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Abstract

We consider two-player games played over finite state
spaces for an infinite number of rounds. At each state,
the players simultaneously choose moves; the moves deter-
mine a successor state. It is often advantageous for players
to choose probability distributions over moves, rather than
single moves. Given a goal (e.g., “reach a target state”),
the question of winning is thus a probabilistic one: “what
is the maximal probability of winning from a given state?”.

On these game structures, two fundamental notions are
those of equivalences and metrics. Given a set of winning
conditions, two states are equivalent if the players can win
the same games with the same probability from both states.
Metrics provide a bound on the difference in the probabil-
ities of winning across states, capturing a quantitative no-
tion of state “similarity”.

We introduce equivalences and metrics for two-player
game structures, and we show that they characterize the dif-
ference in probability of winning games whose goals are ex-
pressed in the quantitative µ-calculus. The quantitative µ-
calculus can express a large set of goals, including reacha-
bility, safety, and ω-regular properties. Thus, we claim that
our relations and metrics provide the canonical extensions
to games, of the classical notion of bisimulation for transi-
tion systems. We develop our results both for equivalences
and metrics, which generalize bisimulation, and for asym-
metrical versions, which generalize simulation.

∗This research was sponsored in part by the grants NSF-CCF-0427202,
NSF-CCF-0546170, and NSF-CCR-0132780.

1. Introduction

We consider two-player games played for an infinite
number of rounds over finite state spaces. At each round,
the players simultaneously and independently select moves;
the moves then determine a probability distribution over
successor states. These games, known variously as stochas-
tic games [24] or concurrent games [3, 1, 5], generalize
many common structures in computer science, from tran-
sition systems, to Markov chains [12] and Markov decision
processes [6]. The games are turn-based if, at each state, at
most one of the players has a choice of moves, and deter-
ministic if the successor state is uniquely determined by the
current state, and by the moves chosen by the players.

It is well-known that in such games with simultaneous
moves it is often advantageous for the players to random-
ize their moves, so that at each round, they play not a sin-
gle “pure” move, but rather, a probability distribution over
the available moves. These probability distributions over
moves, called mixed moves [20], lead to various notions of
equilibria [29, 20], such as the equilibrium result expressed
by the minimax theorem [29]. Intuitively, the benefit of
playing mixed, rather than pure, moves lies in preventing
the adversary from tailoring a response to the individual
move played. Even for simple reachability games, the use of
mixed moves may allow players to win, with probability 1,
games that they would lose (i.e., win with probability 0) if
restricted to playing pure moves [3]. With mixed moves,
the question of winning a game with respect to a goal is
thus a probabilistic one: what is the maximal probability a
player can be guaranteed of winning, regardless of how the
other player plays? This probability is known, in brief, as
the winning probability.
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In structures ranging from transition systems to Markov
decision processes and games, a fundamental question is
the one of equivalence of states. Given a suitably large
class Φ of properties, containing all properties of interest
to the modeler, two states are equivalent if the same proper-
ties hold in both states. For a property φ, denote the value
of φ at s by φ(s): in the case of games, this might represent
the maximal probability of a player winning with respect to
a goal expressed by φ. Two states s and t are equivalent if
φ(s) = φ(t) for all φ ∈ Φ. For (finite-branching) transition
systems, and for the class of properties Φ expressible in the
µ-calculus [14], state equivalence is captured by bisimula-
tion [19]; for Markov decision processes, it is captured by
probabilistic bisimulation [22]. For quantitative properties,
a notion related to equivalence is that of a metric: a metric
provides a tight bound for how much the value of a property
can differ at states of the system, and provides thus a quan-
titative notion of similarity between states. Given a set Φ of
properties, the metric distance of two states s and t can be
defined as supφ∈Φ |φ(s) − φ(t)|. Metrics for Markov deci-
sion processes have been studied in [7, 27, 28, 8, 9]. Obvi-
ously, the metrics and relations are connected, in the sense
that the relations are the kernels of the metrics (the pairs of
states having metric distance 0). The metrics and relations
are at the heart of many verification techniques, from ap-
proximate reasoning (one can substitute states that are close
in the metric) to system reductions (one can collapse equiva-
lent states) to compositional reasoning and refinement (pro-
viding a notion of substitutivity of equivalents).

We introduce metrics and equivalence relations for con-
current games, with respect to the class of properties Φ ex-
pressible in the quantitative µ-calculus [5, 18]. We claim
that these metrics and relations represent the canonical ex-
tension of bisimulation to games. We also introduce asym-
metrical versions of these metrics and equivalences, which
constitute the canonical extension of simulation.

An equivalence relation for deterministic games that are
either turn-based, or where the players are constrained to
playing pure moves, has been introduced in [2] and called
alternating bisimulation. Relations and metrics for the gen-
eral case of concurrent games have so far proved elusive,
with some previous attempts at their definition by a subset
of the authors following a subtly flawed approach [4, 16].
The cause of the difficulty goes to the heart of the definition
of bisimulation. In the definition of bisimulation for transi-
tion systems, for every pair s, t of bisimilar states, we re-
quire that if s can go to a state s′, then t should be able to go
to t′, such that s′ and t′ are again bisimilar (we also ask that
s, t have an equivalent predicate valuation). This definition
has been extended to Markov decision processes by requir-
ing that for every mixed move from s, there is a mixed move
from t, such that the moves induce probability distributions
over successor states that are equivalent modulo the under-

lying bisimulation [22, 21]. Unfortunately, the generaliza-
tion of this appealing definition to games fails. It turns out,
as we prove in this paper, that requiring players to be able to
replicate probability distributions over successors (modulo
the underlying equivalence) leads to an equivalence that is
too fine, and that may fail to relate states at which the same
quantitative µ-calculus formulas hold. We show that phras-
ing the definition in terms of distributions over successor
states is the wrong approach for games; rather, the defini-
tion should be phrased in terms of expectations of certain
metric-bounded quantities.

Our starting point is a closer look at the definition of met-
rics for Markov decision processes. We observe that we can
manipulate the definition of metrics given in [28], obtain-
ing an alternative form, which we call the a priori form, in
contrast with the original form of [28], which we call the
a posteriori form. Informally, the a posteriori form is the
traditional definition, phrased in terms of similarity of prob-
ability distributions; the a priori form is instead phrased in
terms of expectations. We show that, while on Markov deci-
sion processes these two forms coincide, this is not the case
for games; moreover, we show that it is the a priori form
that provides the canonical metrics for games.

We prove that the a priori metric distance between
two states s and t of a concurrent game is equal to
supφ∈Φ |φ(s) − φ(t)|, where Φ is the set of properties ex-
pressible via the quantitative µ-calculus. This result can
be summarized by saying that the quantitative µ-calculus
provides a logical characterization for the a priori metrics,
similar to the way the ordinary µ-calculus provides a logi-
cal characterization of bisimulation. Furthermore, we prove
that a priori metrics — and their kernels, the a priori rela-
tions — satisfy a reciprocity property, stating that properties
expressed in terms of player-1 and player-2 winning condi-
tions have the same distinguishing power. This property
is intimately connected to the fact that concurrent games,
played with mixed moves, are determined for ω-regular
goals [17, 5]: the probability that player 1 achieves a goal
ψ is one minus the probability that player 2 achieves the
goal ¬ψ. Reciprocity ensures that there is one, canonical,
notion of game equivalence. This is in contrast to the case
of alternating bisimulation of [2], in which there are dis-
tinct player-1 and player-2 versions, as a consequence of the
fact that concurrent games, when played with pure moves,
are not determined. The logical characterization and reci-
procity result justify our claim that a priori metrics and re-
lations are the canonical notion of metrics, and equivalence,
for concurrent games. Neither the logical characterization
nor the reciprocity result hold for the a posteriori metrics
and relations.

While this introduction focused mostly on metrics and
equivalence relations, we also develop results for the asym-
metrical versions of these notions, related to simulation.
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2. Games and Goals

We will develop metrics for game structures over a set S
of states. We start with some preliminary definitions. For a
finite set A, let Dist(A) denote the set of probability distri-
butions over A. We say that p ∈ Dist(A) is deterministic if
there is a ∈ A such that p(a) = 1.

For a set S, a valuation over S is a function f : S 7→
[0, 1] associating with every element s ∈ S a value 0 ≤
f(s) ≤ 1; we let F be the set of all valuations. For
c ∈ [0, 1], we denote by c the constant valuation such that
c(s) = c at all s ∈ S. We order valuations pointwise: for
f, g ∈ F , we write f ≤ g iff f(s) ≤ g(s) at all s ∈ S; we
remark that F , under ≤, forms a lattice.

Given a, b ∈ IR, we write a t b = max{a, b}, and
au b = min{a, b}; we also let a⊕ b = min{1,max{0, a+
b}} and a 	 b = max{0,min{1, a − b}}. We extend
u,t,+,−,⊕,	 to valuations by interpreting them in point-
wise fashion.

A directed metric is a function d : S2 7→ IR≥0 which
satisfies d(s, s) = 0 and d(s, t) ≤ d(s, u) + d(u, t) for
all s, t, u ∈ S. We denote by M ⊆ S2 7→ IR the space
of all metrics; this space, ordered pointwise, forms a lattice
which we indicate with (M,≤). Given a metric d ∈ M, we
denote by d̆ its opposite version, defined by d̆(s, t) = d(t, s)

for all s, t ∈ S; we say that d is symmetrical if d = d̆.

2.1. Game Structures

We assume a fixed, finite set V of observation vari-
ables. A (two-player, concurrent) game structure G =
〈S, [·],Moves,Γ1,Γ2, δ〉 consists of the following compo-
nents [1, 3]:

• A finite set S of states.

• A variable interpretation [·] : V × S 7→ [0, 1], which
associates with each variable v ∈ V a valuation [v].

• A finite set Moves of moves.

• Two move assignments Γ1,Γ2: S 7→ 2Moves \ ∅. For
i ∈ {1, 2}, the assignment Γi associates with each
state s ∈ S the nonempty set Γi(s) ⊆ Moves of moves
available to player-i at state s.

• A probabilistic transition function δ: S × Moves ×
Moves 7→ Dist(S), that gives the probability
δ(s, a1, a2)(t) of a transition from s to t when player-1
plays move a1 and player-2 plays move a2.

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s),
and simultaneously and independently player 2 chooses a
move a2 ∈ Γ2(s). The game then proceeds to the succes-
sor state t ∈ S with probability δ(s, a1, a2)(t). We denote
by Dest(s, a1, a2) = {t ∈ S | δ(s, a1, a2)(t) > 0} the
set of destination states when actions a1, a2 are chosen at

s. The variables in V naturally induce an equivalence on
states: for states s, t, define s ≡ t if for all v ∈ V we have
[v](s) = [v](t). In the following, unless otherwise noted,
the definitions refer to a game structure with components
G = 〈S, [·],Moves,Γ1,Γ2, δ〉. For player i ∈ {1, 2}, we
write ∼ i = 3 − i for the opponent. We also consider the
following subclasses of game structures.

• Turn-based game structures. A game structure G is
turn-based if we can write S as the disjoint union of
two sets: the set S1 of player-1 states, and the set S2 of
player-2 states, such that s ∈ S1 implies |Γ2(s)| = 1,
and s ∈ S2 implies |Γ1(s)| = 1, and further, there
is a special variable turn ∈ V , such that [turn]s = 1
iff s ∈ S1, and [turn]s = 0 iff s ∈ S2: thus, the
variable turn indicates whose turn it is to play at a state.
Turn-based games are often called perfect information
games [20].

• Markov decision processes. A game structure G is a
Markov decision process (MDP) [6] if only one of the
two players has a choice of moves. For i ∈ {1, 2}, we
say that a structure is an i-MDP if ∀s ∈ S, |Γ∼i(s)| =
1. For MDPs, we omit the (single) move of the player
without a choice of moves, and write δ(s, a) for the
transition function.

• Deterministic game structures. A game structure G is
deterministic if, for all s ∈ S, a1 ∈ Moves, and a2 ∈
Moves, there exists a t ∈ S such that δ(s, a1, a2)(t) =
1; we denote such t by τ(s, a1, a2). We sometimes call
probabilistic a general game structure, to emphasize
the fact that it is not necessarily deterministic.

Pure and mixed moves. A mixed move is a probability
distribution over the moves available to a player at a state.
We denote by Di(s) = Dist(Γi(s)) the set of mixed moves
available to player i ∈ {1, 2} at s ∈ S. The moves in
Moves are called pure moves, in contrast to mixed moves.
We extend the transition function to mixed moves. For s ∈
S and x1 ∈ D1(s), x2 ∈ D2(s), we write δ(s, x1, x2) for
the next-state probability distribution induced by the mixed
moves x1 and x2, defined for all t ∈ S by

δ(s, x1, x2)(t) =
∑

a1∈Γ1(s)

∑

a2∈Γ2(s)

δ(s, a1, a2)(t) x1(a1) x2(a2).

In the following, we sometimes restrict the moves of the
players to pure moves. We identify a pure move a ∈ Γi(s)
available to player i ∈ {1, 2} at a state swith a deterministic
distribution that plays a with probability 1.

The deterministic setting. The deterministic setting con-
sists in considering deterministic game structures, and play-
ers restricted to play pure moves.
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Predecessor operators. Given a valuation f ∈ F , a state
s ∈ S, and two mixed moves x1 ∈ D1(s) and x2 ∈ D2(s),
we define the expectation of f from s under x1, x2:

E
x1,x2

s (f) =
∑

t∈S

δ(s, x1, x2)(t) f(t)

For a game structure G, for i ∈ {1, 2} we define the val-
uation transformer Prei : F 7→ F by, for all f ∈ F and
s ∈ S,

Prei(f)(s) = sup
xi∈Di(s)

inf
x∼i∈D∼i(s)

E
x1,x2

s (f).

Intuitively, Prei(f)(s) is the maximal expectation player i
can achieve of f after one step from s: this is the classical
“one-day” or “next-stage” operator of the theory of repeated
games [10]. We also define a deterministic version of this
operator, in which players are forced to play pure moves:

PreΓ
i (f)(s) = max

xi∈Γi(s)
min

x∼i∈Γ∼i(s)
E

x1,x2

s (f) .

2.2. Quantitative µ-calculus

We consider the set of properties expressed by the quan-
titative µ-calculus (qµ). As discussed in [13, 5, 18], a large
set of properties can be encoded in qµ, spanning from basic
properties such as maximal reachability and safety proba-
bility, to the maximal probability of satisfying a general ω-
regular specification.

Syntax. The syntax of quantitative µ-calculus is defined
with respect to the set of observation variablesV as well as a
set MVars of calculus variables, which are distinct from the
observation variables in V . The syntax is given as follows:

φ ::= c | v | Z | ¬φ | φ ∨ φ | φ ∧ φ | φ⊕ c | φ	 c |

pre1(φ) | pre2(φ) | µZ. φ | νZ. φ

for constants c ∈ [0, 1], observation variables v ∈ V , and
calculus variables Z ∈ MVars. In the formulas µZ. φ and
νZ. φ, we furthermore require that all occurrences of the
bound variableZ in φ occur in the scope of an even number
of occurrences of the complement operator ¬. A formula
φ is closed if every calculus variable Z in φ occurs in the
scope of a quantifier µZ or νZ. From now on, with abuse of
notation, we denote by qµ the set of closed formulas of qµ.
A formula is a player-i formula, for i ∈ {1, 2}, if φ does not
contain the pre∼i operator; we denote with qµi the syntactic
subset of qµ consisting only of closed player-i formulas. A
formula is in positive form if the negation appears only in
front of game variables, i.e., in the context ¬v; we denote
with qµ+ and qµ+

i the subsets of qµ and qµi consisting only
of positive formulas.

We remark that the fixpoint operators µ and ν will not be
needed to achieve our results on the logical characterization

of game relations. They have been included in the calculus
because they allow the expression of many interesting prop-
erties, such as safety, reachability, and in general, ω-regular
properties.

Semantics. A variable valuation ξ: MVars 7→ F is a func-
tion that maps every variable Z ∈ MVars to a valuation
in F . We write ξ[Z 7→ f ] for the valuation that agrees with
ξ on all variables, except that Z is mapped to f . Given
a game structure G and a variable valuation ξ, every for-
mula φ of the quantitative µ-calculus defines a valuation
[[φ]]Gξ ∈ F (the superscript G is omitted if the game struc-
ture is clear from the context):

[[c]]ξ = c [[v]]ξ = [v] [[Z]]ξ = ξ(Z)

[[¬φ]]ξ = 1 − [[φ]]ξ [[φ
{

⊕

	

}

c]]ξ = [[φ]]ξ
{

⊕

	

}

c

[[φ1

{

∨

∧

}

φ2]]ξ = [[φ1]]ξ
{

t

u

}

[[φ2]]ξ

[[prei(φ)]]ξ = Prei([[φ]]ξ)

[[
{

µ
ν

}

Z. φ]]ξ =
{

inf
sup

}

{f ∈ F | f = [[φ]]ξ[Z 7→f ]}

where i ∈ {1, 2}. The existence of the fixpoints is guaran-
teed by the monotonicity and continuity of all operators and
can be computed by Picard iteration [5]. If φ is closed, [[φ]]ξ
is independent of ξ, and we write simply [[φ]].

We also define a deterministic semantics [[·]]Γ for qµ, in
which players can select only pure moves in the operators
pre1, pre2. [[·]]Γ is defined as [[·]], except for the clause

[[prei(φ)]]Γξ = PreΓ
i ([[φ]]Γξ ) .

Example 1 Given a set T ⊆ S, the characteristic valua-
tion T of T is defined by T(s) = 1 if s ∈ T , and T(s) = 0
otherwise. With this notation, the maximal probability with
which player i ∈ {1, 2} can ensure eventually reaching
T ⊆ S is given by [[µZ.(T ∨ prei(Z))]], and the maximal
probability with which player i can guarantee staying in T
forever is given by [[νZ.(T ∧ prei(Z))]] [5].

3. Metrics

We are interested in developing a metric on states of
a game structure that captures an approximate notion of
equivalence: states close in the metric should yield simi-
lar values to the players for any winning objective. Specif-
ically, we are interested in defining a bisimulation metric
['g] ∈ M such that for any game structure G and states
s, t of G, the following continuity property holds:

['g](s, t) = sup
φ∈qµ

|[[φ]](s) − [[φ]](t)|. (1)

In particular, the kernel of the metric, that is, states at dis-
tance 0, are equivalent: each player can get exactly the
same value from either state for any objective. Notice that
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in defining the metric independent of a player, we are ex-
pecting our metrics to be reciprocal, that is, invariant un-
der a change of player. Reciprocity is expected to hold
since the underlying games we consider are determined —
for any game, the value obtained by player 2 is 1 minus the
value obtained by player 1— and yields canonical metrics
on games.

Thus, our metrics will generalize equivalence and re-
finement relations that have been studied on MDPs and in
the deterministic setting. To underline the connection be-
tween classical equivalences and the metrics we develop,
we write [s 'g t] for ['g](s, t), so that the desired prop-
erty of the bisimulation metric can be stated as [s 'g t] =
supφ∈qµ |[[φ]](s)− [[φ]](t)|. Metrics of this type have already
been developed for Markov decision processes (MDPs)
[27, 8]. Our construction of metrics for games starts from
an analysis of these constructions.

3.1. Metrics for MDPs

We consider the case of 1-MDPs; the case for 2-MDPs
is symmetrical. Throughout this subsection, we fix a
1-MDP 〈S, [·],Moves,Γ1,Γ2, δ〉. Before we present the
metric correspondent of probabilistic simulation, we first
rephrase classical probabilistic (bi)simulation on MDPs
[15, 11, 22, 23] as a fixpoint of a relation transformer
F : 2S×S 7→ 2S×S. For all relations R ⊆ S × S and
s, t ∈ S, let (s, t) ∈ F (R) iff

s ≡ t ∧ ∀x1∈M1(s) . ∃y1∈M1(t) . δ(s, x1) vR δ(t, y1),
(2)

for all states s, t ∈ S. In (2), ≡ is the predicate equivalence
relation: s ≡ t if the predicates have the same value at s and
t. The relation vR lifts the relation R on states to a relation
on distributions. Precisely, for a relation R ⊆ S × S and
two distributions p, q ∈ Dist(S), we let p vR q if there is a
function ∆ : S × S → [0, 1] such that (i) ∆(s, s′) > 0 im-
plies (s, s′) ∈ R, (ii) p(s) =

∑

s′∈S ∆(s, s′) for any s ∈ S,
and (iii) q(s′) =

∑

s∈S ∆(s, s′) for any s′ ∈ S. Probabilis-
tic simulation is the greatest fixpoint of (2); probabilistic
bisimulation is the greatest symmetrical fixpoint of (2).

To obtain a metric equivalent of probabilistic simulation,
we lift the above fixpoint from relations (subsets of S2) to
metrics (maps S2 7→ IR). First, we define [≡] ∈ M for all
s, t ∈ S by [s ≡ t] = maxv∈V |[v](s) − [v](t)|. Second,
we lift (2) to metrics, defining a metric transformerH 1MDP

post :
M 7→ M. For all d ∈ M, let D(δ(s, x1), δ(t, y1))(d) be
the distribution distance between δ(s, x1) and δ(t, y1) with
respect to the metric d. We will show later how to define
such a distribution distance. For s, t ∈ S, we let

H1MDP
post (d)(s, t) (3)

= [s ≡ t] t sup
x1∈Γ1(s)

inf
y1∈Γ1(t)

D(δ(s, x1), δ(t, y1))(d).

In this definition, the ∀ and ∃ of (2) have been replaced by
sup and inf , respectively. Since equivalent states should
have distance 0, the simulation metric in MDPs is defined as
the least (rather than greatest) fixpoint of (3) [27, 8]. Simi-
larly, the bisimulation metric is defined as the least symmet-
rical fixpoint of (3).

For a distance d ∈ M and two distributions p, q ∈
Dist(S), the distribution distanceD(p, q)(d) between p and
q with respect to d, is a measure of how much “work” we
have to do to make p look like q, given that moving a unit
of probability mass from s ∈ S to t ∈ S has cost d(s, t).
More precisely,D(p, q)(d) is defined via the trans-shipping
problem, as the minimum cost of shipping the distribution
p into q, with edge costs d. Thus, D(p, q)(d) is the solution
of the following linear programming (LP) problem over the
set of variables {λs,t}s,t∈S [27]:

Minimize
∑

s,t∈S

d(s, t)λs,t subject to

∑

s∈S

λs,t = p(s),
∑

t∈S

λs,t = q(t), λs,t ≥ 0.

Equivalently, we can define D(p, q)(d) via the dual of the
above LP problem. Given a metric d ∈ M, let C(d) ⊆ F
be the subset of valuations k ∈ F such that k(s) − k(t) ≤
d(s, t) for all s, t ∈ S. Then the dual formulation is:

Maximize
∑

s∈S

p(s) k(s) −
∑

s∈S

q(s)k(s) (4)

subject to k ∈ C(d).

The constraintC(d) on the valuation k, states the value of k
across states cannot differ by more than d. This means, in-
tuitively, that k behaves like the valuation of a qµ formula:
as we will see, the logical characterization implies that d is a
bound for the difference in valuation of qµ formulas across
states. Indeed, the logical characterization of the metrics is
proved by constructing formulas whose valuation approxi-
mate that of the optimal k. Plugging (4) into (3), we obtain:

H1MDP
post (d)(s, t) = [s ≡ t] t (5)

sup
x1∈Γ1(s)

inf
y1∈Γ1(t)

sup
k∈C(d)

(

E
x1

s (k) − E
y1

t (k)
)

We can interpret this definition as follows. State t is trying
to simulate state s (this is a definition of a simulation met-
ric). First, state s chooses a mixed move x1, attempting to
make simulation as hard as possible; then, state t chooses a
mixed move y1, trying to match the effect of x1. Once x1

and y1 have been chosen, the resulting distance between s
and t is equal to the maximal difference in expectation, for
moves x1 and y1, of a valuation k ∈ C(d). We call the met-
ric transformer H1MDP

post the a posteriori metric transformer:
the valuation k in (5) is chosen after the moves x1 and y1
are chosen. We can define an a priori metric transformer,
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where k is chosen before x1 and y1:

H1MDP
prio (d)(s, t) = [s ≡ t] t (6)

sup
k∈C(d)

sup
x1∈Γ1(s)

inf
y1∈Γ1(t)

(

E
x1

s (k) − E
y1

t (k)
)

Intuitively, in the a priori transformer, first a valuation k ∈
C(d) is chosen. Then, state t must simulate state s with re-
spect to the expectation of k. State s chooses a move x1,
trying to maximize the difference in expectations, and state
t chooses a move y1, trying to minimize it. The distance be-
tween s and t is then equal to the difference in the resulting
expectations of k.

Theorem 1 below states that for MDPs, a priori and a
posteriori simulation metrics coincide. In the next section,
we will see that this is not the case for games.

Theorem 1 For all MDPs, H1MDP
post = H1MDP

prio .

Proof Consider two states s, t ∈ S, and a metric d ∈ M.
We have to prove that supk supx1

infy1
E

x1
s (k)−E

y1

t (k) =
supx1

infy1
supk E

x1
s (k) − E

y1

t (k). In the left-hand side,
we can exchange the two outer sups. Then, noticing that
the difference in expectation is bilinear in k and y1 for a
fixed x1, that y1 is a probability distribution, and that k is
chosen from a compact convex subset, we apply the gen-
eralized minimax theorem [25] to exchange supk infy1

into
infy1

supk, thus obtaining the right-hand side. �

The metrics defined above are logically characterized by qµ.
Precisely, let [∼] ∈ M be the least symmetrical fixpoint of
H1MDP

prio = H1MDP
post . Then, the results of [8] (originally stated

for H1MDP
post ) state that for all states s, t of a 1-MDP, we have

[s ∼ t] = supφ∈qµ |[[φ]](s) − [[φ]](t)|.

3.2. Metrics for Concurrent Games

We now extend the simulation and bisimulation metrics
from MDPs to general game structures. As we shall see,
unlike for MDPs, the a priori and the a posteriori metrics do
not coincide over games. In particular, we show that the a
priori formulation satisfies both a tight logical characteriza-
tion as well as reciprocity while, perhaps surprisingly, the
more natural a posteriori version does not.

A posteriori metrics are defined via the metric trans-
former Hv1

: M 7→ M as follows, for all d ∈ M and
s, t ∈ S:

Hv1
(d)(s, t)

= [s ≡ t] t sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

D(δ(s, x1, x2), δ(t, y1, y2), d)

= [s ≡ t] t sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

sup
k∈C(d)

(

E
x1,x2

s (k) − E
y1,y2

t (k)
)

. (7)

We define a posteriori game simulation metric [v1] as the
least fixpoint of Hv1

, and we define a posteriori game
bisimulation metric [∼=1] as the least symmetrical fixpoint
of Hv1

. The a posteriori simulation metric [v1] has been
introduced in [4, 16].

A priori metrics are defined by bringing the supk outside.
Precisely, we define a metric transformer H�1

: M 7→ M
as follows, for all d ∈ M and s, t ∈ S:

H�1
(d)(s, t)

= [s ≡ t] t sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

(

E
x1,x2

s (k) − E
y1,y2

t (k)
)

= [s ≡ t] t sup
k∈C(d)

(

sup
x1∈D1(s)

inf
x2∈D2(s)

E
x1,x2

s (k)

− sup
y1∈D1(t)

inf
y2∈D2(t)

E
y1,y2

t (k)
)

= [s ≡ t] t sup
k∈C(d)

(

Pre1(k)(s) − Pre1(k)(t)
)

. (8)

The a priori simulation metric [�1] is the least fixpoint of
H�1

, and the a priori bisimulation metric ['1] is the least
symmetrical fixpoint of H�1

.
We now show some basic properties of these metrics.

We show that a priori fixpoints give a (directed) metric. We
show that a priori and a posteriori metrics are distinct. We
then focus on the a priori metrics, and show through our re-
sults that they are the natural metrics for concurrent games.

Theorem 2 For all game structuresG, and all states s, t, u
of G, we have (1) [s �1 t] ≥ 0, and [s v1 t] ≥ 0, and (2)
[s �1 u] ≤ [s �1 t] + [t �1 u].

Proof The first part follows by considering k(s) = 0 for
all s ∈ S. The second part is proved by induction on the
iterations used to compute the fixpoint of H�1

, as given in
(8). The crucial step consists in observing that, for d ∈ M,
we have

sup
k∈C(d)

(

Pre1(k)(s) − Pre1(k)(t)
)

+ sup
k∈C(d)

(

Pre1(k)(t) − Pre1(k)(u)
)

≥ sup
k∈C(d)

(

Pre1(k)(s) − Pre1(k)(u)
)

. �

A priori and a posteriori metrics are distinct. First, we
show that a priori and a posteriori metrics are distinct in
general: the a priori metric never exceeds the a posteri-
ori one, and there are concurrent games where it is strictly
smaller. Intuitively, this can be explained as follows. Sim-
ulation entails trying to simulate the expectation of a valua-
tion k, as we see from (7), (8). It is easier to simulate a state
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(*, *, *)(u)δ

(*, *, *)(w)δ

8/9 1/34/95/9

0 1/9 1/3 4/9 5/9 2/3 8/9

2/31 01/9

1
b,f

a,f a,g

c,f b,g c,g

Figure 1. Transition probabilities from states
s, t to states u,w.

s from a state t if the valuation is known in advance, as in a
priori metrics (8), than if the valuation k is chosen after all
the moves have been chosen, as in a posteriori metrics (7).

As a special case, we shall see that equality holds for
turn-based game structures, in addition to MDPs as we have
seen in the previous subsection.

Theorem 3 The following assertions hold.

1. For all game structures G, and for all states s, t of G,
we have [s �1 t] ≤ [s v1 t].

2. There is a game structure G, and states s, t of G, such
that [s �1 t] = 0 and [s v1 t] > 0.

3. For all turn-based game structures, we have �1 = v1.

Proof The first assertion is a consequence of the fact that,
for all functions f : IR2 7→ IR, we have supx infy f(x, y) ≤
infy supx f(x, y) (intuitively, it is easier to maximize if we
can choose x after y). Repeated applications of this allows
us to show that, for all d ∈ M, we have H�(d) ≤ Hv(d)
(with pointwise ordering). The result then follows from the
monotonicity of H� and Hv.

For the second assertion, we give an example where a
priori distances are strictly less than a posteriori distances.
Consider a game with states S = {s, t, u, w}. States u and
w are sink states with [u ≡ w] = 1; states s and t are
such that [s ≡ t] = 0. At states s and t, player-2 has
moves {f, g}. Player-1 has a single move {a} at state s,
and moves {b, c} at state t. The moves from s and t lead to
u and w with transition probabilities indicated in Figure 1.
In the figure, the point b, f indicates the probability of go-
ing to u and w when the move pair (b, f) is played, with
δ(s, b, f)(u) + δ(s, b, f)(w) = 1; similarly for the other
move pairs. The thick line segment between the points a, f
and a, g represents the transition probabilities arising when
player 1 plays move a, and player 2 plays a mixed move (a
mix of f and g).

We show that, in this game, we have [s v1 t] > 0.
Consider the metric d where d(u,w) = 1 (recall that
[u ≡ w] = 1, and note the other distances do not matter,

since u, w are the only two destinations). We need to show

∀y1 ∈ D1(t).∃y2 ∈ D2(t).∀x2 ∈ D2(s).∃k ∈ C(d).
(

E
a,x2

s (k) − E
y1,y2

t (k)
)

> 0 (9)

Consider any mixed move y1 = αb + (1 − α)c, where b, c
are the moves available to player 1 at t, and 0 ≤ α ≤ 1. If
α < 1

2 , choose move f from t as y2, and choose k(w) = 1,
k(u) = 0. Otherwise, choose move g from t as y2, and
choose k(w) = 0, k(u) = 1. With these choices, the transi-
tion probability δ(t, y1, y2) will fall outside of the segment
[(a, f), (a, g)] in Figure 1. Thus, with the choice of k above,
we ensure that the difference in (9) is always positive.

To show that in the game we have [s �1 t] = 0, it suf-
fices to show (given that [s �1 t] ≥ 0) that

∀k ∈ C(d).∃y1 ∈ D1(t).∀y2 ∈ D2(t).∃x2 ∈ D2(s).
(

E
a,x2

s (k) − E
y1,y2

t (k)
)

≤ 0.

If k(u) = k(w), the result is immediate. Assume otherwise,
without loss of generality, that k(u) < k(w), and choose
y1 = c. For every y2, the distribution of successor states
(and of k-expectations) will be in the interval [(c, f), (c, g)]
in Figure 1. By choosing x2 = f , we have that E

a,f
s (k) <

E
c,y2

t (k) for all y2 ∈ D2(t), leading to the result.
The last assertion of the theorem is proven in the same

way as Theorem 1. �

Reciprocity of a priori metric. The previous theorem es-
tablishes that the a priori and a posteriori metrics are in
general distinct. We now prove that it is the a priori met-
ric, rather than the a posteriori one, that enjoys reciprocity,
and that provides a (quantitative) logical characterization of
[[qµ]]. We begin by considering reciprocity.

Theorem 4 The following assertions hold.

1. For all game structures G, we have [�1] = [�2], and
['1] = ['2].

2. There is a concurrent game structure G, with states s
and t, where [v1] 6= [w2].

Proof For the first assertion, it suffices to show that, for
all d ∈ M, and states s, t ∈ S, we have H�1

(d)(s, t) =

H�2
(d̆)(t, s). We proceed as follows:

sup
k∈C(d)

(

Pre1(k)(s) − Pre1(k)(t)
)

(10)

= sup
k∈C(d)

(

−Pre2(1 − k)(s) + Pre2(1 − k)(t)
)

(11)

= sup
k∈C(d̆)

(

Pre2(k)(t) − Pre2(k)(s)
)

(12)

The step from (10) to (11) uses Pre1(k)(s) = 1− Pre2(1−
k)(s) [5], and the step from (11) to (12) uses the change of
variables k → 1 − k.
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To show that reciprocity fails for a posteriori simulation
metrics, consider the game from Figure 1. We add two new
moves to player 2 at state t, namely {e, h}, such that for
any α ∈ [0, 1], δ(t, ∗, αe + (1 − α)h)(u) = δ(s, a, αf +
(1 − α)g)(u): using move {e, h} player 2 can ensure that
transition probabilities are on the solid line in Figure 1. Rea-
soning as in Theorem 3, it still is the case that [s v1 t] > 0.
Since the player-2 moves {e, h} from state t are identical
in induced transition probabilities to player-2 moves {f, g}
from state s, player 2 can restrict herself to moves {e, h} at
state t and ensure that [s v2 t] = 0. �

As a consequence of this theorem, we write ['g] in place
of ['1] = ['2], to emphasize that the player-1 and player-2
versions of game equivalence metrics coincide.

Logical characterization of a priori metric. The follow-
ing theorem expresses the fact that [[qµ]] provides a logical
characterization for the a priori metrics. The proof of the
theorem uses ideas from [16] and [8].

Theorem 5 The following assertions hold for all game
structures G, and for all states s, t of G:

[s �1 t] = sup
φ∈qµ

+

1

([[φ]](s) − [[φ]](t))

[s 'g t] = sup
φ∈qµ

|[[φ]](s) − [[φ]](t)|

We note that, due to Theorem 3, an analogous result does
not hold for the a posteriori metrics. Together with the lack
of reciprocity of the a posteriori metrics, this is a strong
indication that the a priori metrics, and not the a posteriori
ones, are the “natural” metrics on concurrent games.

The Kernel. The kernel of the metric ['g ] defines an
equivalence relation 'g on the states of a game structure:
s 'g t iff [s 'g t] = 0. We call this the game bisimulation
relation. Notice that by the reciprocity property of 'g, the
game bisimulation relation is canonical: '1 = '2 = 'g .
Similarly, we define the game simulation preorder s �1 t

as the kernel of the directed metric [�1], that is, s �1 t iff
[s �1 t] = 0. Alternatively, it is possible to define �1 and
'g directly. Given a relation R ⊆ S × S, let B(R) ⊆ F
consist of all valuations k ∈ F such that, for all s, t ∈ S, if
sRt then k(s) ≤ k(t). We have the following result.

Theorem 6 Given a game structure G, �1 (resp. '1) can
be characterized as the largest (resp. largest symmetrical)
relation R such that, for all states s, t with sRt, we have
s ≡ t and

∀k ∈ B(R).∀x1 ∈ D1(s).∃y1 ∈ D1(t).∀y2 ∈ D2(t).

∃x2 ∈ D2(s).
(

E
y1,y2

t (k) ≥ E
x1,x2

s (k)
)

. (13)

We note that the above theorem allows the computation
of '1 via a partition-refinement scheme. From the logical
characterization theorem, we obtain the following corollary.

Corollary 1 For any game structure G and states s, t of
G, we have s 'g t iff [[φ]](s) = [[φ]](t) holds for every
φ ∈ qµ and s �1 t iff [[φ]](s) ≤ [[φ]](t) holds for every
φ ∈ qµ+

1 .

Computation. The next theorem states that the metrics
are computable to any degree of precision. This follows,
since the definition of the distance between two states of a
given game, as the least fixpoint of the metric transformer
(8), can be written as a formula in the theory of reals, which
is decidable [26]. Since the distance between two states
may not be rational, we can only guarantee an approximate
computation in general.

Theorem 7 For any game structure G, and states s, t of
G, the following assertions hold.

1. For all rational v, and all ε > 0, it is decidable if
|[s �1 t] − v| < ε and if |[s 'g t] − v| < ε.

2. It is decidable if s �1 t and if s 'g t.

Game Metrics and (Bi-)simulation Metrics. The a pri-
ori metrics assume an adversarial relationship between the
players. We show that, on turn-based games, the a pri-
ori bisimulation metric coincides with the classical bisim-
ulation metric where the players cooperate. Moreover, on
1-MDPs, the player-1 a priori simulation metric coincides
with the cooperative simulation metric. The metric analog
of classical (bi)simulation [19, 22] is obtained through the
metric transformers H�12

: M 7→ M and H'12
: M 7→

M given by

H�12
(d)(s, t)

= [s ≡ t] t sup
k∈C(d)

sup
x1∈D1(s)

sup
x2∈D1(s)

inf
y1∈D1(t)

inf
y2∈D1(t)

{E
x1,x2

s (k) − E
y1,y2

t (k)}

H'12
(d)(s, t) = H�12

(d)(s, t) tH�12
(d)(t, s)

The metrics [�12] and ['12] are defined as the least fixed
points of H�12

and H'12
respectively. The kernel of these

metrics define the classical probabilistic simulation and
bisimulation relations.

Theorem 8 The following assertions hold.

1. On turn-based game structures, ['g] = ['12].

2. There is a deterministic game structure G and states
s, t in G such that [s 'g t] > [s '12 t].

3. There is a deterministic game structure G and states
s, t in G such that [s 'g t] < [s '12 t].

The first part follows easily from the definition. The second
part is proven by the game in Figure 2, where it holds that
[s 'g t] = 1

2 and [s '12 t] = 0. In this figure, as in all
subsequent ones, different state colors denote that observa-
tion variables have different values at the states, so that the

8



t

s
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b, b
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v

Figure 2. [s 'g t] = 1
2 and [s '12 t] = 0

t

sa, a
a, b
b, a

u va, a

b, b

a, a a, a

Figure 3. [s 'g t] = 0 but [s '12 t] = 1.

states are distinguisheable in qµ. The third part is proven by
the game in Figure 3 where [s ≡ t] = 0 and [u ≡ v] = 1.

Theorem 9 The following assertions hold.

1. For i-MDPs we have [�i] = [�12].

2. There is a deterministic 2-MDP G with states s, t such
that [s �1 t] < [s �12 t].

3. There is a deterministic 2-MDP G with states s, t such
that [t �1 s] > [t �12 s].

Again, the first statement follows easily from the definition.
The second and third are proven by the deterministic 2-
MDP in Figure 4, where again [s ≡ t] = 0 and [u ≡ v] = 1.

4. Discussion

Our derivation of �i and 'g, for i ∈ {1, 2}, as ker-
nels of metrics, seems somewhat abstruse: most equiva-
lence or similarity relations have been defined, after all,
without resorting to metrics. We now point out how a gen-
eralization of the usual definitions [22, 2, 7, 8], suggested
in [4, 16], fails to produce the “right” relations. Further-
more, the flawed relations obtained as a generalization of
[22, 2, 7, 8] are no simpler than our definitions, based on
kernel metrics. Thus, our study of game relations as kernels
of metrics carries no drawbacks in terms of leading to more
complicated definitions. Indeed, we believe that the metric
approach is the superior one for the study of game relations.

We outline the flawed generalization of [22, 2, 7, 8] as
proposed in [4, 16], explaining why it would seem a natu-
ral generalization. The alternating simulation of [2] is de-
fined over deterministic game structures. Player-i alternat-
ing simulation, for i ∈ {1, 2}, is the largest relation R sat-
isfying the following conditions, for all states s, t ∈ S: sRt
implies s ≡ t and ∀ai ∈ Γi(s) . ∃yi ∈ Γi(t) . ∀y∼i ∈
Γ∼i(t) . ∃x∼i ∈ Γ∼i(s) . τ(s, x1, x2)Rτ(t, y1, y2).

t

s

u va, a

a, a a, a

a, a a, b

Figure 4. [s �1 t] = 0 and [s �12 t] = 1. Also,
[t �1 s] = 1 and [t �12 s] = 0.

The MDP relations of [22], later extended to metrics by
[7, 8], rely on the fixpoint (2), where sup plays the role of
∀, inf plays the role of ∃, and R is replaced by distribution
equality moduloR, or vR. This strongly suggests — incor-
rectly — that equivalences for general games (probabilistic,
concurrent games) can be obtained by taking the double al-
ternating of ∀∃∀∃ in the definition of alternating simulation,
changing all ∀ into sup, all ∃ into inf , and replacing R by
vR. The definition that would result is as follows. We pa-
rameterize the new relations by a player i ∈ {1, 2}, as well
as by whether mixed moves or only pure moves are allowed.
For a relation R ⊆ S×S, forM ∈ {Γ,D}, for all s, t ∈ S

and i ∈ {1, 2} consider the following conditions:

• (loc) s R t implies s ≡ t.

• (M -i-altsim) s R t implies
∀xi ∈ Mi(s) . ∃yi ∈ Mi(t) . ∀y∼i ∈ M∼i(t) . ∃x∼i ∈
M∼i(s) . δ(s, x1, x2) v R δ(t, y1, y2);

We then define the following relations:

• For i ∈ {1, 2} and M ∈ {Γ,D}, player-i M -
alternating simulation vM

i is the largest relation that
satisfies (loc) and (M -i-altsim).

• For i ∈ {1, 2} and M ∈ {Γ,D}, player-i M -
alternating bisimulation ∼=M

i is the largest symmetri-
cal relation that satisfies (loc) and (M -i-altsim).

Over deterministic game structures, the definitions of vΓ
i

and ∼=Γ
i coincide with the alternating simulation and bisim-

ulation relations of [2]. In fact, vΓ
i and ∼=Γ

i capture the de-
terministic semantics of qµ, and thus in some sense gener-
alize the results of [2] to probabilistic game structures.

Theorem 10 For any game structure G and states s, t of
G, the following assertions hold:

1. s ∼=Γ
i t iff [[φ]]Γ(s) = [[φ]]Γ(t) holds for every φ ∈ qµi.

2. s vΓ
i t iff [[φ]]Γ(s) ≤ [[φ]]Γ(t) holds for every φ ∈ qµ+

i .

The following lemma states that vD
i and ∼=D

i are the ker-
nels of [vi] and [∼=i], connecting thus the result of combin-
ing the definitions of [22] and [2] with a posteriori metrics.

Lemma 1 For all game structures G, all players i ∈
{1, 2}, and all states s, t of G, we have s vD

i t iff [s vi

t] = 0, and s ∼=D
i t iff [s ∼=i t] = 0.
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We are now in a position to prove that neither the Γ-
relations not the D-relations are the “correct” relations
on general concurrent games, since neither characterizes
[[qµ]]. In particular, the D-relations are too fine, and the
Γ-relations are incomparable with the relations �i and 'g ,
for i ∈ {1, 2}. We prove these negative results first for the
D-relations. They follow from Theorem 3 and 5.

Theorem 11 The following assertions hold:

1. For all game structures G, all states s, t of G, and all
i ∈ {1, 2}, we have that s vD

i t implies s �i t, and
s ∼=D

i t implies s 'i t.

2. There is a game structure G, and states s, t of G, such
that s �i t but s 6vD

i t.

3. There is a game structure G, and states s, t of G, such
that [[φ]](s) = [[φ]](t) for all φ ∈ qµ, but s 6∼=D

i t for
some i ∈ {1, 2}.

We now turn our attention to the Γ-relations, showing
that they are incomparable with �i and 'g, for i ∈ {1, 2}.

Theorem 12 The following assertions hold:

1. There exists a deterministic game structure G and
states s, t ofG such that s vΓ

1 t but s 6�1 t, and s ∼=Γ
1 t

but s 6'g t.

2. There exists a turn-based game structure G and states
s, t of G such that s �1 t but s 6vΓ

1 t. and s 'g t but
s 6∼=Γ

1 t.

Finally, we remark that, in view of Theorem 6, the defi-
nitions of the relations �i and 'g for i ∈ {1, 2} are no more
complex than the definitions of vD

1 , vΓ
1 , ∼=D

1 , and ∼=Γ
1 .
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