Inf. Comput., 118(1):142–157, 1995.

3. T. Ball and S. Rajamani. The SLAM project: Debugging system software via static analysis.
In Proceedings of the 29th Annual Symposium on Principles of Programming Languages,
pages 1–3. ACM Press, 2002.

4. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, 1986.

5. E. Clarke, O. Grumberg, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement.
In CAV 00: Proc. of 12th Conf. on Computer Aided Verification, Lect. Notes in Comp. Sci.
Springer-Verlag, 2000.

6. L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang, C. Meyer-
Kirsch, and B. Wang. Mocha: A model checking tool that exploits design structure. In
ICSE 01: Proceedings of the 23rd International Conference on Software Engineering, pages
835–836, 2001.

7. L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, andM. Sorea. Sociable interfaces.
In FROCOS: Frontiers of Combining Systems, Proc. of the 5th Intl. Workshop, volume 3717
of Lect. Notes in Comp. Sci., pages 81–105. Springer-Verlag, 2005.

8. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games. InCONCUR 03: Concurrency Theory. 14th Int. Conf., volume
2761 ofLect. Notes in Comp. Sci., pages 144–158. Springer-Verlag, 2003.

9. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games: Uncer-
tainty, but with precision. InProc. 19th IEEE Symp. Logic in Comp. Sci., pages 170–179,
2004.

10. L. de Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-state games.
In CONCUR 01: Concurrency Theory. 12th Int. Conf., Lect. Notes in Comp. Sci. Springer-
Verlag, 2001.

11. E. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy (extended abstract).
In Proc. 32nd IEEE Symp. Found. of Comp. Sci., pages 368–377. IEEE Computer Society
Press, 1991.

12. T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In30th Int.
Colloquium on Automata, Languages, and Programming (ICALP), volume 2719, pages 886–
902. LNCS, 2003.

13. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.
In Proc. of 12th Annual Symp. on Theor. Asp. of Comp. Sci., volume 900 ofLect. Notes in
Comp. Sci., pages 229–242. Springer-Verlag, 1995.

14. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1991.

15. D. Martin. An extension of Borel determinacy.Annals of Pure and Applied Logic, 49:279–
293, 1990.

16. S. Shoham. A game-based framework for CTL counter-examples and 3-valued abstraction-
refinement. InCAV 03: Proc. of 15th Conf. on Computer Aided Verification, Lect. Notes in
Comp. Sci., pages 275–287. Springer-Verlag, 2003.

17. S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. InTACAS, volume
2988 ofLect. Notes in Comp. Sci., pages 546–560. Springer-Verlag, 2004.

18. S. Shoham and O. Grumberg. 3-valued abstraction: More precision at less cost. InProc. 21st
IEEE Symp. Logic in Comp. Sci., pages 399–410, 2006.

19. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,Handbook of Theo-
retical Computer Science, volume B, chapter 4, pages 135–191. Elsevier Science Publishers
(North-Holland), Amsterdam, 1990.

