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Abstract—We extend the classical system relations of trace transition systems, as the sgt,F} of boolean values can
inclusion, trace equivalence, simulation, and bisimulation to a pe associated with the metri(T,T) = d(F,F) = 0, and
quantitative setting in which propositions are interpreted not d(T,F) = d(F,T) = 1. Indeed, almost all classes of transition

as boolean values, but as elements of arbitrary metric spaces. tems that have been pr d in the literatur nstit
Trace inclusion and equivalence give rise to asymmetrical and systems thal have been propose € literature constit

symmetrical linear distanceswhile simulation and bisimulation ~Metric transition systems.
give rise to asymmetrical and symmetricalbranching distances. Trace inclusion, trace equivalence, simulation, and bisimulg
Wef Sltluclj())/ tif(‘:z Ifeé?]t;?githeiﬁi :Jgﬂ”% fthfhsee ?jfst{aam%‘zz ai?]d t"{‘e’fnﬁ’sfo‘(’)i?etion are classical system relations which play a very importar
quantitati?/e versions of LTL and u-calculus. We show that, while role n system §peC|flcatlon and verlflt_:atlon. Thesg_ syster
trace inclusion (resp. equivalence) coincides with simulation (resp. "elations are defined in terms of tleguality of propositional
bisimulation) for deterministic boolean transition systems, linear Valuations: for example, trace inclusion holds between tw
and branching distances do not coincide for deterministic metric statess, ¢ if every trace froms can be exactly matched, in
transition systems. Finally, we provide algorithms for computing  terms of propositional valuations, by a trace framOnce
the dlsta_nces over finite systems, together with a matching lower propositions are evaluated in metric spaces, the system T
complexity bound. . . .
lations themselves can be generalized to metrics. Thus, v
propose to generalize trace inclusion ttirear distancethat
. INTRODUCTION measures how closely a path frentan be matched by a path
OFTWARE verification tries to develop automatic tool§rom ¢, in terms of thedistancebetween the corresponding
or the analysis of correctness properties of softwarpropositional valuations. Following this idea, we extend the
Often, the aim is to check whether a piece of software, @fassical relations of trace inclusion, trace equivalence, simt
an abstract model of it, conforms to a given specificatiofation, and bisimulation to a metric setting, by defining linear
Classical techniques, such as model-checking, are only capaiie branchingdistances. Considering distances, rather than
of yes-no replies: either the system meets its specification, refations, leads to a theory of system approximations [8], [17]
it does not. In contrast, in this paper we examépantitative [2]. In most engineering disciplines, specifications include
techniques for comparing a system with its specification. Thiaformation about the allowetblerance(maximum deviation)
is, we quantify to what extent a system meets its specificatian. their implementation. The metrics proposed in this pape
To do so, we introduce and compare different ways to me@nable us to extend this approach to behavioral specificatior
sure the distance between two systems. When two systemgscapturing how closely the behavior of a concrete syster
are at distance zero, they are indistinguishable w.r.t. sorngplements a specification. Furthermore, for systems whos
equivalence criterion (such as behavior step-wise simulatipropositions are evaluated in dense metric spaces (such
or behavior inclusion). While for safety-critical applications]R), system metrics are often more meaningful than syster
any distance greater than zero signifies the presence ofefations, as they are robust with respect to perturbations |
catastrophic bug, in other cases small discrepancies nthg propositional valuations. For instance, in system mode!
be tolerated, for instance to reduce the product costs. kuiose parameters are determined via experimental obsen
example, consider an MP3 player. If the player is requirdibns subject to measurement errors, system metrics provic
to react within 1 second to user input, but does so within 1.@fseful information about behavioral similarity, while system
seconds, this may in fact be a viable solution, even though tiegations provide unnecessarily fine-grained, and ultimatel
system does not meet its specification in the classical, booleasaningless, information.
sense. In our setting, we would say that the distance from thepe define two families of distancelnear distanceswhich
player to its specification is 0.05 (on a scale where we considgineralize trace inclusion and equivalence, dmenching
deviations up to 1.0 seconds). distances,which generalize (bi)simulation. We relate these
We conduct our analysis on a very general model, callefstances to the quantitative version of the two well-knowr
metric transition systemA metric transition system is a specification languagesTL and p-calculus, showing that the
transition system in which the propositions, at each state, @fistances measure to what extent the logic can tell one syste
interpreted as elements of metric spaces. Many examplesf@m the other. The distance notions arising as generalizatior
metric transition systems have been studied in the literature. éfstrace inclusion and simulation are asymmetrical, just like
the setlR of real numbers is a metric space (when equippeghe relations they generalize: the “simulation distance” from
for instance, with the metrie/(z,y) = |z — y[), hybrid to¢is in general different from the “simulation distance” from
systems (where clocks and hybrid variables are interpretegh 5. We call these asymmetrical distanatigected metrics,
in IR) and priced automata (where a real-valued “price” is
associated with each state) are all examples of metric transition, his paper, we use the term “distance” in a generic way, applying it tc
systems. Kripke structures are also a special case of mettgous types of metrics.



preferring this term to the ternguasi-pseudometricsised of s is related viaR to some successor ¢f We generalize
elsewhere in the literature [10]; symmetrical distances will bemulation to a distancéd”® over states. Ifbd*(s,t) = b,
calledundirected metricsThus, for the sake of generality, wethen the valuations of corresponding propositions @nd ¢
develop our results in the general setting where propositiodi$fer by at most, and every successor e#ftan be matched by
are evaluated in spaces endowed with directed metrics.  a successor of within bd*-distanceb. In a similar fashion,
Our starting point for linear distances is the distanose can define a distand@™ that is a quantitative analogue of
lc — pll« between two tracesr and p, which measures bisimulation; such a distance has been studied in [8], [17]. W
the supremum of the difference in propositional valuationglate these distances tav@, a quantitative fixpoint calculus
at corresponding positions of and p. To lift this trace that closely resembles thecalculus of [4], and is related to
distance to a distance over states, we defidds,t) = the calculi of [12], [5] (see also [11], [14]). Similarly to1@L,
SUP, eTr(s) Infpetr(e) |0 — plloo, WhereTr(s) andTr(t) are the the basic formulas of Qu are of the formD(r, ¢) and D(c, r),
set of traces froms and¢, respectively. The distandé®(s,¢) for a proposition- and a valuatior. The modal formula¥ p,
is asymmetrical, and is a quantitative extension of traée p compute respectively the least and greatest value of
containment: assuming that the system is finitely-branchirgybformulap at all successor states; the logical connective
if 1d°(s,t) = b, then for all tracess from s, there is a “and” and “or” are interpreted as “min” and “max”, and the
trace p from t such that||c — p|l.c < b. In particular, if fixpoints are given a quantitative interpretation.

the metric spaces where the propositions are evaluated assign . ) . L
distance 0 only to identical elements, th@n(s) C Tr(t) Again, we provide a twofold logical characterization of

iff 1d°(s,t) = 0. We define a symmetrical version of thisthe branching distances in terms ovQ. We show that for

distance byld(s,t) = max{ld*(s,t), ld(t, )}, yielding a artgistrary metric transition systemis, we hayet) — cp(s)\ <
distance that generalizes trace equivalence; thiiés, t) is 04 (5:t) and ¥(t) — u(s) < bd (S,f), where ¢ is any
the Hausdorff distance betwedn(s) and Tr(t). QmMu-formula, andv is any “universal Q/Iu-formula, |.e..,
We relate the linear distances to the logicT@, a quan- &Y formula of Quu that does not contaid . Moreover, if
titative version of IrL [13]. When interpreted on a metric the metric transition system is finitely branching, then we hav

Ss _
transition system, QrL formulas yield a value in the positivethisStronger resulbd™(s,t) = sup,cquy [¢(t) — »(s)| and
reals. The propositional formulas of L@ are of the form 04" (s,t) = supycaquu(¥(t) — ¥(s)), where3Qmu is the
D(r,c) and D(c,r), wherer is a proposition, anc: is a fragment of Quu in which3  does not occur; these results do

constant denoting an element of the same metric space whapt hold in general for non-finitely-branching metric transition
r is evaluated. The formuld(r,c), at a state, yields the SYStéms.

distance of the valuation of at the state from the constant We relate linear and branching distances, showing that ju:

c. Both D(r, ) and D(c, r) are present ashbas_lc formuflas: s simulation implies trace containment, so the branchin
our setting based on directed metrics, the distance from i@, ces are greater than or equal to the corresponding line
valuation ofr to ¢, and the distance from to the valuation jistances. However. we show that determinism plays a less
of r, ”_ee?' not be the same. The formula ‘neXreturns the role in the quantitative setting than in the standard boolea
(quantltat_lve‘)‘ value of ﬂje subformujam_the next step OT a setting: while trace inclusion (resp. equivalence) coincide
trace, while "eventually” seeks the maximum value attaineq iy, simylation (resp. bisimulation) for deterministic boolean
by p throughout the trace. The logical connectives *and” angh gijtion systems, we show that linear and branching distanc
or” are interpreted as “min” and ‘max. , do not coincide for deterministic metric transition systems
In the standard relational setting, for a relation to charactqfl-na”y we present algorithms for computing linear and
ize a logic, t\_/vo states must be related if and only if all formu'%‘ranching distances over metric transition systems. We sho
from the logic have the same truth value on them. In our Metfiga; the problem of computing the linear distances is PSPACE
framew_ork, we can achieve a finer characterlzauc_)n.. in a_ddltlglammete, and it remains PSPACE-complete even over dete
to relating those states that formulas gannot distinguish, Wenistic systems, showing once more that determinism plays
can alsomeasureto what extent the logic can tell one statg,qqer role in the quantitative setting. The branching distancs
from the other. We give two kinds of characterizations. We,, e computed in polynomial time using standard fixpoin
show that for arbitrary metric transition systems, the d'Stancﬁﬁorithms similarly to [4]
provide a bound for the difference in value of Q@ formulas: ’
precisely, for all states,t and QTL formulasy we have  We extend all our results to discountedcontext, in which
lo(t) — w(s)] < 1d%(s,t) and p(t) — p(s) < 1d°(s,t). distances occurring after steps in the future are multiplied
Moreover, we show that for finitely branching metric transitioby o?, wherea is a discount factor if0, 1]. This discounted
systems, such characterizations are tight: for all stai¢s setting is common in the theory of games (see e.g. [9]) an
we haveld®(s,t) = sup,cqur [#(t) — @(s)| andld*(s,t) = optimal control (see e.g. [7]), and it leads to robust theories c
sup,equn (#(t) —¢(s)). This tightness result does not hold inquantitative systems [4]. In the discounted setting, behavior:
general for non-finitely-branching metric transition systemsdifferences arising far into the future are given less relative
We then study the branching distances that are the analogeegght than behavioral differences affecting the present or th
of simulation and bisimulation on quantitative systems. Recalear future. Hence, the discounted setting leads to notior
that a states simulates a statévia a relationR if the propo- of “local similarity” that enjoy many pleasant mathematical
sitional valuations at andt coincide, and if every successomroperties.



[l. PRELIMINARIES In a Kripke structure, the value of a proposition at each state |

We denote bylR the set of real numbers and By, the a member_of the truth_—value sét, F}. We extend this sett_ing
set of non-negative reals. For two numbers, € IR, we by evaluating propositions, at each_ state, to glemepmanﬂc _
write = U y = max(z,y) andz M y = min(z,y). We lift spaces.A metric space is a set with a metric defined on |t;_
the operators) andr, and the relations:, < to functions via for the sake of generality, we assume only that the metric i

their pointwise extensions. Precisely, fomrgument functions & directed metric. _ . _
Ffifa s A x - x A, — TR, we write f; U f, for the Definition 3: (directed metric space) A directed metric
) n 1

space or shortly a metric space, is a pdiK, d), whered is

functiong : A; x --- x A,, — IR defined byg(z1,...,z,) = ' 4
g4 Yo(a ) a directed metric onX. [ ]

filxy,...,zn) U fa(z1,...,z,), and similarly form; we
write fi < foif fi(w1,..o 2n) < fo(zr,. . an) forall 2 € \we say that a metric spa¢e, d) is boundedf the maximum
Ap, o mn € Ap, and we writef; < foif f1 < fr and ifthere  gistance between any two elementsXfis finite.

are somer; € Ay, ..., xn € Ay for which fi(zy,..., 2,) < Example 1: An example of metric space is the space of
fa(@1,..., zn). Given a functiond : X? — IR, we denote RGR-represented colors, where the distance between aglors
by Zero(d) = {(z,y) € X2 | d(x,y) = 0} its zero set. gnq., represents the difference in brightness betweeand
Given a sequencéz;}ic, We commonly writelim; z; for . The space is the = [0,1]%, and for# = (x1, 2, z3)
lim; . x;. The following lemma summarizes some simple(mdz?: (1, ys,y3) we defined(Z, 7) = |f.g_17_g|' whereb
facts about sequences of real numbers that will be neededdn, vectér giviﬁg the brightness of each baéic color, aiwd

subsequent.proofs. the internal product. It is easy to see tfiat, d) is a bounded
Lemma 1: LetZ be a set and{z;}icz, {yi}icz b€ WO girected metric space. In particulat,is undirected and not
families of numbers idR. The following assertions hold. proper, as different colors may have the same brightness.

1) If z; —y;, <cforall i € Z, thensup, z; —sup; y;: < ¢ _
and inf; 2; — inf; y; < c. Example 2: Another example of a metric spaceXsg =

2) Let X,Y be sets andf : X x Y — IR be a function. (IR:dr), With dr(2,y) = max{z —y,0} for z,y € R. It

Then is immediate thatdr is a directed metric and tha&Xy is
inf y) < inf ). not bounded. On the other hand, the metric spXeg,) =
igg yngf(JC y) < yey 31612 f@y) ([0,1],dr) is bounded. [ |

= Example 3: A particularly simple example of bounded
metric space isXp = (X,dp), where X = {0,1} and
_ . d(z,y) = |x —y| for z,y € {0,1}. This is the usual space of
A. Metrics and Metric Spaces “boolean” valuations; it is immediate thatis an undirected
We definedirected and undirected metrioshere undirected metric. ]
metrics are required to be symmetrical and directed metrics r% . _ - .
not. For example, the travel distance between two points in%\!i en pr_owdmg qu|cal c_hara_ictenz_atlons for the distances
city with one-way streets is a directed metric. Our directelf® will first consider logics in which any element of the

and undirected metrics generalize the usual metrics, in tﬁg?tnc space can be used as a constant. If the metric spa

elements that have metric 0 are not required to be identic uncountable, however, this leads to the consideration «

The definitions are as follows. !ogics with uncountably many symbols. If a metric space
Definition 1:(metrics) We introduce the following termi- IS separab_le,however, each element can be qpproxw_nate(
nology. by arb|trarlly close elements of aountable basisIn this
. . . . case, we will see that logics with countably many symbol:
1) Adirected 'm.etrloon a setX is a functiond : X x X — (corresponding to the elements of the basis) will suffice.
IR that satisfies Definition 4:(separable directed metric space) A di-

o d(z,z) =0forall z € X; rected metric spaceX, d) is separableif there is a countable
o d(x,2) < d(x,y) +d(y,z) for all z,y,2 € X pasisB C X such that, for all: € X and alle > 0, there is
(triangle inequality). y € B with d(z,y) < e andd(y,z) < e. m

A directed metricd is proper if d(z,y) = 0 implies
x = y (identity of indiscernibles).

2) Anundirected metrids a directed metrid : X x X — B. Metric Transition Systems
R that is symmetrical, that is, such thd{z,y) =
d(y,x) for all z,y € X. Undirected metrics are also
called simplymetrics.

A metric transition systeris a transition system where the
value of a proposition, at each state, is an element of a bound
directed metric space. To simplify the notation, we assum
We will often define a directed metric, and obtain the corréhroughout the paper an underlying $&® of propositions,
sponding undirected metric klgymmetrization. where each proposition € AP takes values in a bounded

Definition 2: (symmetrization) Given a directed metrid metric spacg X,,d,).
on a setX, we denote byd its symmetrizationdefined by Definition 5: (valuations) A valuationw of a set> C AP

d(x,y) = d(z,y) U d(y,z) for all z,y € X. Obviously, for of propositions is a function with domail that assigns to
all z,y € X, we haved(z,y) < d(z,y). B eachr € ¥ an element: € X, of the metric spac¢X,,d,)



corresponding te. We denote by/[X] the set of all valuations E. Discussion

of 2. [ |

Definition 6: (metric transition system) A metric transi-
tion system(MTS) is a tupleM = (S,7,%, []) consisting of
the following components:

« a setS of states;

« a transition relationr C S x S;

« a finite sety C AP of propositions;

« afunction[-]: S — U[X] that assigns to each state= S

a valuation[s].
For a states € S, we write 7(s) for {t € S| (s,t) € T7}. We
require thatM is non-blocking: for alls € S, the setr(s) is
non-empty. [ |

We distinguish the following special classes of MTSs.

Definition 7:(special types of MTSs) Let M =

(S,7,%,[]) be an MTS.

o We say thatM is finite if S is finite.

o We say thatM is deterministicif for all statess € S
andt¢,t € 7(s) with ¢ #£ ¢/, there isr € ¥ such that
[1)(r) # [¢)(r).

o We say thatM is finitely branchingif 7(s) is finite for
all se S.

o We say thatM is separableif, for all » € X, the metric

space(X,,d,) is separable. In this case, we denote by fixed MTSM =

B, a countable basis fotX,, d,.). []

C. Paths and Traces

Given a setA and a sequence = agajas--- € A¥Y, we
write 7; for the i-th elementa; of =, and we writer? =
a;a;11a;49 - -+ for the (infinite) suffix ofr starting fromr;.

Definition 8: (paths and traces) Consider an MTSV =
(S’ Ta

,[']). A path of M is an infinite sequence of states

We note that, for some of the results on system metrics,
would have been sufficient to define a metric transition syster
as a system that maps each state into an element of a met
space, bypassing thus the introduction of a set of proposition
and the related machinery. Such a definition, of course, is
special case of the one we adopt, and corresponds to cc
sidering metric transition systems with only one proposition
The main function of propositions is to enable us to develoj
the connection between system metrics and logics, since tl
logics refer to quantities via the propositions.

Inan MTS(S, 7, %, []), we call each- € ¥ a “proposition”,
rather than “variable”, in spite of the fact thattakes values
in a generic metric spacéX,,d,), rather than in the set
of truth-values. Our choice of terminology is motivated by
the fact that in the system logics we consider, the symbol
plays a (syntactic) role that is analogous to that of ordinan
propositions. We reserve instead the term “variable” for the
variables used to construct fixpoint expressiong-icalculus.

IIl. LINEAR DISTANCES ANDLOGICS
A. Linear Distances

Throughout the paper, unless specifically noted, we consid
(S,7,%,[]). We proceed by defining the
linear distances between valuations, then between traces a
finally between states. The propositional distance between tw
valuations is the maximum difference in their proposition eval-
uations, where differences in the assignments of proposition
are measured by the metrit;.

Definition 10:(propositional distance) We define the
propositional distancepd : U[X]? — IR, for all valuations
,v € U[X], aspd(u,v) = max,ecx dp(u(r),v(r)). |

7 € S such that(m;, ;1) € 7 for all i € N. Given a state For ease of notation, we writgd(s, ) for pd([s], [t]). I all

s € S, we write Paths,(s) for the set of all paths of\f

starting froms; we omit the subscripd/ when clear from the

context.

A traceis an infinite sequence € U[X]*. Every pathr of
M induces a tracér] = [mo][m1][m2] - - - . We write Trps(s) =
{[r] | = € Pathg,(s)} for the set of traces a¥/ starting from
the states € S, and we omit the subscrigt/ when clear from
the context. [ |

D. Branching and Trace Relations

Y-metrics are proper, then givenv € U[X] we have(u,
Zero(pd) iff u = w.

Example 4: Consider states, andt4 in Figure 1, where
propositionr is evaluated in the metric spac€ ;;. Then
pd($4,f4) =0, pd(t47 84) =0.3, andpd(54,t4) =0.3. |

v) €

The trace distance is the pointwise extension of the propos
tional distance to infinite sequences of valuations.

Definition 11:(trace distance) We define thetrace dis-
tancetd : U[X]¥ x U[X]¥ — IR by letting, foro, p € U[X]¥,
td(o, p) = sup;ey pd(0i, pi). u

We define simulation, bisimulation, trace containment, and Example 5: Consider the states, andt, in Figure 1. Both

trace equivalence for MTSs as usual.

Definition 9: ((bi)simulation, trace containment and
trace equivalence) For an MTS M = (S,7,%,[]), the
simulation relation=gjy, (resp. the bisimulation relatiom;s)
is the largest relatiol® C S x S such that, for alls R, the
following Conditions 1 and 2 (resp. 1, 2, and 3) hold:

1) [s] = [t];

2) for all s’ € 7(s), there ist’ € 7(t) with s’ Rt/;

3) for all ¢’ € 7(t), there iss’ € 7(s) with ' Rt'.

For s,t € S, we write s Ty ¢ if Tr(s) C Tr(t), ands = t if
Tr(s) = Tr(¢). [ |

contain two traces: lety = sps15% ando; = sps1s{ denote
respectively the leftmost and rightmost trace fregnlet pg =
tot1ty andp; = tototy denote the leftmost and rightmost trace
from tg. Then

td(oo,po) 0 td(og, po) = 0.1

td(oo,p1) =0 ﬂ( 0,p1) =0.6
td(o1,p0) = 0.2 td(o1,po) = 0.2
td(o1,p1) =0 td(aq,p1) = 0.3.



so r=0 to r=0 to =0

S0 r=0
r=0 s1 r=0 t to r=0 t1 ta ts3 T4

r=.1 r=.01 r=.001r=.0001
r=0.4 53 S4 r=0.7 r=0.5 t3 tq r=1
Fig. 2. An infinitely branching MTS showing the difference between
Zero(ld®) and Cy . Propositionr is evaluated in the metric spag€g 1.
Fig. 1. MTS illustrating the linear distances. Propositioiis evaluated in
the metric spac&|q, -

We obtain thatlda(So,to) = lda(UQ,to) [ lda(Uhto) = 0.

It is easy to show thatd is a directed metric. The following Similarly,

result states that if we base the notion of trace distancgdon
instead of onpd (i.e. if we replacepd by pd in the definition
above), we obtain the symmetrizatios of td. Moreover, the
kernel of this symmetrization is trace equality.

Lemma 2: For all sequences, p € U[X]¥, we have
td(o,p) = sup;enpd(oi, pi). Moreover, if d. is a proper  Example 7: Consider the case whereX,,d,) = X 1
metric for all » € X, then (o, p) € Zero(td) if and only if for all » € X, that is, all propositions are interpreted as real
o=p. numbers in the intervalo, 1], and d,(a,b) is a measure of
@gw much greater i& thanb. In this setting, the distances

iy T L
the trace distances to the sets of traces emerging from th eandolci Tive .the_followmg |ntl£|)|t|v§ (ihatr?cterlzazf;og.for
states, as in the definition of the Hausdorff distance betwebry. € [0 1: Itz =y = max{z—y, 0}. For atracer € U[]
sets. andc € IR, denote by - ¢ the trace defined bfg = ¢),(r) =

The intuition is as follows. To establish trace inclusioﬁ{S kgb)t;ncegolr‘rngbe clje:rr:aigine il:l InroOtggirti;\;Oz;Idiglru;ticons
between states and ¢, we check if, for a trace frons, the y 9 prop

same trace exists from If there is a trace frons that cannot by c. As;uming that the system is finitely branching, for all
be matched front, there is no trace inclusion. .s’t € 5, if 1d*(s,1) = c then for every tracer' from s there
For the linear distance, we match each tracom s with ' & racep from ¢ such thatp > o ~c. This means that
the tracep from ¢ with the smallest trace distance #o (or Id*(s,t) is a “positive” version of trace containment: for each
- s - . . ._traceo of s, the goal of a trace from ¢ is not that of being
the infimum of these’s if the minimum is not attained). This close too. but rather. that of not being below - ¢. Such
yields distanceénf ,c ;) td(o, p) for o. Then, we consider the ~ g, DU TariEn . ng -
an interpretation is important in a setting where values deno

trace froms that is the hardest to match, yielding distance . ;
. — costs; thus, a system implementation whose costs are low
SUP, eTr(s) Inf peTr(e) td(0, p).

Definition 12: (linear distance) We define the twdinear than specified lays at distance 0 from its specification. ®

lds(()'o,to) = m(()’o,po) M ﬂ(ao,pl) =0.1110.6=0.1
lds(Ul,to) = w(Ul,po) [l Q(Ul,pl) =0.2M10.3=0.2,

SO thatlds(SO,ﬁo) = lds(Uo,to) U lds(0'1,to) =0.2. |

The linear distances between two states are obtained by lift

distancesld® andld® over S by letting, for all s, € S Theorem 1: For all finitely branching MTSS, 7, %, [-]),
a _ . such thatd,. is a proper metric for allr € 3, we haveCy =

d%(s,t) = 021-#}()5) pel%f(t) td(o, p) Zero(ld®) and =y = Zero(ld®).
ld(s,t) = sup inf td(o,p). O Proof: Let (S,7,%,[-]) be an MTS withs,¢ € S. It is

oETr(s) PETI(E) L s
easy to see that = ¢ implies ld°(s,t) = 0. To prove the

One can easily check that the functidd$ andid® are directed converse, assume that®(s,t) = 0 and lete € Tr(s). Then,
metrics, whileld* andid® are undirected ones. Intuitively, thethere are tracegy, p1, p» . .. € Tr(t) such thattd(o, p;) < QL
distanceld® is a quantitative extension of trace containmentpr all i. Due to the finitely branching property, there exists
for s, ¢ € S, the distancdd®(s, t) measures how closely (in aa tracep* such thattd(s, p*) < & for all i. This means that
quantitative sense) a trace frontan be simulated by a traceﬁ(m p*) = 0, which, by Lemma 2, is the same as= p*.
from ¢. The symmetrization ofd” is Id®, which is related to Now, the result for=,, andld® easily follows. m
trace equivalence. Indeed, we will see in the next section th@f show that the result above does not hold for infinitely
it is possible to define a quantitative logia @ such that the pranching systems, consider the MTS in Figure 2, where th
valuation of QTL formulas ats and¢ can differ by at most propositionr is again evaluated in the metric spag, ;). This
ld*(s, t), and similarly, the valuation of any QL formula at MTS has infinitely many states, #o, t1, 2, . . . and transitions
¢ is at mostid®(s, t) below the valuation as. (s0,50), (to,t;) and(t;,t;) for eachi € N. Moreover, we put
Example 6: We write ld*(o,t) for inf ers) td(o, p) @and  [s0](r) = [to](r) = 0 and [t;](r) = 10~ for i« > 0. Then,
similarly for ld*(o,?). Using the trace distances computed ive have thas, to) € Zero(ld®), but so Zy to. To obtain an
Example 5, we obtain for the MTS in Figure 1 MTS with 1d*(to, ug) = 0, butty #y ug, We letuy be a state
a o o o that is the exactly same ag (i.e. same valuation and same
d*(0,t0) = td(00, po) M td(00, p1) =0 M0 =0 successor states), except that it has a self-loop (i.e. a transiti
lda(Jl,t()) = td(O’l,p()) M td(O’l,pl) =02110=0.

(UO7’U,0) c ’7').



s0 r=0 to r=0 uo r=0 follows
S d, ([s)1 (), [112(r) = dr([s]a (1), [£l2(r))
dr ([$2(r), [8)2() + dr([1)2(r), [£11(r))
[

T
Fig. 3. An MTS showing the difference betweés, id®, ld®, andId®. < d([; [2) +d([]2: [h)-
Propositionr is evaluated in the metric spacgo . Now the result follows by repetitive application of

Lemma 1(1). [ |
The relations among linear distances are stated by the
following theorem, and summarized in Figure 6(a). B. Quantitative Linear-Time Temporal Logic
Theorem 2: The following assertions hold. The linear distances introduced above can be characteriz
1) For all MTSs, we haved® < Id*, 1d* < Id°, Id* < in terms of quantitative linear-time temporal logi€QLTL),

Id°, andld® < Id°. Moreover, the inequalities cannot be? quantitative extension of linear-time temporal logic [13]

replaced by equalities. that includes quantitative versions of the temporal operator
2) The distancedd® andld® are incomparable: there is an @nd 10gic connectives. The QL formulas over a sek of

MTS with states, 7, > € S such thatid® (s, ) < 1d*(s, t) propositions are generated by the following grammar:

and ld*(t, z) > ld*(t, 2). ¢ == D(rc)|Die,r)eAplevel ¢|Cp|Op

Proof: The first and third inequalities of statement (1Herer € ¥ is a proposition and U,cx X, is a constant.
are trivial, while the second and fourth follow immediatelyye assume that, in a term of the fotbr, ¢) or D(c,7), we
from the fact that, for all traces and p, td(o,p) < td(0,p). havec € X,. A formula ¢ assigns a valudye](o) € IR to

For the MTS in Figure 3, we have each tracer C U[X]:
lda(SO, to) =0 lda(to, UO) 0 lda(uo, to) = [[D(T C)]](U‘) = dT(UO T)’ C)
lds(SO,to) =0 lds(to,uO) =1 ld (UO,tQ) =0 [[D(C T)H(O—) dT(c7 0’()(7"))
1d*(so to) =1 1d*(to,uo) =0  1d*(ug,to) =0 [pr Ap2l(o) = [pa](o) M [w2](0)
TS(So,to) = 1 Ts(to,UO) = 1 ld (Uo,to) = 1 [[501 \ @2]](0—) = [[901](0) U [[902]](0—)
o [ ©lo) = [el(e!)
Thus, we have an example whet€" # [d°, ld* # ld*, [©¢](o) = sup{[¢](c?) | i > 0}
ld® # 1d®, ld* # 1d®, and neitherld® < Id* nor Id® > [d*. W [0¢] (o) _ inf{[[go]](ai) |i >0}

Next, we show that the linear distances are robust with respect _
to perturbations in the state valuations: small changes in #eQLTL formula ¢ assigns a real valupe](s) € R to each
propositional valuations causes small changes in the distan&ates of a given MTS, by defining
Given two state valuationisy, [-|2 : S — U[X], we define their .
8 e o5~ UB [el(s) = nt{lel(p) | p € Tr(s)}

distance by:
We note that the above definition could also be phrased i
d([1, []2) = sup max d,([s]1(r), [s]2(r))- terms ofsup over all traces frons, rather tharinf. However,
ses as our setting is based on distances, thé operator most
Moreover, for a state valuatiofi : S — U[X], we write ld?, closely corresponds to the universal quantification over a
ldjc for the distances defined as in Definition 12, usih@s Paths present in the classical definition af.Lsemantics.

the state valuation. ForopsC { ,<,0,D(c,r),D(r,c)}, we denote by QrL\
Theorem 3{linear distance robustness) For all proposi- OPsthe set of formulas that do not employ the operators ir
tional valuations[-], [-]2, and all s,t € S, we have ops
Notice that QTL is a proper extension to the fragment of
ldfy, (s,t) = Udfy, (s, 1) < d([]1, []2) +d([2, []1) LT'L without the Until operator, in the follgwing sense. ,/Any
), (s,1) — 1d3), (s,1) < d([r, [2) + d([as [ ) Kripke structure)M has an obvious translation to an MT'$

over Xp (see Example 3). Moreover, anyrlL formula ¢ in
Proof: The result follows by showing that the tracepositive normal form can be translated into ar@ formula ¢’

distance between two tracesand o, measured unddr]; and by replacingr and—r with D(r,0) and D(r, 1), respectively.

[]2, differs by at most([]1, [-]2) + d([]2,[]]1)- The key step Then, ¢ is true on a Kripke structuréd/ if and only if ¢

consists in noting that, for any € X, from the triangular evaluates td on M’.

inequality

C. Logical Characterization of Linear Distances

[
+d, ([s)2(r), []a(r) Linear distances provide a bound for the difference ir
rAPI2AT ) 2 valuation of QTL formulas. We begin by relating distances
+ dr([t]2(r), [t (7)) and logics over traces.



Lemma 3: Forall MTS$S, 7, %, [-]) and all traceso, p €
U[X]¥, the following holds.
For all ¢ € QLTL\ {D(r,c)} : td(o,p) = [#](p) — [¥](0).
For all ¢ € QLTL \ {D(c,7)} : td(o, p) = [¢](o) — [¢](p).
For all ¢ € QUTL : td(, p) > [[¢](p) — [¢](0)]-
Proof:

inequality we get [¢](p) — [¢l(o) = dlc [po](r)) —
d(c, [o0](r)) < d([o0](r), [po](r)) < pd(00,po) < td(o,p).

Let us consider the first assertion. We proceed
by structural induction orp. If ¢ = D(e,r), using triangle

lemma. Given two traces andp, and an integern, let the
bounded distancbetweers andp be defined a$td™ (o, p) =
maxo<i<m pd(0;, p;). Clearly, td(o, p) = lim,, btd™ (o, p).

Lemma 4: If the MTSV is finitely branching, then for
all traceso, andt € S, we have

sup inf btd™ (o, p) =

inf sup btd™ (o, p).
meN pETI(?)

PETI(t) meN

Proof: Since the l.h.s. is trivially smaller than or equal
to the r.h.s., we are left to prove thét.h.s.) > (r.h.s.).
Specifically, we prove that, for adl > 0, (r.h.s.) < (I.h.s.)+
e. Fix e > 0. For allm > 0, there exist,, € Tr(¢) such that

If o = <4, by inductive hypothesis we have that, for all

i €N, [¥](p") — [¥](c?) < td(p?, o). Then, by Lemma 1,
[l (p) — [¢l(0) = sup[¢](p*) — sup[¢](c7)
€N jEN
<suptd(p',0') = td(p,0).
ieN
Similar observations hold for the remaining cases.

btd™ (o, pm) < inf btd™ (o, p) + €.

pETI(t)
For all m > 0, let ~,, be the prefix ofp,, up to them + 1-th
valuation. The se{~,, | m > 0} can be arranged into a tree
that is a subtree of the unrolling of Since this tree contains
infinitely many nodes and is finitely branching, byokig's
lemma it must contain an infinite trage € Tr(¢). The trace

The second assertion can be proved in a symmetrical \aq infinitely many prefixes ifiy,, | m > 0}. Therefore,
fashion. The third assertion can be easily proved along similakre is an increasing sequence of indi¢gs),.o such that

lines. [ |

for all m > 0, v,,, is a prefix ofp*. It follows that

The first result of the previous lemma is tight in two respects:

both replacing QL \ {D(r,¢)} with QLTL and replacing
[el(p) =[] (o) with [[¢](p) — [#] ()| render the result false.
The second assertion is tight in a similar sense. The following
theorem uses the linear distances to provide the desired bounds

for QLTL.
Theorem 4: For all MTSgS, 7,3, []), and all s,¢ € S,
the following holds.
For all ¢ € QLTL \ {D(r,¢)}:
1d*(s, t) > [](t) = [¢](s) and 1d*(s,t) > [[] (t) = [l (5)]-

For all ¢ € QLTL:

1d°(s, t) > [l (t) =[] (s) and 1d*(s,t) > |[2] (£) =[] (s)]-
Proof: We first prove thatd®(s,t) > [¢](t) — [¢](s).

ld*(s,t) = sup inf td(o,
( ) o€Tr(s) PETI() ( p)

> sup inf ([e](p) — [¢](o))

o€ETr(s) PETI(E)
= inf [p](p) — inf [¢](o)
o€Tr(s)

pETI(L)

= [l (@) = [el (s)-

by Lemma 3

The result forld® is an immediate consequence. The state-

ments concernindd® and [d® follow in a similar way from
Lemma 3. [ |

The results forld® and ld® are the quantitative analogue of

(r.h.s.) < td(o,p*) = lim btd™ (o, p*)
= lim btd"™ (o, p*)
m
< lim btd" (o,~i,,)
= lim btd"™ (o, p;,, )
<lim inf btd"(o,p) +€

mpeTr(t)
= (l.h.s.) + e

]

The following theorem identifies the fragments of the logics
that suffice for characterizing each linear distance. In particu
lar, the theorem shows that the operatérsand O are never
needed. Together with Theorem 4, this result constitutes a fu
characterization of linear distances in terms afrQ.

Theorem 5:  If an MTSM = (S,7,%,[]) is finitely
branching, then we have for all, ¢ € S that

1d*(s,t) = sup [e](t) — L] (s)
peQLTL\{ D(r,c),0,0}

1d*(s,t) = sup Ll (1) = [l (s)]
@eQLTL\{ D(r,c),©,0}

Wd(s,t) = sup  [o](t) — [¢l(s)

- peQutL\{<¢,0}

Id°(s,t) = sup  |[e](®) — [#](s)]-

peQLTL\{<,0}

the standard connection between trace containment and trace Proof: By Theorem 4, we only need to prove the™part

equivalence, andtL. For instance, the result abols® states
that, if id°(s,t) = ¢, then for every formulap € QLTL and
every traces from s, there is a tracep from t such that

[l (p) = [¢](o) —c.

We next show that, for finitely branching systemsiTQ

provides a full logical characterization of the linear distances,
meaning that the distinguishing power of the logic is exactly
the same as the one of the distances. We start with a technical

of the equalities. We first prove the statement involvidg.
For the sake of simplicity, assume= {r}. Let ld*(s,t) = =,
we show that for alle > 0 there is a formulay such that
[e](t) — [¢](s) > x —e. Leto* € Tr(s) be a trace such that
inf ,e1r(4) td(0*, p) > x — €. For allm > 0, we set



sg r=1

Theorem 6: There is an infinitely branching MTS such tha
1d*(s, t) > sup [£1(s) — [l (®).-
%)
Proof: Consider the system in Figure 4, whete= {r}.

Informally, Tr(s) = 0{0,1}*. Let o be a trace such thdiz}
is not a regular language over the alphabet1} (it would

Fig. 4. An MTS exhibiting the languag®{0, 1}; the single proposition is D€ sufficient foro to be not star-free regular). For instance,

evaluated in the metric spad€g.

where ? stands for repetitions of the operator

asymmetric distance betweet and o *,

holds that
sup o] (1) = lim [orn] ()
=lim inf max D(lo}](r), [pi](r))

m peTr(t) 0<i<m

since ﬂ%pm—&-l]] (t) > [[‘Pm]] (t)

=lim inf btd™(c",p)

m peTr(t)
= inf td(c™,p) by Lemma 4
PpETI(t)
> x — €.
Consequently,
sup [l @) = [el(s) = sup [em](t) — [em](s)
eeQLTL\{ D(r,c),©,0} meN

= sup [[SDM]] (t) =0
meN

> T — €.

The statement aboud* is an easy consequence: Assume firgfy 5 ¢ g we havel[](s) —

thatid®(s,t) = ld*(s,t). Then,

1d*(s,t) = sup
eeQLTL\{ D(r,c),©,0}

el(s) — [¢1(?)

< sup [lel(s) = [l @)]-
peQLTL\{ D(r,c),¢,0}
If insteadld®(s, t) = ld*(t,s), we have
10 (s, 1) = sup [l () — [D(s)
p€QLTL\{D(r,¢),©,0}
< sup [l (s) = [l @)

eeQLTL\{ D(r,c),©,0}

We now consider the statement abddt. The proof pro-
ceeds similarly to the one involving®, using as distinguish-

ing formula the following.

om=\  D(o7l(r),r) v

0<i<m

. Intuitively,
when formulay,, is evaluated on a trac€, it measures the
up to them-th step.
Obviously, we havdy,,](s) = 0 for all m > 0. Then, the
value of p,,, on a states’ measures the distance betwegn
and the trace iffr(s’) which is closest to it. For alt € S, it

letc = 010010001.... Consider a second system, containing
a statet such thatTr(¢) = Tr(s) \ {o}. Notice that, in order
to have such a set of tracelsmust be infinitely branching,
since if a finitely branching tree contains all prefixes of ar
infinite path, it must also contain the path itself. We have
Id®(s,t) = 1. We know that ordinary £L cannot distinguish
s from ¢, otherwise there would be a formulae LTL such
that the set of traces that satisfyis {c}. This is impossible
since LTL can only express star-free regular languages. A
observed in Section IlI-B, if all propositions are evaluated or
Xp, an MTS is equivalent to a Kripke structure, andt@ is
equivalent to IrL. Thus, QTL is also unable to distinguish
from ¢. ]
Above, we have provided a logical characterization for the
linear distances in terms of a logic that contains a potentiall
uncountable set of constants: in general, we need one co
stant for each element of a metric space corresponding to
proposition. However, for separable MTSs we can provide
a characterization in terms of logics with countably many
symbols. First, we prove that small changes in the value c
the constants cause small changes in the value of the formulz
The result follows by a straightforward structural induction.
Theorem 7: Consider &LTL formula ¢ containing the
constantscy,...,c,, belonging respectively to the metric
spaces(Xl,dl),...,(den). Let ¢ be the result of re-
placing in ¢ each ¢; with ¢}, for 1 < ¢ < n, and let
d = max?"_,(d;(¢c;, c}) U d;(c}, ¢;)) be the maximal distance
between the new and old values of each constant. Then, f

[¥](s)] < 9.

From the above result, it follows that if an MTS is separable
we can obtain a logical characterization of the linear distance
in terms of logics that consist only of countably many symbols
The idea, essentially, is to replace each constant with
nearby element of a countable base in the formulas used
characterize the distances.

Theorem 8: If an MTSV = (S,7,%,[]) is both finitely
branching and separable, then the characterizations provide
by Theorem 5 hold also when we restrict the formulas o
QLTL to those containing only constants from the countable
setJ, ¢y B, where B, is a countable basis for the metric
space(X,,d,), for eachr € X.

Proof: The result follows immediately from the observa-
tion that by Theorem 7 the value of a formula, at every state
can be approximated arbitrarily well by the value of a formulg
containing only constants that belong to the countable bas

Finally, the statement involvingd® can be easily obtained of the metric spaces. [ |

from the one involvingld® and from the fact thatd®(s,t) =
Id*(s,t) U (¢, s).

m D. A Note on Algorithmic Complexity

The next result shows that Theorem 5 does not hold for The following section describes an algorithm that takes a

non-finite-branching systems.

input a finite MTS M and computes the value of a linear



distance between all pairs of states. To discuss its complexity?) Computingld® for a deterministic MTSV/ is PSPACE-
we need to fix a finite representation for the input data.  complete in|M|.
Considering that all the linear distances have as starting poinB) Computingid® for a boolean, deterministic MT8/ is
the propositional distangel, it is sufficient to provide as input in time O(|M[*).

the |S| x |S| matrix A = (as t)s.tes, Whereas ; = pd(s,t). .
W y Proof: For Part 1, the upper complexity bound comes

We assume that the valuesi(s,t) are rational numbersf the ab laorith ticing that th bset fructi
encoded in fixed-precision binary representation; we denote HyM the above aigorithm, noticing that the subset constructio
n be done on the fly; the lower bound comes from :

||, the number of bits in the encoding of the rational numbé : . . .

. We define the size of a finite MT/ = (S, 7,5, []) reduction from the corresponding result for trace inclusior

by [M| = >, ,cqlpd(s,t)ls. The size of an MTS is thus [16]. L

quadratic in|S|. We further assume that any arithmetic oper- Part 2 states that, unlike in the boolean case, the proble

ation between rationals can be carried out in constant time€Mains PSPACE-complete even for deterministic MTSs. Thi
result is proved by an nlogspace reduction from the probler
of computing trace inclusion for nondeterministic boolear

E. Computing the Linear Distance systems.

Consider an MTSV, = (S, 7, %, [-]) where all the proposi-
tions in X take value inXg; hence,M, is a transition system
with states that assign boolean values to propositions. Give
s,t € S, the problem of deciding trace inclusion betwesmnd
t is PSPACE-complete [16]. We provide a nlogspace reductio
from this problem to the problem of computing the linear
istanceld®(s,t) in a deterministicMTS. Note that, fori,,

e distance matrix¥l is of the same size as the representatior

Given as inputs a finite MT3/ = (S,7,%,[]), andz €
{a, s}, we wish to computdd” (s, to), for all sp,ty € S.

We describe the computation f*, as the computation of
Id® is analogous. We can read the definition/@t as a two-
player game. Player 1 chooses a path= sgs1sy--- from
so; Player 2 chooses a patt = tytqts - -+ from tq; the goal
of Player 1 (resp. Player 2) is to maximize (resp. minimize[
supy, pd(mg, 7). The game is played with partial im‘ormation:Of 7 via the adjacency matri§ x S — {0, 1}
aftersg - - - s,,, Player 1 must chooss, ,; without knowledgé We build a deterministic MTS\/ — (5’, T.E []'), where
of ty---t,. Such a game can be solved via a variation of AN !

the subset construction [15]. The key idea is to as:socia(II propositionsr ,6. = are interpreted in the metric space
: , S ,n],dr), and[-]" is defined as follows. Let the elements of
with each final state,, of a finite pathsgs; - - - s,, chosen by .
. . S be numbered asy,...,s,. Foralli =0...n andr € X,
Player 1, all final states, of finite pathstyt; - - - ¢, chosen by we set
Player 2, each labeled by the distandey - - - s,,,to - - - tn) =
maxo<k<n pd(sk, ). [si] (r) = {
Formally, from M, we construct another MTSV/' =
(8", 7", {r},[]"), having set of states” = S x 25*P. Here, By construction)’ is deterministic and its size is polynomial
D = {pd(s,t) | s,t € S}, so that/D| < [S|>. The transition in the size of M, as [log(n + 1)] + 2 bits are sufficient to
relation 7’ consists of all pairs((s,C),(s’,C")) such that represent the value of a proposition in a state\df, as well
s' e 1(s) andC’ = {(t',v') | At,v) € C .t € 7(t) Av' = as the difference in value between two states. Finally, the proc
v U pd(s',t")}. Note that only Player 1 has a choice of moveig completed by the observation thaty, ¢ in M if and only
in this game, since the moves of Player 2 are accounted foribyd®(s,t) < n in M.
the subset construction. Finally, the propositios interpreted Part 3 is a consequence of Theorems 16 and 17. =
over X, = (D,dr), and the interpretation}]’ is given by
[(s,C))(r) = min{v | (¢t,v) € C}, so thatr indicates the _ _
minimum distance achievable by Player 2 while trying t&- Discussion
match a path tqs, C) chosen by Player 1. In Definition 10, we could have defined the propositional
The goal of the game, for Player 1, consists in reachirfistance between two states using fhienorm, viapd(u,v) =
a state of M’ with the highest p055|blea value of. Let (e d(u(r),v(r))2)1/2 (or in general using th&,, norm,
rmax = max D, for all s,¢ € S, we haveld®(s,t) = rmax— for n > 0). The reason why in Definition 10 we chose the,
[BD(rmax, 7)]((s, {(t, pd(s,1))})), where the right-hand side o js that this definition leads to a logical characterizatior
is to be computed on/’. This expression can be evaluatedy ihe distances, since theax in the L., norm corresponds
by a depth-first traversal of the state spacedf, noting that (4 the v of the logics. It is easy to see that, aside from the

no state ofM’ needs to be visited twice, as repeated Visifggical characterizations, the results of the paper would hol

cannot modify the value ol D (rmax, ) (see Lemma 3 from ¢ \ye replaced in Definition 10 thé. norm with L,,, for any
[3]). This leads to the following complexity result. n> 0.

Theorem 9:  For allz € {a,s}, the following assertions

hold:
1) Computingld® for an MTSM is PSPACE-complete in IV. BRANCHING DISTANCES ANDLOGICS
|M].

i if [si](r) =0
dn—¢ if [s](r) =1

A. Branching Distances

2indeed, if the game were played with total information, we would obtain De€finition 13:(bran9hing distances) For =z €
the branching distances of the next section. {Aa, As, Sa, Ss}, consider the four operator&® : (5% —



R) — (8% — IR) defined as follows, for : S? — IR:

HA%(d)(s,t) = pd(s,t) U sup inf d(s',t)
s'eT(s) t'er(t)

HAS(d)(s,t) = pd(s,t) U sup inf d(s,t)
s'er(s) t'eT(t)

H%(d)(s,t) = pd(s,t) U sup inf d(s,t)
s’eT(s) veT(t)

U sup inf d(s',t)
t'er(t) s'€T(s)

H5(d)(s,t) = pd(s, t) U sup inf d(s',t)

s'eT(s) t'er(t)
U sup inf d(s,t).
t'er(t) s'ET(s)

For x € {Aa, As,Sa, Ss}, we define thebranching distance
bd® as the least fixpoint of the operatéf®. ]

The functionshd™*, bd"*, andbd>* are directed metrics, while
bd>®, bdA2, bd™s, andbdS? are undirected metrics.

10

in the propositional valuations cause small changes in th
distances. To state the theorem, given a state valugtio$i —
UX], = € {Aa, As,Sa, Ss}, we write bd} for the distances
defined as in Definition 13, using as the state valuation.

Theorem 12(branching distance robustness) For all = €
{As, Sa, Ss}, all propositional valuations[-];,[-]2, and all
s,t € S, we have

bdi: (s,t) — bdiie(s,t) < d([)r, [12) + d([Ja, [ )
|bd{y, (s, 1) — bdfy, (s,1)] < 2-d([]1, []2).

B. Quantitativeu-Calculus

We define quantitative-calculus after [5], [4]. Given a set
of variablesV and a set of propositions, the formulas of
the quantitative-calculusare generated by the grammar:

o u=D(rc) [ Die,r) [z|ohpleVelI p|V ¢
|pz .o |ve. o

Example 8: Consider the MTS in Figure 1 once more.

We have for instancebd(sy,t;) bd™(s3,t3) U
bdAS(54,t3) = 0.1 U 0.2 = 0.2: both transitions ins; need to
be matched by transitions from. Similarly, bdAS(Sl,tQ) =
bdS(s3,t4) U bd*(sq,ts) = 0.6 U 0.3 = 0.6. Thus,
bdAS(807t()) = bdAS(Sl,tl) I bdAS(Sl,tQ) =031M0.6 =
0.3: we matchsy — s; by to — t1, because statg has the
smallest branching distance tg. [ |

The distancehd™

for propositionsr € ¥, variablesz € V, and constantg €
U,ex, Xr- We assume that, in a term of the forbx(r, c) or
D(c,r), we havec € X,. Denoting byF = (S — IR), a
(variable) interpretation is a functiof : V. — F. Given an
interpretationg, a variablex € V' and a functionf € F, we
denote byE[z := f] the interpretatiort’ such thatt’(x) = f
and, for ally # z, £'(y) = &(y). Given an MTS and an
interpretatiore, every formulap of the quantitative:-calculus

is a quantitative generalization of bisim-yefines a valuatiofig]s : S — IR:

ulation, and it essentially coincides with the metrics of [8],

[17], [4]; as it is already symmetrical, we hawd®s = bd>s.
Similarly, the distancesd®® generalizes simulation, aridi*s
generalizes mutual simulation.

Theorem 10: For all finitely branching MTSS, 7, 2, [-])
such thatd,. is a proper metric for allr € 3, we have=<gsm
= Zero(bd™®) and ~pis = Zero(bd™>).

The necessity for the finitely branching condition is again

shown by the MTS in Figure 2, where we hab&*(s¢, to) =
0, but S0 ﬁsim to.
The distanceshd®* and bd>* correspond to quantitative

[D(r,0)]e(s) = d([s](r),c)

[D(e,m)]e(s) = d(e,[s](r))

[]e = &(x)

[t Apale  =Tle1]e M [p2le

[er Veale  =lpile U [p2]e

[3 ¢le(s) ZSUPS/ET(S)[[W]]s(SI)

[V ¢le(s)  =infyer(slele(s’)

[nr . ple =inf{f € F | f = [¢lew=p}
[vz. ¢le =sup{f € F | f = [¢lefe:=s}-

notions of simulation and bisimulation with respect to thghe existence of the required fixpoints is guaranteed by th
asymmetrical propositional distangel; these distances aremonotonicity and continuity of all operators. A variahleis
not symmetrical, and we indicate their symmetrical versiomspundin ¢ if it is in the scope of a quantifienz or vz;
by bd** andbd*. Just as in the boolean case mutual similaritytherwise, it is calledree A formula isclosedif all variables

bd*s can be strictly smaller thali™®, andbd”® can be strictly
smaller thanbd>®.

is not equivalent to bisimulation, so in our quantitative settingre bound. Ify is closed, we write[] for [e]e. We call

QMU the set of quantitative-calculus formulas and denote by
CLQMU the subset of @u containing only closed formulas.

Theorem 11: The relations in Figure 6(b) hold for all MTS~or ops C {D(c,r),D(r,c),3 ,V ,u,v}, we denote by
and no other inequalities on these relations hold on all MTSQMu\opsand Q@ Qmu\ opsthe respective subsets of formulas

Proof: The inequalitiedd®* < bd5* < bd>® andbd™® <

bd™* < bd shown in the figure are immediate. Consider th

MTS in Figure 3 again. In this MTS, we havé® = bd*?,
1d* = bd?s, 1d> = bd*, 1d® = bd®® Hence, the results for
the linear distances (see Theorem 2) show thAf* # bd™s,
bd™® £ bdS®, bd™® £ bd>®, bd>* # bdS*, and neitherhd® <
bdS® nor bd** > bd>*, [

The branching distances, like the linear ones, are robust withLemma 5:

that do not employ operators wps Notice that, on boolean
%ystems, the semantics of the quantitativealculus coincides
with the classicalu-calculus semantics.

C. Logical Characterizations of Branching Distances

In the following theorem, we writex(z1, . . ., z,) to signify
that the free variables ip are amongey, . .., z,.
For all finitely branching MTSES, 7, %, [-])

respect to perturbations in the state valuations: small changesl all variable interpretation, the following holds.
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1) Forall p(x1,...,z,) € QMU\{3 , D(r,¢)} and for all Statement 3:The casesp = D(c¢,7), ¢ =z, p = 1 A
fi,--, fneF, ifforall s;te Sandalli=1,...,n, 9 andp = ¥ V 1y are trivial, while the proofs forp =
fit) — fi(s) < bdAa(s,t), then, for alls,t € S, VY Y, o = py .y andp = vy .1 are similar to the ones of

Aa Statement 1.
[e)etwimsi(t) = leletmimsa(s) < bd™(s,8). Let ¢ = 3 4. For ease of notation, we again wrife]

2) For all p(zy,...,2,) € Qmu \ {3 } and for all for []¢,,.—s). By inductive hypothesis, for als’,t' € S,
fi,.. fneF ifforal s;te Sandalli=1,....n, [¢]#)—[¢](s) < bd*(s',¢').

fit) = fi(s) < bd™(s,t), then, for alls, t € S, Similarly to Statement 1, we have
[elete.=ra(8) = [Plefoimp(s) < b4™(s, ) [el(t) — [¢)(s) = sup [)(¥) — sup [v](s')
3) For all o(z1,...,2,) € QMU \ {D(r,c)} and for all ver®) s'€7(s)
fiveis fo el}", if forall s,tc Sandalli=1,...,n, = sup .leﬁfé)([[w]](t/) — [¥1(sh)
Fi(t) — fi(s) < bd(s, 1), then, for alls, t € S, ver)

Sa < sup inf bd%*(s',t)
[[@]]E[xL:fl](t) - [[@]]S[xi::fi](s) < bd (Svt)' ter(t) s 'e7(s)

4) For all (,0(171, . ,SCn) € QMU and for all f17 .. -7fn S by induction
F,if forall s,t € Sand all: = 1,...,n, |fi(t) —

fi(s)] < bd™>(s,t), then, for alls,t € S, < bd% (s, t),
[eletw=r (B) = [Plerwimri ()] < bd>(s,t). leading to the desired result. |
Proof: We prove statements 1 and 3; the other twbrom the preceding lemma, we immediately obtain a theorer
statements can be proved in similar fashion. stating that the branching distances provide bounds for th

Statement 1:We prove the result concemmggﬂ*(L by corresponding fragments of thecalculus. The statement for
structural induction on the formula. Fas = D(c,r), we bd>® is very similar to a result in [8].
obtain by triangle inequalitye](t) — [¢](s) = d(c, [t](r)) — Theorem 13:  For all finitely branching MT$S, 7, %, []),
d(c,[s](r)) < d([s)(r), [()(r) < pd(s.t) < bd**(s,t). The statess,t € S, we have

casesp = x, ¢ = o1 A pa andy = @1 V o are also trivial. Aa _

Consider the case = V . For ease of notation, in this Vo € CLQMUA{3 , D(r, c)} bdA (s, t) = [l (t) = [#](s)
part of the proof we writd-] for []¢(,,.— .|, Since the variable V¢ € CLOMU\{3 } bd™(s,t) > [@](t) — [¢](s)
interpretation is not the issue here. Recall that, fortal S, vy e CLQMU\{D(r,c)} dea(& t) > [] () = [¢](s)
we have by definitiorffo] (t) = infy ¢, ) [](t'). By inductive Ss

Vo € CLQMU bd t) > t
hypothesis, for alk’, ¢’ € S, [](t') — [¥](s') < bd™*(s',1'). Q (5,8) 2 [l (8) =~ [ (o)1
We have As noted before, each bound of the forits, t) > [](t) —
. , . , [¢](s) trivially leads to a bound of the formi(s, t) > |[] (t)—
[£l () = el (s) = t,legf(’t)[[qﬂ] ) -, gf(s)Wﬂ(s ) [#](s)|- The bounds are tight for finitely branching systems,
— sup mf ([[w]]( o [M](Sl)) a_md_the following theor_em identifies Wh|9h fragments of quan
s'er(s)t'E titative u-calculus suffice for characterizing each branching
< sup inf bd*®(s,¢) distgn_ce. The formula scheme used tplchara_ctelr@é is
s'er(s) t'ET(?) reminiscent of the one used in [1] for bisimulation.
by induction Theorem 14: For all finitely branching MTSS, 7, %, [-]),
y tnductio statess,t € S, we have
Aa
< b7 (s, 0). bd™*(s,1) = suPyeciomu (3 Drerury  LP1E) = [9]()
This concludes this case. bd™*(s,t) = SUPccLow (3 ) [el(8) — [¢](s)

If o = py. ¥, then[p] = lim, g, Wherego(s) = 0 for 5% (s,t) = Sup,cciouu\ (D(re) ) [el(t) — [l (s)

all s € S, and gny1 = [Y]efy=y,)- This is a consequence ;5 (g ¢) = SUDecLOMUN {1} [l ®) = [¢](s)

of the fact that, when the MTS is finitely branching, all
operators of theu-calculus are continuous: that is, for each
operatorF € {A,Vv,3 ,V } and each sequendg,, },>o Of
functionsS? — IR, we hgveF(limn gn) = lim,, F(g,). Since
go(t)_— go(s) = 0 < bd™*(s,t), by inductive hg/fothesm we o0 = \/ D([s](r),)
obtain that, for alln € N, g,,(t) — gn(s) < bd™*(s,t), and

Proof:
Part 1: Consider the statement abdut**. For alls € S,
we define the sequence of formulgs’);~o as follows.

ex
thus the_thgsis. Ifp =vy. P, we p_roceed similarly, except kil ' y \/ T
that the initial functiongy, must assign to each state a value Ps T ¥s Ps'-
which is greater than any possible value of formyl@n the s'€r(s)

current MTS. Such a value can easily be found, since all metkast, one can easily prove by induction that, for alle N
spaces giving value to propositions are bounded. Namely, aanyd s € S, [¢*](s) = 0. Recall from Definition 13 that
real number greater than the greatest diameter of those methie distancebd”** is defined as the least fixpoint dff*.
spaces can be used as value ggfs), for all s € S. Denoting by (H**)* a sequence ok applications of H42,



since the MTS is finitely branching, we have that®* =
limy, (HA*)*(pd). We prove by induction ork that, for all

s,t € 8, [L](t) = (HA*)*(pd)(s,1).

£21(6) = max d([s](r), [)(r)
= pd(s, 1) = ()0 (pd) (5, );
[54110) = [¢2)() U max min [k ](¢)

s'eT(s)t’'er(t)

= pd(s,t) U max min (H2)*(pd)(s',t")
s'eT(s)t’er(t)

= (HA)* 1 (pd)(s,1).

Let CQ =CLQmu \ {3 ,D(r,¢c), u, v}, it follows that

sup [e](t) — [¢l(s) > sup [£8](t) — [¥E](s)
eeCqQ keN
= sup (H**)*(pd)(s,t) — 0
keN
= bd™ (s, t).

Part 2: To prove the statement concernibg™* (s, ¢), we

define the following sequence of formulé&g®)en.

=\ D( )V D(r, [s](r))
rex
=00V \/ Vv k.
s'eT(s)

We then proceed similarly to the previous part.

Part 3: To prove the bound omd>(s,t), we use the

formulas:
=\/ D([s)(r),7)
rex
et =plv \/ Vv ¢fv3 ( A <p’§/>~
s’er(s) s’er(s)
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Let CQ = CLQmuU \ {D(r,¢), s, v}, it follows that
[el(s) = sup [e81(t) — [¥51(s)
= sup (H>*)*(pd)(s,t) = 0

keN
= bd®* (s, t).

sup [o](t) —
peCQ

Part 4: To prove the bound ord™(s,t), we use the
formulas:

=V D( )V D(r, [s](r))
rex
Pt =pdv \/ Vv ohv3 ( A @’i/>'
s'eT(s) s’eT(s)
We then proceed similarly to the previous parts. [ |

Again, the logical characterization above is in terms of for-
mulas defined over a potentially uncountable set of constant
in general, we need one constant for each element of a met
space corresponding to a proposition. As in the linear cas
we show that if the MTS is separable, then it suffices tc
consider formulas defined over the countable set of constar
corresponding to the countable bases of the metric spaces |
the various propositions. Similarly to the linear case, the resu
follows from the observation that the value of a formula, at
every state, can be approximated arbitrarily well by the valu
of a formula containing only constants that belong to the
countable bases of the metric spaces.

Theorem 15: If an MT34 = (S, 7, %, [-]) is both finitely
branching and separable, then the characterizations provide
by Theorem 14 hold also when we restrict the formulas o
guantitative y-calculus to those that contain only constants
from the countable s¢t), .y, B, whereB, is a countable basis
for the metric spacéX,,d,), for eachr € X.

D. Computing the Branching Distances

Given a finite MTS M = (S,7,%,[]) and = €

Once again, one can easily prove by induction that, for glfs, Sa, As, Aa}, we can computebd” (s, t) for all states

ke Nands € S, [¢*](s) = 0. The distancebd®® is

s,t € S by computing in an iterative fashion the fixpoints

defined as the least fixpoint df2. In particular, denoting of Definition 13. Precisely, we let, for ai,t € S and all
by (H52)* a sequence of applications ofH/?, again due to % > 0:

the fact that the MTS is finitely branching we havé®* =
limy, (%)% (pd). We prove by induction ork that, for all

s,t €8, [L](t) = (H™)*(pd) (s, 1).

[pi1(2) = max (d([s](r), [E](r)) U d([](r), [s)(r)))

= pd(s,t) = (H*)(pd)(s, 1);
[ (t) = [$2] () U jmex min [5 (1)
U max min [¢%](t)

t'er(t) s’eT(s)

= pd(s,t) U max min (H5%)*(pd)(s,t')
s'eT(s)t’er(t)
)

U max min (H5®
t'eT(t) s'eT(s)

= (H) ! (pd)(s,1).

d’(s,t) =0
d** (s, t) = pd(s,t) U max min d*(s',t). 1)
s'eT(s)t’er(t)
Then bd*® = limy_.~ d*. The following theorem shows that
the above iteration converges in at mgS{? steps.
Theorem 16: For all MTSsM having n states andm
edges, the iteration (1) converges in at maststeps.

Proof: The computation of (1) is equivalent to solve a
maximum-value-reachability game having state spéce S
and, for each staté¢s,t) € S x S, set of movesr(s) for
Player 1, andr(t) for Player 2. The pair of movess',t)
from (s, t) leads to statés’,t') of the game. Every statg, ¢)
of the game has valupd(s,t), and the goal for Player 1 is
to maximize the value reached along a play of the game.
is then easy to prove by induction thélt(s,t) represents the
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Fig. 5. Linear versus branching distances on a deterministic MTS.

/ms\ dSs
ldS ma A/ \ N
xS bd"™® bd~>?
i I
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(a) Linear distances. ) )
(b) Branching distances.

des
/N
dAs dSa
TN A
lds 4bdAs /i)dAa bdsa
NN
d*>  ld*  pdh»
4
ld?

(c) All distances.

Fig. 6. Relations between distances, wh¢re> g meansf < g. In (c), the
dotted arrows collapse to equality for boolean, deterministic MTSs.

maximum value Player 1 can ensure in at mbstteps. Let
Z = {pd(s,t) | (s,t) € Sx S}, and forz € Z let T>, =
{(s,t) € S x 8 | pd(s,t) > z}. For z € Z, assume that
from a state(s, t) Player 1 can force the game T&... Then,
the value of the game frors, t) for Player 1 is at least;
moreover,T, can be reached in at most steps, as this is a
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V. COMPARING THELINEAR AND BRANCHING DISTANCES

In this section, we provide a comparison between linear an
branching distances. Just as similarity implies trace inclusior
we have bothld® < bd** andid® < bd™®; just as bisimilarity
implies trace equivalence, we hal#® < bd> andld® < bd®.
Moreover, in the non-quantitative setting, trace inclusion (resy
trace equivalence) coincides with (bi-)similarity on determinis-
tic systems. This result generalizes to distances over MTSs th
are both deterministic and boolean, but not to distances ov
MTSs that are just deterministic. To formalize these results, w
say that an MTS ibooleanif all its propositions are evaluated
in the metric spac&Xg.

Theorem 17: The following properties hold.
1) For all MTSs, we have

1d* < bd™*  1d® <bd™® T1d* <bd% Td* < bd™.
Moreover, the inequalities cannot be replaced by equal
2) Efrséll boolean, deterministic MTSs we have
1d* = bd™*  1d® = bd™  Td* = bd™® 1d° = bd™s.
These equalities need not to hold for non-boolean

deterministic MTSs.

The relations of Part 1 are illustrated in Figure 6(c).
Proof: Statement 1We prove ld* < bd**, the other
cases being similar. First, we note that**(s, ) < c iff
Ve >0.Vs' € 7(s). It er(t). bd*(s',t') <c+€. (¥
Let s,¢ € S be states and let> 0. We show thatd®(s,t)
bd**(s,t) + . We do so by demonstrating that® (o, t)
inf jetr(s) td(o, p) < bd**(s,t) + € for all o € Tr(s).
Let o = sps1s2... be a trace ins. We build a tracep*

totita ... in Tr(t) as follows. We have, = t and, for
1 >0, t;11 is such that

IA

a

1+1

+Z

bdA? (5541, tigr) < bd (s,

standard graph reachability game. If on the other hand Player 1

cannot force the game B, from (s, t), by determinacy of

We show by induction thatt; is well-defined. Clearly,

reachability games Player 2 has a strategy to keep the gaimelS well-defined. Assume thatz is well-defined. Then
always inT.. = S x §\ Ts., and the value of the game frombd"*(si, i) < bd™"(s, t) + 30, % We obtain from (*) by

(s,t) will be below z. Let z(s,t) be the highest € Z for
which Player 1 can force the game 18 .. From the above
analysis we have thaf(s, t) is the value of the game &t, ¢);
moreover, this value is attainable in at meststeps. Together

with the characterization of®, this shows that the sequence

(d¥(s,1)),~, converges in at most® steps. |

takings = s;, t =t;, ' = si11

i

_ Aa €
c=bd (s,t)—l—;?
]:

, €
T 9i+l

In an MTS withn states andn edges, each step of (1) can

be done inO(n - m) time, since there ar®(n - m) edges in
the product game. This yields a complexity @fn? - m).

that there exists at’ € 7(t;) with bd™*(s

/
. )
bd*(s,t) + 30y 5 + 55T = bdM(s,t) + 3]

i1,t) <
i+1 €
—137- We



take ti+1 =t Then,

ld*(o,t) = inf td(c,p)
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Recalling thatpd(s,t) = 0, we get
HA(1d) (s, 1)

pETI(t) = sup inf sup inf  td(o’,p')
s'er(s t'er(t o’ s! ' cPathgt’
< td(a, p*) er(s) (t) o’ ePathgs’) p’ €Pathg )/ /
_ < sup sup inf  td(o’, by (2)
- flele pd(ai’ pl) s’€1(s) o’ ePathgs’) p’€Pathgt,/) ( r )
< bd** (03, pi < sup sup inf inf  td(o’,p’
- ilelll\:]) (U p ) s’€1(s) o’ ePathgs’) t'€7(t) p’ €Pathgt’) ( )
' - = inf =~ td = ld*(s, t).
< bd™(s, 1) + Z 2 bd™** (s, 1) + €. Ugiiﬁgs)peégths{t) (0.7) (5,2)
=1 oy
’ To see that the equalities need not hold for non-booleat
deterministic MTSs, consider the MTS in Figure 5. We have
Statement 2Let M = (S, 7, %, []) be a boolean, determin- 14 (s,t) = 1, while bd” (s, t) = 1. n
istic MTS, and lets, ¢ € S be states. We show that* = bd*®.
The other cases are similar. By Part 1 of this theorem, we VI. DISCOUNTING

know thatld* < bd**. To prove thatld® > bd**, we show

that HA2(1d*) = 1d®, i.e. thatld® is a fixpoint of H42. As
bd** is the least fixpoint off A, we obtainld® > bd**. First,

we observe that

HA(1d™) (s, 1)

=pd(s,t)U sup inf 1d*(s',t)
s'er(s) t'eT(t)

=pd(s,t) U sup inf sup inf
( ) s'eT(s) t'€7(t) o' cPathys’) p’ €Pathgt’)

td(o’, p')

> pd(s,t) U sup sup inf inf  td(o’,p')

s'er(s) o’ €Pathgs’) t'eT(t) p’ ePathgt’)

= sup inf  td(o,
o€Pathys) PEPatht) (@.7)

= 1d*(s, t).

So HA%(ld*)(s,t) > 1d*(s,t). We show that also
HA(1d*)(s,t) < 1d*(s,t). If pd(s,t) = 1, then Y[X]* — R by letting, for o,p € U[X]¥, tdu(o,p)

HA2(1d*)(s,t) = ld*(s,t) = 1. Hence, assumed(s,t) = 0.

We distinguish two cases.

Our theory can also be developed idiacountedrersion, in
which distances occurringsteps in the future are multiplied
by o, wherea is a discount factor ir{0, 1]. This discounted
setting is common in the theory of games (see e.g. [9]) an
optimal control (see e.qg. [7]), and it leads to robust theories c
guantitative systems [4]. In the discouned setting, behavior:
differences arising far into the future are given less relative
weight than behavioral differences affecting the present or th
near future. Hence, the discounted setting leads to notior
of “local similarity” that enjoy many pleasant mathematical
properties.

A. Discounted Linear Distances and Logics

The basic ingredient of the discounted version of the linea
theory is the following discounted trace distance.

Definition 14:(discounted trace distance) Let o € (0, 1].
We define thea-discounted trace distancé&d, : U[X]“ X
SUP;eN aipd(ai7 pi)- u

For all discount factorsx € (0, 1], the discounted linear

Case Lisupycr(s) infrer( pd(s',¢') = 1. Then one easily gigtancegd® andid, can be defined as in Definition 12, by

shows thatid22(1d*)(s,t) = 1 = ld*(s, ).

Case 2:sup,¢, () infrer ) pd(s’,t') = 0. Since M is deter-
ministic and boolean, we know that for all € 7(s), there is

aty € 7(t) such thatpd(s',t,) = 0 and pd(s’,t") = 1 for
t' # ts. Then, we have for alk’ € 7(s),t' € 7(t),t # to,

o' € Pathgs'), p' € Pathg¢'), andp,s € Pathgt,) that
td(o’,p:,) <1 and td(o’,p) =1
and therefore
inf  td(o’,p') < inf td(o’,p’
cPathd.) (0,0 < prcPatht’) (o, ¢)

SO

inf  td(o’,p) < inf inf  td(o’,p).
p’GPlalItlhs(tS,) (o) _t/leri(t)p'eéerxlths(tf) (o)

)

simply replacingtd with t¢d.,.

In order to define an tL-like logic that characterizes the
above distances, givem € (0, 1], we parametrize each tem-
poral operator from QrL with a (possibly different) discount
factor 6 < «, thus obtaining the logic QL. Formally, for-
mulas from QTL, are generated by the following grammar:

pu=D(r,c) | D(e,r) o Ao |V | ppl|Opp|Opgp

wherer € X is a proposition¢ € | J,..5, X, is a constant, and
B € (0,q] is a discount factor. The semantics of1Q,, is the
same as the one of lQL, except for the discounted operators:

[ sello) = Blel(eh)
[Os¢lo) = sup{s [¢](c") |i >0}
[Ospl(o) = inf{B [¢](c?) | i >0}
All theorems that were proven for the linear distances an
QLTL have a corresponding discounted version, that applies

the discounted distances and1Q,. For instance, computing
the discounted linear distance between all pairs of states
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a finite MTS is still PSPACE-complete. Also, we have the Theorem 19: For all finitely branching MT$S, 7, %, []),

following characterization, analogue to Theorem 5. statess, ¢t € S, and discount factors: € (0, 1], we have
Theorem 18: If an MTSM = (S,7,%,[]) is finitely Aa
branching, then we have that for all € (0,1], s, € S: bdi (5,1) = subyeciomu,\(2 Doyt [91(E) = [2](s)
) bd."(s,t) = su y t) — s
1d2 (s, 1) = sup [l = [2(s) Sa( ) Pyectomu \{3 v} [el(t) = [¥](s)
EQUTL\{D(rc),0,0} bd " (s,t) = SUPgeciomu, \{D(r.c) v} [l (1) — [¢l(s)
ldg,(s,t) = sup [P)(#) =[] ()] bd3(s,1) = SUDpecLQuu,\ (i) [1(t) — [l (s)-
peQLTL \{D(r,c),¢,0}
Id,(s,t) = 3 t) —
als:f) L,OGQLTSLI(];?{(),D}[[QO]]( )= lAl() VIl. CONCLUSIONS
Id3,(s,t) = sup [l (@) = Tel(s)]- In this paper, we have provided metric extensions of the
PEQTLLN{0,0} classical linear and branching relations: trace inclusion, trac
equivalence, simulation, and bisimulation. We remark that
B. Discounted Branching Distances and Logics while metric analogues of bisimulation had been known fol
Similarly to the linear case, we can define the followin§ome time [8], [17], this is not the case for the other notions
discounted branching distances. which had escaped attention thus far; [6] extends the resul

Definition 15:(discounted branching distances) Fora ¢ in the present paper to the setting of concurrent, stochast

(0,1] andz € {Aa, As, Sa, Ss}, consider the four operatorsgames.
H? : (8§ - R) — (5% — IR) defined as follows, fod : We hope that the introduction of these quantitative asym

S2 L 1R: metrical and symmetrical distances constitutes a useful ste
toward aquantitative theory of systenis, which the classical

boolean setting of specification and verification is replace
by a setting in which properties have (real-valued, or metric

Ho‘?a(d)(&t) =pd(s,t) U sup inf d(s',t)
s'er(s) VET(?)

HE(d)(s,t) = pd(s,t) Ua sup inf d(s,t) values, and verification can yield not only yes/no answers, bt
srer(s) VEr() also measures of quality, adequacy, and cost.
HS(d)(s,t) = pd(s,t) Ua sup inf d(s',t') We have provided three main classes of characterizatior
ser(s) ferl) o for linear and branching distances:
U t’selil()t) S,gf(s) d(s', ') 1) Distances as upper bounds for logic valuatioResults
o in this class state that the distances provide an uppe
HZP(d)(s,t) = pd(s,t) Ua sup inf d(s',t") bound for the difference in value of formulas of linear
S’GT(S)t_GT(t) L (QLTL) and branching (@u) logics. Results of this type
U Oét/SEUI()t) S,gf(s) d(s’,t"). are Theorems 4 and 13.
i 2) Logics as full characterizations of distanceResults
Forz € {Aa, As, Sa, Ss}, we define thex-discounted branch- in this class state that the distances are equal to tt
ing distancebd,, as the least fixpoint of the operatéf;. m supremum of the difference in value of all linear, or

Given a finite MTS, the discounted branching distance  branching formulas. Results of this type are Theorem
between all pairs of states can be computed in polynomial 5 and 14.

time as explained in Section IV-D. 3) Relations among distanceResults in this class compare
Next, we introducediscounted quantitativeu-calculus th_e value of linear and branching distances; results c
whose syntax is the same as the one of quantitatizalculus, this type are Theorems 2, 11, and 17.

except that the “next” operator is parametrized by a discouResults in classes 1 and 3 hold for general MTSs, and are th
factor. Formally, for alla € (0,1], formulas in Quu, are particularly satisfying. In contrast, as we have seen, results |
generated by the grammar: class 2 hold only for finitely branching MTSs. Many MTSs
o o of interest are not finitely branching: for instance, in a hybric
pu= D) [ Dier)|zleneleVeld solV sp system, there can be uncountably many successors of a stz
| pz .o ve.p corresponding to the real-valued length of time steps possib
for propositionsr € X, variablesz € V, constantsc € from the state. It is an interesting open problem to investigat
U, s, X, and discount factors € (0,a]. The semantics of classes of MTSs that are more general than finitely branchir
QMUQ coincides with the one of @U (see Section |V_B) MTSS, and for which results of class 2 still hold.
except for:

B selels) = 8 sup [ole(s) | ACKNOWLEDGE.MENTS
s'er(s) This research was supported in part by the NSF CAREEI
[V sele(s) =0 inf [ple(s’). grant CCR-0132780, the NSF grant CCR-0234690, the ONI
)

s'€7(s grant N00014-02-1-0671, the NWO FOCUS/BRICKS grant
We denote COQMuU,, the fragment of @u, containing only 642.000.505 (MOQS), the DFG/NWO grant 62-600 (VOSS2)
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