
1

Linear and Branching System Metrics
Luca de Alfaro, Marco Faella, Mariëlle Stoelinga

Abstract— We extend the classical system relations of trace
inclusion, trace equivalence, simulation, and bisimulation to a
quantitative setting in which propositions are interpreted not
as boolean values, but as elements of arbitrary metric spaces.
Trace inclusion and equivalence give rise to asymmetrical and
symmetrical linear distances,while simulation and bisimulation
give rise to asymmetrical and symmetricalbranching distances.
We study the relationships among these distances, and we provide
a full logical characterization of the distances in terms of
quantitative versions of LTL and µ-calculus. We show that, while
trace inclusion (resp. equivalence) coincides with simulation (resp.
bisimulation) for deterministic boolean transition systems, linear
and branching distances do not coincide for deterministic metric
transition systems. Finally, we provide algorithms for computing
the distances over finite systems, together with a matching lower
complexity bound.

I. I NTRODUCTION

SOFTWARE verification tries to develop automatic tools
for the analysis of correctness properties of software.

Often, the aim is to check whether a piece of software, or
an abstract model of it, conforms to a given specification.
Classical techniques, such as model-checking, are only capable
of yes-no replies: either the system meets its specification, or
it does not. In contrast, in this paper we examinequantitative
techniques for comparing a system with its specification. That
is, we quantify to what extent a system meets its specification.
To do so, we introduce and compare different ways to mea-
sure the distance between two systems. When two systems
are at distance zero, they are indistinguishable w.r.t. some
equivalence criterion (such as behavior step-wise simulation
or behavior inclusion). While for safety-critical applications,
any distance greater than zero signifies the presence of a
catastrophic bug, in other cases small discrepancies may
be tolerated, for instance to reduce the product costs. For
example, consider an MP3 player. If the player is required
to react within 1 second to user input, but does so within 1.05
seconds, this may in fact be a viable solution, even though the
system does not meet its specification in the classical, boolean
sense. In our setting, we would say that the distance from the
player to its specification is 0.05 (on a scale where we consider
deviations up to 1.0 seconds).

We conduct our analysis on a very general model, called
metric transition system. A metric transition system is a
transition system in which the propositions, at each state, are
interpreted as elements of metric spaces. Many examples of
metric transition systems have been studied in the literature. As
the setIR of real numbers is a metric space (when equipped,
for instance, with the metricd(x, y) = |x − y|), hybrid
systems (where clocks and hybrid variables are interpreted
in IR) and priced automata (where a real-valued “price” is
associated with each state) are all examples of metric transition
systems. Kripke structures are also a special case of metric

transition systems, as the set{T, F} of boolean values can
be associated with the metricd(T, T) = d(F, F) = 0, and
d(T, F) = d(F, T) = 1. Indeed, almost all classes of transition
systems that have been proposed in the literature constitute
metric transition systems.

Trace inclusion, trace equivalence, simulation, and bisimula-
tion are classical system relations which play a very important
role in system specification and verification. These system
relations are defined in terms of theequalityof propositional
valuations: for example, trace inclusion holds between two
statess, t if every trace froms can be exactly matched, in
terms of propositional valuations, by a trace fromt. Once
propositions are evaluated in metric spaces, the system re-
lations themselves can be generalized to metrics. Thus, we
propose to generalize trace inclusion to alinear distancethat
measures how closely a path froms can be matched by a path
from t, in terms of thedistancebetween the corresponding
propositional valuations. Following this idea, we extend the
classical relations of trace inclusion, trace equivalence, simu-
lation, and bisimulation to a metric setting, by defining linear
and branchingdistances1. Considering distances, rather than
relations, leads to a theory of system approximations [8], [17],
[2]. In most engineering disciplines, specifications include
information about the allowedtolerance(maximum deviation)
in their implementation. The metrics proposed in this paper
enable us to extend this approach to behavioral specifications,
by capturing how closely the behavior of a concrete system
implements a specification. Furthermore, for systems whose
propositions are evaluated in dense metric spaces (such as
IR), system metrics are often more meaningful than system
relations, as they are robust with respect to perturbations in
the propositional valuations. For instance, in system models
whose parameters are determined via experimental observa-
tions subject to measurement errors, system metrics provide
useful information about behavioral similarity, while system
relations provide unnecessarily fine-grained, and ultimately
meaningless, information.

We define two families of distances:linear distances,which
generalize trace inclusion and equivalence, andbranching
distances,which generalize (bi)simulation. We relate these
distances to the quantitative version of the two well-known
specification languages LTL andµ-calculus, showing that the
distances measure to what extent the logic can tell one system
from the other. The distance notions arising as generalizations
of trace inclusion and simulation are asymmetrical, just like
the relations they generalize: the “simulation distance” froms
to t is in general different from the “simulation distance” from
t to s. We call these asymmetrical distancesdirected metrics,

1In this paper, we use the term “distance” in a generic way, applying it to
various types of metrics.



2

preferring this term to the termquasi-pseudometricsused
elsewhere in the literature [10]; symmetrical distances will be
calledundirected metrics.Thus, for the sake of generality, we
develop our results in the general setting where propositions
are evaluated in spaces endowed with directed metrics.

Our starting point for linear distances is the distance
‖σ − ρ‖∞ between two tracesσ and ρ, which measures
the supremum of the difference in propositional valuations
at corresponding positions ofσ and ρ. To lift this trace
distance to a distance over states, we defineld s(s, t) =
supσ∈Tr(s) infρ∈Tr(t) ‖σ− ρ‖∞, whereTr(s) andTr(t) are the
set of traces froms and t, respectively. The distanceld s(s, t)
is asymmetrical, and is a quantitative extension of trace
containment: assuming that the system is finitely-branching,
if ld s(s, t) = b, then for all tracesσ from s, there is a
trace ρ from t such that‖σ − ρ‖∞ ≤ b. In particular, if
the metric spaces where the propositions are evaluated assign
distance 0 only to identical elements, thenTr(s) ⊆ Tr(t)
iff ld s(s, t) = 0. We define a symmetrical version of this
distance bylds(s, t) = max{ld s(s, t), ld s(t, s)}, yielding a
distance that generalizes trace equivalence; thus,lds(s, t) is
the Hausdorff distance betweenTr(s) andTr(t).

We relate the linear distances to the logic QLTL , a quan-
titative version of LTL [13]. When interpreted on a metric
transition system, QLTL formulas yield a value in the positive
reals. The propositional formulas of QLTL are of the form
D(r, c) and D(c, r), where r is a proposition, andc is a
constant denoting an element of the same metric space where
r is evaluated. The formulaD(r, c), at a state, yields the
distance of the valuation ofr at the state from the constant
c. BothD(r, c) andD(c, r) are present as basic formulas: in
our setting based on directed metrics, the distance from the
valuation ofr to c, and the distance fromc to the valuation
of r, need not be the same. The formula “nextp” returns the
(quantitative) value of the subformulap in the next step of a
trace, while “eventuallyp” seeks the maximum value attained
by p throughout the trace. The logical connectives “and” and
“or” are interpreted as “min” and “max.”

In the standard relational setting, for a relation to character-
ize a logic, two states must be related if and only if all formulas
from the logic have the same truth value on them. In our metric
framework, we can achieve a finer characterization: in addition
to relating those states that formulas cannot distinguish, we
can alsomeasureto what extent the logic can tell one state
from the other. We give two kinds of characterizations. We
show that for arbitrary metric transition systems, the distances
provide a bound for the difference in value of QLTL formulas:
precisely, for all statess, t and QLTL formulasϕ we have
|ϕ(t) − ϕ(s)| ≤ lds(s, t) and ϕ(t) − ϕ(s) ≤ ld s(s, t).
Moreover, we show that for finitely branching metric transition
systems, such characterizations are tight: for all statess, t
we havelds(s, t) = supϕ∈QLTL |ϕ(t) − ϕ(s)| and ld s(s, t) =
supϕ∈QLTL (ϕ(t)−ϕ(s)). This tightness result does not hold in
general for non-finitely-branching metric transition systems.

We then study the branching distances that are the analogue
of simulation and bisimulation on quantitative systems. Recall
that a states simulates a statet via a relationR if the propo-
sitional valuations ats and t coincide, and if every successor

of s is related viaR to some successor oft. We generalize
simulation to a distancebdAs over states. IfbdAs(s, t) = b,
then the valuations of corresponding propositions ats and t
differ by at mostb, and every successor ofs can be matched by
a successor oft within bdAs-distanceb. In a similar fashion,
we can define a distancebdSs that is a quantitative analogue of
bisimulation; such a distance has been studied in [8], [17]. We
relate these distances to QMU, a quantitative fixpoint calculus
that closely resembles theµ-calculus of [4], and is related to
the calculi of [12], [5] (see also [11], [14]). Similarly to QLTL ,
the basic formulas of QMU are of the formD(r, c) andD(c, r),
for a propositionr and a valuationc. The modal formulas∀ p,
∃ p compute respectively the least and greatest value of a
subformulap at all successor states; the logical connectives
“and” and “or” are interpreted as “min” and “max”, and the
fixpoints are given a quantitative interpretation.

Again, we provide a twofold logical characterization of
the branching distances in terms of QMU. We show that for
arbitrary metric transition systems, we have|ϕ(t) − ϕ(s)| ≤
bdSs(s, t) and ψ(t) − ψ(s) ≤ bdAs(s, t), where ϕ is any
QMU-formula, andψ is any “universal” QMU-formula, i.e.,
any formula of QMU that does not contain∃ . Moreover, if
the metric transition system is finitely branching, then we have
the stronger resultbdSs(s, t) = supϕ∈QMU |ϕ(t) − ϕ(s)| and
bdAs(s, t) = supψ∈∃QMU(ψ(t) − ψ(s)), where∃QMU is the
fragment of QMU in which∃ does not occur; these results do
not hold in general for non-finitely-branching metric transition
systems.

We relate linear and branching distances, showing that just
as simulation implies trace containment, so the branching
distances are greater than or equal to the corresponding linear
distances. However, we show that determinism plays a lesser
role in the quantitative setting than in the standard boolean
setting: while trace inclusion (resp. equivalence) coincides
with simulation (resp. bisimulation) for deterministic boolean
transition systems, we show that linear and branching distances
do not coincide for deterministic metric transition systems.
Finally, we present algorithms for computing linear and
branching distances over metric transition systems. We show
that the problem of computing the linear distances is PSPACE-
complete, and it remains PSPACE-complete even over deter-
ministic systems, showing once more that determinism plays a
lesser role in the quantitative setting. The branching distances
can be computed in polynomial time using standard fixpoint
algorithms, similarly to [4].

We extend all our results to adiscountedcontext, in which
distances occurring afteri steps in the future are multiplied
by αi, whereα is a discount factor in[0, 1]. This discounted
setting is common in the theory of games (see e.g. [9]) and
optimal control (see e.g. [7]), and it leads to robust theories of
quantitative systems [4]. In the discounted setting, behavioral
differences arising far into the future are given less relative
weight than behavioral differences affecting the present or the
near future. Hence, the discounted setting leads to notions
of “local similarity” that enjoy many pleasant mathematical
properties.
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II. PRELIMINARIES

We denote byIR the set of real numbers and byIR+ the
set of non-negative reals. For two numbersx, y ∈ IR, we
write x t y = max(x, y) and x u y = min(x, y). We lift
the operatorst andu, and the relations<, ≤ to functions via
their pointwise extensions. Precisely, forn-argument functions
f1, f2 : A1 × · · · × An → IR, we write f1 t f2 for the
function g : A1 × · · · ×An → IR defined byg(x1, . . . , xn) =
f1(x1, . . . , xn) t f2(x1, . . . , xn), and similarly for u; we
write f1 ≤ f2 if f1(x1, . . . , xn) ≤ f2(x1, . . . , xn) for all x1 ∈
A1, . . . ,xn ∈ An, and we writef1 < f2 if f1 ≤ f2 and if there
are somex1 ∈ A1, . . . , xn ∈ An for which f1(x1, . . . , xn) <
f2(x1, . . . , xn). Given a functiond : X2 → IR, we denote
by Zero(d) = {(x, y) ∈ X2 | d(x, y) = 0} its zero set.
Given a sequence{xi}i∈IN, we commonly writelimi xi for
limi→∞ xi. The following lemma summarizes some simple
facts about sequences of real numbers that will be needed in
subsequent proofs.

Lemma 1: LetI be a set and{xi}i∈I , {yi}i∈I be two
families of numbers inIR. The following assertions hold.

1) If xi − yi ≤ c for all i ∈ I, thensupi xi − supi yi ≤ c
and infi xi − infi yi ≤ c.

2) Let X,Y be sets andf : X × Y → IR be a function.
Then

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

A. Metrics and Metric Spaces

We definedirected and undirected metrics,where undirected
metrics are required to be symmetrical and directed metrics are
not. For example, the travel distance between two points in a
city with one-way streets is a directed metric. Our directed
and undirected metrics generalize the usual metrics, in that
elements that have metric 0 are not required to be identical.
The definitions are as follows.

Definition 1: (metrics) We introduce the following termi-
nology.

1) A directed metricon a setX is a functiond : X×X →
IR that satisfies

• d(x, x) = 0 for all x ∈ X;
• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

(triangle inequality).

A directed metricd is proper if d(x, y) = 0 implies
x = y (identity of indiscernibles).

2) An undirected metricis a directed metricd : X ×X →
IR that is symmetrical, that is, such thatd(x, y) =
d(y, x) for all x, y ∈ X. Undirected metrics are also
called simplymetrics.

We will often define a directed metric, and obtain the corre-
sponding undirected metric bysymmetrization.

Definition 2: (symmetrization) Given a directed metricd
on a setX, we denote byd̄ its symmetrization,defined by
d̄(x, y) = d(x, y) t d(y, x) for all x, y ∈ X. Obviously, for
all x, y ∈ X, we haved(x, y) ≤ d̄(x, y).

In a Kripke structure, the value of a proposition at each state is
a member of the truth-value set{T, F}. We extend this setting
by evaluating propositions, at each state, to elements ofmetric
spaces.A metric space is a set with a metric defined on it;
for the sake of generality, we assume only that the metric is
a directed metric.

Definition 3: (directed metric space) A directed metric
space, or shortly a metric space, is a pair(X, d), whered is
a directed metric onX.

We say that a metric space(X, d) is boundedif the maximum
distance between any two elements ofX is finite.

Example 1: An example of metric space is the space of
RGB-represented colors, where the distance between colorsc1
andc2 represents the difference in brightness betweenc1 and
c2. The space is thenX = [0, 1]3, and for~x = 〈x1, x2, x3〉
and~y = 〈y1, y2, y3〉 we defined(~x, ~y) = |~x ·~b−~y ·~b|, where~b
is a vector giving the brightness of each basic color, and· is
the internal product. It is easy to see that(X, d) is a bounded
directed metric space. In particular,d is undirected and not
proper, as different colors may have the same brightness.

Example 2: Another example of a metric space isXIR =
(IR, dIR), with dIR(x, y) = max{x − y, 0} for x, y ∈ IR. It
is immediate thatdIR is a directed metric and thatXIR is
not bounded. On the other hand, the metric spaceX[0,1] =
([0, 1], dIR) is bounded.

Example 3: A particularly simple example of bounded
metric space isXB = (X, dB), where X = {0, 1} and
d(x, y) = |x− y| for x, y ∈ {0, 1}. This is the usual space of
“boolean” valuations; it is immediate thatd is an undirected
metric.

When providing logical characterizations for the distances,
we will first consider logics in which any element of the
metric space can be used as a constant. If the metric space
is uncountable, however, this leads to the consideration of
logics with uncountably many symbols. If a metric space
is separable,however, each element can be approximated
by arbitrarily close elements of acountable basis.In this
case, we will see that logics with countably many symbols
(corresponding to the elements of the basis) will suffice.

Definition 4: (separable directed metric space) A di-
rected metric space(X, d) is separableif there is a countable
basisB ⊆ X such that, for allx ∈ X and allε > 0, there is
y ∈ B with d(x, y) < ε andd(y, x) < ε.

B. Metric Transition Systems

A metric transition systemis a transition system where the
value of a proposition, at each state, is an element of a bounded
directed metric space. To simplify the notation, we assume
throughout the paper an underlying setAP of propositions,
where each propositionr ∈ AP takes values in a bounded
metric space(Xr, dr).

Definition 5: (valuations) A valuationu of a setΣ ⊆ AP
of propositions is a function with domainΣ that assigns to
eachr ∈ Σ an elementx ∈ Xr of the metric space(Xr, dr)
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corresponding tor. We denote byU [Σ] the set of all valuations
of Σ.

Definition 6: (metric transition system) A metric transi-
tion system(MTS) is a tupleM = (S, τ ,Σ, [·]) consisting of
the following components:

• a setS of states;
• a transition relationτ ⊆ S × S;
• a finite setΣ ⊆ AP of propositions;
• a function[·]: S → U [Σ] that assigns to each states ∈ S

a valuation[s].
For a states ∈ S, we write τ(s) for {t ∈ S | (s, t) ∈ τ}. We
require thatM is non-blocking: for alls ∈ S, the setτ(s) is
non-empty.

We distinguish the following special classes of MTSs.
Definition 7: (special types of MTSs) Let M =

(S, τ ,Σ, [·]) be an MTS.
• We say thatM is finite if S is finite.
• We say thatM is deterministicif for all statess ∈ S

and t, t′ ∈ τ(s) with t 6= t′, there isr ∈ Σ such that
[t](r) 6= [t′](r).

• We say thatM is finitely branchingif τ(s) is finite for
all s ∈ S.

• We say thatM is separableif, for all r ∈ Σ, the metric
space(Xr, dr) is separable. In this case, we denote by
Br a countable basis for(Xr, dr).

C. Paths and Traces

Given a setA and a sequenceπ = a0a1a2 · · · ∈ Aω, we
write πi for the i-th elementai of π, and we writeπi =
aiai+1ai+2 · · · for the (infinite) suffix ofπ starting fromπi.

Definition 8: (paths and traces) Consider an MTSM =
(S, τ ,Σ, [·]). A path of M is an infinite sequence of states
π ∈ Sω such that(πi, πi+1) ∈ τ for all i ∈ N. Given a state
s ∈ S, we write PathsM (s) for the set of all paths ofM
starting froms; we omit the subscriptM when clear from the
context.

A trace is an infinite sequenceσ ∈ U [Σ]ω. Every pathπ of
M induces a trace[π] = [π0][π1][π2] · · · . We writeTrM (s) =
{[π] | π ∈ PathsM (s)} for the set of traces ofM starting from
the states ∈ S, and we omit the subscriptM when clear from
the context.

D. Branching and Trace Relations

We define simulation, bisimulation, trace containment, and
trace equivalence for MTSs as usual.

Definition 9: ((bi)simulation, trace containment and
trace equivalence) For an MTSM = (S, τ ,Σ, [·]), the
simulation relation�sim (resp. the bisimulation relation≈bis)
is the largest relationR ⊆ S × S such that, for allsR t, the
following Conditions 1 and 2 (resp. 1, 2, and 3) hold:

1) [s] = [t];
2) for all s′ ∈ τ(s), there ist′ ∈ τ(t) with s′R t′;
3) for all t′ ∈ τ(t), there iss′ ∈ τ(s) with s′R t′.

For s, t ∈ S, we write s vtr t if Tr(s) ⊆ Tr(t), ands ≡tr t if
Tr(s) = Tr(t).

E. Discussion

We note that, for some of the results on system metrics, it
would have been sufficient to define a metric transition system
as a system that maps each state into an element of a metric
space, bypassing thus the introduction of a set of propositions,
and the related machinery. Such a definition, of course, is a
special case of the one we adopt, and corresponds to con-
sidering metric transition systems with only one proposition.
The main function of propositions is to enable us to develop
the connection between system metrics and logics, since the
logics refer to quantities via the propositions.

In an MTS(S, τ ,Σ, [·]), we call eachr ∈ Σ a “proposition”,
rather than “variable”, in spite of the fact thatr takes values
in a generic metric space(Xr, dr), rather than in the set
of truth-values. Our choice of terminology is motivated by
the fact that in the system logics we consider, the symbolr
plays a (syntactic) role that is analogous to that of ordinary
propositions. We reserve instead the term “variable” for the
variables used to construct fixpoint expressions inµ-calculus.

III. L INEAR DISTANCES AND LOGICS

A. Linear Distances

Throughout the paper, unless specifically noted, we consider
a fixed MTSM = (S, τ ,Σ, [·]). We proceed by defining the
linear distances between valuations, then between traces and
finally between states. The propositional distance between two
valuations is the maximum difference in their proposition eval-
uations, where differences in the assignments of propositionr
are measured by the metricdr.

Definition 10:(propositional distance) We define the
propositional distancepd : U [Σ]2 → IR, for all valuations
u, v ∈ U [Σ], aspd(u, v) = maxr∈Σ dr(u(r), v(r)).

For ease of notation, we writepd(s, t) for pd([s], [t]). If all
Σ-metrics are proper, then givenu, v ∈ U [Σ] we have(u, v) ∈
Zero(pd) iff u = v.

Example 4: Consider statess4 and t4 in Figure 1, where
propositionr is evaluated in the metric spaceX[0,1]. Then
pd(s4, t4) = 0, pd(t4, s4) = 0.3, andpd(s4, t4) = 0.3.

The trace distance is the pointwise extension of the proposi-
tional distance to infinite sequences of valuations.

Definition 11:(trace distance) We define thetrace dis-
tancetd : U [Σ]ω × U [Σ]ω → IR by letting, forσ, ρ ∈ U [Σ]ω,
td(σ, ρ) = supi∈N pd(σi, ρi).

Example 5: Consider the statess0 andt0 in Figure 1. Both
contain two traces: letσ0 = s0s1s

ω
3 andσ1 = s0s1s

ω
4 denote

respectively the leftmost and rightmost trace froms0; let ρ0 =
t0t1t

ω
3 andρ1 = t0t2t

ω
4 denote the leftmost and rightmost trace

from t0. Then

td(σ0, ρ0) = 0 td(σ0, ρ0) = 0.1
td(σ0, ρ1) = 0 td(σ0, ρ1) = 0.6
td(σ1, ρ0) = 0.2 td(σ1, ρ0) = 0.2
td(σ1, ρ1) = 0 td(σ1, ρ1) = 0.3.
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r=0 s1

t0

t2t1

r=0.5 t3 t4s4 r=1

r=0r=0

r=0

r=0.7

r=0

s3r=0.4

s0

Fig. 1. MTS illustrating the linear distances. Propositionr is evaluated in
the metric spaceX[0,1].

It is easy to show thattd is a directed metric. The following
result states that if we base the notion of trace distance onpd
instead of onpd (i.e. if we replacepd by pd in the definition
above), we obtain the symmetrizationtd of td . Moreover, the
kernel of this symmetrization is trace equality.

Lemma 2: For all sequencesσ, ρ ∈ U [Σ]ω, we have
td(σ, ρ) = supi∈N pd(σi, ρi). Moreover, if dr is a proper
metric for all r ∈ Σ, then (σ, ρ) ∈ Zero(td) if and only if
σ = ρ.

The linear distances between two states are obtained by lifting
the trace distances to the sets of traces emerging from those
states, as in the definition of the Hausdorff distance between
sets.

The intuition is as follows. To establish trace inclusion
between statess and t, we check if, for a trace froms, the
same trace exists fromt. If there is a trace froms that cannot
be matched fromt, there is no trace inclusion.

For the linear distance, we match each traceσ from s with
the traceρ from t with the smallest trace distance toσ (or
the infimum of theseρ’s if the minimum is not attained). This
yields distanceinfρ∈Tr(t) td(σ, ρ) for σ. Then, we consider the
trace froms that is the hardest to match, yielding distance
supσ∈Tr(s) infρ∈Tr(t) td(σ, ρ).

Definition 12:(linear distance) We define the twolinear
distanceslda and ld s overS by letting, for all s, t ∈ S

lda(s, t) = sup
σ∈Tr(s)

inf
ρ∈Tr(t)

td(σ, ρ)

ld s(s, t) = sup
σ∈Tr(s)

inf
ρ∈Tr(t)

td(σ, ρ). �

One can easily check that the functionslda andld s are directed
metrics, whilelda andlds are undirected ones. Intuitively, the
distanceld s is a quantitative extension of trace containment:
for s, t ∈ S, the distanceld s(s, t) measures how closely (in a
quantitative sense) a trace froms can be simulated by a trace
from t. The symmetrization ofld s is lds, which is related to
trace equivalence. Indeed, we will see in the next section that
it is possible to define a quantitative logic QLTL such that the
valuation of QLTL formulas ats and t can differ by at most
lds(s, t), and similarly, the valuation of any QLTL formula at
t is at mostld s(s, t) below the valuation ats.

Example 6: We write lda(σ, t) for infρ∈Tr(t) td(σ, ρ) and
similarly for ld s(σ, t). Using the trace distances computed in
Example 5, we obtain for the MTS in Figure 1

lda(σ0, t0) = td(σ0, ρ0) u td(σ0, ρ1) = 0 u 0 = 0
lda(σ1, t0) = td(σ1, ρ0) u td(σ1, ρ1) = 0.2 u 0 = 0.

t3

t0

t1 t2 t4 . . .

. . .
r=0

r=.1 r=.0001r=.01 r=.001

s0 r=0

Fig. 2. An infinitely branching MTS showing the difference between
Zero(lds) andvtr . Propositionr is evaluated in the metric spaceX[0,1].

We obtain thatlda(s0, t0) = lda(σ0, t0) t lda(σ1, t0) = 0.
Similarly,

ld s(σ0, t0) = td(σ0, ρ0) u td(σ0, ρ1) = 0.1 u 0.6 = 0.1
ld s(σ1, t0) = td(σ1, ρ0) u td(σ1, ρ1) = 0.2 u 0.3 = 0.2,

so thatld s(s0, t0) = ld s(σ0, t0) t ld s(σ1, t0) = 0.2.

Example 7: Consider the case where(Xr, dr) = X[0,1]

for all r ∈ Σ, that is, all propositions are interpreted as real
numbers in the interval[0, 1], and dr(a, b) is a measure of
how much greater isa than b. In this setting, the distances
lda and lda have the following intuitive characterization. For
x, y ∈ [0, 1], letx −· y = max{x−y, 0}. For a traceσ ∈ U [Σ]ω

andc ∈ IR, denote byσ −· c the trace defined by(σ −· c)k(r) =
σk(r) −· c for all k ∈ N and r ∈ Σ: in other words,σ −· c
is obtained fromσ by decreasing all propositional valuations
by c. Assuming that the system is finitely branching, for all
s, t ∈ S, if lda(s, t) = c then for every traceσ from s there
is a traceρ from t such thatρ ≥ σ −· c. This means that
lda(s, t) is a “positive” version of trace containment: for each
traceσ of s, the goal of a traceρ from t is not that of being
close toσ, but rather, that of not being belowσ −· c. Such
an interpretation is important in a setting where values denote
costs; thus, a system implementation whose costs are lower
than specified lays at distance 0 from its specification.

Theorem 1: For all finitely branching MTSs(S, τ ,Σ, [·]),
such thatdr is a proper metric for allr ∈ Σ, we havevtr =
Zero(ld s) and≡tr = Zero(lds).

Proof: Let (S, τ ,Σ, [·]) be an MTS withs, t ∈ S. It is
easy to see thats vtr t implies ld s(s, t) = 0. To prove the
converse, assume thatld s(s, t) = 0 and letσ ∈ Tr(s). Then,
there are tracesρ0, ρ1, ρ2 . . . ∈ Tr(t) such thattd(σ, ρi) < 1

2i

for all i. Due to the finitely branching property, there exists
a traceρ∗ such thattd(σ, ρ∗) < 1

2i for all i. This means that
td(σ, ρ∗) = 0, which, by Lemma 2, is the same asσ = ρ∗.
Now, the result for≡tr and lds easily follows.
To show that the result above does not hold for infinitely
branching systems, consider the MTS in Figure 2, where the
propositionr is again evaluated in the metric spaceX[0,1]. This
MTS has infinitely many statess0, t0, t1, t2, . . . and transitions
(s0, s0), (t0, ti) and(ti, ti) for eachi ∈ N. Moreover, we put
[s0](r) = [t0](r) = 0 and [ti](r) = 10−i for i > 0. Then,
we have that(s0, t0) ∈ Zero(ld s), but s0 6vtr t0. To obtain an
MTS with lds(t0, u0) = 0, but t0 6≡tr u0, we letu0 be a state
that is the exactly same ast0 (i.e. same valuation and same
successor states), except that it has a self-loop (i.e. a transition
(u0, u0) ∈ τ ).
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u1

r=1

r=0u0

r=1r=0
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s1

r=0

r=0s0

Fig. 3. An MTS showing the difference betweenlda, lds, lda, and lds.
Propositionr is evaluated in the metric spaceX[0,1].

The relations among linear distances are stated by the
following theorem, and summarized in Figure 6(a).

Theorem 2: The following assertions hold.

1) For all MTSs, we havelda ≤ lda, lda ≤ ld s, ld s ≤
lds, and lda ≤ lds. Moreover, the inequalities cannot be
replaced by equalities.

2) The distancesld s and lda are incomparable: there is an
MTS with statess, t, z ∈ S such thatld s(s, t) < lda(s, t)
and ld s(t, z) > lda(t, z).

Proof: The first and third inequalities of statement (1)
are trivial, while the second and fourth follow immediately
from the fact that, for all tracesσ andρ, td(σ, ρ) ≤ td(σ, ρ).
For the MTS in Figure 3, we have

lda(s0, t0) = 0 lda(t0, u0) = 0 lda(u0, t0) = 0
ld s(s0, t0) = 0 ld s(t0, u0) = 1 ld s(u0, t0) = 0
lda(s0, t0) = 1 lda(t0, u0) = 0 lda(u0, t0) = 0
lds(s0, t0) = 1 lds(t0, u0) = 1 lds(u0, t0) = 1.

Thus, we have an example wherelda 6= ld s, lda 6= lda,
ld s 6= lds, lda 6= lds, and neitherld s ≤ lda nor ld s ≥ lda.
Next, we show that the linear distances are robust with respect
to perturbations in the state valuations: small changes in the
propositional valuations causes small changes in the distances.
Given two state valuations[·]1, [·]2 : S → U [Σ], we define their
distance by:

d([·]1, [·]2) = sup
s∈S

max
r∈Σ

dr([s]1(r), [s]2(r)).

Moreover, for a state valuationf : S → U [Σ], we write lda
f ,

ld s
f for the distances defined as in Definition 12, usingf as

the state valuation.
Theorem 3:(linear distance robustness) For all proposi-

tional valuations[·]1, [·]2, and all s, t ∈ S, we have

lda
[·]1(s, t)− lda

[·]2(s, t) ≤ d([·]1, [·]2) + d([·]2, [·]1)
ld s

[·]1(s, t)− ld s
[·]2(s, t) ≤ d([·]1, [·]2) + d([·]2, [·]1).

Proof: The result follows by showing that the trace
distance between two tracesρ andσ, measured under[·]1 and
[·]2, differs by at mostd([·]1, [·]2) + d([·]2, [·]1). The key step
consists in noting that, for anyr ∈ Σ, from the triangular
inequality

dr([s]1(r), [t]1(r)) ≤ dr([s]1(r), [s]2(r))
+ dr([s]2(r), [t]2(r))
+ dr([t]2(r), [t]1(r))

follows

dr([s]1(r), [t]1(r))− dr([s]2(r), [t]2(r))
≤ dr([s]1(r), [s]2(r)) + dr([t]2(r), [t]1(r))
≤ d([·]1, [·]2) + d([·]2, [·]1).

Now the result follows by repetitive application of
Lemma 1(1).

B. Quantitative Linear-Time Temporal Logic

The linear distances introduced above can be characterized
in terms of quantitative linear-time temporal logic(QLTL ),
a quantitative extension of linear-time temporal logic [13]
that includes quantitative versions of the temporal operators
and logic connectives. The QLTL formulas over a setΣ of
propositions are generated by the following grammar:

ϕ ::= D(r, c) | D(c, r) | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ | 3ϕ | 2ϕ

Here r ∈ Σ is a proposition andc ∈
⋃
r∈ΣXr is a constant.

We assume that, in a term of the formD(r, c) or D(c, r), we
have c ∈ Xr. A formula ϕ assigns a value[[ϕ]](σ) ∈ IR to
each traceσ ⊆ U [Σ]ω:

[[D(r, c)]](σ) = dr(σ0(r), c)
[[D(c, r)]](σ) = dr(c, σ0(r))
[[ϕ1 ∧ ϕ2]](σ) = [[ϕ1]](σ) u [[ϕ2]](σ)
[[ϕ1 ∨ ϕ2]](σ) = [[ϕ1]](σ) t [[ϕ2]](σ)
[[ ϕ]](σ) = [[ϕ]](σ1)
[[3ϕ]](σ) = sup{[[ϕ]](σi) | i ≥ 0}
[[2ϕ]](σ) = inf{[[ϕ]](σi) | i ≥ 0}.

A QLTL formula ϕ assigns a real value[[ϕ]](s) ∈ IR to each
states of a given MTS, by defining

[[ϕ]](s) = inf{[[ϕ]](ρ) | ρ ∈ Tr(s)}.

We note that the above definition could also be phrased in
terms ofsup over all traces froms, rather thaninf. However,
as our setting is based on distances, theinf operator most
closely corresponds to the universal quantification over all
paths present in the classical definition of LTL semantics.

Forops⊆ { ,3,2, D(c, r), D(r, c)}, we denote by QLTL\
ops the set of formulas that do not employ the operators in
ops.

Notice that QLTL is a proper extension to the fragment of
LTL without the Until operator, in the following sense. Any
Kripke structureM has an obvious translation to an MTSM ′

over XB (see Example 3). Moreover, any LTL formula ϕ in
positive normal form can be translated into a QLTL formulaϕ′

by replacingr and¬r with D(r, 0) andD(r, 1), respectively.
Then, ϕ is true on a Kripke structureM if and only if ϕ′

evaluates to1 on M ′.

C. Logical Characterization of Linear Distances

Linear distances provide a bound for the difference in
valuation of QLTL formulas. We begin by relating distances
and logics over traces.



7

Lemma 3: For all MTSs(S, τ ,Σ, [·]) and all tracesσ, ρ ∈
U [Σ]ω, the following holds.

For all ϕ ∈ QLTL \ {D(r, c)} : td(σ, ρ) ≥ [[ϕ]](ρ)− [[ϕ]](σ).
For all ϕ ∈ QLTL \ {D(c, r)} : td(σ, ρ) ≥ [[ϕ]](σ)− [[ϕ]](ρ).

For all ϕ ∈ QLTL : td(σ, ρ) ≥ |[[ϕ]](ρ)− [[ϕ]](σ)|.

Proof: Let us consider the first assertion. We proceed
by structural induction onϕ. If ϕ = D(c, r), using triangle
inequality we get [[ϕ]](ρ) − [[ϕ]](σ) = d(c, [ρ0](r)) −
d(c, [σ0](r)) ≤ d([σ0](r), [ρ0](r)) ≤ pd(σ0, ρ0) ≤ td(σ, ρ).

If ϕ = 3ψ, by inductive hypothesis we have that, for all
i ∈ N, [[ψ]](ρi)− [[ψ]](σi) ≤ td(ρi, σi). Then, by Lemma 1,

[[ϕ]](ρ)− [[ϕ]](σ) = sup
i∈N

[[ψ]](ρi)− sup
j∈N

[[ψ]](σj)

≤ sup
i∈N

td(ρi, σi) = td(ρ, σ).

Similar observations hold for the remaining cases.
The second assertion can be proved in a symmetrical

fashion. The third assertion can be easily proved along similar
lines.
The first result of the previous lemma is tight in two respects:
both replacing QLTL \ {D(r, c)} with QLTL and replacing
[[ϕ]](ρ)− [[ϕ]](σ) with |[[ϕ]](ρ)− [[ϕ]](σ)| render the result false.
The second assertion is tight in a similar sense. The following
theorem uses the linear distances to provide the desired bounds
for QLTL .

Theorem 4: For all MTSs(S, τ ,Σ, [·]), and all s, t ∈ S,
the following holds.
For all ϕ ∈ QLTL \ {D(r, c)}:

lda(s, t) ≥ [[ϕ]](t)− [[ϕ]](s) and lda(s, t) ≥ |[[ϕ]](t)− [[ϕ]](s)|.

For all ϕ ∈ QLTL :

ld s(s, t) ≥ [[ϕ]](t)− [[ϕ]](s) and lds(s, t) ≥ |[[ϕ]](t)− [[ϕ]](s)|.

Proof: We first prove thatlda(s, t) ≥ [[ϕ]](t)− [[ϕ]](s).

lda(s, t) = sup
σ∈Tr(s)

inf
ρ∈Tr(t)

td(σ, ρ)

≥ sup
σ∈Tr(s)

inf
ρ∈Tr(t)

([[ϕ]](ρ)− [[ϕ]](σ)) by Lemma 3,

= inf
ρ∈Tr(t)

[[ϕ]](ρ)− inf
σ∈Tr(s)

[[ϕ]](σ)

= [[ϕ]](t)− [[ϕ]](s).

The result forlda is an immediate consequence. The state-
ments concerningld s and lds follow in a similar way from
Lemma 3.
The results forld s and lds are the quantitative analogue of
the standard connection between trace containment and trace
equivalence, and LTL. For instance, the result aboutld s states
that, if ld s(s, t) = c, then for every formulaϕ ∈ QLTL and
every traceσ from s, there is a traceρ from t such that
[[ϕ]](ρ) ≥ [[ϕ]](σ)− c.
We next show that, for finitely branching systems, QLTL

provides a full logical characterization of the linear distances,
meaning that the distinguishing power of the logic is exactly
the same as the one of the distances. We start with a technical

lemma. Given two tracesσ and ρ, and an integerm, let the
bounded distancebetweenσ andρ be defined asbtdm(σ, ρ) =
max0≤i≤m pd(σi, ρi). Clearly, td(σ, ρ) = limm btdm(σ, ρ).

Lemma 4: If the MTSM is finitely branching, then for
all tracesσ, and t ∈ S, we have

sup
m∈N

inf
ρ∈Tr(t)

btdm(σ, ρ) = inf
ρ∈Tr(t)

sup
m∈N

btdm(σ, ρ).

Proof: Since the l.h.s. is trivially smaller than or equal
to the r.h.s., we are left to prove that(l .h.s.) ≥ (r .h.s.).
Specifically, we prove that, for allε > 0, (r .h.s.) ≤ (l .h.s.)+
ε. Fix ε > 0. For allm > 0, there existsρm ∈ Tr(t) such that

btdm(σ, ρm) ≤ inf
ρ∈Tr(t)

btdm(σ, ρ) + ε.

For allm ≥ 0, let γm be the prefix ofρm up to them+ 1-th
valuation. The set{γm | m ≥ 0} can be arranged into a tree
that is a subtree of the unrolling oft. Since this tree contains
infinitely many nodes and is finitely branching, by König’s
lemma it must contain an infinite traceρ∗ ∈ Tr(t). The trace
ρ∗ has infinitely many prefixes in{γm | m ≥ 0}. Therefore,
there is an increasing sequence of indices(im)m>0 such that,
for all m ≥ 0, γim is a prefix ofρ∗. It follows that

(r .h.s.) ≤ td(σ, ρ∗) = lim
m

btdm(σ, ρ∗)

= lim
m

btd im(σ, ρ∗)

≤ lim
m

btd im(σ, γim)

= lim
m

btd im(σ, ρim)

≤ lim
m

inf
ρ∈Tr(t)

btd im(σ, ρ) + ε

= (l .h.s.) + ε.

The following theorem identifies the fragments of the logics
that suffice for characterizing each linear distance. In particu-
lar, the theorem shows that the operators3 and2 are never
needed. Together with Theorem 4, this result constitutes a full
characterization of linear distances in terms of QLTL .

Theorem 5: If an MTSM = (S, τ ,Σ, [·]) is finitely
branching, then we have for alls, t ∈ S that

lda(s, t) = sup
ϕ∈QLTL\{D(r,c),3,2}

[[ϕ]](t)− [[ϕ]](s)

lda(s, t) = sup
ϕ∈QLTL\{D(r,c),3,2}

|[[ϕ]](t)− [[ϕ]](s)|

ld s(s, t) = sup
ϕ∈QLTL\{3,2}

[[ϕ]](t)− [[ϕ]](s)

lds(s, t) = sup
ϕ∈QLTL\{3,2}

|[[ϕ]](t)− [[ϕ]](s)|.

Proof: By Theorem 4, we only need to prove the “≤” part
of the equalities. We first prove the statement involvinglda.
For the sake of simplicity, assumeΣ = {r}. Let lda(s, t) = x,
we show that for allε > 0 there is a formulaϕ such that
[[ϕ]](t)− [[ϕ]](s) > x− ε. Let σ∗ ∈ Tr(s) be a trace such that
infρ∈Tr(t) td(σ∗, ρ) > x− ε. For allm ≥ 0, we set

ϕm =
∨

0≤i≤m

iD([σ∗i ](r), r),
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Fig. 4. An MTS exhibiting the language0{0, 1}ω ; the single proposition is
evaluated in the metric spaceXB.

where i stands fori repetitions of the operator . Intuitively,
when formulaϕm is evaluated on a traceσ′, it measures the
asymmetric distance betweenσ′ andσ∗, up to them-th step.
Obviously, we have[[ϕm]](s) = 0 for all m ≥ 0. Then, the
value ofϕm on a states′ measures the distance betweenσ∗

and the trace inTr(s′) which is closest to it. For allt ∈ S, it
holds that

sup
m

[[ϕm]](t) = lim
m

[[ϕm]](t)

= lim
m

inf
ρ∈Tr(t)

max
0≤i≤m

D([σ∗i ](r), [ρi](r))

since[[ϕm+1]](t) ≥ [[ϕm]](t)

= lim
m

inf
ρ∈Tr(t)

btdm(σ∗, ρ)

= inf
ρ∈Tr(t)

td(σ∗, ρ) by Lemma 4

> x− ε.

Consequently,

sup
ϕ∈QLTL\{D(r,c),3,2}

[[ϕ]](t)− [[ϕ]](s) ≥ sup
m∈N

[[ϕm]](t)− [[ϕm]](s)

= sup
m∈N

[[ϕm]](t)− 0

> x− ε.

The statement aboutlda is an easy consequence: Assume first
that lda(s, t) = lda(s, t). Then,

lda(s, t) = sup
ϕ∈QLTL\{D(r,c),3,2}

[[ϕ]](s)− [[ϕ]](t)

≤ sup
ϕ∈QLTL\{D(r,c),3,2}

|[[ϕ]](s)− [[ϕ]](t)|.

If insteadlda(s, t) = lda(t, s), we have

lda(s, t) = sup
ϕ∈QLTL\{D(r,c),3,2}

[[ϕ]](t)− [[ϕ]](s)

≤ sup
ϕ∈QLTL\{D(r,c),3,2}

|[[ϕ]](s)− [[ϕ]](t)|.

We now consider the statement aboutld s. The proof pro-
ceeds similarly to the one involvinglda, using as distinguish-
ing formula the following.

ϕm =
∨

0≤i≤m

iD([σ∗i ](r), r) ∨ iD(r, [σ∗i ](r)).

Finally, the statement involvinglds can be easily obtained
from the one involvingld s and from the fact thatlds(s, t) =
ld s(s, t) t ld s(t, s).

The next result shows that Theorem 5 does not hold for
non-finite-branching systems.

Theorem 6: There is an infinitely branching MTS such that

ld s(s, t) > sup
ϕ∈QLTL

[[ϕ]](s)− [[ϕ]](t).

Proof: Consider the system in Figure 4, whereΣ = {r}.
Informally, Tr(s) = 0{0, 1}ω. Let σ be a trace such that{σ}
is not a regular language over the alphabet{0, 1} (it would
be sufficient forσ to be not star-free regular). For instance,
let σ = 01 001 0001 . . .. Consider a second system, containing
a statet such thatTr(t) = Tr(s) \ {σ}. Notice that, in order
to have such a set of traces,t must be infinitely branching,
since if a finitely branching tree contains all prefixes of an
infinite path, it must also contain the path itself. We have
ld s(s, t) = 1. We know that ordinary LTL cannot distinguish
s from t, otherwise there would be a formulaψ ∈ LTL such
that the set of traces that satisfyψ is {σ}. This is impossible
since LTL can only express star-free regular languages. As
observed in Section III-B, if all propositions are evaluated on
XB, an MTS is equivalent to a Kripke structure, and QLTL is
equivalent to LTL. Thus, QLTL is also unable to distinguishs
from t.

Above, we have provided a logical characterization for the
linear distances in terms of a logic that contains a potentially
uncountable set of constants: in general, we need one con-
stant for each element of a metric space corresponding to a
proposition. However, for separable MTSs we can provide
a characterization in terms of logics with countably many
symbols. First, we prove that small changes in the value of
the constants cause small changes in the value of the formulas.
The result follows by a straightforward structural induction.

Theorem 7: Consider aQLTL formula ϕ containing the
constants c1, . . . , cn, belonging respectively to the metric
spaces(X1, d1), . . . , (Xn, dn). Let ψ be the result of re-
placing in ϕ each ci with c′i, for 1 ≤ i ≤ n, and let
δ = maxni=1(di(ci, c

′
i) t di(c′i, ci)) be the maximal distance

between the new and old values of each constant. Then, for
all s ∈ S, we have|[[ϕ]](s)− [[ψ]](s)| ≤ δ.

From the above result, it follows that if an MTS is separable,
we can obtain a logical characterization of the linear distances
in terms of logics that consist only of countably many symbols.
The idea, essentially, is to replace each constant with a
nearby element of a countable base in the formulas used to
characterize the distances.

Theorem 8: If an MTSM = (S, τ ,Σ, [·]) is both finitely
branching and separable, then the characterizations provided
by Theorem 5 hold also when we restrict the formulas of
QLTL to those containing only constants from the countable
set

⋃
r∈Σ Br, whereBr is a countable basis for the metric

space(Xr, dr), for eachr ∈ Σ.

Proof: The result follows immediately from the observa-
tion that by Theorem 7 the value of a formula, at every state,
can be approximated arbitrarily well by the value of a formula
containing only constants that belong to the countable bases
of the metric spaces.

D. A Note on Algorithmic Complexity

The following section describes an algorithm that takes as
input a finite MTSM and computes the value of a linear
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distance between all pairs of states. To discuss its complexity,
we need to fix a finite representation for the input data.
Considering that all the linear distances have as starting point
the propositional distancepd , it is sufficient to provide as input
the |S| × |S| matrix A = (as,t)s,t∈S , whereas,t = pd(s, t).

We assume that the valuespd(s, t) are rational numbers
encoded in fixed-precision binary representation; we denote by
|x|b the number of bits in the encoding of the rational number
x. We define the size of a finite MTSM = (S, τ ,Σ, [·])
by |M | =

∑
s,t∈S |pd(s, t)|b. The size of an MTS is thus

quadratic in|S|. We further assume that any arithmetic oper-
ation between rationals can be carried out in constant time.

E. Computing the Linear Distance

Given as inputs a finite MTSM = (S, τ ,Σ, [·]), andx ∈
{a, s}, we wish to computeldx(s0, t0), for all s0, t0 ∈ S.

We describe the computation oflda, as the computation of
ld s is analogous. We can read the definition oflda as a two-
player game. Player 1 chooses a pathπ = s0s1s2 · · · from
s0; Player 2 chooses a pathπ′ = t0t1t2 · · · from t0; the goal
of Player 1 (resp. Player 2) is to maximize (resp. minimize)
supk pd(πk, π′k). The game is played with partial information:
afters0 · · · sn, Player 1 must choosesn+1 without knowledge2

of t0 · · · tn. Such a game can be solved via a variation of
the subset construction [15]. The key idea is to associate
with each final statesn of a finite paths0s1 · · · sn chosen by
Player 1, all final statestn of finite pathst0t1 · · · tn chosen by
Player 2, each labeled by the distancev(s0 · · · sn, t0 · · · tn) =
max0≤k≤n pd(sk, tk).

Formally, from M , we construct another MTSM ′ =
(S′, τ ′, {r}, [·]′), having set of statesS′ = S × 2S×D. Here,
D = {pd(s, t) | s, t ∈ S}, so that|D| ≤ |S|2. The transition
relation τ ′ consists of all pairs(〈s, C〉, 〈s′, C ′〉) such that
s′ ∈ τ(s) andC ′ = {〈t′, v′〉 | ∃〈t, v〉 ∈ C . t′ ∈ τ(t) ∧ v′ =
v t pd(s′, t′)}. Note that only Player 1 has a choice of moves
in this game, since the moves of Player 2 are accounted for by
the subset construction. Finally, the propositionr is interpreted
over Xr = (D, dIR), and the interpretation[·]′ is given by
[〈s, C〉]′(r) = min{v | 〈t, v〉 ∈ C}, so thatr indicates the
minimum distance achievable by Player 2 while trying to
match a path to〈s, C〉 chosen by Player 1.

The goal of the game, for Player 1, consists in reaching
a state ofM ′ with the highest possible value ofr. Let
rmax = max D, for all s, t ∈ S, we havelda(s, t) = rmax−
[[2D(rmax, r)]](〈s, {〈t, pd(s, t)〉}〉), where the right-hand side
is to be computed onM ′. This expression can be evaluated
by a depth-first traversal of the state space ofM ′, noting that
no state ofM ′ needs to be visited twice, as repeated visits
cannot modify the value of2D(rmax, r) (see Lemma 3 from
[3]). This leads to the following complexity result.

Theorem 9: For allx ∈ {a, s}, the following assertions
hold:

1) Computingldx for an MTSM is PSPACE-complete in
|M |.

2Indeed, if the game were played with total information, we would obtain
the branching distances of the next section.

2) Computingldx for a deterministic MTSM is PSPACE-
complete in|M |.

3) Computingldx for a boolean, deterministic MTSM is
in timeO(|M |4).

Proof: For Part 1, the upper complexity bound comes
from the above algorithm, noticing that the subset construction
can be done on the fly; the lower bound comes from a
reduction from the corresponding result for trace inclusion
[16].

Part 2 states that, unlike in the boolean case, the problem
remains PSPACE-complete even for deterministic MTSs. This
result is proved by an nlogspace reduction from the problem
of computing trace inclusion for nondeterministic boolean
systems.

Consider an MTSMb = (S, τ ,Σ, [·]) where all the proposi-
tions in Σ take value inXB; hence,Mb is a transition system
with states that assign boolean values to propositions. Given
s, t ∈ S, the problem of deciding trace inclusion betweens and
t is PSPACE-complete [16]. We provide a nlogspace reduction
from this problem to the problem of computing the linear
distanceld s(s, t) in a deterministicMTS. Note that, forMb,
the distance matrixA is of the same size as the representation
of τ via the adjacency matrixS × S 7→ {0, 1}.

We build a deterministic MTSM ′ = (S, τ ,Σ, [·]′), where
all propositionsr ∈ Σ are interpreted in the metric space
([0, n], dIR), and[·]′ is defined as follows. Let the elements of
S be numbered ass0, . . . , sn. For all i = 0 . . . n and r ∈ Σ,
we set

[si]′(r) =
{
i if [si](r) = 0
4n− i if [si](r) = 1

By construction,M ′ is deterministic and its size is polynomial
in the size ofM , as dlog(n + 1)e + 2 bits are sufficient to
represent the value of a proposition in a state ofM ′, as well
as the difference in value between two states. Finally, the proof
is completed by the observation thats vtr t in M if and only
if ld s(s, t) ≤ n in M ′.

Part 3 is a consequence of Theorems 16 and 17.

F. Discussion

In Definition 10, we could have defined the propositional
distance between two states using theL2 norm, viapd(u, v) =(∑

r∈Σ d(u(r), v(r))2
)1/2

(or in general using theLn norm,
for n > 0). The reason why in Definition 10 we chose theL∞
norm is that this definition leads to a logical characterization
of the distances, since themax in theL∞ norm corresponds
to the∨ of the logics. It is easy to see that, aside from the
logical characterizations, the results of the paper would hold
if we replaced in Definition 10 theL∞ norm withLn, for any
n > 0.

IV. B RANCHING DISTANCES AND LOGICS

A. Branching Distances

Definition 13:(branching distances) For x ∈
{Aa,As,Sa,Ss}, consider the four operatorsHx : (S2 →
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IR) → (S2 → IR) defined as follows, ford : S2 → IR:

HAa(d)(s, t) = pd(s, t) t sup
s′∈τ(s)

inf
t′∈τ(t)

d(s′, t′)

HAs(d)(s, t) = pd(s, t) t sup
s′∈τ(s)

inf
t′∈τ(t)

d(s′, t′)

HSa(d)(s, t) = pd(s, t) t sup
s′∈τ(s)

inf
t′∈τ(t)

d(s′, t′)

t sup
t′∈τ(t)

inf
s′∈τ(s)

d(s′, t′)

HSs(d)(s, t) = pd(s, t) t sup
s′∈τ(s)

inf
t′∈τ(t)

d(s′, t′)

t sup
t′∈τ(t)

inf
s′∈τ(s)

d(s′, t′).

For x ∈ {Aa,As,Sa,Ss}, we define thebranching distance
bdx as the least fixpoint of the operatorHx.

The functionsbdAa, bdAs, andbdSa are directed metrics, while
bdSs, bdAa, bdAs, andbdSa are undirected metrics.

Example 8: Consider the MTS in Figure 1 once more.
We have for instance,bdAs(s1, t1) = bdAs(s3, t3) t
bdAs(s4, t3) = 0.1 t 0.2 = 0.2: both transitions ins1 need to
be matched by transitions fromt1. Similarly, bdAs(s1, t2) =
bdAs(s3, t4) t bdAs(s4, t4) = 0.6 t 0.3 = 0.6. Thus,
bdAs(s0, t0) = bdAs(s1, t1) u bdAs(s1, t2) = 0.3 u 0.6 =
0.3: we matchs0 → s1 by t0 → t1, because statet1 has the
smallest branching distance tos1.

The distancebdSs is a quantitative generalization of bisim-
ulation, and it essentially coincides with the metrics of [8],
[17], [4]; as it is already symmetrical, we havebdSs = bdSs.
Similarly, the distancebdAs generalizes simulation, andbdAs

generalizes mutual simulation.
Theorem 10: For all finitely branching MTSs(S, τ ,Σ, [·])

such thatdr is a proper metric for allr ∈ Σ, we have�sim

= Zero(bdAs) and≈bis = Zero(bdSs).

The necessity for the finitely branching condition is again
shown by the MTS in Figure 2, where we havebdAs(s0, t0) =
0, but s0 6�sim t0.

The distancesbdAa and bdSa correspond to quantitative
notions of simulation and bisimulation with respect to the
asymmetrical propositional distancepd ; these distances are
not symmetrical, and we indicate their symmetrical versions
by bdAa andbdSa. Just as in the boolean case mutual similarity
is not equivalent to bisimulation, so in our quantitative setting
bdAs can be strictly smaller thanbdSs, andbdAa can be strictly
smaller thanbdSa.

Theorem 11: The relations in Figure 6(b) hold for all MTS
and no other inequalities on these relations hold on all MTSs.

Proof: The inequalitiesbdAa ≤ bdSa ≤ bdSs andbdAa ≤
bdAs ≤ bdSs shown in the figure are immediate. Consider the
MTS in Figure 3 again. In this MTS, we havelda = bdAa,
ld s = bdAs, lda = bdSa, lds = bdSs Hence, the results for
the linear distances (see Theorem 2) show thatbdAa 6= bdAs,
bdAa 6= bdSa, bdAs 6= bdSs, bdSa 6= bdSs, and neitherbdAs ≤
bdSa nor bdAs ≥ bdSa.
The branching distances, like the linear ones, are robust with
respect to perturbations in the state valuations: small changes

in the propositional valuations cause small changes in the
distances. To state the theorem, given a state valuationf : S →
U [Σ], x ∈ {Aa,As,Sa,Ss}, we write bdxf for the distances
defined as in Definition 13, usingf as the state valuation.

Theorem 12:(branching distance robustness) For all x ∈
{As,Sa,Ss}, all propositional valuations[·]1, [·]2, and all
s, t ∈ S, we have

bdAa[·]1(s, t)− bdAa[·]2(s, t) ≤ d([·]1, [·]2) + d([·]2, [·]1)
|bdx[·]1(s, t)− bdx[·]2(s, t)| ≤ 2 · d([·]1, [·]2).

B. Quantitativeµ-Calculus

We define quantitativeµ-calculus after [5], [4]. Given a set
of variablesV and a set of propositionsΣ, the formulas of
the quantitativeµ-calculusare generated by the grammar:

ϕ ::= D(r, c) | D(c, r) | x | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃ ϕ | ∀ ϕ

| µx . ϕ | νx . ϕ

for propositionsr ∈ Σ, variablesx ∈ V , and constantsc ∈⋃
r∈ΣXr. We assume that, in a term of the formD(r, c) or

D(c, r), we havec ∈ Xr. Denoting byF = (S → IR), a
(variable) interpretation is a functionE : V → F . Given an
interpretationE , a variablex ∈ V and a functionf ∈ F , we
denote byE [x := f ] the interpretationE ′ such thatE ′(x) = f
and, for all y 6= x, E ′(y) = E(y). Given an MTS and an
interpretationE , every formulaϕ of the quantitativeµ-calculus
defines a valuation[[ϕ]]E : S → IR:

[[D(r, c)]]E(s) = d([s](r), c)
[[D(c, r)]]E(s) = d(c, [s](r))
[[x]]E = E(x)
[[ϕ1 ∧ ϕ2]]E = [[ϕ1]]E u [[ϕ2]]E
[[ϕ1 ∨ ϕ2]]E = [[ϕ1]]E t [[ϕ2]]E
[[∃ ϕ]]E(s) = sups′∈τ(s)[[ϕ]]E(s′)
[[∀ ϕ]]E(s) = infs′∈τ(s)[[ϕ]]E(s′)
[[µx . ϕ]]E = inf{f ∈ F | f = [[ϕ]]E[x:=f ]}
[[νx . ϕ]]E = sup{f ∈ F | f = [[ϕ]]E[x:=f ]}.

The existence of the required fixpoints is guaranteed by the
monotonicity and continuity of all operators. A variablex is
bound in ϕ if it is in the scope of a quantifierµx or νx;
otherwise, it is calledfree. A formula isclosedif all variables
are bound. Ifϕ is closed, we write[[ϕ]] for [[ϕ]]E . We call
QMU the set of quantitativeµ-calculus formulas and denote by
CLQMU the subset of QMU containing only closed formulas.
For ops ⊆ {D(c, r), D(r, c),∃ ,∀ , µ, ν}, we denote by
QMU\opsand CLQMU\opsthe respective subsets of formulas
that do not employ operators inops. Notice that, on boolean
systems, the semantics of the quantitativeµ-calculus coincides
with the classicalµ-calculus semantics.

C. Logical Characterizations of Branching Distances

In the following theorem, we writeϕ(x1, . . . , xn) to signify
that the free variables inϕ are amongx1, . . . , xn.

Lemma 5: For all finitely branching MTSs(S, τ ,Σ, [·])
and all variable interpretationsE , the following holds.
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1) For all ϕ(x1, . . . , xn) ∈ QMU\{∃ , D(r, c)} and for all
f1, . . . , fn ∈ F , if for all s, t ∈ S and all i = 1, . . . , n,
fi(t)− fi(s) ≤ bdAa(s, t), then, for alls, t ∈ S,

[[ϕ]]E[xi:=fi](t)− [[ϕ]]E[xi:=fi](s) ≤ bdAa(s, t).

2) For all ϕ(x1, . . . , xn) ∈ QMU \ {∃ } and for all
f1, . . . , fn ∈ F , if for all s, t ∈ S and all i = 1, . . . , n,
fi(t)− fi(s) ≤ bdAs(s, t), then, for alls, t ∈ S,

[[ϕ]]E[xi:=fi](t)− [[ϕ]]E[xi:=fi](s) ≤ bdAs(s, t).

3) For all ϕ(x1, . . . , xn) ∈ QMU \ {D(r, c)} and for all
f1, . . . , fn ∈ F , if for all s, t ∈ S and all i = 1, . . . , n,
fi(t)− fi(s) ≤ bdSa(s, t), then, for alls, t ∈ S,

[[ϕ]]E[xi:=fi](t)− [[ϕ]]E[xi:=fi](s) ≤ bdSa(s, t).

4) For all ϕ(x1, . . . , xn) ∈ QMU and for all f1, . . . , fn ∈
F , if for all s, t ∈ S and all i = 1, . . . , n, |fi(t) −
fi(s)| ≤ bdSs(s, t), then, for alls, t ∈ S,

|[[ϕ]]E[xi:=fi](t)− [[ϕ]]E[xi:=fi](s)| ≤ bdSs(s, t).

Proof: We prove statements 1 and 3; the other two
statements can be proved in similar fashion.

Statement 1:We prove the result concerningbdAa by
structural induction on the formula. Forϕ = D(c, r), we
obtain by triangle inequality[[ϕ]](t)− [[ϕ]](s) = d(c, [t](r))−
d(c, [s](r)) ≤ d([s](r), [t](r)) ≤ pd(s, t) ≤ bdAa(s, t). The
casesϕ = x, ϕ = ϕ1 ∧ ϕ2 andϕ = ϕ1 ∨ ϕ2 are also trivial.

Consider the caseϕ = ∀ ψ. For ease of notation, in this
part of the proof we write[[·]] for [[·]]E[xi:=fi], since the variable
interpretation is not the issue here. Recall that, for allt ∈ S,
we have by definition[[ϕ]](t) = inft′∈τ(t)[[ψ]](t′). By inductive
hypothesis, for alls′, t′ ∈ S, [[ψ]](t′)− [[ψ]](s′) ≤ bdAa(s′, t′).
We have

[[ϕ]](t)− [[ϕ]](s) = inf
t′∈τ(t)

[[ψ]](t′)− inf
s′∈τ(s)

[[ψ]](s′)

= sup
s′∈τ(s)

inf
t′∈τ(t)

(
[[ψ]](t′)− [[ψ]](s′)

)
≤ sup
s′∈τ(s)

inf
t′∈τ(t)

bdAa(s′, t′)

by induction

≤ bdAa(s, t).

This concludes this case.
If ϕ = µy . ψ, then [[ϕ]] = limn gn, whereg0(s) = 0 for

all s ∈ S, and gn+1 = [[ψ]]E[y:=gn]. This is a consequence
of the fact that, when the MTS is finitely branching, all
operators of theµ-calculus are continuous: that is, for each
operatorF ∈ {∧,∨,∃ ,∀ } and each sequence{gn}n≥0 of
functionsS2 → IR, we haveF (limn gn) = limn F (gn). Since
g0(t) − g0(s) = 0 ≤ bdAa(s, t), by inductive hypothesis we
obtain that, for alln ∈ N, gn(t) − gn(s) ≤ bdAa(s, t), and
thus the thesis. Ifϕ = νy . ψ, we proceed similarly, except
that the initial functiong0 must assign to each state a value
which is greater than any possible value of formulaψ on the
current MTS. Such a value can easily be found, since all metric
spaces giving value to propositions are bounded. Namely, any
real number greater than the greatest diameter of those metric
spaces can be used as value forg0(s), for all s ∈ S.

Statement 3:The casesϕ = D(c, r), ϕ = x, ϕ = ψ1 ∧
ψ2 and ϕ = ψ1 ∨ ψ2 are trivial, while the proofs forϕ =
∀ ψ, ϕ = µy . ψ andϕ = νy . ψ are similar to the ones of
Statement 1.

Let ϕ = ∃ ψ. For ease of notation, we again write[[·]]
for [[·]]E[xi:=fi]. By inductive hypothesis, for alls′, t′ ∈ S,
[[ψ]](t′)− [[ψ]](s′) ≤ bdSa(s′, t′).

Similarly to Statement 1, we have

[[ϕ]](t)− [[ϕ]](s) = sup
t′∈τ(t)

[[ψ]](t′)− sup
s′∈τ(s)

[[ψ]](s′)

= sup
t′∈τ(t)

inf
s′∈τ(s)

(
[[ψ]](t′)− [[ψ]](s′)

)
≤ sup
t′∈τ(t)

inf
s′∈τ(s)

bdSa(s′, t′)

by induction

≤ bdSa(s, t),

leading to the desired result.
From the preceding lemma, we immediately obtain a theorem
stating that the branching distances provide bounds for the
corresponding fragments of theµ-calculus. The statement for
bdSs is very similar to a result in [8].

Theorem 13: For all finitely branching MTSs(S, τ ,Σ, [·]),
statess, t ∈ S, we have

∀ϕ ∈ CLQMU\{∃ , D(r, c)} bdAa(s, t) ≥ [[ϕ]](t)− [[ϕ]](s)

∀ϕ ∈ CLQMU\{∃ } bdAs(s, t) ≥ [[ϕ]](t)− [[ϕ]](s)

∀ϕ ∈ CLQMU\{D(r, c)} bdSa(s, t) ≥ [[ϕ]](t)− [[ϕ]](s)

∀ϕ ∈ CLQMU bdSs(s, t) ≥ |[[ϕ]](t)− [[ϕ]](s)|.

As noted before, each bound of the formd(s, t) ≥ [[ϕ]](t) −
[[ϕ]](s) trivially leads to a bound of the formd(s, t) ≥ |[[ϕ]](t)−
[[ϕ]](s)|. The bounds are tight for finitely branching systems,
and the following theorem identifies which fragments of quan-
titative µ-calculus suffice for characterizing each branching
distance. The formula scheme used to characterizebdSs is
reminiscent of the one used in [1] for bisimulation.

Theorem 14: For all finitely branching MTSs(S, τ ,Σ, [·]),
statess, t ∈ S, we have

bdAa(s, t) = supϕ∈CLQMU\{∃ ,D(r,c),µ,ν} [[ϕ]](t)− [[ϕ]](s)
bdAs(s, t) = supϕ∈CLQMU\{∃ ,µ,ν} [[ϕ]](t)− [[ϕ]](s)
bdSa(s, t) = supϕ∈CLQMU\{D(r,c),µ,ν} [[ϕ]](t)− [[ϕ]](s)
bdSs(s, t) = supϕ∈CLQMU\{µ,ν} [[ϕ]](t)− [[ϕ]](s).

Proof:
Part 1: Consider the statement aboutbdAa. For alls ∈ S,

we define the sequence of formulas(ϕks)k≥0 as follows.

ϕ0
s =

∨
r∈Σ

D([s](r), r),

ϕk+1
s = ϕ0

s ∨
∨

s′∈τ(s)

∀ ϕks′ .

First, one can easily prove by induction that, for allk ∈ N
and s ∈ S, [[ϕks ]](s) = 0. Recall from Definition 13 that
the distancebdAa is defined as the least fixpoint ofHAa.
Denoting by(HAa)k a sequence ofk applications ofHAa,
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since the MTS is finitely branching, we have thatbdAa =
limk(HAa)k(pd). We prove by induction onk that, for all
s, t ∈ S, [[ϕks ]](t) = (HAa)k(pd)(s, t).

[[ϕ0
s]](t) = max

r∈Σ
d([s](r), [t](r))

= pd(s, t) = (HAa)0(pd)(s, t);

[[ϕk+1
s ]](t) = [[ϕ0

s]](t) t max
s′∈τ(s)

min
t′∈τ(t)

[[ϕks′ ]](t
′)

= pd(s, t) t max
s′∈τ(s)

min
t′∈τ(t)

(HAa)k(pd)(s′, t′)

= (HAa)k+1(pd)(s, t).

Let CQ = CLQMU \ {∃ , D(r, c), µ, ν}, it follows that

sup
ϕ∈CQ

[[ϕ]](t)− [[ϕ]](s) ≥ sup
k∈N

[[ϕks ]](t)− [[ϕks ]](s)

= sup
k∈N

(HAa)k(pd)(s, t)− 0

= bdAa(s, t).

Part 2: To prove the statement concerningbdAs(s, t), we
define the following sequence of formulas(ϕks)k∈N.

ϕ0
s =

∨
r∈Σ

D([s](r), r) ∨D(r, [s](r))

ϕk+1
s = ϕ0

s ∨
∨

s′∈τ(s)

∀ ϕks′ .

We then proceed similarly to the previous part.
Part 3: To prove the bound onbdSa(s, t), we use the

formulas:

ϕ0
s =

∨
r∈Σ

D([s](r), r)

ϕk+1
s = ϕ0

s ∨
∨

s′∈τ(s)

∀ ϕks′ ∨ ∃
( ∧
s′∈τ(s)

ϕks′

)
.

Once again, one can easily prove by induction that, for all
k ∈ N and s ∈ S, [[ϕks ]](s) = 0. The distancebdSa is
defined as the least fixpoint ofHSa. In particular, denoting
by (HSa)k a sequence ofk applications ofHSa, again due to
the fact that the MTS is finitely branching we havebdSa =
limk(HSa)k(pd). We prove by induction onk that, for all
s, t ∈ S, [[ϕks ]](t) = (HSa)k(pd)(s, t).

[[ϕ0
s]](t) = max

r∈Σ

(
d([s](r), [t](r)) t d([t](r), [s](r))

)
= pd(s, t) = (HSa)0(pd)(s, t);

[[ϕk+1
s ]](t) = [[ϕ0

s]](t) t max
s′∈τ(s)

min
t′∈τ(t)

[[ϕks′ ]](t
′)

t max
t′∈τ(t)

min
s′∈τ(s)

[[ϕks′ ]](t
′)

= pd(s, t) t max
s′∈τ(s)

min
t′∈τ(t)

(HSa)k(pd)(s′, t′)

t max
t′∈τ(t)

min
s′∈τ(s)

(HSa)k(pd)(s′, t′)

= (HSa)k+1(pd)(s, t).

Let CQ = CLQMU \ {D(r, c), µ, ν}, it follows that

sup
ϕ∈CQ

[[ϕ]](t)− [[ϕ]](s) ≥ sup
k∈N

[[ϕks ]](t)− [[ϕks ]](s)

= sup
k∈N

(HSa)k(pd)(s, t)− 0

= bdSa(s, t).

Part 4: To prove the bound onbdSs(s, t), we use the
formulas:

ϕ0
s =

∨
r∈Σ

D([s](r), r) ∨D(r, [s](r))

ϕk+1
s = ϕ0

s ∨
∨

s′∈τ(s)

∀ ϕks′ ∨ ∃
( ∧
s′∈τ(s)

ϕks′

)
.

We then proceed similarly to the previous parts.
Again, the logical characterization above is in terms of for-

mulas defined over a potentially uncountable set of constants:
in general, we need one constant for each element of a metric
space corresponding to a proposition. As in the linear case,
we show that if the MTS is separable, then it suffices to
consider formulas defined over the countable set of constants
corresponding to the countable bases of the metric spaces for
the various propositions. Similarly to the linear case, the result
follows from the observation that the value of a formula, at
every state, can be approximated arbitrarily well by the value
of a formula containing only constants that belong to the
countable bases of the metric spaces.

Theorem 15: If an MTSM = (S, τ ,Σ, [·]) is both finitely
branching and separable, then the characterizations provided
by Theorem 14 hold also when we restrict the formulas of
quantitativeµ-calculus to those that contain only constants
from the countable set

⋃
r∈Σ Br, whereBr is a countable basis

for the metric space(Xr, dr), for eachr ∈ Σ.

D. Computing the Branching Distances

Given a finite MTS M = (S, τ,Σ, [·]) and x ∈
{Ss,Sa,As,Aa}, we can computebdx(s, t) for all states
s, t ∈ S by computing in an iterative fashion the fixpoints
of Definition 13. Precisely, we let, for alls, t ∈ S and all
k ≥ 0:

d0(s, t) = 0

dk+1(s, t) = pd(s, t) t max
s′∈τ(s)

min
t′∈τ(t)

dk(s′, t′). (1)

ThenbdAa = limk→∞ dk. The following theorem shows that
the above iteration converges in at most|S|2 steps.

Theorem 16: For all MTSsM having n states andm
edges, the iteration (1) converges in at mostn2 steps.

Proof: The computation of (1) is equivalent to solve a
maximum-value-reachability game having state spaceS × S
and, for each state(s, t) ∈ S × S, set of movesτ(s) for
Player 1, andτ(t) for Player 2. The pair of moves(s′, t′)
from (s, t) leads to state(s′, t′) of the game. Every state(s, t)
of the game has valuepd(s, t), and the goal for Player 1 is
to maximize the value reached along a play of the game. It
is then easy to prove by induction thatdk(s, t) represents the
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Fig. 5. Linear versus branching distances on a deterministic MTS.
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Fig. 6. Relations between distances, wheref → g meansf ≤ g. In (c), the
dotted arrows collapse to equality for boolean, deterministic MTSs.

maximum value Player 1 can ensure in at mostk steps. Let
Z = {pd(s, t) | (s, t) ∈ S × S}, and for z ∈ Z let T≥z =
{(s, t) ∈ S × S | pd(s, t) ≥ z}. For z ∈ Z, assume that
from a state(s, t) Player 1 can force the game toT≥z. Then,
the value of the game from(s, t) for Player 1 is at leastz;
moreover,T≥z can be reached in at mostn2 steps, as this is a
standard graph reachability game. If on the other hand Player 1
cannot force the game toT≥z from (s, t), by determinacy of
reachability games Player 2 has a strategy to keep the game
always inT<z = S×S \T≥z, and the value of the game from
(s, t) will be below z. Let z(s, t) be the highestz ∈ Z for
which Player 1 can force the game toT≥z. From the above
analysis we have thatz(s, t) is the value of the game at(s, t);
moreover, this value is attainable in at mostn2 steps. Together
with the characterization ofdk, this shows that the sequence(
dk(s, t)

)
k≥0

converges in at mostn2 steps.

In an MTS withn states andm edges, each step of (1) can
be done inO(n ·m) time, since there areO(n ·m) edges in
the product game. This yields a complexity ofO(n3 ·m).

V. COMPARING THE L INEAR AND BRANCHING DISTANCES

In this section, we provide a comparison between linear and
branching distances. Just as similarity implies trace inclusion,
we have bothlda ≤ bdAa and ld s ≤ bdAs; just as bisimilarity
implies trace equivalence, we havelds ≤ bdSs andlda ≤ bdSa.
Moreover, in the non-quantitative setting, trace inclusion (resp.
trace equivalence) coincides with (bi-)similarity on determinis-
tic systems. This result generalizes to distances over MTSs that
are both deterministic and boolean, but not to distances over
MTSs that are just deterministic. To formalize these results, we
say that an MTS isbooleanif all its propositions are evaluated
in the metric spaceXB.

Theorem 17: The following properties hold.

1) For all MTSs, we have

lda ≤ bdAa ld s ≤ bdAs lda ≤ bdSa lds ≤ bdSs.

Moreover, the inequalities cannot be replaced by equal-
ities.

2) For all boolean, deterministic MTSs we have

lda = bdAa ld s = bdAs lda = bdAa lds = bdAs.

These equalities need not to hold for non-boolean,
deterministic MTSs.

The relations of Part 1 are illustrated in Figure 6(c).
Proof: Statement 1.We prove lda ≤ bdAa, the other

cases being similar. First, we note thatbdAa(s, t) ≤ c iff

∀ε′ > 0 . ∀s′ ∈ τ(s) . ∃t′ ∈ τ(t) . bdAa(s′, t′) ≤ c+ ε′. (*)

Let s, t ∈ S be states and letε > 0. We show thatlda(s, t) ≤
bdAa(s, t) + ε. We do so by demonstrating thatlda(σ, t) :=
infρ∈Tr(t) td(σ, ρ) ≤ bdAa(s, t) + ε for all σ ∈ Tr(s).

Let σ = s0s1s2 . . . be a trace ins. We build a traceρ∗ =
t0t1t2 . . . in Tr(t) as follows. We havet0 = t and, for all
i ≥ 0, ti+1 is such that

bdAa(si+1, ti+1) ≤ bdAa(s, t) +
i+1∑
j=1

ε

2j
.

We show by induction thatti is well-defined. Clearly,
t0 is well-defined. Assume thatti is well-defined. Then
bdAa(si, ti) ≤ bdAa(s, t) +

∑i
j=1

ε
2j . We obtain from (*) by

taking s = si, t = ti, s′ = si+1

c = bdAa(s, t) +
i∑

j=1

ε

2j

ε′ =
ε

2i+1

that there exists at′ ∈ τ(ti) with bdAa(si+1, t
′) ≤

bdAa(s, t) +
∑i
j=1

ε
2j + ε

2i+1 = bdAa(s, t) +
∑i+1
j=1

ε
2j . We
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take ti+1 = t′. Then,

lda(σ, t) = inf
ρ∈Tr(t)

td(σ, ρ)

≤ td(σ, ρ∗)
= sup

i∈N
pd(σi, ρi)

≤ sup
i∈N

bdAa(σi, ρi)

≤ bdAa(s, t) +
∞∑
j=1

ε

2j
= bdAa(s, t) + ε.

Statement 2.Let M = (S, τ ,Σ, [·]) be a boolean, determin-
istic MTS, and lets, t ∈ S be states. We show thatlda = bdAa.
The other cases are similar. By Part 1 of this theorem, we
know that lda ≤ bdAa. To prove thatlda ≥ bdAa, we show
that HAa(lda) = lda, i.e. that lda is a fixpoint ofHAa. As
bdAa is the least fixpoint ofHAa, we obtainlda ≥ bdAa. First,
we observe that

HAa(lda)(s, t)
= pd(s, t) t sup

s′∈τ(s)
inf

t′∈τ(t)
lda(s′, t′)

= pd(s, t) t sup
s′∈τ(s)

inf
t′∈τ(t)

sup
σ′∈Paths(s′)

inf
ρ′∈Paths(t′)

td(σ′, ρ′)

≥ pd(s, t) t sup
s′∈τ(s)

sup
σ′∈Paths(s′)

inf
t′∈τ(t)

inf
ρ′∈Paths(t′)

td(σ′, ρ′)

= sup
σ∈Paths(s)

inf
ρ∈Paths(t)

td(σ, ρ)

= lda(s, t).

So HAa(lda)(s, t) ≥ lda(s, t). We show that also
HAa(lda)(s, t) ≤ lda(s, t). If pd(s, t) = 1, then
HAa(lda)(s, t) = lda(s, t) = 1. Hence, assumepd(s, t) = 0.
We distinguish two cases.

Case 1:sups′∈τ(s) inft′∈τ(t) pd(s′, t′) = 1. Then one easily
shows thatHAa(lda)(s, t) = 1 = lda(s, t).
Case 2:sups′∈τ(s) inft′∈τ(t) pd(s′, t′) = 0. SinceM is deter-
ministic and boolean, we know that for alls′ ∈ τ(s), there is
a ts′ ∈ τ(t) such thatpd(s′, ts′) = 0 and pd(s′, t′) = 1 for
t′ 6= ts′ . Then, we have for alls′ ∈ τ(s), t′ ∈ τ(t), t′ 6= ts′ ,
σ′ ∈ Paths(s′), ρ′ ∈ Paths(t′), andρs′ ∈ Paths(ts′) that

td(σ′, ρts′ ) ≤ 1 and td(σ′, ρ′) = 1

and therefore

inf
ρ′∈Paths(ts′ )

td(σ′, ρ′) ≤ inf
ρ′∈Paths(t′)

td(σ′, ρ′)

so

inf
ρ′∈Paths(ts′ )

td(σ′, ρ′) ≤ inf
t′∈τ(t)

inf
ρ′∈Paths(t′)

td(σ′, ρ′). (2)

Recalling thatpd(s, t) = 0, we get

HAa(lda)(s, t)

= sup
s′∈τ(s)

inf
t′∈τ(t)

sup
σ′∈Paths(s′)

inf
ρ′∈Paths(t′)

td(σ′, ρ′)

≤ sup
s′∈τ(s)

sup
σ′∈Paths(s′)

inf
ρ′∈Paths(ts′ )

td(σ′, ρ′) by (2)

≤ sup
s′∈τ(s)

sup
σ′∈Paths(s′)

inf
t′∈τ(t)

inf
ρ′∈Paths(t′)

td(σ′, ρ′)

= sup
σ∈Paths(s)

inf
ρ∈Paths(t)

td(σ, ρ) = lda(s, t).

To see that the equalities need not hold for non-boolean,
deterministic MTSs, consider the MTS in Figure 5. We have
ldx(s, t) = 1

2 , while bdx(s, t) = 1.

VI. D ISCOUNTING

Our theory can also be developed in adiscountedversion, in
which distances occurringi steps in the future are multiplied
by αi, whereα is a discount factor in(0, 1]. This discounted
setting is common in the theory of games (see e.g. [9]) and
optimal control (see e.g. [7]), and it leads to robust theories of
quantitative systems [4]. In the discouned setting, behavioral
differences arising far into the future are given less relative
weight than behavioral differences affecting the present or the
near future. Hence, the discounted setting leads to notions
of “local similarity” that enjoy many pleasant mathematical
properties.

A. Discounted Linear Distances and Logics

The basic ingredient of the discounted version of the linear
theory is the following discounted trace distance.

Definition 14:(discounted trace distance) Let α ∈ (0, 1].
We define theα-discounted trace distancetdα : U [Σ]ω ×
U [Σ]ω → IR by letting, for σ, ρ ∈ U [Σ]ω, tdα(σ, ρ) =
supi∈N α

ipd(σi, ρi).

For all discount factorsα ∈ (0, 1], the discounted linear
distanceslda

α and ld s
α can be defined as in Definition 12, by

simply replacingtd with tdα.
In order to define an LTL-like logic that characterizes the

above distances, givenα ∈ (0, 1], we parametrize each tem-
poral operator from QLTL with a (possibly different) discount
factor β ≤ α, thus obtaining the logic QLTLα. Formally, for-
mulas from QLTLα are generated by the following grammar:

ϕ ::= D(r, c) | D(c, r) | ϕ ∧ ϕ | ϕ ∨ ϕ | βϕ | 3βϕ | 2βϕ

wherer ∈ Σ is a proposition,c ∈
⋃
r∈ΣXr is a constant, and

β ∈ (0, α] is a discount factor. The semantics of QLTLα is the
same as the one of QLTL , except for the discounted operators:

[[ βϕ]](σ) = β [[ϕ]](σ1)
[[3βϕ]](σ) = sup{βi [[ϕ]](σi) | i ≥ 0}
[[2βϕ]](σ) = inf{βi [[ϕ]](σi) | i ≥ 0}.

All theorems that were proven for the linear distances and
QLTL have a corresponding discounted version, that applies to
the discounted distances and QLTLα. For instance, computing
the discounted linear distance between all pairs of states in
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a finite MTS is still PSPACE-complete. Also, we have the
following characterization, analogue to Theorem 5.

Theorem 18: If an MTSM = (S, τ ,Σ, [·]) is finitely
branching, then we have that for allα ∈ (0, 1], s, t ∈ S:

lda
α(s, t) = sup

ϕ∈QLTLα\{D(r,c),3,2}
[[ϕ]](t)− [[ϕ]](s)

lda
α(s, t) = sup

ϕ∈QLTLα\{D(r,c),3,2}
|[[ϕ]](t)− [[ϕ]](s)|

ld s
α(s, t) = sup

ϕ∈QLTLα\{3,2}
[[ϕ]](t)− [[ϕ]](s)

lds
α(s, t) = sup

ϕ∈QLTLα\{3,2}
|[[ϕ]](t)− [[ϕ]](s)|.

B. Discounted Branching Distances and Logics

Similarly to the linear case, we can define the following
discounted branching distances.

Definition 15:(discounted branching distances) Forα ∈
(0, 1] and x ∈ {Aa,As,Sa,Ss}, consider the four operators
Hx
α : (S2 → IR) → (S2 → IR) defined as follows, ford :

S2 → IR:

HAa
α (d)(s, t) = pd(s, t) t α sup

s′∈τ(s)
inf

t′∈τ(t)
d(s′, t′)

HAs
α (d)(s, t) = pd(s, t) t α sup

s′∈τ(s)
inf

t′∈τ(t)
d(s′, t′)

HSa
α (d)(s, t) = pd(s, t) t α sup

s′∈τ(s)
inf

t′∈τ(t)
d(s′, t′)

t α sup
t′∈τ(t)

inf
s′∈τ(s)

d(s′, t′)

HSs
α (d)(s, t) = pd(s, t) t α sup

s′∈τ(s)
inf

t′∈τ(t)
d(s′, t′)

t α sup
t′∈τ(t)

inf
s′∈τ(s)

d(s′, t′).

For x ∈ {Aa,As,Sa,Ss}, we define theα-discounted branch-
ing distancebdxα as the least fixpoint of the operatorHx

α.

Given a finite MTS, the discounted branching distance
between all pairs of states can be computed in polynomial
time as explained in Section IV-D.

Next, we introducediscounted quantitativeµ-calculus,
whose syntax is the same as the one of quantitativeµ-calculus,
except that the “next” operator is parametrized by a discount
factor. Formally, for allα ∈ (0, 1], formulas in QMUα are
generated by the grammar:

ϕ ::= D(r, c) | D(c, r) | x | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃ βϕ | ∀ βϕ

| µx . ϕ | νx . ϕ

for propositionsr ∈ Σ, variablesx ∈ V , constantsc ∈⋃
r∈ΣXr, and discount factorsβ ∈ (0, α]. The semantics of

QMUα coincides with the one of QMU (see Section IV-B)
except for:

[[∃ βϕ]]E(s) = β sup
s′∈τ(s)

[[ϕ]]E(s′)

[[∀ βϕ]]E(s) = β inf
s′∈τ(s)

[[ϕ]]E(s′).

We denote CLQMUα the fragment of QMUα containing only
closed formulas. Again, we have the following characteriza-
tion, analogue to Theorem 14.

Theorem 19: For all finitely branching MTSs(S, τ ,Σ, [·]),
statess, t ∈ S, and discount factorsα ∈ (0, 1], we have

bdAa
α (s, t) = supϕ∈CLQMUα\{∃ ,D(r,c),µ,ν} [[ϕ]](t)− [[ϕ]](s)

bdAs
α (s, t) = supϕ∈CLQMUα\{∃ ,µ,ν} [[ϕ]](t)− [[ϕ]](s)

bdSa
α (s, t) = supϕ∈CLQMUα\{D(r,c),µ,ν} [[ϕ]](t)− [[ϕ]](s)

bdSs
α (s, t) = supϕ∈CLQMUα\{µ,ν} [[ϕ]](t)− [[ϕ]](s).

VII. C ONCLUSIONS

In this paper, we have provided metric extensions of the
classical linear and branching relations: trace inclusion, trace
equivalence, simulation, and bisimulation. We remark that,
while metric analogues of bisimulation had been known for
some time [8], [17], this is not the case for the other notions,
which had escaped attention thus far; [6] extends the results
in the present paper to the setting of concurrent, stochastic
games.

We hope that the introduction of these quantitative asym-
metrical and symmetrical distances constitutes a useful step
toward aquantitative theory of systems,in which the classical
boolean setting of specification and verification is replaced
by a setting in which properties have (real-valued, or metric)
values, and verification can yield not only yes/no answers, but
also measures of quality, adequacy, and cost.

We have provided three main classes of characterizations
for linear and branching distances:

1) Distances as upper bounds for logic valuations.Results
in this class state that the distances provide an upper
bound for the difference in value of formulas of linear
(QLTL ) and branching (QMU) logics. Results of this type
are Theorems 4 and 13.

2) Logics as full characterizations of distances.Results
in this class state that the distances are equal to the
supremum of the difference in value of all linear, or
branching formulas. Results of this type are Theorems
5 and 14.

3) Relations among distances.Results in this class compare
the value of linear and branching distances; results of
this type are Theorems 2, 11, and 17.

Results in classes 1 and 3 hold for general MTSs, and are thus
particularly satisfying. In contrast, as we have seen, results in
class 2 hold only for finitely branching MTSs. Many MTSs
of interest are not finitely branching: for instance, in a hybrid
system, there can be uncountably many successors of a state,
corresponding to the real-valued length of time steps possible
from the state. It is an interesting open problem to investigate
classes of MTSs that are more general than finitely branching
MTSs, and for which results of class 2 still hold.
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