
Analyzing the Impact of Change in
Multi-threaded Programs

Krishnendu Chatterjee1, Luca de Alfaro2, Vishwanath Raman2,
and César Sánchez3

1 Institute of Science and Technology, Vienna, Austria
2 Computer Science Department, University of California, Santa Cruz, USA

3 IMDEA-Software, Madrid, Spain

Abstract. We introduce a technique for debugging multi-threaded C programs
and analyzing the impact of source code changes, and its implementation in the
prototype tool DIRECT. Our approach uses a combination of source code instru-
mentation and runtime management. The source code along with a test harness is
instrumented to monitor Operating System (OS) and user defined function calls.
DIRECT tracks all concurrency control primitives and, optionally, data from the
program. DIRECT maintains an abstract global state that combines information
from every thread, including the sequence of function calls and concurrency prim-
itives executed. The runtime manager can insert delays, provoking thread inter-
leavings that may exhibit bugs that are difficult to reach otherwise. The runtime
manager collects an approximation of the reachable state space and uses this ap-
proximation to assess the impact of change in a new version of the program.

1 Introduction

Multi-threaded, real-time code is notoriously difficult to develop, since the behavior of
the program depends in subtle and intricate ways on the interleaving of the threads,
and on the precise timing of events. Formal verification provides the ultimate guarantee
of correctness for real-time concurrent programs. Verification is however very expen-
sive, and quite often infeasible in practice for large programs, due to the complexity of
modeling and analyzing precisely and exhaustively all behaviors. Here, we aim for a
more modest goal: we assume that a program works reasonably well under some con-
ditions, and we provide techniques to analyze how the program behavior is affected by
software modifications, or by changes in the platform and environment in which the
program executes. Our techniques perform sensitivity analysis of the code with respect
to its environment, and impact analysis for software changes [2]. These analyses assist
software designers to answer two important questions: (1) Is the program robust? Can
small changes in platform, compiler options and libraries affect the program’s behavior
in an important way? (2) Does a program change introduce unexpected behaviors?

We propose to instrument a program and run it one or multiple times. At certain
points in the program, called observable statements, the instrumentation code collects
information about the state of the execution, which we call global state. Observable
statements include OS primitives such as lock and semaphore management, scheduling
and timer calls. To perform sensitivity analysis the program is run again, but this time

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 293–307, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

294 K. Chatterjee et al.

the instrumentation code simulates changes in the platform. To perform change impact
analysis, the versions of source code before and after a change are instrumented and run
to compare the set of collected global states. These uses are described in Section 3.

We present the tool DIRECT, which implements these analyses for real-time embed-
ded code written in C, including programs that run on embedded platforms with only
limited memory available. The instrumentation stage is implemented relying on the CIL
toolset [14]. The effectiveness of DIRECT is shown via two case studies: a C version of
dining philosophers, and an implementation of the network protocol ‘adhoc’ for Lego
robots. Specifically, we show how DIRECT can be used to (a) expose a bug in a new
version of the adhoc protocol, (b) debug a deadlock in a naive implementation of din-
ing philosophers, (c) compare different fork allocation policies in dining philosophers
with respect to resource sharing and equity. We also report on how sensitivity analysis
increases thread interleavings and hence the number of unique global states that can be
observed for a fixed program and test.

Related work. Change impact analysis is well studied in software engineering [2]. For
example, [15,16,17] consider change impact analysis of object-oriented programs writ-
ten in Java. They use static analysis to determine changes in the implementation of
classes and methods and their impact on test suites, to aid users understand and debug
failing test cases. Change impact analysis is related to program slicing [19] and incre-
mental data-flow analysis [10]. While there is a large body of work analyzing change
impact from the perspective of testing and debugging of imperative, object-oriented
and aspect-oriented programs, there is not much literature in change impact analysis
for multi-threaded programs. There is work analyzing the impact of change on test se-
lection and minimization [6] and in using runtime information to compute the impact
set of a change [9]. Several research efforts study the impact of change based on revi-
sion histories. For example, [7] use machine learning techniques to mine source code
repositories, trying to predict the propensity of a change in source code to cause a bug.

CHESS [12] explores the problem of coverage in multi-threaded programs attempt-
ing to expose bugs by exhaustive thread interleaving. Our work differs from [12] in that
we study the impact of change between two versions of a program, whereas CHESS ex-
plores only the state space of a single program. Moreover, CHESS borrows techniques
from model-checking and it is not easily applicable to the online testing of embed-
ded systems. ConTest [5] explores testing multi-threaded Java programs by placing
sleep statements conditionally, producing different interleavings via context switches.
ConTest is a Java testing tool, that requires test specification that include the expected
outcome. DIRECT does not require test specifications and it is designed to study the
impact of change between two versions of a program, while [5] focuses on a single
program and test. Moreover, DIRECT targets embedded C programs.

The work closest to ours is [3], that uses runtime, static and source code change infor-
mation to isolate sections of newly added code that are likely causes of observed bugs.
However, [3] does not address concurrent programs, and requires programmer interac-
tion or test specifications to detect “faulty” behavior. In [3] program changes are tracked
using information from a version control system. DIRECT accumulates the information
at runtime, alleviating the need to rely on sometimes expensive static analysis. This
way, we readily obtain a fully automatic tool for embedded systems.

Analyzing the Impact of Change in Multi-threaded Programs 295

2 Definitions

In this section we present a model of multi-threaded C programs. We consider interleav-
ing semantics of parallel executions, in which the underlying architecture runs a single
thread at any given time. This semantics is conventional for most current embedded
platforms. The extension to real concurrency (with multi-cores or multi-processors) is
not difficult but rather technical, and it is out of the scope of this paper. We now present
the formal definitions of our model.

Programs and statements. The dynamics of a program P consist of the execution of
a set T = {Ti | 0 ≤ i ≤ m} of threads; we take [T] = {1, 2, . . . , m} as the set of
indices of the threads in P . Let Stmts be the set of statements of P . We distinguish
a set of observable statements. This set includes all user defined function calls within
the user program, as well as all the operating system (OS) calls and returns, where
the OS may put a thread to sleep, or may delay in a significant way the execution
of a thread. In particular, observable statements include invocations to manage locks
and semaphores, such as mutex lock, semaphore init and thread delay. We associate
with each statement a unique integer identifier, and we denote by S ⊂ N the set of
identifiers of all observable statements. We use F to denote the set of all user-defined
functions in the program and we define F : S �→ {⊥} ∪ F to be the map that for every
statement s ∈ S gives the function being invoked in s, if any, or ⊥ if s is not a function
call. Finally, we define the scope of a statement s to be the user-defined function that
contains s, and represent the scope of s as sc(s).
Runtime model. The program is first instrumented with a test harness, and then com-
piled into a self-contained executable that implements the functionality of the orig-
inal program together with the testing infrastructure. A run is an execution of such
a self-contained executable. A thread state is a sequence of observable statements
(s0, s1, . . . , sn) where sn represents an observable statement, and s0, s1, . . . , sn−1 the
function invocations in the call stack (in the order of invocation) at the time sn is
executed. Precisely, a thread state σ = (s0, s1, . . . , sn) ∈ S ∗ is such that each s0,
. . . , sn−1 is a call statement and for all 0 < i ≤ n, the scope of si is si−1, that is:
sc(si) = F(si−1). In particular, sc(s0) is the function in which the thread is created,
typically main . A block of code is the sequence of instructions executed between two
consecutive thread states. A joint state of the program P is a tuple (k, σ0, σ1, . . . , σm, t)
where,

1. k ∈ [T] is the thread index of the current active thread,
2. for 0 ≤ i ≤ m, the sequence σi ∈ S ∗ is the thread state of the thread Ti, and
3. t is defined as follows: let σk = (sk

0 , sk
1 , . . . , s

k
n) be the thread state of the current

active thread. If sk
n is not an OS function call then t is user , if sk

n is an OS function
call, then t is call immediately preceding the execution of statement sk

n, and is ret
when the OS function returns.

We refer to the joint states of the program as abstract global states or simply as global
states. The set of all global states is represented by E .

We illustrate these definitions using Program 1. This program consists of two threads:
T0 that executes infa (on the left); and T1 that executes infb (on the right). Each thread

296 K. Chatterjee et al.

Program 1. A simple application with two threads
1 void infa(void) {
2 while (1) {
3 if (exp) {
4 mutex_lock(b);
5 mutex_lock(a);
6 // critical section
7 mutex_unlock(a);
8 mutex_unlock(b);
9 } else {
10 mutex_lock(c);
11 mutex_lock(a);
12 // critical section
13 mutex_unlock(a);
14 mutex_unlock(c);
15 }
16 }
17 }

21 void infb(void) {
22 while (1) {
23 mutex_lock(a);
24 mutex_lock(b);
25 // critical section
26 mutex_unlock(b);
27 mutex_unlock(a);
28 }
29 }

is implemented as an infinite loop in which it acquires two mutexes before entering its
critical section. The calls mutex lock and mutex unlock are the OS primitives that
request and release a mutex respectively. For simplicity, assume that the identifier of a
statement is its line number. Let s0 be the statement that launched thread T0. The state of
thread T0 executing statement mutex lock(b) at line 4 in function infa is (s0, 4). Simi-
larly, the thread state of T1 that corresponds to line 23, is (s1, 23), where s1 is the state-
ment that launched thread T1. An example of a global state is (1, (s0, 4), (s1, 23), call),
produced when thread T1 is in thread state (s1, 23) and the OS function call at line 23 is
about to be executed, indicating mutex a is yet to be acquired, with T0 being at (s0, 4).
A possible successor is (1, (s0, 4), (s1, 23), ret), produced when thread T1 is in thread
state (s1, 23), the OS function call at line 23 has returned, indicating mutex a has been
acquired, with T0 remaining at (s0, 4).

3 Sensitivity Analysis and Change Impact Analysis

Changes involved during software development and maintenance of concurrent pro-
grams can induce subtle errors by adding undesirable executions or disallowing impor-
tant behaviors. Our goal is to facilitate the discovery of the changes in the behavior of
the system due to changes in the source code, or in the execution platform, compiler or
libraries. We consider the following sources of differences:

1. Changes in platform. When a program is run on a different platform, the execution
of each code block may vary due to changes in the target processor.

2. Changes in compiler options and libraries. When included libraries or compiler
options change, the execution time of each code black may vary.

3. Source code changes. Changes in the source code can affect resource interactions
and scheduling of the various threads beyond the running time of code blocks.

Analyzing the Impact of Change in Multi-threaded Programs 297

The goal of DIRECT is to enable the analysis of the above changes, in terms of program
behavior. DIRECT operates in two stages. First the system is exercised one or multiple
times and the reached states are collected. These runs are called the reference runs and
the union G of all the reached states is called the reference set. Then, a new run R of the
program is obtained after the program is affected by some of the above changes. This
new run is called the test run. The reference set G can be thought of as an approximation
of the reachable state space in lieu of a formal specification. If during R a global state e
is observed that was not seen in G, DIRECT outputs e along with a trace suffix leading
to e. By examining the trace, developers can gain insight into how code changes or
environment changes can lead to behavior changes.

Changes in platform, compiler options, and libraries. To analyze the effect of
changes in platform, compiler options and libraries, the reference set G and the test
run R are obtained from the same program source. G is generated by running the orig-
inal program with an instrumentation that just collects events. A test run is obtained
using DIRECT to modify in an appropriate fashion the duration of the code blocks. This
comparison performs sensitivity analysis, aimed at discovering the effect of minor tim-
ing changes with respect to the reference set. DIRECT can be instructed to modify the
block duration in three ways:

– Proportional delays, to approximate the effect of changes in platform.
– Random delays, to simulate the effect of interrupt handling, included libraries and

other characteristics of the hardware.
– Constant delays, to simulate the effect of the different latencies of OS calls.

Delay changes can lead to behavior changes in multiple ways. For example, a delay may
cause a sleeping thread to become enabled, so that the scheduler can choose this thread
to switch contexts. For each of the three delay insertion mechanisms given above, DI-
RECT can do selective sensitivity analysis, where a subset of the threads in the program
are subjected to delay insertion.

Changes in source code. To analyze the effects of source code changes, the test run R
is obtained using the new version, with or without the injection of delays. For change
impact analysis DIRECT compares every global state seen in the test run R of the modi-
fied program against the reference set G collected for the original program. Only events
in R that correspond to statements of the original program are compared against the set
G; events in R corresponding to statements introduced in the new program are trivially
not in G. Since we use the set G as an approximation to a formal specification, we are
interested in reporting new interleavings with respect to statements that were present
in the original program due to source code changes. The instrumentation introduced by
DIRECT keeps track of the corresponding statements in the two programs, making a
behavioral comparison possible.

Changes in the source code typically involve some change in the logic of the pro-
gram, brought about by insertion of new code, deletion of code or relocation of some
sections of code. In order to analyze the impact of such change between two versions
P and P ′ of a program, it is necessary to relate observable statements corresponding to
sections of the code that did not change from P to P ′.

298 K. Chatterjee et al.

�� ���� �	
DIRECT

Runtime
Manager

����������

Embedded
Application
(C sources)

���� ���� �	DIRECT

����������

�������
�� ���� �	Compile

Link
��

Embedded
Application
(executable)

Instrumented
Annotated
C sources

�������

Fig. 1. DIRECT tool flow

Consider again Program 1. If the expression exp in the if condition at line 3 is not
always false a deadlock can occur if Thread T0 acquires resource a and then Thread T1

acquires resource b. T1 cannot release resource b until it completes its critical section,
which requires resource a held by T0. One fix for this problem consists in switching
the order in which the mutexes a and b are acquired by T0. Taking line numbers as the
identifiers of all observable statements, we notice that the calls to acquire resources a
and b are statements 5 and 4 before the change and 4 and 5 after the change. To analyze
the impact of this code change, it is necessary to preserve the integer identifiers of these
statements during program transformation, even though these statements have moved
in the course of the transformation.

4 Implementation

We discuss now the relevant implementation issues.

4.1 Program Instrumentation

Fig. 1 shows the program instrumentation flow of DIRECT. DIRECT relies on the CIL
toolset [14] to parse and analyze the program under consideration, and to insert instru-
mentation in the code. The instrumented version of the program is compiled and linked
with a runtime manager to produce the final executable. The application can then be run
just like the original user program. The runtime manager is a custom piece of software
that gains control of the user application before and after each observable global state.
The instrumentation step performs two tasks:

– replace observable statements with appropriate calls to the resource manager, al-
lowing the tracking of visible statements and the insertion of delays.

– wrap every call to a user defined function with invocations to the run-time manager
that keep track of the call stack.

Instrumenting observable statements. DIRECT reads a configuration file that specifies
the set of functions to track at runtime. This set typically includes OS primitives such
as mutex and semaphore acquisitions and releases, and other timing and scheduling-
related primitives. Each observable statement s is replaced by a call to a corresponding

Analyzing the Impact of Change in Multi-threaded Programs 299

Program 2. man mutex lock replaces mutex lock in the source code

void man_mutex_lock (int statement_id, resource_t a) {
// Gets the current thread id from the set of registered threads.
int thread_id = self_thread_id();

// Injects pre-call delays for sensitivity analysis.
injectDelay(thread_id, Pre);

// Generates \ProgramEvent before the OS function call.
registerJointState(thread_id, statement_id, call);

// Calls the actual OS primitive.
mutex_lock(a);

// Injects post-call delays for sensitivity analysis.
injectDelay(thread_id, Post);

// Generates \ProgramEvent after the OS function call.
registerJointState(thread_id, statement_id, ret);

// Stores the start time of the subsequent block of code.
storeBlockStartTime(thread_id);

}

function in the runtime manager. The function in the runtime manager performs the
following tasks:

1. First, an optional delay can be introduced to simulate a longer run-time for the code
block immediately preceding the observable statement.

2. The internal representation of the thread state is updated, due to the occurrence of
the observable statement s.

3. The original observable statement s (such as an OS call) is executed.
4. An optional delay can be introduced, to simulate a longer response time from the

OS, or the use of modified I/O or external libraries.
5. Finally, the internal representation of the thread state is again updated, indicating

the completion of the statement s.

Note that DIRECT updates the thread state twice: once before executing s, another when
s terminates. Distinguishing these two states is important. For example, when the thread
tries to acquire a lock, the call to mutex lock indicates the completion of the previous
code block and the lock request, while the completion of mutex lock indicates that the
thread has acquired the lock. Program 2 illustrates the implementation of the runtime
manager function man mutex lock that replaces the OS primitive mutex lock. The first
argument in all calls to runtime manager functions that replace OS functions is s ∈ S .
The subsequent arguments are the actual arguments to be passed to the OS primitive.

Tracking thread states. DIRECT also tracks the call stack to perform context-sensitive
analysis, distinguishing calls to the same function that are performed in different stack

300 K. Chatterjee et al.

configurations. To this end, DIRECT wraps each function call in a push-pop pair. If i is
the integer identifier of the call statement, the push instrumentation call adds i to the
call stack, and the pop call removes it.

Preserving accurate timing. The instrumentation code, by its very existence, causes
perturbations in the original timing behavior of the program. To eliminate this unde-
sirable effect, DIRECT freezes the real-time clock to prevent the runtime processing
overhead from affecting the timing of the application code. The current version of DI-
RECT implements this freezing as a modified version the Hardware Abstraction Layer
(HAL) in the eCos synthetic target running on Ubuntu 8.04. In this manner, the ex-
posed bugs are not caused by artificial interleavings created by the effect of the runtime
manager, and they are more likely to correspond to real bugs.

Tracking corresponding pieces of code. To perform change impact analysis, it is
important to identify the common, unchanged portions of P and P ′. A transforma-
tion from P to P ′ may involve (a) sections of new code that are inserted, (b) sec-
tions of code that are deleted, and (c) sections of code that have moved either as a
consequence of insertions and deletions or as a consequence of code re-organization.

<Block>
<Loop>
<If>
<Block>

cyg_mutex_lock(& a);
cyg_mutex_lock(& b);
cyg_mutex_unlock(& b);
cyg_mutex_unlock(& a);

<Block>
cyg_mutex_lock(& c);
cyg_mutex_lock(& a);
cyg_mutex_unlock(& a);
cyg_mutex_unlock(& c);

Fig. 2. A summary snippet

DIRECT deals with these variations by
first generating a text dump summariz-
ing the CFG of P and P ′. The key
problem in tracking code changes is that
of variations in coding style; syntacti-
cally identical program fragments may
still be very different based on the use
of indentation, line breaks, space char-
acters and delimiters. Our CFG sum-
maries preserve instructions (assignments
and function calls) exactly, but summarize
all other statements (blocks, conditionals,
goto statements etc.) This summarization
is done to remove artifacts such as labels
introduced by CIL that may change from
P to P ′, but have no bearing on tracking

statements. Fig. 2 shows the summary generated for the program fragment on the left
of Program 1. Given two CFG summaries, DIRECT identifies sections of code that have
been preserved using a text difference algorithm [18,13,4]. Given two text documents
D and D′, this algorithm extracts a list of space, tab and newline delimited words from
each document. The list of words are compared to produce a set of insertions, deletions
and moves that transform D to D′. We use the set of moves generated by the algorithm
to relate the set of statements in P that are also in P ′.

Tracking additional components of the program joint state. DIRECT supports the
following extensions to the joint state of a program.

– Resource values. Resources are often managed and synchronized using concur-
rency control primitives. Since DIRECT captures these control primitives the pre-
cise values of the resources can be accessed by the runtime manager with total

Analyzing the Impact of Change in Multi-threaded Programs 301

precision. Let R be the set of all resources, including mutexes and semaphores.
Every resource has an associated value, that has the range {0, 1, 2, . . . , max(r)},
where max(r) = 1 for all mutexes and max(r) > 0 for all counting semaphores.

– Global variables. DIRECT can also track global variables, but these values are not
tracked whenever they change but only when an observable statement is reached.

– Extending observable statements. Users can expand on the set of OS primitives or
library functions to track.

– Block execution times. Average block execution times of each block in each thread
can be tracked to later perform proportional delay injection.

4.2 Detecting New Events Efficiently

To perform sensitivity and change impact analysis, it is crucial to test efficiently whether
an observed event is a member of a given state set. Time efficiency is needed to scale to
large programs. Space efficiency is especially important in the study of embedded soft-
ware. Even though the set of states represented can be very large, an embedded software
implementation can only use a very limited amount of memory. To achieve the desired
efficiency, DIRECT stores the set of reachable states as a Bloom filter [11], a proba-
bilistically correct data-type that implements sets of objects, offering two operations:
insertion and membership checking.

Bloom filters guarantee that after inserting an element, checking membership of that
element will return true. However, a membership query for an element that has not been
inserted in the Bloom filter is only guaranteed to respond false (the correct answer)
with a high probability. That is, Bloom filters allow some false positive answers for
membership queries. This fact implies that DIRECT may (rarely) miss new global states,
but that every new global state found by DIRECT is guaranteed to be new.

The performance of Bloom filters depends on the use of good (independent) hash
functions, which are difficult to design. DIRECT uses double-hashing [8] to obtain k
(good) hash functions from 2 (good) hash functions. Therefore, the cost of an operation
is virtually that of the computation of two hash-functions, so all operations run in almost
constant time.

5 Case Studies

We report two case studies: a solution to the dining philosophers problem and an adhoc
protocol for legOS, adapted to run in an eCos [1] environment.

5.1 An Adhoc Protocol

We analyzed a multi-threaded implementation of an ad-hoc network protocol for Lego
robots. As illustrated in Fig. 3, the program is composed of five threads, represented by
ovals in the figure, that manage four message queues, represented by boxes. Threads
user and generator add packets to the input queue. Thread router removes packets
from the input queue, and dispatches them to the other queues. Packets in the user
queue are intended for the local hardware device and hence are consumed by the user
thread. Packets in the broadcast queue are intended for broadcast, and they are moved

302 K. Chatterjee et al.

� ��� ��user

����������
user��

input ��
� ��� ��router

����������
��

���������� broadcast

����������

� ��� ��generator

		

� ��� ��sender

����������
output��
� ��� ��delay��

Fig. 3. Scheme of an ad-hoc network protocol implementation

Program 3. A snippet of code from the packet router thread
1 semaphore_wait(&bb_free_sem);
2 semaphore_wait(&bb_mutex);
4 // code that forms a new packet and copies it into
5 // the free slot in the broadcast queue

...
40 semaphore_post(&bb_mutex);

...
50 semaphore_post(&bb_els_sem);

...

to the output queue by the delay thread, after a random delay, intended to avoid packet
collisions during broadcast propagation. Packets in the output queue are in transit to
another node, so they are treated by the sender thread. Notice that if the sender fails to
send a packet on the network, it reinserts the packet back in the broadcast queue (even
if it is not a broadcast packet), so that retransmission will be attempted after a delay.
Each queue is protected by a mutex, and two semaphores that count the number of
empty and free slots, respectively. The reference implementation has no non-blocking
resource requests. Program 3 shows a snippet of the router code. It first checks whether
the broadcast queue is free by trying to acquire the semaphore bb free sem at line 1. If
the semaphore is available, the router acquires a mutex, bb mutex that controls access
to the broadcast queue, before inserting a packet in the queue. Then, the router posts the
semaphore bb els sem indicating that the number of elements in the queue has increased
by one.

A very subtle bug is introduced by replacing the call to acquire the semaphore
bb free sem by a non-blocking call. The change is itself quite tempting for a devel-
oper as this change improves CPU utilization by allowing the router not to block on a
semaphore, continuing instead to process the input queue while postponing to broadcast
the packet. Program 4 shows the snippet of code that incorporates this change. The bug
is exhibited when the the block of code that should execute when the semaphore is suc-
cessfully acquired, terminates prematurely. Specifically, the call to post the semaphore
bb els sem at line 51 should only occur when the call at line 1 to acquire bb free sem
succeeds. This bug goes undetected as long as the call to acquire bb free sem always
succeeds. Two other threads, besides the router, access the semaphore bb free sem: the
delay thread and the send thread. Notice that as long as the send thread succeeds, it does
not try to place the packet back on the broadcast queue and the bug goes undetected. If

Analyzing the Impact of Change in Multi-threaded Programs 303

Program 4. The router thread after changing to a non-blocking call (trywait)
1 if (semaphore_trywait(&bb_free_sem)) {
2 semaphore_wait(&bb_mutex);
4 // code that forms a new packet and copies it into
5 // the free slot in the broadcast queue

...
40 semaphore_post(&bb_mutex);
41 }

...
51 semaphore_post(&bb_els_sem);

...

the send thread fails to send the packet, acquires bb free sem and causes the broadcast
queue to fill up, the router fails to get bb free sem, exposing the bug that eventually
leads to a deadlock, where packets can no longer be routed. In one of our tests for this
program, we model failure to send a packet using randomization; each attempt to send
a packet has an equal chance at success and failure. This test exposed the bug. Specifi-
cally, the new global state observed corresponds to an invocation to post bb els sem at
line 51 in Program 4. In the Appendix, we show the last two global states in the suffix of
states that lead to this new state. The global state immediately preceding the new state
is one where the non-blocking semaphore request in the packet router fails. DIRECT

reports a trace to the new global state (the bug) and tools to visualize this trace.

5.2 Dining Philosophers

Program 5 shows an implementation of a philosopher in a proposed solution to the din-
ing philosophers problem analyzed using DIRECT. The numbers on the left are iden-
tifiers of observable statements. A naive implementation lets each philosopher pick up
her left fork first leading to a deadlock; each philosopher is holding her left fork and
none can get an additional fork to eat. Table 1, shows the tail-end of the sequence of
states of a system with 5 dining philosophers. Each line shows a global state containing
the index of the active thread, the state of each thread, the resource values, the set of
resources held by the active thread and whether the event corresponds to a function call
or return. The transition from state 5 to state 6 is the one where the fifth philosopher
(thread T4) acquires her left fork. As evidenced in state 6 all resources have been allo-
cated with each philosopher holding one fork. This state inevitably leads to a deadlock,
shown in the final state, where all philosophers are waiting at statement 3, that corre-
sponds to a request for the second fork in Program 5. When we fix the deadlock using
monotonic locking and run the program again, we notice that the new state is one where
the fifth philosopher is denied her first fork, avoiding the deadlock.

We found that the sequences of states generated serve another useful purpose, namely
analyzing waiting times for philosophers and checking whether the fork allocation poli-
cies are philosopher agnostic. We analyzed the sequence of states generated after fixing
the deadlock. We noticed that a simple analysis on the sequence shows that the ob-
servable statement 4 where the philosophers have acquired both forks, occurs half the
number of times for the first and last philosophers compared to the others. If we change

304 K. Chatterjee et al.

Program 5. Dining philosopher
void philosopher(int philosopher_id) {
int first_fork, second_fork;

// fork assignment policy
first_fork = philosopher_id;
second_fork = (philosopher_id + 1) % N_PHILS;

if (first_fork > second_fork) {
first_fork = second_fork;
second_fork = philosopher_id;

}
while (1) {

0 thread_delay(20); // thinking phase

// eating phase
1 semaphore_wait(&forks[first_fork]); // pick first fork
2 thread_delay(2); // pause
3 semaphore_wait(&forks[second_fork]); // pick second fork
4 thread_delay(20); // eating phase
5 semaphore_post(&forks[second_fork]); // replace second fork
6 thread_delay(2); // pause
7 semaphore_post(&forks[first_fork]); // replace first fork

}
}

the implementation so that all the even numbered philosophers pick their left fork first
and the odd numbered philosophers pick their right fork first, they all get to eat virtually
the same number of times. The latter implementation may cause livelocks under certain
schedulers, but is equitable to the philosophers when compared to monotonic locking.
The asymmetry in the implementation for the last philosopher turns out to be the cul-
prit. Since the last philosopher always wishes to pick up her right fork first which is
also the first fork that the first philosopher needs, they end up waiting for each other to
finish. The last philosopher cannot pick up her left fork till she gets her right fork and
vice versa for the first philosopher. This asymmetry favors the other philosophers. In
fact, philosophers T0 and T4 acquire their first fork roughly half the number of times
that the others do, and have the largest wait times for their forks when compared to the
others.

5.3 Increasing Coverage with Random Delays

An interesting question in change impact analysis is that of coverage. Given a program,
a test and a platform, how do we generate as many global states as possible? The larger
the number of states that the tool exercises, the more likely it is that a state observed
in a test run, that does not occur in any reference run, point to a potential bug or other-
wise interesting new global state. Towards this end, DIRECT provides the mechanism
of injecting random delays, in user specified ranges, that increases context switching

Analyzing the Impact of Change in Multi-threaded Programs 305

Table 1. A sequence leading to a deadlock in a naive implementation of dining philosophers

State Thread Philosopher threads Res values Res held (c)alls/
no. index T0 T1 T2 T3 T4 (r)ets

1 3 (0, 2) (0, 2) (0, 2) (0, 1) (0, 0) (0, 0, 0, 1, 1) () c
2 3 (0, 2) (0, 2) (0, 2) (0, 1) (0, 0) (0, 0, 0, 0, 1) (3) r
3 3 (0, 2) (0, 2) (0, 2) (0, 2) (0, 0) (0, 0, 0, 0, 1) (3) c
4 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 0) (0, 0, 0, 0, 1) () r
5 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 1) (0, 0, 0, 0, 1) () c
6 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 1) (0, 0, 0, 0, 0) (4) r
.
16 4 (0, 3) (0, 3) (0, 3) (0, 3) (0, 2) (0, 0, 0, 0, 0) (4) r
17 4 (0, 3) (0, 3) (0, 3) (0, 3) (0, 3) (0, 0, 0, 0, 0) (4) c

 100

 1000

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 e

ve
nt

s

Time in clock ticks

Event growth with random delays

Reference
Random [20:50]
Random [5:20]
Random [1:5]

(a) Dining philosophers

 100

 1000

 0 2000 4000 6000 8000 10000 12000

N
um

be
r

of
 e

ve
nt

s

Time in clock ticks

Event growth with random delays

Reference
Random [20:50]
Random [5:20]
Random [1:5]

(b) Adhoc

Fig. 4. Number states observed as running time increases, with and without random delays

between threads, producing new states. We studied the effect of injecting random de-
lays in the ranges [1..5], [5..20] and [20..50] clock ticks in all threads for the two case
studies presented in this section. We plot the results in Figure 4a and Figure 4b, where
the x-axis represents run durations in clock ticks and the y-axis reports the log of the
number of unique states observed. In this study, we ran each program for a set of dura-
tions. In each run, we first measured the number of unique states without random delay
injection; the Reference line in the graphs. For each duration, we then ran the same
application, injecting random delays and took the union of the set of states seen in the
reference run and the set of states seen with random delay injection. The size of these
sets, for each run duration, are shown by the points along the lines labeled with ran-
dom delays in the graphs. For dining philosophers, we noticed that the number of new
states in the reference run is zero after 200 clock ticks, but using random delays we see
an increase in the number of new states for each run duration as shown in Figure 4a.
Since code blocks take longer to execute with delay injection, the total number of global
states diminishes with longer delays, reducing the number of unique states seen. This
phenomenon is also witnessed by the increase in states seen with smaller delay ranges.
For the adhoc protocol, we noticed that the number of new states observed in the refer-
ence run decreases as the duration of the runs increase, but the number of new states are

306 K. Chatterjee et al.

consistently higher with random delay injection just as in the case of dining philoso-
phers. We also observed that in this case, changing the range of the random delays does
not produce any significant change in the number of new states seen, unlike in the case
of dining philosophers. These results on our case studies give us strong evidence that
random delay injection is a good mechanism to increase the number of observed states
for a given program and test. We note here that the techniques proposed in CHESS [12]
or [5] can be used in addition to random delay injection to get a better approximation
of the reachable state space.

6 Conclusions

This paper reports on techniques for the change impact and sensitivity analysis of con-
current embedded software written in the C programming language. These techniques
are prototyped in a tool called DIRECT, that uses a combination of static analysis and
runtime monitoring. The static analysis determines instrumentation points, generates
the monitoring code, and establishes the difference between two versions of a given
program. The runtime manager is executed before and after every concurrency primitive
and user defined function, and computes at each instrumentation point an abstraction of
the current state. The runtime manager also keeps a sequence of abstract global states
leading to the current state.

For sensitivity analysis, the runtime manager also inserts delays to simulate differ-
ences between platforms, libraries and operating systems. For change impact analy-
sis, the runtime manager collects an approximation of the set of reached states of the
original program. Exhaustive exploration techniques like [12,5] can approximate more
accurately the reachable state space, but they are not directly suitable for embedded
systems, and to perform (online) change impact analysis. The states reached during the
executions of the new version are then compared against the set of reached states of
the original program. The prototypes were developed in a modified version of the eCos
environment in which the instrumented code was executed with the real-time clock
stopped, so that the execution of the runtime manager incurred no additional delay. We
presented two case studies to illustrate how the techniques described in this paper can
help capture bugs in concurrency programs.

There are some limitations of the work presented here that we plan to study in future
research. First, we would like to apply DIRECT to large programs to see how well our
techniques scale with program size. Second, the indication of a new global state may
not correspond to a real bug but just a false positive. While we did not encounter such
false positives in our case studies, we plan to study the number of false positives as
the program size increases and steps to minimize them. Finally, the current sensitivity
analysis can only insert delays in execution blocks. We would like to extend it with the
ability to accelerate blocks (negative delays), whenever it is safe to do so.

We also plan to extend the techniques reported here in two directions. First, we will
use DIRECT in real embedded systems, where the illusion of instantaneous execution
time of the manager that we obtained via simulation is not accurate. Second, we will
explore the design of schedulers that try to maximize the set of global states reached.
Unlike in CHESS [12] we plan to proceed in several rounds, where the scheduler of the

Analyzing the Impact of Change in Multi-threaded Programs 307

next round is obtained using the set of global states obtained in the previous runs with
some static analysis.

References

1. ecos homepage, http://ecos.sourceware.org/
2. Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society Press, Los Alami-

tos (1996)
3. Bohnet, J., Voigt, S., Döllner, J.: Projecting code changes onto execution traces to support

localization of recently introduced bugs. In: Proc. of the 2009 ACM Symposium on Applied
Computing (SAC 2009), pp. 438–442. ACM, New York (2009)

4. Burns, R.C., Long, D.D.: A linear time, constant space differencing algorithm. In: Perfor-
mance, Computing, and Communication Conference (IPCCC 1997), pp. 429–436. IEEE In-
ternational, Los Alamitos (1997)

5. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for testing multi-
threaded Java programs. Concurrency and Computation: Practice and Experience 15(3-5),
485–499 (2003)

6. Harrold, M.J.: Testing evolving software. Journal of Systems and Software 47(2-3), 173–181
(1999)

7. Kim, S., James Whitehead, J.E., Zhang, Y.: Classifying software changes: Clean or buggy?
IEEE Transactions on Software Engineering 34(2), 181–196 (2008)

8. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3. ch.
6.4. Addison-Wesley, Reading (1998)

9. Law, J., Rothermel, G.: Whole program path-based dynamic impact analysis. In: ICSE 2003,
pp. 308–318 (2003)

10. Marlowe, T.J., Ryder, B.G.: An efficient hybrid algorithm for incremental data flow analysis.
In: Proc.of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1990), pp. 184–196. ACM, New York (1990)

11. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University Press, Cam-
bridge (2005)

12. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and repro-
ducing Heisenbugs in concurrent programs. In: OSDI 2008, pp. 267–280 (2008)

13. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2), 251–266
(1986)

14. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Infrastructure for C program anal-
ysis and transformation. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 213–228.
Springer, Heidelberg (2002)

15. Ren, X., Chesley, O.C., Ryder, B.G.: Identifying failure causes in Java programs: An appli-
cation of change impact analysis. IEEE Trans. Softw. Eng. 32(9), 718–732 (2006)

16. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: a tool for change impact analysis
of Java programs. SIGPLAN Not. 39(10), 432–448 (2004)

17. Ryder, B.G., Tip, F.: Change impact analysis for object-oriented programs. In: PASTE 2001:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for soft-
ware tools and engineering, pp. 46–53. ACM, New York (2001)

18. Tichy, W.F.: The string-to-string correction problem with block move. ACM Trans. on Com-
puter Systems 2(4) (1984)

19. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3) (1995)

http://ecos.sourceware.org/

	Analyzing the Impact of Change in Multi-threaded Programs
	Introduction
	Definitions
	Sensitivity Analysis and Change Impact Analysis
	Implementation
	Program Instrumentation
	Detecting New Events Efficiently

	Case Studies
	An Adhoc Protocol
	Dining Philosophers
	Increasing Coverage with Random Delays

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

