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Abstract

In this paper, we combine abstraction-refinement and
symbolic techniques to fight the state-space explosion
problem when model checking Markov Decision Pro-
cesses (MDPs). The abstract-refinement technique, called
magnifying-lens abstraction(MLA), partitions the state-
space into regions and computes upper and lower bounds
for reachability and safety properties on the regions, rather
than states. To compute such bounds, MLA iterates over
the regions, analysing the concrete states of each region in
turn - as if one was sliding a magnifying lens across the
system to view the states. The algorithm adaptively re-
fines the regions, using smaller regions where more detail
is required, until the difference between the bounds is be-
low a specified accuracy. The symbolic technique is based
on Multi-Terminal Binary Decision Diagrams (MTBDDs)
which have been used extensively to provide compact en-
codings of probabilistic models. We introduce a symbolic
version of the MLA algorithm, calledsymbolic MLA, which
combines the power of both practical techniques when ver-
ifying MDPs. An implementation of symbolic MLA in the
probabilistic model checker PRISM and experimental re-
sults to illustrate the advantages of our approach are pre-
sented.

1 Introduction

Markov decision processes (MDPs) provide a model for
systems with both probabilistic and nondeterministic be-
havior, and are widely used in probabilistic verification,
planning, inventory optimal control, and performance anal-
ysis [13, 3, 26, 8, 25]. At every state of an MDP, one or
moreactionsare available; each action is associated with
a probability distribution over the successor states. We fo-
cus onsafetyandreachabilityproperties of MDPs. A safety
property specifies that the MDP’s behavior should not leave
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a safesubset of states; a reachability property specifies that
the behavior should reach a set oftargetstates. A controller
can choose the actions available at each state so as to maxi-
mize, or minimize, the probability of satisfying reachability
and safety properties. MDPs that model realistic systems
tend to have very large state spaces, and therefore the main
challenge in analysing such MDPs consists in devising al-
gorithms that work efficiently on large state spaces.

In the non-probabilistic setting, abstraction techniques
have been successful in coping with large state-spaces: by
ignoring details not relevant to the property under study, ab-
straction makes it possible to answer questions about a sys-
tem by analysing a smaller, more concise abstract model.
This has spurred research into the use of abstraction tech-
niques for probabilistic systems [7, 17, 22, 19]. The major-
ity of these techniques follow afull abstractionapproach:
an abstract model is constructed and, during its analysis, all
details about the concrete system are forgotten.

In [11], we proposed an alternative approach, called
magnifying-lens abstraction(MLA) [11]. This is based on
partitioning the state space of an MDP into regions and then
analysing (“magnifying”) the states of each region sepa-
rately. The lower and upper bounds for the magnified region
are updated by computing the minimum and maximum val-
ues over the states of the region. Figuratively, MLA slides
a magnifying lens across the abstraction, enabling the algo-
rithm to see the concrete states of one region at a time when
updating the region values.

Regions are refined adaptively until the difference be-
tween the lower and upper bounds for all regions is within
some specified accuracy. In this way, the abstraction is re-
fined in an adaptive fashion: smaller regions are used when
finer detail is required, guaranteeing the convergence of the
bounds, and larger regions are used elsewhere, saving space.
When splitting regions, MLA takes care to re-use informa-
tion gained in the analysis of the coarser abstraction in the
evaluation of the finer one. In its ability to provide both up-
per and lower bounds for the quantities of interest, MLA is
similar to [19].

Although experimental results have demonstrated that



using MLA leads to space savings, the explicit representa-
tion of the probabilistic transition system employed in [11]
placed a limit on the size of MDPs that could be analysed. A
successful approach to overcome the limitations of explicit
representations has been to employ symbolic data struc-
tures. In particular, BDDs (binary decision diagrams) [4]
and MTBDDs (multi-terminal binary decision diagrams)
[6, 1] have been shown to enable the compact representa-
tion and analysis of very large MDPs [9, 23, 15].

In this work we combine MLA with symbolic represen-
tations to improve scalability. More precisely, we adapt the
MLA algorithm of [11] to the symbolic domain, yielding an
approach that we call Symbolic Magnifying-Lens Abstrac-
tion (SMLA). We show that the “magnified” computation
performed on the regions, and the “sliding” of the mag-
nification from one region to the next, can be performed
symbolically in a natural and efficient fashion. We have im-
plemented SMLA in the probabilistic model checking tool
PRISM [16, 24] and, through a number of case studies,
demonstrate that SMLA leads to useful space savings.

MLA, and its symbolic variant SMLA, differ from other
approaches to MDP abstraction [19] in that they can be prof-
itably applied to systems where there are many states with
similar value, but not necessarily similar transition struc-
ture. For instance, consider a system with an integer state
variablex, with range[0, . . . , N ], and assume that from ev-
ery state wherex has value0 < n < N , there are transitions
to states wherex has valuesn − 1, n, andn + 1. Clas-
sical abstraction schemes associate with each region (set
of states) a single abstract state, whose transition relation
over-approximatesall the transition relations of the concrete
states it represents. In such a transition-based abstraction,
it is not useful to group the concrete values[0, . . . , N ] for
x into regions consisting of intervalsI1, . . . , Ik. In fact,
since the states at the endpoints of each interval can leave
the interval, but the states in the interior cannot, the abstract
transition relation associated with each interval would have
to be a gross over-approximation of the concrete transition
relations, leading to considerable loss of precision.

In MLA and SMLA, as long as the value of the prop-
erty of interest is similar in states in the same interval, ab-
straction is possible and useful. Indeed, experimentally we
noticed that SMLA performs well in many problems with
integer-valued state variables, where the properties vary
gradually with the value of the state variables. Problems
in planning, inventory control, and similar often belong to
this category. On the other hand, when it is possible to use
symmetry or structural knowledge of an example, and ag-
gregate states of similar transition relation, approachessuch
as [7, 19, 20] yield superior results.

The outline of the paper is the following: Section 2
presents background material, including Markov deci-
sion processes (MDPs), the Magnifying-Lens Abstraction

(MLA) algorithm and symbolic (MTBDD) representations.
In Section 3, we describe the symbolic version of MLA and,
in Section 4, present and discuss experimental results for its
implementation on a range of MDP case studies. Section 5
concludes the paper.

2 Background

For a countable setS, a probability distributionon S is a
function p : S 7→ [0, 1] such that

∑

s∈S p(s) = 1; we
denote the set of probability distributions onS by D(S). A
valuationover a setS is a functionv : S 7→ R associating
a real numberv(s) with every s ∈ S. For x ∈ R, we
denote byx the valuation with constant valuex; for T ⊆
S, we indicate by[T ] the valuation having value 1 inT
and 0 elsewhere. For two valuationsv, u on S, we define
||v − u|| = sups∈S |v(s) − u(s)|.

A partition of a setS is a setR ⊆ 2S , such that
⋃

{s|s ∈
R} = S andr ∩ r′ = ∅ for all r 6= r′ ∈ R. Fors ∈ S and a
partitionR of S, we denote by[s]R the elementr ∈ R with
s ∈ r. We say that a partitionR is finer than a partitionR′

if for any r ∈ R there existsr′ ∈ R′ such thatr ⊆ r′.

2.1 Markov Decision Processes (MDPs)

Definition 1 A Markov decision process(MDP) M =
〈S, sinit, A, Γ, p〉 consists of the following components:

• a finite state spaceS;

• an initial statesinit ∈ S;

• a finite setA of actions (moves);

• a move assignmentΓ : S → 2A \ ∅;

• A probabilistic transition functionp : S×A → D(S).

At every states ∈ S, the controller can choose an actiona ∈
Γ(s); the MDP then proceeds to a successor statet ∈ S with
probabilityp(s, a, t). A pathof the MDPM is an infinite
sequences = s0, s1, s2, . . . of states ofS; we denote bySω

the set of all paths, and we denote bysk thek-th statesk of
the paths.

We model the choice of actions, i.e. the role of the con-
troller, throughstrategies(these are also variously called
schedulers[26] or policies [13]). A strategyis a mapping
π : S+ 7→ D(A) from finite paths to distributions over
actions. Given a past historyσs ∈ S+ for the MDP, the
strategyπ chooses the actiona ∈ Γ(s) with probability
π(σs)(a). Since, by definition, any actionb ∈ A \ Γ(s) is
not enabled ins, for any strategyπ we requireπ(σs)(b) = 0
for all b ∈ A \ Γ(s). Under the operation of strategyπ, we
can define a probability measure Prπ

s over the set of infinite
paths starting from states in the standard way [18]. We
denote byΠ the set of all strategies.
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Algorithm 1 ValIter(T, f, g, εfloat) Value iteration

1. v := [T ]
2. repeat
3. v̂ := v
4. for all s ∈ S do

v(s) := f

(

[T ](s), g

{

∑

s′∈S

p(s, a, s′)·v̂(s′)
∣

∣ a ∈ Γ(s)

})

5. until ||v − v̂|| ≤ εfloat

6. return v

We considersafetyandreachabilitygoals. Given a sub-
set T ⊆ S of states, the reachability goal♦T = {s ∈
Sω | ∃k.sk ∈ T } consists of the paths that reachT , and
the safety goal�T = {s ∈ Sω | ∀k.sk ∈ T } consists
of the paths that remain inT . More precisely, we consider
computing, for alls ∈ S, the probabilities:

V max
�T (s) = max

π∈Π
Prπs (�T ) V max

♦T (s) = max
π∈Π

Prπs (♦T )

V min
�T (s) = min

π∈Π
Prπs (�T ) V min

♦T (s) = min
π∈Π

Prπs (♦T )

that is, over all strategies, the minimum and maximum prob-
abilities of satisfying safety and reachability goals. Thefact
that we can consider minimum and maximum as opposed to
infimum and supremum is a consequence of the existence of
optimal strategies [13].

Such reachability and safety probabilities can be com-
puted via the classical value-iteration scheme [13, 3, 10].
The algorithm, given in Algorithm 1, is parameterized by
two operatorsf, g ∈ {max, min}. The operatorf specifies
how to merge the valuation of the current state with the ex-
pected next-state valuation;f=max is used for reachability
goals, andf=min for safety ones. The operatorg spec-
ifies whether to select the action that maximizes, or min-
imizes, the expected next-state valuation;g=max is used
for computing maximal probabilities, andg=min for mini-
mal probabilities. Table 1 summarizes the effect of different
parameter combinations. The algorithm is also parameter-
ized byεfloat>0: this is the absolute error threshold below
which we consider value iteration to have converged. Some
value iteration algorithms use relative error bounds to check
convergence.

In the remainder of the paper, unless explicitly noted, we
present algorithms and definitions for a fixed MDPM =
〈S, sinit, A, Γ, p〉 and set of statesT .

2.2 Magnifying-Lens Abstraction (MLA)

Magnifying-lens abstractions(MLA) [11] is a technique for
the analysis of reachability and safety properties of MDPs.
MLA can cluster states based on value only, disregarding
differences in their transition relation. This feature canlead

Property f g Converges
V max

�T max. safety min max from above
V min

�T min. safety min min from above
V max

♦T max. reachability max max from below
V min

♦T min. reachability max min from below

Table 1. Parameters of ValIter(T, f, g, εfloat)
used to compute reachability and safety
properties.

to compact abstractions for systems where full abstraction
provides no benefit. In our experience, MLA is particularly
well-suited to problems where there is a notion oflocality in
the state space, so that it makes sense to cluster states based
on variable values — even though their transition relations
may not be similar. Many inventory, planning and control
problems are of this type.

Let v∗ be the valuation overS that is to be computed:
v∗ is one ofV min

�T
, V max

�T
, V min

♦T , V max
♦T . Given a desired ac-

curacyεabs>0, MLA computes upper and lower bounds for
v∗, spaced less thanεabs apart. MLA starts from an initial
partition (set of regions)R of S. The initial partitionR is
obtained either from the user or from the property. MLA
computes the lower and upper bounds as valuationsu− and
u+ over R. The partition is refined, until the difference
betweenu− andu+, for all regions, is below a specified
threshold. To computeu− andu+, MLA iteratively con-
siders each regionr ∈ R in turn, and performs amagnified
iteration: it improves the boundsu−(r) andu+(r) by per-
forming value iteration on the concrete states inr.

The MLA algorithm is shown in Algorithm 2. The algo-
rithm has parametersT , f , g, which have the same mean-
ing as ValIter in Algorithm 1. The algorithm also has pa-
rametersεfloat>0 andεabs>0. Parameterεabs indicates the
maximum difference between the lower and upper bounds
returned by MLA. Parameterεfloat, as in ValIter, specifies
the degree of precision to which the local, magnified value
iteration should converge. MLA should be called withεabs

greater thanεfloat by at least one order of magnitude: oth-
erwise, errors in the magnified iteration can cause errors
in the estimation of the bounds. Statement 2 initializes
the valuationsu− andu+ according to the property to be
computed: reachability properties are computed as least fix-
points, while safety properties are computed as greatest fix-
points [10]. A regionr2 is called successor to a regionr1

if at least one concrete state inr1 has non-zero probability
to reach concrete state(s) inr2. A useful time optimization,
not shown in Algorithm 2, consists in executing the loop at
lines 6–9 only for regionsr where at least one of the suc-
cessor regions has changed value by more thanεfloat.
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Algorithm 2 MLA (T, f, g, εfloat, εabs) Magnifying-Lens
Abstraction
1. R:= some initial partition.
2. if f=max then u−:=0; u+:=0 elseu−:=1; u+:=1
3. loop
4. if f=max then u+ := u− elseu− := u+

5. repeat
6. û+:=u+; û−:=u−;
7. for r ∈ R do
8. u+(r):= MI(r, R, T, û+, û−, û+, max, f, g, εfloat)
9. u−(r):= MI(r, R, T, û−, û−, û+, min, f, g, εfloat)
10. end for
11. until max(||u+ − û+||, ||u− − û−||) ≤ εfloat

12. if ||u+ − u−|| ≥ εabs

13. then R, u−, u+:= SplitRegions(R, u−, u+, εabs)
14. else returnR, u−, u+

15. end if
16. end loop

Magnified iteration. The algorithm performing the mag-
nified iteration is given in Algorithm 3. This is very similar
to ValIter in Algorithm 1, except for three points.

First, the valuationv (which here is local tor) is ini-
tialized not to[T ], but rather, tou−(r) if f=max, and to
u+(r) if f=min. Indeed, iff=max, value iteration con-
verges from below, andu−(r) is a better starting point than
[T ], since[T ](s) ≤ u−(r) ≤ v∗(s) at all s ∈ r. The case
for f=min is symmetrical.

Second, fors ∈ S \ r, the algorithm uses, in place of
the valuev(s) which is not available, the valueu−(r′) or
u+(r′), as appropriate, wherer′ is such thats ∈ r′. In
other words, the algorithm replaces values at concrete states
outsider with the “abstract” values of the regions to which
the states belong. To this end, we need to be able to effi-
ciently find the “abstract” counterpart[s]R of a states ∈ S.
We use the following scheme, similar to schemes used in
AMR (adaptive mesh refinement) [2]. The state-spaceS of
the MDP consists of value assignments to a set of variables
X = {x1, x2, . . . , xl}. In [11] we represented a partition
R of S, together with the valuationsu+, u−, via a binary
decision tree. The leaves of the tree correspond to regions,
and they are labeled withu−, u+ values. Givens, finding
[s]R in such a tree requires time logarithmic in|S|.

Third, once the concrete valuationv is computed at all
s ∈ r, Algorithm 3 returns the minimum (ifh=min) or the
maximum (ifh=max) of v(s) at all s ∈ r, thus providing
a new estimates foru−(r), u+(r), respectively.

Adaptive abstraction refinement. We denote theimpre-
cision of a regionr by ∆(r) = u+(r) − u−(r). MLA
adaptively refines a partitionR by splitting all regionsr
having∆(r) > εabs. This is perhaps the simplest possible

Algorithm 3 MI(r, R, T, u, u−, u+, h, f, g, εfloat)

v: a valuation overr
1. if f=max
2. then for s ∈ r do v(s)=u−(r)
3. else fors ∈ r do v(s)=u+(r)
4. repeat
5. v̂:=v
6. for all s ∈ r do

6a. t=ga∈Γ(s)

{

∑

s′∈r

p(s, a, s′) · v̂(s′)

+
∑

s′∈S\r

p(s, a, s′) · u([s]R)

}

6b. v(s):=f

(

[T ](s), t

)

7. until ||v − v̂|| ≤ εfloat

8. return h{v(s) | s ∈ r}

refinement scheme. We have experimented with alternative
refinement schemes, but none were consistently better [11].

As previously explained, the partitionR is represented
by a decision tree, whose leaves correspond to the regions.
In the refinement phase, we split a leaf according to the
value of a new variable (not present in that leaf), following
the variable ordering given by the user.

A call to SplitRegions(R, u+, u−, εabs) returns a triple
R̃, ũ−, ũ+, consisting of the new partition with its upper
and lower bounds for the valuation.

Correctness. The following theorem summarizes the cor-
rectness of the MLA algorithm.

Theorem 2 [11] For any MDPM = 〈S, sinit, A, Γ, p〉, set
of statesT ⊆ S, and error boundεabs>0, the following
assertions hold.

1. Termination.For all εfloat>0 andf, g ∈ {min, max},
the call MLA(T, f, g, εfloat, εabs) terminates.

2. (Partial) correctness.Letg ∈ {max, min}, εabs>0 and
△ ∈ {�, ♦}. If f=min when△=�, and f=max
when△=♦, then for allδ>0, there existsεfloat>0 such
that:

∀r ∈ R : u+(r)−u−(r) ≤ εabs

∀s ∈ S : u−([s]R)−δ ≤ V g
△T (s) ≤ u+([s]R)+δ

where(R, u−, u+) = MLA(T, f, g, εfloat, εabs).

We note that the theorem establishes the correctness of
lower and upper bounds only within a constantδ>0, which
depends onεfloat. This limitation is inherited from the value-
iteration scheme used over the magnified regions. If linear
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programming [13, 3] were used instead, then MLA would
provide true lower and upper bounds. However, in practice
value iteration is preferred over linear programming, due to
its simplicity and greater efficiency, and the concerns about
δ are solved - in practice, albeit not in theory - by choosing
a sufficiently smallεfloat.

2.3 Symbolic model checking of MDPs

Due to the sizes of the MDPs that typically arise in prob-
abilistic verification case studies, considerable effort has
been invested into building efficient model checking im-
plementations. In particular,symbolictechniques, which
use extensions of Binary Decision Diagrams (BDDs), have
proved successful in this area. In this paper we focus on the
use of Multi-Terminal Binary Decision Diagrams (MTB-
DDs). This data structure lies at the heart of the proba-
bilistic model checker PRISM and has been used to model
check quantitative properties of probabilistic models with as
many as1010 states (see for example [21, 14]). In this sec-
tion, we give a brief overview of these techniques. For more
detailed coverage of the MTBDD-based implementation of
MDP model checking in PRISM, see [23].

MTBDDs. Multi-terminal BDDs (MTBDDs) are rooted,
directed acyclic graphs associated with a set of ordered,
Boolean variablesx1 < . . . < xn. An MTBDD M rep-
resents a functionfM(x1, . . . , xn) : B

n → R over these
variables. The graph contains two types of nodes:non-
terminal and terminal. A non-terminal nodem is labeled
by a variablevar(m) ∈ {x1, . . . , xn} and has two chil-
dren,then(m) andelse(m). A terminal nodem is labeled
by a real numberval(m). The Boolean variable ordering<
is imposed onto the graph by requiring that a childm′ of a
non-terminal nodem is either terminal or non-terminal and
satisfiesvar(m) < var(m′). The value offM(x1, . . . , xn),
the function which the MTBDD represents, is determined
by traversingM from the root node, and at each subsequent
nodem taking the edge tothen(m) or else(m) if var(m)
is 1 or 0 respectively. A BDD is simply an MTBDD with
the restriction that labels on terminal nodes can only 0/1.

Representation of MDPs using MTBDDs. MTBDDs
have been used, from their inception [1, 6], to encode real-
valued vectors and matrices. An MTBDDv over variables
(x1, . . . , xn) represents a functionfv : B

n → R. A real
vectorv of length2n is simply a mapping from{1, . . . , 2n}
to the realsR. Using the standard binary encoding of inte-
gers, the variables{x1, . . . , xn} can represent{1, . . . , 2n}.
Hence, an MTBDDv can represent the vectorv.

In a similar way, we can consider a square matrixM
of size 2n by 2n to be a mapping from{1, . . . , 2n} ×
{1, . . . , 2n} to R. This can be represented by an MTBDD

over2n variables,n for rows (current-state variables) and
n for columns (next-state variables). According to the
commonly-used heuristic for minimizing MTBDD size, the
variables for rows and columns are ordered alternately.

MTBDDs can thus easily represent the probabilistic tran-
sition matrix of a Markov chain. Furthermore, with a simple
extension of this scheme, the probabilistic transition func-
tion p : S × A → D(S) of an MDP can also be repre-
sented. Since the set of actionsA is finite, we can view
p as a functionS × A × S → [0, 1]. For an MDP with
2n states, and lettingk = ceil(log2 |A|), the probabilistic
transition functionp is equivalently seen as a function from
{1, . . . , 2n} × {1, . . . , 2k} × {1, . . . , 2n} to R, which can
easily be represented by an MTBDD over2n + k variables.

MTBDDs are efficient because they are stored in re-
duced form, with duplicate nodes merged and redundant
ones removed. Their size (number of nodes) is heavily
dependent on the ordering of their Boolean variables. Al-
though the problem of deriving the optimal ordering for a
given MTBDD is an NP-hard problem, by using heuristics
[15, 23], probabilistic models with a degree of regularity
can be represented extremely compactly by MTBDDs.

Model checking of MDPs using MTBDDs. Once a
model’s MTBDD representation has been constructed, it
can be analyzed, for example using value iteration to com-
pute minimum and maximum reachability and safety prob-
abilities. This comprises two stages. First, a graph-based
analysis is performed to find the states for which the cor-
responding probability is 0 or 1 [9]. This can be imple-
mented using standard BDD techniques for calculating fix-
points. Secondly, numerical computation is applied to com-
pute probabilities for the remaining states. For this, stan-
dard iterative methods such as value iteration, can be imple-
mented using standard MTBDD operations, including for
example algorithms from [1, 6] for matrix-vector multipli-
cation.

3 Symbolic MLA

In this section, we present a symbolic implementation of
the MLA algorithm using MTBDDs. Before doing so, we
highlight some important aspects of the implementation.

We first note that a potential obstacle in the use of MLA
is that, although substantial savings in terms of storage for
solution vectors can be made, there is still a need to store the
probabilistic transition function of the MDP in full. A sym-
bolic approach alleviates this problem: it is often the case
that a very compact MTBDD representation of the proba-
bilistic transition function of the MDP can be constructed.

Secondly, it is also common thatqualitativeprobabilistic
verification (i.e. checking for which states of the MDP the
probabilities for a reachability/safety property are exactly 0
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or 1) can be applied to much larger models than can be anal-
ysed quantitatively. This is because qualitative properties
can be model checked using only graph-based algorithms
that operate on the underlying transition relation, allowing
an efficient implementation with BDDs. This means that a
symbolic version of MLA can also benefit from this: qual-
itative verification is applied to the full MDPbeforeapply-
ing the MLA algorithm (this process is often referred to as
pre-computation). Numerical computation need then only
be done for states with a probability that is neither 0 or 1.
Furthermore, states with probability 0 or 1 can be removed
from the MDP completely, reducing computation signifi-
cantly (and decreasing round-off errors).

Finally, we observe that symbolic techniques are very
well-suited to MLA, in terms of the representation of solu-
tion vectors. Recall that, because of the way that MLA op-
erates, it requires separate storage of the numerical solution
vector for the current region being magnified (by algorithm
MI see Section 2.2) and the lower/upper bounds for each re-
gion. Furthermore when the value for a state not in the cur-
rent magnified region is required, the region contains that
state must be determined before the relevant value can be
looked up. Because of the way that MTBDDs exploit reg-
ularity, representing real-valued vectors with many similar
values is often very efficient. This allows us to store the so-
lution vector for all states of the MDP concurrently, avoid-
ing potentially expensive partition look-ups. Since MLA
considers each region sequentially, the solution vector will
contain fewer distinct values than would be required for
standard value iteration. Thus, we expect a symbolic im-
plementation of MLA to be less memory-intensive than a
symbolic version of value iteration.

3.1 Symbolic Magnifying-Lens Abstrac-
tion (SMLA)

The symbolic version of MLA is shown in Algorithm 4. As
for standard MLA (Algorithm 2), the symbolic version is
parameterized by operatorsf, g ∈ {max, min} (used to se-
lect maximum/minimum reachability/safety properties) and
convergence thresholdsεfloat andεabs. The other parameter
is a BDDT representing the set of target states (T in Algo-
rithm 2). We also assume a BDDreach representing the set
of reachable states of the MDP and an MTBDDtrans rep-
resenting its probabilistic transition function. In the latter,
the MTBDD variables representing the rows (source states),
columns (target states) and nondeterminism (actions) are
denotedrvars , cvars andndvars , respectively.

The first part of Algorithm 4 (lines 1-5) shows the use
of BDD-based pre-computation steps [9, 23] in order to ob-
tain the BDDsyes andno, representing the sets of states for
which the probability is exactly 1 or 0, respectively. If this
covers all states of the MDP, no further work is required.

Algorithm 4 SMLA(T, f, g, εfloat, εabs) Symbolic
Magnifying-Lens Abstraction

1. if g = max
2. then no := PROB0A(T) ; yes := PROB1E(T)
3. elseno := PROB0E(T) ; yes := PROB1A(T)
4. if no ∨ yes = reach then return yes

5. trans′ := trans × ¬(no ∨ yes)
6. R := CreateInitialPartition()
7. if f = max
8. then u− := u+ := CONST(0)
9. elseu− := u+ := CONST(1)
10. loop
11. repeat
12. û+ := u+; û− := u−

13. for each r ∈ R do
14. û+:= SMI(r, R, trans′, yes, û+, max, f, g, εfloat)
15. û−:= SMI(r, R, trans′, yes, û−, min, f, g, εfloat)
16. end for
17. until MAX DIFF(u+, û+) ≤ εfloat &

MAX DIFF(u−, û−) ≤ εfloat

18. if MAX DIFF(u+, u−) ≥ εabs

19. then R, u−, u+ := Split(R, u−, u+, εabs)
20. else return (u− + u+)/2
21. end if
22. if f = max then u+ := u− elseu− := u+

23.end loop

Otherwise, rows corresponding to states inyes or no are re-
moved from the probabilistic transition functiontrans (line
5). Here (and elsewhere in the algorithms) we use a simple
infix notation to denote the application of binary operators
(such as∨ or×) to BDDs or MTBDDs. This is done using
the standard APPLY operator [4].

The remainder of Algorithm 4 comprises the symbolic
version of MLA. We start with an initial partitionR,
returned by the CreateInitialPartition() routine (see Sec-
tion 3.3 for details). The partition is implemented as a
list of BDDs, each one representing a region inR. The
main part of Algorithm 4 corresponds quite closely to the
original MLA algorithm (Algorithm 2). Initialization of
solution vectors (lines 8 and 9) is easily achieved using
the MTBDD operation CONST(k) which returns the trivial
MTBDD representing the real valuek. Similarly, check-
ing for convergence of the main loop can be done with the
operation MAX DIFF(u1, u2) which computes the maximum
point-wise difference between MTBDDsu1 andu2).

The MTBDDs representing the lower (u−) and upper
(u+) bounds for each region are computed by the SMI func-
tion, described below. After a global iteration terminates,
the algorithm calls the Split(. . . ) method to refine the re-
gions for which the difference between the lower and upper
bounds (u− andu+) is greater thanεabs. After each refine-
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ment, the algorithm copiesu− values tou+ for the reacha-
bility objectives andu+ values tou− for safety objectives.

3.2 Symbolic Magnified Iteration (SMI)

Algorithm 5 SMI(r, R, trans′, T, u, h, f, g, εfloat) Sym-
bolic Magnified Iteration

1. v := u

2. trans′′ := trans′ × r

3. done := false
4. while (done != true) do
5. tmp := PERMUTE(v, rvars , cvars)
6. tmp := MVM ULT(trans′′, tmp)
7. tmp := REPLACE(g, tmp,ndvars)
8. tmp := APPLY(f, tmp, T)
9. v′ := ITE(r, tmp, u)
10. if MAX DIFF(v′, v) < εfloat then done := true
11. v := v′

12.end while
13. if (h = max)
14. then val := FINDMAX (ITE(r, v, CONST(0)))
15. elseval := FINDM IN(ITE(r, v, CONST(1)))
16.return ITE(r, CONST(val), u)

The core part of the MTBDD-based implementation of
MLA is called Symbolic Magnified Iteration (SMI)and is
shown in Algorithm 5. It performs a symbolic value it-
eration algorithm inside the region represented by BDDr

from the current partitionR. The algorithm is also passed
the MTBDD trans′ representing the (filtered) probabilistic
transition function of the MDP, the BDDT representing the
set of target states, and the MTBDDu, which stores the (up-
per or lower) bound for every state’s corresponding region.
The other parametersh, f , g andεfloat, are as for the non-
symbolic version in Algorithm 3.

The algorithm initializes the solution vectorv with the
vectoru (line 1) and then the MTBDDtrans′ is filtered fur-
ther to include only transitions for the current region (line
2). The loop (lines 3-12) updates the solution vectorv until
the results of two successive iterations differ less thanεfloat.
The first two lines of the loop perform a matrix-vector mul-
tiplication of the transition probability matrix of the MDP
with (a permuted copy of) the solution vectorv. This corre-
sponds to the summations in line 6a of Algorithm 3. In line
7, the operatorg ∈ {max, min} is applied over the nonde-
terministic variablesndvars of the resulting MTBDD (the
first part of line 6a from Algorithm 3). In line 8, the opera-
tor f is applied point-wise with the BDDT representing the
target states (line 6b of Algorithm 3). Finally, the new so-
lution vectorv′ is computed by setting values for all states
not in the current region (r) to their values inu, using the
MTBDD operation ITE (If-Then-Else).

Once the while loop terminates, the algorithm computes
the maximum (ifh=max) or minimum (if h=min) value
val of the region by using FINDMAX (or FINDM IN). Fi-
nally the algorithm returns a solution vector with valueval
for the current region and the old solution value fromu for
all other regions.

3.3 The Splitting Order

The creation of the initial partition and the way in which
it is subsequently split are governed by two user parame-
ters:strat andlevel. Splitting operations are based on a pri-
ority orderXord = 〈x1, x2, . . . , xn〉 of the MTBDD vari-
ables representing the state space of the MDP. In the adap-
tive refinement scheme of MLA, each call to the routine
Split subdivides a region into two using the next MTBDD
variable from the orderXord (we call this thesplitting in-
dex). Since the MLA algorithm does not refine regions with
u+(r) − u−(r) ≤ εabs, after a refinement, different regions
may have different splitting indices.

The orderXord is determined by the choice of a split-
ting strategystrat: either “consecutive” or “ interleaved”. In
the default MTBDD variable ordering (for an MDP derived
from a PRISM model), MTBDD variables are grouped ac-
cording to the (model-level) variable to which they corre-
spond and ordered consecutively. Forstrat=consecutive, we
takeXord to be this default ordering. Forstrat=interleaved,
on the other hand, the MTBDD variables corresponding to
different (model-level) variables are interleaved.

The initial creation of a partition (by routine CreateIni-
tialPartition) is determined byXord = 〈x1, x2, . . . , xn〉 and
the parameterlevel. Each region in the initial partition is
created by splitting on MTBDD variablesx1, x2, . . . , xlevel

(i.e. the splitting index for each region islevel).

4 The Case Studies and Results

We have implemented the symbolic MLA algorithm within
the probabilistic model checker PRISM and, in this section,
present results for the following MDP case studies.

Inventory Problem. We have modeled an inventory as
an MDP. The variable “stock ” denotes the current num-
ber of items in the inventory and “init ” denotes the ini-
tial item count. The variable “time” keeps track of time
elapsing. At each time step, the demand of the item is1
with a probabilityp and 0 with 1 − p. The probability
p is a function of current number of items present in the
inventory. The manager of the inventory visits the inven-
tory every7 time units and he has two actions to choose
from: either place an order or do not place one. The prop-
erty we are checking is the “minimum probability that the
stock reach its minimum amount within MAXTIME time
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Example Parameters States Transitions PRISM MLA
Time Nodes Time Nodes Regions

Inventory stock=512, MAXTIME=512 26,870 34,568 14 13,885 15 2,612 340
stock=1024, MAXTIME=1,024 106,734 135,308 54 26,005 61 4,825 676
stock=2048, MAXTIME=2,048 425,438 535,508 233 50,563 270 9,192 1,348
stock=4096, MAXTIME=4,096 1,698,750 2,130,788 896 99,084 1,056 17,882 2,692
stock=5120, MAXTIME=5,120 2,653,358 3,325,868 1,243 120,220 1,424 21,875 3,364
stock=10240, MAXTIME=10,240 10,605,918 13,275,668 7,118 240,639 7,551 43,563 3,363

Minefield n=256,m=100 65,537 299,748 75 56,971 263 8,173 2,041
n=512,m=200 262,145 1,128,522 627 91,285 1,493 14,070 4,164
n=1024,m=300 1,048,577 4,316,719 3,625 126,603 5,463 20,244 6,324

Hotel c=127 bk=63 MAXTIME=15 131,072 645,168 4 30,580 46 8,710 903
Booking c=255 bk=127 MAXTIME=31 1,048,576 5,202,016 44 118,080 1,013 37,696 6,350

c=511,bk=255,MAXTIME=31 4,194,304 20,889,696 2,072 373,536 9,971 118,310 25,491
Secretary c=100 MAXTIME=100 30,697 61,388 2 14,577 7 3,269 269

c=100 MAXTIME=200 90,496 180,587 3 17,146 11 3,716 345
c=200 MAXTIME=200 121,397 242,788 10 32,728 27 6,967 471
c=300,MAXTIME=400 451,896 903,387 24 55,430 62 9,748 463
c=500,MAXTIME=1000 2,252,496 4,502,987 88 105,971 199 17,425 733
c=1000,MAXTIME=2000 9,004,996 18,005,987 392 232,946 802 32,438 768

Zeroconf N=4,M=32,K=4 26,121 50,624 88 126,731 50 14,430 22
N=8, M=32, K=4 552,097 1,728,272 1,307 722,224 650 49,464 64
N=8, M=128, K=4 2,092,513 6,552,368 3,221 857,577 2,593 151,289 19

Figure 1. Experimental results: Symbolic MLA, compared to PRISM

units”. In PCTL, the reachability property can be expressed
asPmin=?[♦ (stock=1 ∧ time<MAXTIME ))].

Robot in a Minefield. We consider the problem of navi-
gating ann×n minefield. The minefield containsm mines,
each with coordinates(xi, yi), for 1 ≤ i ≤ m, where
1 ≤ xi < n, 1 ≤ yi < n. We consider the problem of
computing the maximal probability with which a robot can
reach the target corner(n, n), from all n × n states. At
interior states of the field, the robot can choose among four
actions:Up, Down, Left, Right;at the border of the field, ac-
tions that lead outside of the field are missing. From a state
s = (x, y) ∈ {1, . . . , n}2 with coordinates(x, y), each ac-
tion causes the robot to move to square(x′, y′) with prob-
ability q(x′, y′), and to “blow up” (move to an additional
sink state) with probability1 − q(x′, y′). For actionRight,
we havex′ = x + 1, y′ = y; similarly for the other ac-
tions. The probabilityq(x′, y′) depends on the proximity to
mines, and is given by

q(x′, y′) =
∏m

i exp
(

−0.7 ·
(

(x′ − xi)
2 + (y′ − yi)

2
))

.

Optimal Stopping Game: Secretary Selection. We have
modeled one application of the optimal stopping game. One
boss starts interviewingc candidates for the post of secre-
tary. After each interview, he can either select the candidate
or continue the process with the remaining candidates. If
the boss does not select the candidate, then the candidate is

eliminated from the selection process. The variable “time”
is used to keep track of the time that has elapsed.The boss
can compare whether the current candidate is the best so
far or if a better candidate was interviewed previously. If
the current candidate is the best among all candidates seen,
then the variable “best” is assigned to 1. The boss does not
know the (merit) order of the candidates; hence we model
assignment of the variable with a probabilistic update. The
probability that the current one is the best amongc candi-
dates is set equal to1/c. If the boss selects a candidate,
then the variable “stop” is assigned to 1. The property we
are checking is the “maximum probability that the inter-
viewer has selected a non-best candidate before the time-
out”. In PCTL, the reachability property can be expressed
asPmax=?[♦ (stop=1 ∧ best=0 ∧ time<MAXTIME )].

Hotel Booking Problem. We have modeled an instance
of the overbooking problem for a hotel during a multiple-
day conference. The conference-chairperson booksb rooms
for the registered participants in a hotel withv rooms. The
variable “days” keeps track of days that have elapsed since
the start of the conference. The participants can appear
at any day during the conference but some of the booked
rooms remain vacant during the conference season due to
“no-show” of the participants. The hotel manager takes
this factor into account and overbooks the hotel during the
peak seasons. When he books a hotel room and the con-
ference participant does not appear, the manager suffers a
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strat level Nodes Time (in s) Regions strat level Nodes Time(in s) Regions
consecutive 1 60,563 50 191 interleaved 1 60,563 254 942
consecutive 4 19,732 57 191 interleaved 4 40,599 255 942
consecutive 7 12,129 60 214 interleaved 7 18,054 258 946
consecutive 11 11,491 95 752 interleaved 11 10,060 307 1057
consecutive 15 13,194 191 3043 interleaved 15 11,632 441 2705

Figure 2. Effect of splitting strategy and initial splitting index (Secretary: c=300, MAXTIME=400)

loss. Similarly he will be in trouble whenever he allows a
non-conference visitor without keeping a room booked and
the conference guest appears, requiring him to find an alter-
native room for the guest at higher cost. The arrival of the
participants is probabilistic. The property we are checking
will be the “maximum probability that a conference guest
arrives within the duration of the conference and does not
get a room”. In PCTL, the reachability property can be ex-
pressed asPmax=?[♦ (v=0∧b>0∧days<MAXTIME)].

Zeroconf Protocol. The Zeroconf protocol [5] is used for
the dynamic self-configuration of a host joining a network;
it has been used as a testbed for the abstraction method
considered in [19]. We consider a network with N exist-
ing hosts, and M total IP addresses; protocol messages have
a certain probability of being lost during transmission. The
variable K denotes the maximum number of probes can be
sent by the new host. We consider the problem of determin-
ing the maximal probability of a host eventually acquiring
an IP address.

Results. Our experiments were run on an Intel 2.16 GHz
machine with 2GB RAM. We usedεfloat = 0.01,εabs=0.1
for both PRISM and MLA and, unless otherwise stated
(see next section), an initial splitting index (level) of ⌊k/2⌋,
wherek is the number of MTBDD variables representing
the MDP’s state space. For the splitting strategy (strat), we
used “consecutive” for all model, except the minefield.

Figure 1 summarizes the results for all case studies. The
first two columns show the name and parameters of the
MDP model. The third and fourth columns gives the num-
ber of states and transitions for each model. The remaining
columns show the performance of analysing the MDPs, us-
ing both PRISM and symbolic MLA. In both cases, we give
the total time required (which includes model building and
model checking) and the peak MTBDD node count (which
includes the partial transition relation and the solution vec-
tors). For MLA, we also show the final number of generated
regions. We used the MTBDD engine of PRISM, since (a)
it is generally the best performing engine for MDPs; and
(b) it is the only one that can scale to the size of models
we are aiming towards. More detailed experimental data is
available from:
www.soe.ucsc.edu/˜pritam/qest08.html.

Discussion. The “Nodes” columns of Figure 1 demon-
strate the efficiency of the symbolic implementation of
MLA: the memory requirements are significantly lower
than the equivalent statistics for PRISM’s MTBDD engine.
As discussed earlier in Section 3, this is due to the fact
that MLA analyzes each region in isolation, resulting in a
smaller number of distinct values in the solution vectors.
For the Zeroconf example, this phenomenon actually re-
sults in MLA also outperforming PRISM in terms of so-
lution time.

It is also clear, from the sizes of the MDPs in the ta-
ble, that the symbolic version of MLA is able to handle
MDPs considerably larger than were previously feasible for
the existing explicit implementation of [11]. Thanks to this,
another positive conclusion which we can draw from the
results is that MLA generates relatively small numbers of
regions for the analysis of even large MDPs.

Finally, we also experimented with different parameter
values for the splitting strategy (strat) and initial splitting
index (level). Figure 2 shows results for the secretary selec-
tion case study (c = 300 andMAXTIME = 400). For
smaller values of the initial splitting index, there are less re-
gions initially but these regions are relatively large, result-
ing in higher memory consumption. Increasing the split-
ting index produces smaller regions, which take less space
and time to analyse, however more global iterations are re-
quired, resulting in longer total solution times. Hence, in
our results (Figure 1), we opted for a trade-off by using
a splitting index close tok/2, wherek is the number of
MTBDD variables representing the state space.

For the results in Figure 2 (and for most of our case stud-
ies), the “consecutive” strategy performs better than the “in-
terleaved” strategy, both in terms of memory usage, time
and number of regions. For the minefield problem, how-
ever, the reverse is true. This is due to the “grid-like” nature
of the model and the fact that the state-space is described by
a pair of co-ordinates,x andy. It is more effective to refine
the state space into square regions of the grid.

5 Conclusion

We have presented a symbolic implementation of the
magnifying-lens abstraction (MLA) technique of [11], us-
ing the multi-terminal binary decision diagram (MTBDD)
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data structure. This was implemented in the probabilistic
model checker PRISM and applied to a range of MDP case
studies. The results demonstrate that symbolic MLA yields
significant gains in memory usage over standard (sym-
bolic) implementations of MDP verification, as provided by
PRISM. Furthermore, in some cases this also produce bet-
ter performance in terms of time. Our results also show that
symbolic MLA can be applied to much larger MDPs than
its explicit counterpart.

In the future, we plan to make a comparison of our ap-
proach with other MDP abstraction techniques, including
the game-based approach of [19]. We aso plan to investigate
the integration of more advanced symbolic representations
of state space partitions, such as [12].
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