
Qualitative Concurrent Parity Games∗

Krishnendu Chatterjee§ Luca de Alfaro§ Thomas A. Henzinger†‡

§
CE, University of California, Santa Cruz,USA

†
EECS, University of California, Berkeley,USA

‡
Computer and Communication Sciences, EPFL, Switzerland

{c krish,tah}@eecs.berkeley.edu, luca@soe.ucsc.edu

April 2008
Technical Report No. UCSC-CRL-08-02

School of Engineering, University of California, Santa Cruz, CA, USA

Abstract

We consider 2-player games played on a finite state space for an infinite number of rounds.
The games are concurrent: in each round, the two players choose their moves independently
and simultaneously; the current state and the two moves determine the successor state. We
consider ω-regular winning conditions specified as parity objectives on the resulting infinite
state sequence. Both players are allowed to use randomization when choosing their moves. We
study the computation of the limit-winning set of states, consisting of the states where the
sup-inf value of the game for player 1 is 1: in other words, a state is limit-winning if player 1
can ensure a probability of winning arbitrarily close to 1. We show that the limit-winning set
can be computed in O(n2m+2) time, where n is the size of the game structure and 2m is the
number of parities; membership of a state in the limit-winning set can be decided in NP ∩ coNP.
While this complexity is the same as for the simpler class of turn-based parity games, where in
each state only one of the two players has a choice of moves, our algorithms are considerably
more involved than those for turn-based games. This is because concurrent games violate two
of the most fundamental properties of turn-based parity games. First, in concurrent games
limit-winning strategies require randomization; and second, they require infinite memory.

1 Introduction

Concurrent games are played by two players on a finite state space for an infinite number of rounds.
In each round, the two players independently choose moves, and the current state and the two
chosen moves determine the successor state. In deterministic concurrent games, the successor state
is unique; in probabilistic concurrent games, the successor state is given by a probability distribution.
The outcome of the game is an infinite sequence of states. We consider ω-regular objectives; that
is, given an ω-regular set W of infinite state sequences, player 1 wins if the outcome of the game
lies in W . Otherwise, player 2 wins, i.e., the game is zero-sum. Such games occur in the synthesis
and verification of reactive systems [Chu62, RW87, PR89, ALW89, Dil89, AHK97].

∗This research was suppored in part by the NSF grants CCR-0132780, CNS-0720884, and CCR-0225610, and by
the Swiss National Science Foundation.

1

The player-1 value v1(s) of the game at a state s is the limit probability with which player 1 can
ensure that the outcome of the game lies in W ; that is, the value v1(s) is realized by the supremum of
player-1 strategies (called the optimal player-1 strategy) against the infimum of player-2 strategies.
Symmetrically, the player-2 value v2(s) is the limit probability with which player 2 can ensure that
the outcome of the game lies outside W . The qualitative analysis of games ask for a computation
of the set of states whose values are 0 or 1; the quantitative analysis asks for a precise computation
of values.

Traditionally, the special case of turn-based games has received most attention. In turn-based
games, in each round, only one of the two players has a choice of moves. This situation arises in
the modeling of reactive systems if the interaction between components (e.g., plant and controller)
is asynchronous; that is, if a scheduler decides in each round which of the components gets to
proceed. In turn-based deterministic games, all values are 0 or 1 and can be computed using
combinatorial algorithms [Tho90]; in turn-based probabilistic games, values can be computed by
iterative approximation [Con93].

In this paper we focus on the more general concurrent situation, where in each round, both
players choose their moves simultaneously and independently. Such concurrency is necessary for
modeling the synchronous interaction of components [dAHM00, dAHM01]. The concurrent proba-
bilistic games fall into a class of stochastic games studied in game theory [Sha53], and the ω-regular
objectives, which arise from the safety and liveness specifications of reactive systems, fall into a
low level (Σ3 ∩ Π3) of the Borel hierarchy. It follows from a classical result of Martin [] that these
games are determined, i.e., for each state s we have v1(s) + v2(s) = 1. We study the problem of
computing the limit-winning sets of states for both players, i.e., the states s with v1(s) = 1 and
the states s with v1(s) = 0.

Concurrent games differ from turn-based games in that optimal strategies require, in general,
randomization. A player that uses a pure strategy must, in each round, choose a move based on the
current state and the history (i.e., past state sequence) of the game. By contrast, a player that uses
a randomized strategy may choose not a single move, but a probability distribution over moves. The
move to be played is then selected at random, according to the chosen distribution. Randomized
strategies are not helpful for achieving a value of 1 in turn-based probabilistic games, but they can
be helpful in concurrent games, even if the game itself is deterministic. To see this, consider the
concurrent deterministic game called MatchBit. In each round, both players simultaneously and
independently choose a bit (0 or 1), and the objective of player 1 is satisfied if the two chosen bits
match in any round. For every pure strategy of player 1, there is a corresponding pure strategy for
player 2 that prevents player 1 from winning (the strategy for player 2 always chooses a different bit
than the one chosen by the strategy for player 1). However, if both players choose their bits truly
simultaneously and independently, then it is extremely “likely” that the chosen bits will match in
some round. This intuition is captured mathematically by randomization: if player 1 chooses her
bits at random, with uniform probability, then player 1 wins with probability 1/2 at each round,
and she can win the game with probability 1.

For deterministic games that are played with pure strategies, once the strategies of both players
are fixed, the unique outcome of the game either does or does not satisfy the given objective W .
For fixed randomized strategies, there are many possible outcomes: a given strategy pair may
result in player 1 winning with probability 1 (as in the game MatchBit), or with probability
greater than 7/8, etc. While there are several “qualitative” interpretations of winning in games
with randomized strategies (winning with certainty, winning with probability 1 [dAHK98]), the

2

hide , throwrun, throw shide shomeswet

hide,wait
run,wait

Figure 1: Game Skirmish

classical game-theoretic notion of qualitative winning (i.e., game value 1) corresponds to “winning
with probability arbitrarily close to 1”: a state s is limit-winning for player 1 (i.e., v1(s) = 1) iff for
each real ε > 0, there is a player-1 strategy that guarantees a win with probability 1−ε against any
strategy of player 2. Limit-winning is illustrated by the concurrent deterministic game Skirmish,
which is derived from a game of [KS81]: player 1 is hiding (state shide); her goal is to run and
reach home (state shome) without being hit by a snowball; player 2 is armed with a single snowball.
There are three states, swet, shide, and shome. The only state with more than one move for either
player is the initial state shide, where player 1 must choose between hide and run, and player 2
must choose between wait and throw . The effects of the moves are shown in Figure 1. To see that
from the state shide player 1 can limit-win, given any ε > 0, suppose that player 1 chooses run with
probability ε and hide with probability 1 − ε. While player 1 can win this game with probability
arbitrarily close to 1, she cannot win with probability 1: if she never chooses run, she risks that
player 2 always chooses wait , confining her in shide; on the other hand, if in any round she chooses
run with positive probability, then the strategy of player 2 that chooses throw in that round causes
her to lose with positive probability.

We consider objectives in parity form, which is a normal form for all ω-regular objectives.
Specifically, every finite-state game with an ω-regular winning condition can be reduced to another
finite-state game with a parity winning condition, because every ω-regular set can be defined
by a deterministic parity automaton [Mos84, Tho90]. Concurrent probabilistic games generalize
Markov chains, Markov decision processes, deterministic as well as probabilistic turn-based games,
and concurrent deterministic games. Previously, algorithms for computing the limit-winning sets
of parity games have been known only for (1) all varieties of turn-based deterministic games [BL69,
GH82, EJ91, Tho95], (2) concurrent parity games that are played with pure strategies (these games
can be solved like turn-based games) [AHK97], and (3) concurrent reachability games played with
randomized strategies (reachability objectives are a very special case of ω-regular objectives, as in
the MatchBit and Skirmish games) [dAHK07]. We provide an algorithm for computing, given a
concurrent probabilistic parity game, the set of limit-winning states for player 1. The limit-winning
set can be computed in time O(n2m+1), where n is the size of the game structure and 2m is the
number of parities in the winning condition.

Also, given a concurrent probabilistic parity game and a state s, we show that whether s is a
limit-winning state for player 1 can be decided in NP ∩ coNP. While this complexity is the same
as for solving turn-based deterministic parity games [EJ91], our algorithms and correctness proofs
are considerably more involved than those for turn-based games. This has several reasons.

First, in sharp contrast with turn-based games [BL69], the optimal (i.e., limit-winning) strate-
gies for a concurrent (deterministic or probabilistic) game may require both randomization and an
infinite amount of memory about the history of the game. Randomization is required for reach-
ability objectives, and infinite memory is required for Büchi objectives. Consider again the game

3

Skirmish, together with the Büchi winning condition that the state shome be visited infinitely often.
The limit-winning states are shome and shide. As explained above, for every ε, from shide player 1
can reach shome with probability at least 1 − ε. However, if player 1 uses the same probability ε
to choose run in every visit to shide, by always choosing throw player 2 can ensure that the prob-
ability of infinitely many visits to shome is 0. The proof that there are no finite-memory (rather
than memoryless) winning strategies follows a similar argument. On the other hand, for ε > 0, an
infinite-memory strategy that ensures winning with probability at least 1− ε can be constructed as
follows: for k ≥ 0, let εk = 1 − (1 − ε)−1/2k+1

, so that
∏∞

k=0(1 − εk) = 1 − ε; then, at shide, choose
run with probability εk, where k is the number of prior visits to shome. Thus, the construction
of winning strategies for concurrent games often hinges on the analysis of the limit behavior of
infinite-memory randomized strategies. In the paper, we provide a complete characterization of the
types of winning and spoiling strategies needed for the various subclasses of concurrent games.

Second, the fact that both players can choose from several available moves at a state breaks
the standard recursive divide-and-conquer approach to the solution of turn-based parity games
[McN93, Tho95]. For example, the set of states from which player 1 cannot reach a goal no
longer forms a proper subgame. Our algorithms are instead presented in symbolic fixpoint form,
using µ-calculus notation, which, as first remarked in [EJ91], offers a powerful tool for writing
and analyzing algorithms that traverse state spaces. The fixpoint solution also suggests a way for
implementing the algorithms symbolically, potentially enabling the analysis of systems with very
large state spaces [BCM+90].

A preliminary version of this article appeared in [dAH00]. The preliminary version contained
several gaps that are filled in the present article. In addition to computing limit-winning states,
[dAH00] also gave algorithms for computing the smaller set of almost-sure winning states, where
there exists an optimal strategy that allows player 1 to win with probability 1. Following the
techniques of [dAH00], algorithms for computing almost-sure winning states can be derived from
algorithms for computing limit-winning states. However, we omit the discussion of almost-sure
winning from the present article, because it would increase the length of what is already a very
long presentation.

2 Definitions

In this section we define game structures, strategies, objectives, winning modes and other prelimi-
nary definitions.

2.1 Game structures

Probability distributions. For a finite set A, a probability distribution on A is a function
δ : A 7→ [0, 1] such that

∑

a∈A δ(a) = 1. We denote the set of probability distributions on A by
D(A). Given a distribution δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the support of
the distribution δ.

Concurrent game structures. A concurrent (two-player) game structure G = 〈S,A,Γ1,Γ2, δ〉
consists of the following components.

• A finite state space S.

• A finite set A of moves.

4

• Two move assignments Γ1,Γ2 : S 7→ 2A \ ∅. For i ∈ {1, 2}, assignment Γi associates with each
state s ∈ S the nonempty set Γi(s) ⊆ A of moves available to player i at state s. For technical
convenience, we assume that Γi(s) ∩ Γj(t) = ∅ unless i = j and s = t, for all i, j ∈ {1, 2} and
s, t ∈ S. The moves can be trivially renamed if this assumption is not met.

• A probabilistic transition function δ : S × A × A 7→ D(S), which associates with every state
s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s) a probability distribution δ(s, a1, a2) ∈ D(S) for
the successor state.

Plays. At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and
independently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor
state t with probability δ(s, a1, a2)(t), for all t ∈ S. For all states s ∈ S and moves a1 ∈ Γ1(s)
and a2 ∈ Γ2(s), we indicate by Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible successors of
s when moves a1, a2 are selected. A path or a play of G is an infinite sequence ω = 〈s0, s1, s2, . . .〉
of states in S such that for all k ≥ 0, there are moves ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) such that

sk+1 ∈ Dest(sk, a
k
1 , a

k
2). We denote by Ω the set of all paths.

2.2 Strategies

A strategy for a player is a recipe that describes how to extend a play. Formally, a strategy for
player i ∈ {1, 2} is a mapping πi : S+ 7→ D(A) that associates with every nonempty finite sequence
x ∈ S+ of states, representing the past history of the game, a probability distribution πi(x) used to
select the next move. Thus, the choice of the next move can be history-dependent and randomized.
The strategy πi can prescribe only moves that are available to player i; that is, for all sequences
x ∈ S∗ and states s ∈ S, we require that Supp(πi(x · s)) ⊆ Γi(s). We denote by Πi the set of all
strategies for player i ∈ {1, 2}.

Given a state s ∈ S and two strategies π1 ∈ Π1 and π2 ∈ Π2, we define Outcomes(s, π1, π2) ⊆ Ω
to be the set of paths that can be followed by the game, when the game starts from s and the
players use the strategies π1 and π2. Formally, 〈s0, s1, s2, . . .〉 ∈ Outcomes(s, π1, π2) if s0 = s and if
for all k ≥ 0 there exist moves ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) such that

π1(s0, . . . , sk)(a
k
1) > 0, π2(s0, . . . , sk)(a

k
2) > 0, sk+1 ∈ Dest(sk, a

k
1 , a

k
2).

Once the starting state s and the strategies π1 and π2 for the two players have been chosen, the
game is reduced to an ordinary stochastic process. Hence, the probabilities of events are uniquely
defined, where an event A ⊆ Ω is a measurable set of paths1. For an event A ⊆ Ω, we denote by
Prπ1,π2

s (A) the probability that a path belongs to A when the game starts from s and the players
use the strategies π1 and π2.

Types of strategies. We classify strategies according to their use of memory and randomization:

• A strategy π is deterministic if for all x ∈ S+ there exists a ∈ A such that π(x)(a) = 1. Thus,
deterministic strategies are equivalent to functions S+ 7→ A. We denote by ΠD

i the set of
deterministic strategies for player i.

1To be precise, we should define events as measurable sets of paths sharing the same initial state, and we should
replace our events with families of events, indexed by their initial state [KSK66]. However, our (slightly) improper
definition leads to more concise notation.

5

• Strategies in general require memory to remember the history of plays. An equivalent defi-
nition of strategies is as follows: let M be a set called memory to remember the history of
plays. A strategy with memory can be described as a pair of functions: (a) a memory update
function πu : S×M 7→ M, that given the memory M with the information about the history
and the current state updates the memory; and (b) a next move function πn : S×M 7→ D(A)
that given the memory and the current state specifies the next move of the player. A strat-
egy is finite-memory if the memory M is finite. We denote by ΠF

i the set of finite-memory
strategies for player i.

• A memroyless strategy is independent of the history of play and only depends on the current
state. Formally, for a memoryless strategy π we have π(x · s) = π(s) for all s ∈ S and all
x ∈ S∗. Thus memoryless strategies are equivalent to functions S 7→ D(A). We denote by
ΠM

i the set of memoryless strategies for player i. A strategy is deterministic memoryless
if it is both deterministic and memoryless. The deterministic memoryless strategy neither
use memory, nor use randomization and are equivalent to functions S 7→ A. We denote by
ΠDM

i = ΠD
i ∩ ΠM

i the set of deterministic memoryless strategies for player i.

In the tables listing strategy types, we indicate with ΠH (for history-dependent) a generic strategy,
in which the distributions chosen may depend in an arbitrary way on the past history of the game.

2.3 Objectives

We specify objectives for the players by providing the set of winning plays Φ ⊆ Ω for each player.
In this paper we study only zero-sum games [RF91, FV97], where the objectives of the two players
are complementary. A general class of objectives are the Borel objectives [Kec95]. A Borel objective
Φ ⊆ Sω is a Borel set in the Cantor topology on Sω. In this paper we consider ω-regular objec-
tives [Tho90], which lie in the first 21/2 levels of the Borel hierarchy (i.e., in the intersection of Σ3

and Π3). The ω-regular objectives, and subclasses thereof, can be specified in the following forms.
For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf (ω) = {s ∈ S | sk = s for infinitely many k ≥ 0}
to be the set of states that occur infinitely often in ω.

• Reachability and safety objectives. Given a set T ⊆ S of “target” states, the reachability
objective requires that some state of T be visited. The set of winning plays is thus Reach(T) =
{ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥ 0}. Given a set F ⊆ S, the safety objective
requires that only states of F be visited. Thus, the set of winning plays is Safe(F) = {ω =
〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ F for all k ≥ 0}.

• Büchi and co-Büchi objectives. Given a set B ⊆ S of “Büchi” states, the Büchi objective
requires that B is visited infinitely often. Formally, the set of winning plays is Büchi(B) =
{ω ∈ Ω | Inf (ω) ∩ B 6= ∅}. Given C ⊆ S, the co-Büchi objective requires that all states
visited infinitely often are in C. Formally, the set of winning plays is co-Büchi(C) = {ω ∈ Ω |
Inf (ω) ⊆ C}.

• Rabin-chain (parity) objectives. For c, d ∈ N, we let [c..d] = {c, c+1, . . . , d}. Let p : S 7→ [0..d]
be a function that assigns a priority p(s) to every state s ∈ S, where d ∈ N. The Even parity
objective requires that the maximum priority visited infinitely often is even. Formally, the
set of winning plays is defined as Parity(p) = {ω ∈ Ω | max

(

p(Inf (ω))
)

is even }. The dual

6

Odd parity objective is defined as coParity(p) = {ω ∈ Ω | max
(

p(Inf (ω))
)

is odd }. Note
that for a priority function p : S 7→ {1, 2}, an even parity objective Parity(p) is equivalent to
the Büchi objective Büchi(p−1(2)), i.e., the Büchi set consists of the states with priority 2.
Hence Büchi and co-Büchi objectives are simpler and special cases of parity objectives.

Given a set U ⊆ S we use shorthand notations 2U,3U,23U and 32U to denote
Safe(U),Reach(U),Büchi(U) and co-Büchi(U), respectively.

2.4 Winning modes

Given an objective Φ, for all initial states s ∈ S, the set of paths Φ is measurable for all choices of
the strategies of the player [Var85]. Given an initial state s ∈ S and an objective Φ, we consider
the following winning modes for player 1:

Limit. We say that player 1 wins limit surely if the player has a strategy to win with probability
arbitrarily close to 1, or supπ1∈Π1

infπ2∈Π2
Prπ1,π2

s (Φ) = 1.

Bounded. We say that player 1 wins boundedly if the player has a strategy to win with probability
bounded away from 0, or supπ1∈Π1

infπ2∈Π2
Prπ1,π2

s (Φ) > 0.

Analogous definitions apply for player 2. We abbreviate the winning modes by limit and bounded ,
respectively. We call these winning modes the qualitative winning modes. Using a notation
derived from alternating temporal logic [AHK97], given a player i ∈ {1, 2}, a winning mode
ζ ∈ {limit , bounded} and an objective Φ, we denote by 〈〈i〉〉ζ

(

Φ
)

the set of states from which
player i can win in mode ζ the game with objective Φ.

2.5 Winning and spoiling strategies

Given an objective Φ, the winning strategies are the strategies that enable player 1 to win the game
whenever possible. We define limit-winning strategies as follows.

• A limit-winning family of strategies for Φ is a family {π1(ε) | ε > 0} of strategies for player 1
such that for all reals ε > 0, all states s ∈ 〈〈1〉〉limit

(

Φ
)

, and all strategies π2 of player 2, we

have Pr
π1(ε),π2
s (Φ) ≥ 1 − ε.

The spoiling strategies for an objective Φ are the strategies that enable player 2 to prevent player 1
from winning the game whenever it cannot be won. We define limit-spoiling strategies for player 2
as follows.

• A limit-spoiling strategy for Φ is a strategy π2 for player 2 such that there exists a real
q > 0 such that for all states s 6∈ 〈〈1〉〉limit

(

Φ
)

and all strategies π1 of player 1, we have
Prπ1,π2

s (Φ) ≤ 1 − q.

We will show that limit-winning or limit-spoiling strategies always exist. In the following sections,
we consider objectives that consist in safety and reachability, Büchi, co-Büchi, and Rabin-chain (or
parity) objectives [Mos84, Tho90]. We call games with such objectives safety, reachability, Büchi,
co-Büchi, and Rabin-chain (parity) games, respectively. We remark that the ability of solving
games with Rabin-chain objectives suffices for solving games with respect to arbitrary ω-regular
objectives. In fact, we can encode a general ω-regular objective as a deterministic Rabin-chain

7

automaton. By taking the synchronous product of the automaton and the original game, we obtain
an (enlarged) game with a Rabin-chain objective [Tho95, LW95, KPBV95, BLV96]. The set of
winning states of the original structure can be computed by computing the set of winning states of
this enlarged game.

2.6 Mu-calculus, complementation, and levels

Consider a mu-calculus expression Y = µX . φ(X) over a finite set S, where φ : 2S 7→ 2S is
monotonic. The least fixpoint Y = µX . φ(X) of X = φ(X) is equal to the limit Y = limk→∞ Xk,
where X0 = ∅, and Xk+1 = φ(Xk). For every state s ∈ Y , we define the level k ≥ 0 of s in
µX . φ(X) to be the integer such that s 6∈ Xk and s ∈ Xk+1. The greatest fixpoint Y = νX . φ(X)
of X = φ(X) is equal to the limit Y = limk→∞ Xk, where X0 = S, and Xk+1 = φ(Xk). For every
state s 6∈ Y , we define the level k ≥ 0 of s in νX . φ(X) to be the integer such that s ∈ Xk and
s 6∈ Xk+1. The height of a mu-calculus expression Y = λX .φ(X), where λ ∈ {µ, ν}, is the maximal
level of any state in Y , i.e., the integer h such that Xh = limk→∞ Xk. An expression of height h can
be computed in h+ 1 iterations. Given a mu-calculus expression Y = λX .φ(X), where λ ∈ {µ, ν},
the complement ¬Y = S \ Y of λ is given by ¬Y = λX .¬φ(¬X), where λ = µ if λ = ν, and λ = ν
if λ = µ.

Distributions and one-step transitions. Given a state s ∈ S, we denote by χs
1 = D(Γ1(s)) and

χs
2 = D(Γ2(s)) the sets of probability distributions over the moves at s available to player 1 and 2,

respectively. Moreover, for s ∈ S, X ⊆ S, ξ1 ∈ χs
1, and ξ2 ∈ χs

2 we denote by

P ξ1,ξ2
s (X) =

∑

a∈Γ1(s)

∑

b∈Γ2(s)

∑

t∈X

ξ1(a) · ξ2(b) · δ(s, a, b)(t)

the one-step probability of a transition into X when players 1 and 2 play at s with distributions
ξ1 and ξ2, respectively. Given a state s and distributions ξ1 ∈ χs

1 and ξ2 ∈ χs
2 we denote by

Dest(s, ξ1, ξ2) = {t ∈ S | P ξ1,ξ2
2 (t) > 0} the set of states that have positive probability of transition

from s when the players play ξ1 and ξ2 at s.

3 Safety Games

Given a safety objective 2U , where U ⊆ S is a subset of states, we present symbolic algorithms
to compute 〈〈1〉〉limit

(

2U
)

. We introduce the necessary predecessors operators for the symbolic
algorithm.

The Pre and Epre operators. The controllable predecessor operators Pre1 and Epre2, defined
for all s ∈ S and X ⊆ S by:

Pre1(X) = {s ∈ S | ∃ξ1 ∈ χs
1 . ∀ξ2 ∈ χs

2 . P ξ1,ξ2
s (X) = 1};

Epre2(X) = {s ∈ S | ∃ξ2 ∈ χs
2 . ∀ξ1 ∈ χs

1 . P ξ1,ξ2
s (X) > 0} .

Intuitively, if s ∈ Pre1(X) then player 1 can enforce reaching X with probability 1 in one step,
and if s ∈ Epre1(X), then player 1 can enforce reaching X with positive probability in one step.
Given a subset Z ⊆ S, a move a ∈ Γ1(s) risks moving into Z if there exists b ∈ Γ2(s) such that
Dest(s, a, b) ∩ Z 6= ∅. Observe that if player 2 plays all moves uniformly at random and player 1
plays a move that risks to move into Z, then the game reaches Z with positive probability. In the

8

above definitions, the operators Pre and Epre are defined in terms of distributions. The following
lemma provides a definition in terms of moves.

Lemma 1 For all X ⊆ S we have

1. s ∈ Pre1(X) iff ∃a ∈ Γ1(s) . ∀b ∈ Γ2(s) . Dest(s, a, b) ⊆ X;
2. s ∈ Epre2(¬X) iff ∀a ∈ Γ1(s) . ∃b ∈ Γ2(s) . Dest(s, a, b) ∩ ¬X 6= ∅;
3. Epre2(¬X) = ¬Pre1(X).

Proof. Assume that there exists a ∈ Γ1(s) such that for all b ∈ Γ2(s) we have Dest(s, a, b) ⊆ X,
and let ξ1 be a distribution that deterministically chooses one such a. This distribution ξ1 is a
witness to the existential quantifier in the definition of Pre1. This shows that if ∃a ∈ Γ1(s) . ∀b ∈
Γ2(s) . Dest(s, a, b) ⊆ X, then s ∈ Pre1(X).

Conversely, assume that for all a ∈ Γ1(s) there exists b ∈ Γ2(s) such that Dest(s, a, b)∩¬X 6= ∅.
Let ξ2 be the distribution that plays uniformly at random all the moves in the set Γ2(s). This
distribution is a witness to the existential quantifier in the definition of Epre2, and thus, s ∈
Epre2(¬X). Observe that the distribution ensures that ¬X is reached with probability at least

1
|Γ2(s)|

· min{δ(s, a, b)(t) | a ∈ Γ1(s), b ∈ Γ2(s), δ(s, a, b)(t) > 0}, so that the probability is bounded
away from 0.

The result follows by noting that the two above assumptions are complementary, and Pre1(X)∩
Epre2(¬X) = ∅.

In view of these results, if s ∈ Pre1(X) we denote by ξPre
s,1 (X) ∈ χs

1 a distribution that deter-
ministically chooses a move from the set {a ∈ Γ1(s) | ∀b ∈ Γ2(s) . Dest(s, a, b) ⊆ X}. Similarly, if
s ∈ Epre2(¬X), we define the distribution ξEpre

s,2 (¬X) ∈ χs
2 as the distribution that plays uniformly

at random all the moves in the set Γ2(s).

Lemma 2 For all U ⊆ S we have

νX . [Pre1(X) ∩ U] ⊆ 〈〈1〉〉limit

(

2U
)

. (1)

Proof. Let W = νX . [Pre1(X) ∩ U]. Define a deterministic memoryless strategy π1 as follows:
π1(s) = ξPre

s,1 (W) for s ∈ W , and an arbitrary deterministic memoryless strategy for s ∈ S \ W .
The strategy π1 ensures that for all π2 and for all s ∈ W we have Prπ1,π2

s (2U) = 1; clearly π1 is a
limit-winning strategy for all s ∈ W .

By Lemma 1 we have Epre2(X) = ¬Pre1(¬X), and complementing the mu-calculus expression (1)
we obtain

V = µX . [¬U ∪ Epre2(X)] . (2)

Lemma 3 For all U ⊆ S, let V = µX . [¬U ∪ Epre2(X)]. We have

V ⊆
{

s ∈ S
∣

∣ ∃q > 0 . ∃π2 . ∀π1 . Prπ1,π2
s (3¬U) ≥ q > 0

}

.

Proof. Let Vk be the set of states of level k ≥ 0 in V = µX.(¬U∪Epre2(X)), so that V =
⋃

k≥0 Vk.
Then a memoryless limit-spoiling strategy for the safety objective 2U can be obtained by playing
at each s ∈ Vk the distribution ξEpre

s,2 (
⋃k−1

i=0 Vi), for all k > 0. The distributions played at V0 = ¬U
and S \ V are irrelevant.

9

From Lemma 2 and Lemma 3, we obtain the following theorem, which summarizes the results
on safety games. See [dAHK07] for an example to illustrate that limit-spoiling strategies require
randomization.

Theorem 1 [dAHK07] For all concurrent game structures, for all safety objectives 2U for
player 1, where U ⊆ S, the following assertions hold.

1. We have 〈〈1〉〉limit

(

2U
)

= νX . [Pre1(X) ∩ U] .

2. The set of limit-winning states can be computed in linear time in the size of the game.

3. Deterministic memoryless limit-winning strategy exists for player 1.

4. The most restrictive class of strategies in which limit-spoiling strategies are guaranteed to exist
for player 2 is the class of memoryless strategies.

4 Reachability Games

In this section we consider reachability games with objective 3U for player 1. We will present
symbolic algorithm to compute limit-winning states for player 1. To solve these games, we introduce
new predecessor operators.

4.1 Predecessor operators for reachability games

To solve reachability games, we define two new operators, Lpre and Fpre. For s ∈ S and X,Y ⊆ S,
these two-argument predecessor operators are defined as follows:

Lpre1(Y,X) = {s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs
1 . ∀ξ2 ∈ χs

2 .
[

P ξ1,ξ2
s (X) > α · P ξ1,ξ2

s (¬Y)
]

}; (3)

Fpre2(X,Y) = {s ∈ S | ∃β > 0 . ∃ξ2 ∈ χs
2 . ∀ξ1 ∈ χs

1 .
[

P ξ1,ξ2
s (Y) ≥ β · P ξ1,ξ2

s (¬X)
]

} . (4)

The operator Lpre1(Y,X) states that player 1 can choose distributions to ensure that the probability
to progress to X can be made arbitrarily large as compared to the probability of escape from Y . The
operator Fpre2(X,Y) states that player 2 can choose distributions to ensure that the probability to
progress to Y can be made greater than a positive constant times the probability of escape from X.
The definitions of the predecessor operators Lpre2 and Fpre1 can be obtained from these definitions
simply by exchanging the subscripts 1 and 2.

The above definitions (3) and (4) is not computational. We now present symbolic algorithms
to compute Lpre1(Y,X) and Fpre2(X,Y); these algorithms will also lead to a proof of the duality
of these operators (Lemma 4). Given a state s ∈ S and two subsets X,Y ⊆ S, to decide whether
s ∈ Lpre1(Y,X) we evaluate a µ-calculus expressions over the set Γs = Γ1(s)∪Γ2(s). For X,Y ⊆ S,
A ⊆ Γs, i ∈ {1, 2}, and s ∈ S we define two predicates, Stayi(s, Y,A) and Coveri(s,X,A) by:

Stayi(s, Y,A) = {a ∈ Γi(s) | ∀b ∈ Γ¬i(s) \ A .
[

Dest(s, a, b) ⊆ Y
]

} (5)

Coveri(s,X,A) = {b ∈ Γ¬i(s) | ∃a ∈ Γi(s) ∩ A . Dest(s, a, b) ∩ X 6= ∅} ; (6)

where ¬i = 2 if i = 1, and ¬i = 1 if i = 2. The set Stayi(s, Y,A) ⊆ Γi(s) consists of the set of
player i moves a such that for all moves b for the other player that are not in A, the next state is

10

in Y with probability 1. The set Coveri(s,X,A) ⊆ Γ¬i(s) consists of the other player moves b such
that there is a move a for player i in A such that the next state is in X with positive probability.
The duals of the predicates are as follows:

¬Stayi(s,¬Y,¬A) = Γ¬i(s) ∪ {a ∈ Γi(s) | ∃b ∈ Γ¬i(s) ∩ A . Dest(s, a, b) ∩ Y 6= ∅}

= Γ¬i(s) ∪ Cover¬i(s, Y,A) (7)

¬Coveri(s,¬X,¬A) = Γi(s) ∪ {b ∈ Γ¬i(s) | ∀Γi(s) \ A . Dest(s, a, b) ⊆ X}

= Γi(s) ∪ Stay¬i(s,X,A). (8)

Lemma 4 Given X ⊆ Y ⊆ S, s ∈ S, the following assertions hold.

1. s ∈ Lpre1(Y,X) iff Γ2(s) ⊆ µA .
[

Stay1(s, Y,A) ∪ Cover1(s,X,A)
]

; (9)

2. s ∈ Fpre2(¬X,¬Y) iff Γ2(s) \ µA .
[

Stay1(s, Y,A) ∪ Cover1(s,X,A)
]

6= ∅; (10)

3. Fpre2(¬X,¬Y) = ¬Lpre1(Y,X) . (11)

Proof. We first prove that if Γ2(s) ⊆ µA.
[

Stay1(s, Y,A)∪Cover1(s,X,A)
]

, then s ∈ Lpre1(Y,X).

For all 0 < ε < 1, we define the distribution ξLpre
s,1 [ε](Y,X) ∈ χs

1 as the distribution that

plays each move a ∈ Γ1(s) with probability proportional to εj , where j is the level of a in
µA . [Stay1(s, Y,A) ∪ Cover1(s,X,A)] (the details of the construction are available in [dAHK07]).
Since Γ2(s) ⊆ µA . [Stay1(s, Y,A)∪Cover1(s,X,A)], for every move b ∈ Γ2(s) we denote by ℓ(b) the
level of b in the µ-calculus expression. Consider a move b with ℓ(b) = k. Given player 2 plays move
b we have:

• the probability of going to X is proportional to at least εk−1, since for some move a ∈ Γ1(s)
of level at most k − 1 we have Dest(s, a, b) ∩ X 6= ∅; and

• the probability of leaving Y is at most proportional to εk, since for all moves a ∈ Γ1(s) of
level k − 1 we have Dest(s, a, b) ⊆ Y .

It follows that for all distributions ξ2 ∈ χs
2, the ratio of the probability of going to X as compared

to leaving Y is proportional to at least 1/ε. Since ε > 0 is arbitrary, the result follows. Also observe
that as ε → 0, the distribution converges to a distribution with support Stay1(s, Y, ∅). Given ε > 0,
the construction also ensures that X is reached with probability at least εM , where M = |Γs|.

To complete the proof we show that if Γ2(s) \ µA . [Stay1(s, Y,A) ∪ Cover1(s,X,A)] 6= ∅, then
Fpre2(¬X,¬Y) can be satisfied. Let A∗ = µA . [Stay1(s, Y,A) ∪ Cover1(s,X,A)] and B = Γs \ A∗.
Note that B ∩ Γ2(s) 6= ∅. Then the following assertions hold: (a) for all a ∈ A∗ ∩ Γ1(s) and
for all b ∈ B ∩ Γ2(s) we have Dest(s, a, b) ∩ X = ∅, i.e., Dest(s, a, b) ⊆ ¬X; and (b) for all
a ∈ B ∩ Γ1(s), there exists b ∈ B ∩ Γ2(s) such that Dest(s, a, b) ∩ ¬Y 6= ∅. We define the
distribution ξFpre

s,2 (¬X,¬Y) ∈ χs
2 as the distribution that plays uniformly at random all the moves

in B ∩ Γ2(s). The distribution ξFpre
s,2 (¬X,¬Y) ∈ χs

2 is a witness of ξ2 in the characterization of (4)

with β = 1
|B| · min{δ(s, a, b)(t) | s ∈ S, a ∈ Γ1(s), b ∈ Γ2(s), t ∈ Dest(s, a, b)}.

Remark 1 The proof of Lemma 4 can be easily extended as follows: given X ⊆ Y ⊆ S, and s ∈ S,
let C = µA .

[

Stay1(s, Y,A)∪Cover1(s,X,A)
]

; then for all α > 0, there exists ξ1 ∈ χs
1 such that for

all ξ2 ∈ χs
2 with Supp(ξ2) ⊆ C we have

[

P ξ1,ξ2
s (X) > α · P ξ1,ξ2

s (¬Y)
]

. In other words, if player 2’s
moves are restricted to C ∩ Γ2(s), then player 1 can ensure that s ∈ Lpre1(Y,X).

11

The algorithm for the computation of Lpre1(Y,X) is illustrated in Figure 2.

Example 1 A state s is called an absorbing state in a concurrent game graph if for all a1 ∈ Γ1(s)
and a2 ∈ Γ2(s) we have δ(s, a1, a2)(s) = 1. In other words, at s for all choices of moves of the
players the next state is always s.

Consider the game shown in Fig. 3, originally due to [KS81]. The states s1 and s2 are absorbing
states. The transition function is defined as follows:

δ(s0, a, c)(s0) = 1; δ(s0, b, d)(s2) = 1; δ(s0, a, d)(s1) = δ(s0, b, c)(s1) = 1.

The objective of player 1 is to reach s1, i.e., 3{s1}. For ε > 0, consider the memoryless strategy
πε ∈ ΠM

1 that plays move a with probability 1− ε, and move b with probability ε. The game starts
at s0, and in each round if player 2 plays move c, then the play reaches s1 with probability ε and
stays in s0 with probability 1 − ε; whereas if player 2 plays move d, then the game reaches state
s1 with probability 1 − ε and state s2 with probability ε. Hence it is easy to argue that player 1,
using strategy πε, can reach s1 with probability at least 1−ε, regardless of the strategy adopted by
player 2. Hence for all ε > 0, there exists a strategy πε for player 1, such that against all strategies
π2, we have Prπε,π2

s0
(3{s1}) ≥ 1 − ε; and thus s0 ∈ 〈〈1〉〉limit

(

3{s1}
)

. Thus, player 1 can win with
probability arbitrarily close to 1.

To see that player 1 cannot win with probability 1, consider the strategy π2 obtained by the
initial randomization of the two memoryless strategies: π1

2 that plays move c and d with probability
1/2, and π2

2 that plays move c deterministically. Assume player 2 plays according to π2, and consider
any strategy π1 for player 1. If the strategy π1 always deterministically plays a at s0, then the
game never reaches s1. If at any round j, at s0 the strategy π1 plays b with positive probability,
then the play reaches s2 with positive probability. Hence it follows that player 1 cannot ensure
that 3{s1} is satisfied with probability 1.

The following technical lemma will lead to the algorithm for reachability games, and will play
a key role in several of the arguments.

Lemma 5 (Basic Lpre principle) Let X ⊆ S, Y = X ∪ {s}, and Y ⊆ Z ⊆ S. Let s ∈
Lpre1(Z,X). For all events A ⊆ 2(Z \ Y), the following assertion holds:

Assume that for all η > 0 there exists πη
1 ∈ ΠM

1 (resp. πη
1 ∈ Π1) such that for all

π2 ∈ Π2 and for all z ∈ Z \ Y we have

Pr
πη
1 ,π2

z (A ∪ 3Y) ≥ 1 − η, (i.e., lim
η→0

Pr
πη
1 ,π2

z (A ∪ 3Y) = 1).

Then, for all ε > 0 there exists πε
1 ∈ ΠM

1 (resp. πε
1 ∈ Π1) such that for all π2 ∈ Π2 we

have
Pr

πε
1,π2

s (A ∪ 3X) ≥ 1 − ε, (i.e., lim
ε→0

Pr
πε
1,π2

z (A ∪ 3X) = 1).

Proof. The situation is depicted in Fig 4.(a). Since s ∈ Lpre1(Z,X), given ε > 0, player 1 can
play the distribution ξLpre

s,1 [ε](Z,X) to ensure that the probability of going to ¬Z is at most ε times
the probability to going to X; we denote the probabilities as γ · ε and γ, respectively. Observe that
γ > εl, where l = |Γs|. Let α denote the probability of the event A and since A ⊆ A ∪ 3X, the
worst-case analysis for the result correspond to the case when α = 0, and the simplified situation is

12

a3

[0]

a1 b1

b2

b3

b4

b1

b2

b3

b4a4

a3

a2

a1

s1 :

s3 :

[ε2]

[1]

[ε]

[1]

a4

a2

[1]

[0]

[0]

[0]

b1

b2

b3

b4a4

a3

a2

a1

s2 :

a

a b

b

Dest(s, a, b) ∩ X 6= ∅

Arrow at state s Meaning

Dest(s, a, b) ∩ ¬Y 6= ∅

[1]

[1]

[0]

Figure 2: Example of computation of predicate Lpre1(Y,X). The algorithm for deciding
Lpre1(Y,X) works as follows. Initially, all moves are marked “uncovered”, and i = 0. Then,
for i ≥ 0, the two following steps are applied alternatively, until no more moves can be covered:
(a) all moves of player 1 that have incoming edges only from already covered moves are marked as
covered;
(b) all moves of player 2 that have at least one incoming edge from a covered move are marked as
covered.
A state satisfies Lpre1(Y,X) if all the moves of player 2 can be marked as covered.
In the figure, at state s1, it is possible to mark as covered all moves of player 2, and we have
s1 ∈ Lpre1(Y,X). In this case, we also label each move of player 1 with εi, where i is the round
(beginning from 0) at which it has been covered. These labels can be used to construct a family of
distributions for player 1 that satisfy (3).
At state s2, we can only cover moves b3 and b4 of player 2; hence, s2 6∈ Lpre1(Y,X). Similarly, at
s3 we cannot cover move b3, hence s3 6∈ Lpre1(Y,X). In these cases, we have s2 ∈ Fpre2(¬X,¬Y)
and s3 ∈ Fpre2(¬X,¬Y). If we label with 0 the moves of player 2 that have been covered, and
with 1 those that have not, we can use the resulting labels to obtain a distribution for player 2
satisfying the characterization for Fpre2 obtained by exchanging the roles of players 1 and 2 in (4).
The labels associated with the moves are called move weights.

13

s2ad,bc

ac

bd
s1 s0

Figure 3: Reachability games

(c)

X

s

X X

s s

Z Z Z

γ ββ

η

1 − η

γ · ε

γ

γ · εγ · ε

β

η
γ

α
A

1 − α − η

(a) (b)

Figure 4: Basic Lpre principle; in the figures β = 1 − γ − γ · ε

shown as Fig 4.(b). We first present an informal argument and then present rigorous calculations.
Once we let η → 0, then we only have an edge from Z \ Y to Y and the situation is shown in
Fig 4.(c). If q is the probability to reach X, then the probability to reach ¬Z is q · ε and we have
q + qε = 1, i.e., q = 1

1+ε , and given ε′ > 0 we can chose ε to ensure that q ≥ 1 − ε′.

We now present detailed calculations. Given ε′ > 0 we construct a strategy πε′
1 as follows: let

ε = ε′

2(1−ε′) and η = εl+1 > 0; and fix the strategy πη
1 for states in Z \ Y and the distribution

ξLpre
s,1 [ε](Z,X) at s. Observe that by choice we have η ≤ γ · ε. Let q = Pr

πε′

1 ,π2

s (A ∪ 3X). Then we
have q ≥ γ + β · (1− η) · q; since the set Z \Y is reached with probability at most β and then again
Y is reached with probability at least 1 − η. Thus we have

q ≥ γ + (1 − γ − γ · ε) · (1 − η) · q;

q ≥
γ

γ + γ · ε + η − η · γ − η · γ · ε

≥
γ

γ + γ · ε + η

≥
γ

γ + γ · ε + γ · ε
(since η ≤ γ · ε)

≥ 1
1+2ε ≥ 1 − ε′.

The desired result follows.

4.2 Winning sets for reachability games

The characterizations of the predecessor operators given above lead to algorithms for the symbolic
computation of the limit-winning states of reachability games.

14

Lemma 6 For all U ⊆ S we have

νY . µX . [Lpre1(Y,X) ∪ U] ⊆ 〈〈1〉〉limit

(

3U
)

. (12)

Proof. We exhibit limit-winning strategies as follows. Let W = νY . µX . [Lpre1(Y,X) ∪ U],
so that W = µX . [Lpre1(W,X) ∪ U]. The computation of W can be obtained as a sequence
T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tm−1 ⊂ Tm = W such that T0 = U and for i ≥ 1 we have Ti+1 \Ti = {s} and
s ∈ Lpre1(W,Ti). By induction on i, from i = m down to i = 1, we can show that for s ∈ Ti+1 \Ti,

for all ε > 0, there exists πε
1 ∈ ΠM

1 such that for all π2, we have Pr
πε
1,π2

s (3Ti) ≥ 1− ε. The result is
an application of the basic Lpre principle (Lemma 5), with Z = W , X = Ti, Y = Ti+1 and A = ∅.
It is easy to show that for all ε > 0, there exists πlimit

1 [ε] ∈ ΠM
1 such that for all strategies π2 for

player 2, for all states s ∈ W , we have Pr
πlimit

1 [ε],π2

s (3U) ≥ 1 − ε. The result follows.

We complement the mu-calculus expression (12) and exhibit spoiling strategies for player 2 for
the complementary set. Note that by Lemma 4 we have ¬Lpre1(¬Y,¬X) = Fpre2(X,Y).

Lemma 7 For all U ⊆ S we have

¬νY . µX . [Lpre1(Y,X) ∪ U] = µY . νX . [(¬Lpre1(¬Y,¬X)) ∩ ¬U]

= µY . νX . [Fpre2(X,Y) ∩ ¬U] ⊆ ¬〈〈1〉〉limit

(

3U
)

. (13)

Proof. We define the spoiling strategies for limit reachability as follows. We have ¬W =
µY . νX . (Fpre2(X,Y) ∩ ¬U), from (13). The set ¬W is obtained as follows: Y0 ⊂ Y1 ⊂ Y2 · · · ⊂
Ym = ¬W such that for Y0 = ∅ and for all i ≥ 0, for all s ∈ Yi+1 \Yi we have s ∈ Fpre2(Yi+1, Yi). A
spoiling strategy for player 2 can be obtained by playing, at all k ≥ 1 and s ∈ Yk, with distribution
ξFpre
s,2 (Yk, Yk−1). The strategy ensures for all k ≥ 1, and s ∈ Yk, that against all strategies π1,

either Yk is not left or else Yk−1 is reached with positive bounded probability. This proves that the
strategy constructed is a spoiling strategy. The detailed proofs that the above strategy is a spoiling
strategy can be found in [dAHK07].

From Lemma 6 and 7 we obtain the following result.

Theorem 2 For all concurrent game structures, for all reachability objectives 3U for player 1,
where U ⊆ S, the following assertions hold.

1. We have
〈〈1〉〉limit

(

3U
)

= νY . µX . [Lpre1(Y,X) ∪ U] (14)

2. The sets of limit-winning states can be computed using the relations (14) in quadratic time.

3. The most restrictive class of strategies in which limit-winning strategies are guaranteed to
exist for player 1 is the class of memoryless strategies.

4. The most restrictive class of strategies in which limit-spoiling strategies are guaranteed to exist
for player 2 is the class of memoryless strategies.

15

s2ad,bc

ac

bd
s1 s0

Figure 5: Büchi games

5 Büchi Games

In this section we consider Büchi games, where the objective for player 1 is 23B2 for B2 ⊆ S.
We first present an example that shows that in case of Büchi games, limit-winning strategies may
require infinite memory.

Example 2 Consider the game shown in Fig. 5. The transition function at state s0 is same the
as the one in Fig 3. The state s2 is an absorbing state, and from the state s1 the next state is
always s0. The objective of player 1 is to visit s1 infinitely often, i.e., 23{s1}. For ε > 0, we
construct a strategy πε as follows: for i ≥ 0, construct a sequence of εi, such that εi > 0, and
∏

i(1 − εi) ≥ (1 − ε). At state s0, between the i-th and the i + 1-th visits to s1, we use a strategy
that reaches s1 with probability 1 − εi; such a strategy can be constructed as in the solution of
reachability games (see the discussion for Fig. 3 and, for a more rigorous treatment, [dAHK07]).
The overall strategy πε constructed in this fashion ensures that against any strategy π2, the state
s1 is visited infinitely often with probability 1 − ε. However, the strategy πε needs to count the
number of visits to s1, and therefore requires infinite memory.

The following lemma shows that the fact that the infinite memory requirement, in general,
cannot be avoided.

Lemma 8 Limit-winning strategies for Büchi games may require infinite memory.

Proof. Consider again the game described in Example 2 and illustrated in Fig. 5. Example 2 shows
the existence of an infinite-memory limit-winning strategy. We show now that all finite-memory
strategies visit s2 infinitely often with probability 0. Let π1 be an arbitrary finite-memory strategy
for player 1, and let M be the (finite) memory set used by the strategy. On the set {s0, s1, s2}×M ,
strategy π1 is memoryless. Consider now a strategy π2 for player 2 constructed as follows. From a
state (s0,m) ∈ {s0, s1, s2} × M , if player 1 plays a with probability 1, then player 2 plays c with
probability 1, ensuring that the successor is (s0,m

′) for some m′ ∈ M . If player 1 plays b with
positive probability, then player 2 plays c and d uniformly at random, ensuring that (s2,m

′) is
reached with positive probability, for some m′ ∈ M . Under π1, π2 the game is reduced to a Markov
chain, and since the set {s2} × M is absorbing, and since all states in {s0} × M either stay safe
in {s0} × M or reach {s2} × M in one step with positive probability, and all states in {s1} × M
reaches {s0} × M in one step, the closed recurrent classes must be either entirely contained in
{s0}×M , or in {s2}×M . This shows that, under π1, π2, player 1 achieves the Büchi goal 23{s1}
with probability 0.

We now present symbolic algorithms to compute limit-winning states in Büchi games using the
same predecessor operators of reachability games. The algorithms are based on the basic principle
of repeated reachability.

16

Basic principle of repeated reachability. We say that an objective is infinitary if it is inde-
pendent of all finite prefixes. Formally, an objective A is infinitary if, for all u, v ∈ S∗ and ω ∈ Sω,
we have uω ∈ A iff vω ∈ A. Observe that parity objectives are defined based on the states that
appear infinitely often along a play, and hence independent of all finite prefixes, so that, parity
objectives are infinitary objectives.

Lemma 9 Given sets T ⊆ S, B ⊆ S, and an infinitary objective A, let

W ⊆ 〈〈1〉〉limit

(

3T ∪ 3(B ∩ Pre1(W)) ∪ A
)

.

Then
W ⊆ 〈〈1〉〉limit

(

3T ∪ 23B ∪ A
)

.

Proof. Let Z = B ∩ Pre1(W). For all states s ∈ W \ (B ∪ T), for all ε > 0, there is a player 1
strategy πlimit

1 [ε] that ensures that against all player 2 strategies π2 we have

Pr
πlimit

1 [ε],π2

s

(

3(T ∪ Z) ∪ A
)

≥ 1 − ε.

For all states in Z player 1 can ensure that the successor state is in W (since Pre1(W) holds in Z).
Given ε > 0, fix a sequence ε1, ε2, . . . such that for all i ≥ 1 we have εi > 0 and

∏∞
i=1(1−εi) ≥ (1−ε)

(for example let (1 − εi) = (1 − ε)
1

2i , i.e., εi = 1 − (1 − ε)
1

2i). Consider a strategy π∗
1 as follows:

for states s ∈ Z play a memoryless strategy for Pre1(W) to ensure that the next state is in W ; for
states s ∈ W \ (Z ∪ T) play a strategy πlimit

1 [εj+1] between the j-th and j + 1-th visit to Z ∪ T .
Let us denote by 3kZ ∪3T to be the set of paths that visits Z at least k-times or visits T at least
once. Observe that limk→∞

(

3kZ ∪ 3T
)

⊆ 23B ∪ 3T . Hence for all s ∈ W and for all π2 ∈ Π2

we have

Pr
π∗

1 ,π2

s (23B ∪ 3T ∪ A) ≥ Pr
π∗

1 ,π2

s

(

3Z ∪ 3T ∪ A
)

·
∞
∏

k=1

Pr
π∗

1 ,π2

s

(

3k+1Z ∪ 3T ∪ A | 3kZ ∪ 3T ∪ A
)

= Pr
πlimit

1 [ε1],π2
s

(

3Z ∪ 3T ∪ A
)

·
∏∞

k=1 Pr
πlimit

1 [εk+1],π2
s

(

3k+1Z ∪ 3T | 3kZ ∪ 3T ∪ A
)

≥
∏∞

k=1(1 − εk) ≥ 1 − ε.

Hence we have Pr
π∗

1 ,π2

s (23B ∪ 3T ∪ A) ≥ 1 − ε, for all s ∈ W and for all π2 ∈ Π2. Since ε > 0 is
arbitrary, it follows that W ⊆ 〈〈1〉〉limit

(

23B ∪ 3T ∪ A
)

.

Lemma 10 For T ⊆ S, B2 ⊆ S, and B1 = S \ B2, we have

νY0 . µX0 .
[

T ∪ (B1 ∩ Lpre1(Y0,X0)) ∪ (B2 ∩ Pre1(Y0))
]

⊆ 〈〈1〉〉limit

(

23B2 ∪ 3T
)

. (15)

Proof. Let
W = νY0 . µX0 .

[

T ∪ (B1 ∩ Lpre1(Y0,X0)) ∪ (B2 ∩ Pre1(Y0))
]

.

Then we can rewrite W as follows:

W = νY0 . µX0 .
[

T ∪ (B2 ∩ Pre1(W)) ∪ (B1 ∩ Lpre1(Y0,X0))
]

.

17

The result follows from an application of Lemma 9. By the correctness of limit-reachability
(Lemma 6), we treat T ∪ (B2 ∪ Pre1(W)) as the target set U for reachability and obtain that
that W ⊆ 〈〈1〉〉limit

(

3T ∪ (B2 ∩ Pre1(W)
)

. The result then follows from Lemma 9, with B = B2

and A = ∅. Also observe that the witness strategy πlimit
1 [ε], for ε > 0, for Lemma 9, in the present

case can be memoryless strategy to ensure that T ∪ (B2 ∩ Pre1(W)) is reached with probability at
least 1 − ε (the construction of such a strategy is similar to Lemma 6).

We note that since Fpre2(X0, Y0) = ¬Lpre1(¬Y0,¬X0) (by Lemma 4) and Epre2(Y0) =
¬Pre1(¬Y0) (by Lemma 1), we have:

¬ νY0 . µX0 .
[

(B1 ∩ Lpre1(Y0,X0)) ∪ (B2 ∩ Pre1(Y0))
]

= µY0 . νX0 .
[

(B2 ∪ Fpre2(X0, Y0)) ∩ (B1 ∪ Epre2(Y0))
]

. (16)

The following lemma complements the result of Lemma 10.

Lemma 11 For B2 ⊆ S and B1 = S \ B2 we have

µY0 . νX0 .
[

(B2 ∪ Fpre2(X0, Y0)) ∩ (B1 ∪ Epre2(Y0))
]

= µY0 . νX0 .
[

(B1 ∩ Fpre2(X0, Y0)) ∪ (B2 ∩ Epre2(Y0))
]

⊆ ¬〈〈1〉〉limit

(

23B2

)

. (17)

Proof. We exhibit the existence of memoryless spoiling strategies. Let

V = µY0 . νX0 .
[

(B1 ∩ Fpre2(X0, Y0)) ∪ (B2 ∩ Epre2(Y0))
]

.

Then we analyze the computation of V as follows: the set V is obtained as a increasing sequence
∅ = T0 ⊆ T1 ⊆ T2 . . . ⊆ Tm = V of states, such that the states in Ti+1 \ Ti are obtained as
follows: (a) either a set of B2 states such that Epre2(Ti) holds; or (b) a set of B1 states such that
Fpre2(Ti+1, Ti) holds. For state s ∈ (Ti+1 \ Ti) ∩ B2 the distribution ξEpre

s,2 (Ti) ensures that Ti is

reached with positive probability. For state s ∈ (Ti+1 \ Ti) ∩ B1 the distribution ξFpre
s,2 (Ti+1, Ti)

ensures that (i) either Ti is reached with positive probability, or (ii) the game stays in Ti+1 \ Ti,
leading to 2(Ti+1 \ Ti) and thus 32B1. It follows that for all s ∈ Ti+1, there is a memoryless
strategy π2 such that for all π1 we have Prπ1,π2

s (3Ti ∪ 32B1) ≥ q > 0 for some q > 0. By
induction, we obtain that for all s ∈ Ti+1 there is a memoryless strategy π2 such that for all π1 we
have Prπ1,π2

s (3T0 ∪ 23B1) ≥ q > 0 for some q > 0. Since T0 = ∅, with Ti+1 = V we obtain that
V ⊆ ¬〈〈1〉〉limit

(

23B2

)

Strategy constructions. Note that the strategies constructed in Lemma 10 require in general
infinite memory (for counting the number of visits to W ∩ B2) for limit-winning. In the witness
strategies for limit-winning, the moves that are played with positive bounded probabilities at a
state s are those in the set Stay1(s,W, ∅); all other moves are played with probabilities that tend
to 0 as ε → 0. Hence, given any distribution ξ1 ∈ χs

1 such that Supp(ξ1) = Stay1(s,W, ∅), there
exists a sequence of limit-winning strategies that in the limit, as ε → 0, converges to a memoryless
strategy π1 ∈ ΠM

1 such that for all s ∈ W we have π1(s) = ξ1. However, the limit strategy π1 is
not limit-winning in general. We formalize this in the lemma below.

18

Lemma 12 Given a Büchi objective 23B2, let W be the set of limit-winning states. Let π1 ∈
ΠM

1 be any memoryless strategy such that for all s ∈ W we have Supp(π1(s)) = Stay1(s,W, ∅).
Then there exists a sequence of (εi)i≥0 such that (a) ε0 > ε1 > ε2 > . . . and limi→∞ εi = 0,
(b) for all i ≥ 0 there exists a strategy πεi

1 such that for all π2 ∈ Π2 and for all s ∈ W we have

Pr
π

εi
1 ,π2

s (23B2) ≥ 1−εi, and (c) the strategies πεi

1 converges to π1 as i → ∞, i.e., limi→∞ πεi

1 = π1.

Observe that by (16) the expression (15) complements to (17) with T = ∅. Thus from Lemma 10
and Lemma 11, along with the characterizations of the predecessor operators, we have the following
theorem, that summarizes the results on Büchi games. The quadratic complexity is an immediate
consequence of the quadratic complexity of reachability games [dAHK07].

Theorem 3 For all concurrent game structures, for all Büchi objectives 23B2 for player 1,
where B2 ⊆ S and B1 = S \ B2, the following assertions hold.

1. We have

〈〈1〉〉limit

(

23B2

)

= νY0 . µX0 .
[

(B1 ∩ Lpre1(Y0,X0)) ∪ (B2 ∩ Pre1(Y0))
]

. (18)

2. The set of limit-winning states can be computed using the relations (18) in time quadratic in
the size of the game.

3. Limit-winning strategies for player 1 require infinite-memory in general.

4. The most restrictive class of strategies in which limit-spoiling strategies are guaranteed to exist
for player 2 is the class of memoryless strategies.

6 co-Büchi Games

The winning condition of a coBüchi game is a formula 32B0, where B0 ⊆ S is a subset of states.
To solve coBüchi games, we begin by introducing the required predecessor operators.

6.1 Predecessor operators in limit co-Büchi games

While the operators Lpre and Pre suffice for solving Büchi games, coBüchi games, and general parity
games, can be solved using predecessor operators that are best understood as the combination of
simpler predecessor operators. We use the operators

⋃

∗ and
⋂

∗ to combine predecessor operators;
the operators

⋃

∗ and
⋂

∗ are different from the usual union ∪ and intersection ∩. Roughly, for
two predecessor operators α and β, the predecessor operator α

⋂

∗ β requires that the distributions
of player 1 and 2 satisfy the conjunction of the conditions stipulated by α and β; similarly,

⋃

∗
corresponds to disjunction. We first introduce the operator Lpre

⋃

∗ Pre. For all s ∈ S and
X1, Y0, Y1 ⊆ S, we define

Lpre1(Y1,X1)
⋃

∗ Pre1(Y0) =

{

s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs
1.∀ξ2 ∈ χs

2.





P ξ1,ξ2
s (X1) > α · P ξ1,ξ2

s (¬Y1)
∨

P ξ1,ξ2
s (Y0) = 1





}

.

Note that the above formula corresponds to a disjunction of the predicates for Lpre1 and Pre1.
However, it is important to note that the distribution ξ1 that player 1 needs to use to satisfy the

19

predicate is the same. In other words, Lpre1(Y1,X1)
⋃

∗ Pre1(Y0) is not equivalent to Lpre1(Y1,X1)∪
Pre1(Y0), because in the latter union, player 1 could use one distribution to satisfy Lpre1(Y1,X1),
and a different one to satisfy Pre1(Y0), whereas in Lpre1(Y1,X1)

⋃

∗ Pre1(Y0), the same ξ1 needs to
satisfy both predicates.

Similarly, we introduce the operator (Fpre2

⋂

∗ Epre2)
⋃

∗ Lpre2 as follows: for s ∈ S and
X1, Y0, Y1 ⊆ S, we define
(

Fpre2(X1, Y1)
⋂

∗ Epre2(Y1)
)

⋃

∗ Lpre2(X1, Y0) (19)

=

{

s ∈ S | ∃β > 0.∀α ≥ 0.∃ξ2 ∈ χs
2.∀ξ1 ∈ χs

1.















(

P ξ1,ξ2
s (Y1) ≥ β · P ξ1,ξ2

s (¬X1)
∧

P ξ1,ξ2
s (Y1) > 0

)

∨

P ξ1,ξ2
s (Y0) > α · P ξ1,ξ2

s (¬X1)















}

.

To decide whether s ∈ Lpre1(Y1,X1)
⋃

∗ Pre1(Y0), for s ∈ S and X1, Y0, Y1 ⊆ S, we provide a
mu-calculus expression over the set Γs = Γ1(s) ∪ Γ2(s). We also prove that the above predecessor
operators are dual.

Computation of Lpre
⋃

∗ Pre. We now give an algorithm for computing Lpre
⋃

∗ Pre. Let
X1 ⊆ Y0 ⊆ Y1 ⊆ S and s ∈ S. To understand the algorithm, recall the algorithm for Lpre1(Y1,X1):
we compute C = µA. [Stay1(s, Y1, A)) ∪ Cover1(s,X1, A)], and we require Γ2(s) ⊆ C. To compute
Lpre1(Y1,X1)

⋃

∗ Pre1(Y0), we add a νB quantifier, we add a constraint of Stay1(s, Y0, B), and we
require that the set of moves obtained by the formula is non-empty. Formally, we consider the
formula

C ′ = νB . µA .





(Stay1(s, Y1, A) ∩ Stay1(s, Y0, B))
∪

Cover1(s,X1, A)





we have C ′ ∩ Γ1(s) 6= ∅ iff s ∈ (Lpre1(Y1,X1)
⋃

∗ Pre1(Y0)). The basic intuition is as follows: if
player 2 plays moves outside C ′, then the condition Stay1(s, Y0, B) ensures that Y0 is not left, and
as Y0 ⊆ Y1, also Y1 is not left. Observe that C ′ ⊆ C, and by Remark 1 if we restrict player 2
to play moves in C ′, then player 1 can ensure Lpre1(Y1,X1). Combining the above arguments we
show that player 1 can ensure Lpre1(Y1,X1)

⋃

∗ Pre2(Y0). We now formally present the proof.

Lemma 13 The following assertions hold.

1. For all X1 ⊆ Y0 ⊆ Y1 ⊆ S and s ∈ S, if

νB . µA .





(Stay1(s, Y1, A) ∩ Stay1(s, Y0, B))
∪

Cover1(s,X1, A)



 ∩ Γ1(s) 6= ∅,

then s ∈ Lpre1(Y1,X1)
⋃

∗ Pre1(Y0).

2. For all Y1 ⊆ Y0 ⊆ X1 ⊆ S and s ∈ S, if

Γ1(s) ⊆ µB . νA .





(Cover2(s, Y1, A) ∪ Cover2(s, Y0, B))
∪

Stay2(s,X1, A)



 ,

then s ∈
(

Fpre2(X1, Y1)
⋂

∗ Epre2(Y1)
)

⋃

∗ Lpre2(X1, Y0).

20

Proof. We prove the two cases below.

1. Let

A∗ = νB . µA .





(Stay1(s, Y1, A) ∩ Stay1(s, Y0, B))
∪

Cover1(s,X1, A)





and let A∗ ∩ Γ1(s) 6= ∅. By replacing B with A∗ we have A∗ =
µA . [(Stay1(s, Y1, A) ∩ Stay1(s, Y0, A

∗)) ∪ Cover1(s,X1, A)]. For ε > 0, consider a
distribution ξ1[ε] ∈ χ1

s that plays each move a ∈ A∗ ∩ Γ1(s) with probabil-
ity proportional to εk, where k is the level of the move a in the expression
µA . [(Stay1(s, Y1, A) ∩ Stay1(s, Y0, A

∗)) ∪ Cover1(s,X1, A)]. We analyze the following cases.

• Consider a move b ∈ Γ2(s) such that b 6∈ A∗. Observe that A∗∩Γ1(s) ⊆ Stay1(s, Y0, A
∗).

Hence for all a ∈ A∗ ∩ Γ1(s) we have Dest(s, a, b) ⊆ Y0, and since Y0 ⊆ Y1 we also have
Dest(s, a, b) ⊆ Y1.

• For b ∈ A∗, let the level of b in µA. [(Stay1(s, Y1, A) ∩ Stay1(s, Y0, A
∗)) ∪ Cover1(s,X1, A)]

be k. Then we have: (a) there exists a ∈ A∗ ∩Γ1(s) such that level of a is at most k− 1

and Dest(s, a, b) ∩ X1 6= ∅, i.e., P ξ1,b
s (X) is at least proportional to εk−1; and (b) for

all a ∈ A∗ ∩ Γ1(s) such that level of a is at least k − 1, we have Dest(s, a, b) ⊆ Y1, i.e.,

P ξ1,b
s (¬Y1) is at most proportional to εk. It follows that the probability of the ratio of

going to X as compared to leaving Y1 is at least proportional to 1
ε .

Thus playing ξ1[ε] player 1 ensures that (a) if player 2 plays a distribution ξ2 such that
Supp(ξ2) ⊆ Γ2(s) \A∗, then Pre1(Y0) holds, and (b) if Supp(ξ2)∩A∗ 6= ∅, then Lpre1(Y1,X1)
holds. Hence the distributions ξ1[ε], for ε > 0, shows that s ∈ Lpre1(Y1,X1)

⋃

∗ Pre1(Y0).

We denote such a distribution by ξ
Lpre

⋃

∗ Pre
s,1 [ε](Y1, Y0,X1) that is a witness that s ∈

Lpre1(Y1,X1)
⋃

∗ Pre1(Y0).

2. Let

Γ1(s) ⊆ µB . νA .





(Cover2(s, Y1, A) ∪ Cover2(s, Y0, B))
∪

Stay2(s,X1, A)





For ε > 0, consider a distribution ξ2[ε] ∈ χ2
s that plays each move b ∈ Γ2(s) with probability

proportional to εk, where k is the level of the move b in the µ-calculus expression above. Let
Bk denote the set of moves with level at most k. Consider a ∈ Γ1(s) and let the level of a be
k, i.e., a ∈ Bk \ Bk−1. Observe that we can write Bk−1 and Bk as follows:

Bk−1 = [(Cover2(s, Y1, Bk−1) ∪ Cover2(s, Y0, Bk−2)) ∪ Stay2(s,X1, Bk−1)] ;

Bk = [(Cover2(s, Y1, Bk) ∪ Cover2(s, Y0, Bk−1)) ∪ Stay2(s,X1, Bk)] .

By the description of Bk−1 above and the property of Stay2(s,X1, Bk−1) it follows that for
all moves b ∈ Bk−1 ∩ Γ2(s) and for all moves a′ ∈ Γ1(s) \ Bk−1 we have Dest(s, a′, b) ⊆ X1.
Hence for all a ∈ (Bk \Bk−1)∩Γ1(s) and b ∈ Γ2(s)∩Bk−1 we have Dest(s, a, b) ⊆ X1, so the
probability of reaching ¬X1 is at most α · εk for some constant α > 0. Furthermore, there
must exist at least one b ∈ Γ2(s) such that:

21

• Either b ∈ Bk−1 and Dest(s, a, b) ∩ Y0 6= ∅ (due to Cover2(s, Y0, Bk−1)). In this case,
the probability of a transition to Y0 is proportional to at least εk−1. In this case, the
ratio probability of reaching Y0 as compared to leaving X1 is least proportional to 1

ε and
Lpre2(X1, Y0) holds.

• Or b ∈ Bk and Dest(s, a, b) ∩ Y1 6= ∅ (due to Cover2(s, Y1, Bk)). In this case, the
probability of a transition to Y1 is proportional to at least εk. In this case, the prob-
ability of reaching Y1 is at least proportional to the probability to reach ¬X1 and
Fpre2(X1, Y1)

⋂

∗ Epre2(Y1) holds.

The result follows from the above case analysis. For ε > 0, we de-

note by ξ
(Fpre

⋂

∗ Epre)
⋃

∗ Lpre
s,2 [ε](X1, Y0, Y1) the distribution that witnesses that s ∈

(Fpre2(X1, Y1)
⋂

∗ Epre2(Y1))
⋃

∗ Lpre2(X1, Y0).

Remark 2 Similar to Remark 1, the proof of Lemma 13 can be easily extended to show the follow-
ing: given Y1 ⊆ Y0 ⊆ X1 ⊆ S and s ∈ S, let

C = µB . νA .





(Cover2(s, Y1, A) ∪ Cover2(s, Y0, B))
∪

Stay2(s,X1, A)



 .

If player 1’s moves are restricted to the set C ∩ Γ1(s), then player 2 can ensure that s ∈
(

Fpre2(X1, Y1)
⋂

∗ Epre2(Y1)
)

⋃

∗ Lpre2(X1, Y0).

Note 1 Observe that the distribution ξ
Lpre

S

∗ Pre

s,1 [ε](Y1, Y0, X1) constructed in Lemma 13 satisfy the following: as

ε → 0, the distribution converges to a distribution with support Γ1(s) ∩
`

Stay1(s, Y1, ∅) ∩ Stay1(s, Y0, ∅)
´

.

Lemma 14 For all X1 ⊆ Y0 ⊆ Y1 ⊆ S and s ∈ S the following assertions hold.

1. Lpre1(Y1,X1)
⋃

∗ Pre1(Y0) = ¬
(

(Fpre1(¬X1,¬Y1)
⋂

∗ Epre2(¬Y1))
⋃

∗ Lpre2(¬X1,¬Y0)
)

(20)

2. s ∈ Lpre1(Y1,X1)
⋃

∗ Pre1(Y0) iff νB . µA .





(Stay1(s, Y1, A) ∩ Stay1(s, Y0, B))
∪

Cover1(s,X1, A)



 ∩ Γ1(s) 6= ∅.

Proof. The result follows from Lemma 13 and the following duality of the predicates over moves.

¬





(Stay1(s,¬Y1,¬A) ∩ Stay1(s,¬Y0,¬B))
∪

Cover2(s,¬X1,¬A)



 =





(Cover2(s, Y1, A) ∪ Cover2(s, Y0, B) ∪ Γ2(s))
∩

(Stay2(s,X1, A) ∪ Γ1(s))





From the observations that Cover2(s, Y1, A) ⊆ Γ1(s), Cover2(s, Y0, B) ⊆ Γ1(s), and
Stay2(s,X1, A) ⊆ Γ2(s), it follows that




(Cover2(s, Y1, A) ∪ Cover2(s, Y0, B) ∪ Γ2(s))
∩

(Stay2(s,X1, A) ∪ Γ1(s))



 = Covers(s, Y1, A)∪Cover2(s, Y0, B)∪Stay2(s,X1, A).

The above equalities, the complementation of µ-calculus formulas and Lemma 13 prove the desired
results.

22

2(Y \X)

α

ββ1

β2

A

1 − α − η ηγ

Y1

X1

¬Y1

Y0

Figure 6: Pictorial description of the basic Lpre
⋃

∗ Pre principle.

Lemma 15 (Basic Lpre
⋃

∗ Pre principle) Let X1 ⊆ Y0 ⊆ Y1 ⊆ S such that all s ∈ Y0 \ X1

satisfies that s ∈ Lpre1(Y1,X1)
⋃

∗ Pre1(Y0). For all events A ⊆ 2(Y1 \ Y0), the following assertion
hold: if for all η > 0, there exists πη

1 ∈ ΠM
1 such that for all π2 ∈ Π2 and for all z ∈ Y1 \Y0 we have

Pr
πη
1 ,π2

z (A ∪ 3Y0) ≥ 1 − η, (i.e., lim
η→0

Pr
πη
1 ,π2

z (A ∪ 3Y0) = 1),

then for all ε > 0, there exists πε
1 ∈ ΠM

1 such that for all π2 ∈ Π2 and for all s ∈ (Y1 \X1) we have

Pr
πε
1,π2

s (A ∪ 3X1 ∪ 2(Y0 \ X1)) ≥ 1 − ε, (i.e., lim
ε→0

Pr
πε
1,π2

z (A ∪ 3X1 ∪ 2(Y0 \ X1)) = 1).

Proof. Since all s ∈ (Y0 \ X1) satisfies that s ∈ Lpre1(Y1,X1)
⋃

∗ Pre1(Y0), given ε > 0, player 1

can play the distribution ξ
Lpre

⋃

∗ Pre
s,1 [ε](Y1, Y0,X1) at states in (Y0 \X1) to ensure that the following

conditions hold at all states in (Y0 \X1): (a) the probability β1 to reach X1 is at least proportional
to β · εl+1 + β2

ε , where β is the probability to reach (Y1 \Y0), β2 is the probability to reach ¬Y1, and
l = |Γs|; and (b) if β1 = 0, then β = 0 and β2 = 0. The situation is pictorially depicted in Fig 6.

Since A∪2(Y0 \X1) ⊆ A∪2(Y0 \X1)∪3X1, the worst case analysis for the result correspond
to the case with α = 0 and γ = 0. The simplified case is shown in Fig 7. Similar to Lemma 4 once
we let η → 0, then the situation simplifies to the case where there is only an edge from (Y1 \ Y0)
to Y0. Similar to Lemma 4 (via a more tedious calculation), it can be shown that for all ε′ > 0, we
can choose ε > 0 and η > 0, such that the strategy πε′

1 obtained by fixing the strategy πη
1 for states

in (Y1 \ Y0) and the distribution ξ
Lpre

⋃

∗ Pre
s,1 [ε](Y1, Y0,X1) for states s ∈ (Y0 \ X1) satisfies that for

all s ∈ (Y1 \ X1) and for all π2 we have Pr
πε′

1 ,π2

s (A ∪ 3X1 ∪ 2(Y0 \ X1)) ≥ 1 − ε′.

6.2 Limit winning sets in co-Büchi games

We now present the computation of the limit-winning set in coBüchi games.

23

1 − η

ββ1

β2

η

Y0

Y1

¬Y1

X1

Figure 7: Pictorial description of the basic Lpre
⋃

∗ Pre principle, simplified to yield the worst case
analysis.

Lemma 16 For T ⊆ S, B0 ⊆ S, and B1 = S \ B0, let

W = νY1 . µX1 . νY0 .













T
∪

B0 ∩ (Lpre1(Y1,X1)
⋃

∗ Pre1(Y0))
∪

B1 ∩ Lpre1(Y1,X1)













.

Then we have W ⊆ 〈〈1〉〉limit

(

32B0 ∪ 3T
)

.

Proof. We first reformulate the algorithm for computing W in an equivalent form. We have

W = µX1 . νY0 .













T
∪

B0 ∩ (Lpre1(W,X1)
⋃

∗ Pre1(Y0))
∪

B1 ∩ Lpre1(W,X1)













. (21)

This mu-calculus formula computes W as the limit of a sequence of sets W0 = T , W1, W2,
At each iteration, both states satisfying B0 (corresponding to the Lpre

⋃

∗ Pre operator) and states
satisfying B1 (corresponding to the Lpre operator) can be added. The fact that both types of
states can be added complicates the analysis of the algorithm. To simplify the correctness proof,
we formulate an alternative algorithm for the computation of W ; an iteration will add either a
single B1 state, or a set of B0 states.

To obtain the simpler algorithm, notice that the set Y0 does not appear as an argument of
the Lpre1(W,X1) operator. Hence, each B1-state can be added without regards to B0-states that
are not already in W . Moreover, since the νY0 operator applies only to B0-states, B1-states can
be added one at a time. From these considerations, we can reformulate the algorithm for the
computation of W as follows.

The algorithm computes W as an increasing sequence T = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tm = W of
states, where m ≥ 0. Let Li = Ti \ Ti−1 and the sequence is computed by computing Ti as follows,
for 0 < i ≤ m:

24

1. either the set Li consists of states such that s ∈ Li implies that

s ∈ Lpre1(W,Ti−1)
⋃

∗ Pre1(Li ∪ Ti−1) ∩ B0 ,

i.e., s ∈ Ti \ Ti−1 implies that s ∈ Lpre1(W,Ti−1)
⋃

∗ Pre1(Ti);

2. or the set Li = {s} is a singleton such that s ∈ Lpre1(W,Ti−1) ∩ B1.

The proof that W ⊆ 〈〈1〉〉limit

(

32B0 ∪ 3T
)

is based on an induction on the sequence T = T0 ⊂
T1 ⊂ T2 ⊂ · · · ⊂ Tm = W . For 1 ≤ i ≤ m, let Vi = W \ Tm−i, so that V1 consists of the last block
of states that has been added, V2 to the two last blocks, and so on until Vm = W . We prove by
induction on i ∈ {1, . . . ,m}, from i = 1 to i = m, that for all s ∈ Vi, for all η > 0, there exists a
memoryless strategy πη

1 for player 1 such that for all π2 ∈ Π2 we have

Pr
πη
1 ,π2

s

(

3Tm−i ∪ (32B0 ∩ 2Vi)
)

≥ 1 − η.

Since the base case is a simplified version of the induction step, we focus on the latter. There are
two cases, depending on whether Vi \ Vi−1 is composed of B0 or of B1-states.

1. If Vi \ Vi−1 ⊆ B0, then all s ∈ Vi \ Vi−1 satisfies that s ∈ Lpre1(W,Tm−i)
⋃

∗ Pre1(Tm−i+1) =
Lpre1(W,Tm−i)

⋃

∗ Pre1(Vi\Vi−1). Observe that 2(Vi\Vi−1) ⊆ 2(B0∩Vi) ⊆ 32B0∩2Vi, since
Vi \ Vi−1 ⊆ B0. The result then follows from the above observation and by an application of
the basic Lpre

⋃

∗ Pre principle (Lemma 15), with Y1 = W , X1 = Tm−i, Y0 = X ∪ (Vi \ Vi−1)
(i.e., Y0 \ X1 = Vi \ Vi−1), Y1 \ Y0 = Vi−1 and A = 23B0 ∩ 2Vi−1.

2. If Vi\Vi−1 ⊆ B1, then Vi\Vi−1 = {s} for some s ∈ S and s ∈ Lpre1(W,Tm−i). The result then
follows from the application of the basic Lpre principle (Lemma 5) with Z = W , X = Tm−i,
Z \ Y = Vi−1 and A = 23B0 ∩ 2Vi−1.

This completes the inductive proof. With i = m we obtain that for all η > 0, there exists a

memoryless strategy πη
1 such that for all states s ∈ Vm = W and for all π2 we have Pr

πη
1
,π2

s (3T0 ∪

32B0) ≥ 1 − η. Since T0 = T , the desired result follows.

The following lemma complements the result of Lemma 16.

Lemma 17 For T ⊆ S, B0 ⊆ S, and B1 = S \ B0, let

Z = µY1 . νX1 . µY0 .





B0 ∩
(

(Fpre2(X1, Y1)
⋂

∗ Epre2(Y1))
⋃

∗ Lpre2(X1, Y0)
)

∪
B1 ∩ Fpre2(X1, Y1)



 .

Then we have Z ⊆ ¬〈〈1〉〉limit

(

32B0

)

.

Proof. For k ≥ 0, let Zk be the set of states of level k in the above mu-calculus expression. We will
construct a spoiling strategy for player 2, and show by induction on k that Zk∩〈〈1〉〉limit

(

32B0

)

= ∅.
The base case, for k = 0, corresponds to the set

Z0 = νX1 . µY0 .





B0 ∩
(

(Fpre2(X1, ∅)
⋂

∗ Epre2(∅))
⋃

∗ Lpre2(X1, Y0)
)

∪
B1 ∩ Fpre2(X1, ∅)





= νX1 . µY0 .





B0 ∩ Lpre2(X1, Y0)
∪

B1 ∩ Pre2(X1)



 = 〈〈2〉〉limit

(

23B1

)

.

25

For the induction step, consider the case for k > 0:

Zk = νX1 . µY0 .





B0 ∩
(

(Fpre2(X1, Zk−1)
⋂

∗ Epre2(Zk−1))
⋃

∗ Lpre2(X1, Y0)
)

∪
B1 ∩ Fpre2(X1, Zk−1)



 .

For X = Zk, we have:

X = µY0 .





B0 ∩
(

(Fpre2(X,Zk−1)
⋂

∗ Epre2(Zk−1))
⋃

∗ Lpre2(X,Y0)
)

∪
B1 ∩ Fpre2(X,Zk−1)



 . (22)

We can reformulate the above mu-calculus expression for the computation of X in the following
equivalent form. We let T = X \ Zk−1 be the set of states added to Zk−1 to yield X, and we
compute T as the limit ∅ ⊆ T0 ⊆ · · · ⊆ Tm ⊆ T of an increasing sequence of sets of states, for some
m ≥ 0. The first set, T0, is obtained by adding the B1-states mentioned in (22), noting that these
sets do not depend on Y :

T0 = (B1 ∩ Fpre2(X,Zk−1)) \ Zk−1 .

The sets of states T1, . . . , Tm are singleton sets. For 1 ≥ i ≥ m, set Ti contains a single state si,
where

si ∈ (Fpre2(X,Zk−1)
⋂

∗ Epre2(Zk−1))
⋃

∗ Lpre2(X,

i−1
⋃

j=0

Tj) .

Given ε > 0, consider a sequence ε1, ε2, . . . such that εi > 0 for all i and
∏∞

i=1(1 − εi) ≥
1 − ε. We construct a strategy π2[ε] for player 2 as follows: the strategy is played in rounds
and it proceeds from round j to j + 1 for a visit to a state in T0, and in round j at all s ∈
T0, π2[ε] plays the distribution ξFpre

s,2 (X,Zk−1); at state si ∈ Ti, player 2 plays with distribution

ξ
(Fpre

⋂

∗ Epre)
⋃

∗ Lpre
s,2 [εj](X,

⋃i−1
j=0 Tj , Zk−1). Given the strategy π2[ε] we analyze two cases to prove

the inductive case.

• If player 1 plays in such a way as to cause a positive probability of transition into Zk−1, the
induction hypothesis leads to the conclusion.

• Otherwise, if player 1 plays such that the probability of reaching Zk−1

is 0, then operator Fpre2(X,Zk−1) simplifies to Pre2(X), and the operator
(Fpre2(X,Zk−1)

⋂

∗ Epre2(Zk−1))
⋃

∗ Lpre2(X,
⋃i−1

j=0 Tj) simplifies to Lpre2(X,
⋃i−1

j=0 Tj).
Hence the strategy ensures that player 2 limit-win the 23T0 objective (i.e., satisfies the
objective 23T0 with probability at least 1− ε). Since T0 ⊆ B1, player 2 satisfies 23B1 with
probability at least 1 − ε.

In both cases, the inductive case is proved. The result follows.

By the complementation of the predecessor operators (Lemma 14), the µ-calculus expression
for W of Lemma 16 with T = ∅, complements to give the µ-calculus expression for Z of Lemma 17.
From this we obtain Theorem 4, summarizing the result on coBüchi games.

Theorem 4 For all concurrent game structures, for all co-Büchi objectives 32B0 for player 1,
where B0 ⊆ S and B1 = S \ B0, the following assertions hold.

26

1. We have

〈〈1〉〉limit

(

32B0

)

= νY1 . µX1 . νY0 .





B0 ∩ (Lpre1(Y1,X1)
⋃

∗ Pre1(Y0))
∪

B1 ∩ Lpre1(Y1,X1)



 . (23)

2. The set of limit-winning states can be computed using the relations (23) in time O(|S|3 ·
∑

s∈S |Γ1(s) ∪ Γ2(s)|
2), where S is the set of states.

3. The most restrictive class of strategies in which limit-winning strategies are guaranteed to
exist for player 1 is the class of memoryless strategies.

4. Limit-spoiling strategies for player 2 require infinite-memory in general.

The time complexity of item (2) of Theorem 4 is obtained as follows: the triple-nested fixed
point ensures that in at most |S|3 iterations the µ-calculus formula of (23) converges to the
fixpoint. By Lemma 4 and Lemma 13 it follows that whether a state s ∈ Lpre1(Y1,X1) or
s ∈ Lpre1(Y1,X1)

⋃

∗ Pre1(Y0) can be decided in time O(|Γ1(s) ∪ Γ2(s)|
2). This yields the result of

item (2) of Theorem 4.

7 Parity Games

In this section we consider parity (Rabin-chain) games with objective Parity(p) for player 1, where
p : S 7→ [0..2n−1] or p : S 7→ [1..2n] is a function that maps states with priorities from 0 to 2n−1 or
1 to 2n. We denote by m = 2n the number of priorities and denote by Bi = p−1(i) the set of states
with priority i. We will use the following notation in our proofs: for ⊲⊳∈ {≤, <,≥, >} we denote
by B⊲⊳n =

⋃

i⊲⊳n Bi. We first introduce the predecessor operators for limit parity games. Given a
parity function p : S 7→ [0..2n − 1], the parity function p + 1 : S 7→ [1..2n] is defined as follows:
p + 1(s) = p(s)+ 1 and observe that coParity(p) = Parity(p + 1). Similarly, given a parity function
p : S 7→ [1..2n], the parity function p− 1 : S 7→ [0..2n − 1] is defined as follows: p− 1(s) = p(s)− 1
and observe that coParity(p) = Parity(p − 1).

7.1 Predecessor operators for Rabin-chain games

We introduce the predecessor operators for limit parity games. We first introduce two limit prede-
cessor operators as follows:

LPreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i)

= Lpre1(Yn,Xn)
⋃

∗ Lpre1(Yn−1,Xn−1)
⋃

∗ · · ·
⋃

∗ Lpre1(Yn−i,Xn−i);

LPreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)

= Lpre1(Yn,Xn)
⋃

∗ Lpre1(Yn−1,Xn−1)
⋃

∗ · · ·
⋃

∗ Lpre1(Yn−i,Xn−i)
⋃

∗ Pre1(Yn−i−1).

27

The formal definitions of the above operators are as follows:

LPreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i) =

{

s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs
1.∀ξ2 ∈ χs

2.

























P ξ1,ξ2
s (Xn) > α · P ξ1,ξ2

s (¬Yn)
∨

P ξ1,ξ2
s (Xn−1) > α · P ξ1,ξ2

s (¬Yn−1)
∨

...
∨

P ξ1,ξ2
s (Xn−i) > α · P ξ1,ξ2

s (¬Yn−i)

























}

.

LPreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1) =

{

s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs
1.∀ξ2 ∈ χs

2.

































P ξ1,ξ2
s (Xn) > α · P ξ1,ξ2

s (¬Yn)
∨

P ξ1,ξ2
s (Xn−1) > α · P ξ1,ξ2

s (¬Yn−1)
∨

...
∨

P ξ1,ξ2
s (Xn−i) > α · P ξ1,ξ2

s (¬Yn−i)
∨

P ξ1,ξ2
s (Yn−i−1) = 1

































}

.

Observe that the above definition can be inductively written as follows:

1. We have LPreOdd1(0, Yn,Xn) = Lpre1(Yn,Xn) and for i ≥ 1 we have

LPreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i)

= Lpre1(Yn,Xn)
⋃

∗ LPreOdd1(i − 1, Yn−1,Xn−1, . . . , Yn−i,Xn−i)

2. We have LPreEven1(0, Yn,Xn, Yn−1) = Lpre1(Yn,Xn)
⋃

∗ Pre1(Yn−1) and for i ≥ 1 we have

LPreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)

= Lpre1(Yn,Xn)
⋃

∗ LPreEven1(i − 1, Yn−1,Xn−1, . . . , Yn−i,Xn−i, Yn−i−1)

The operators LPreOdd2 and LPreEven2 can be obtained from LPreOdd1 and LPreEven1 by ex-
changing the subscripts 1 and 2. We now introduce two positive predecessor operators as follows:

FPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i)

= (Fpre2(Xn, Yn)
⋂

∗ Epre2(Yn))
⋃

∗ Lpre2(Xn, Yn−1)
⋃

∗ · · ·
⋃

∗ Lpre2(Xn−i+1, Yn−i)
⋃

∗ Pre2(Xn−i)

FPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)

= (Fpre2(Xn, Yn)
⋂

∗ Epre2(Yn))
⋃

∗ Lpre2(Xn, Yn−1)
⋃

∗ · · ·
⋃

∗ Lpre2(Xn−i+1, Yn−i)
⋃

∗ Lpre2(Xn−i, Yn−i−1)

28

The formal definitions of the above operators are as follows:

FPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i) =

{

s ∈ S | ∃β > 0.∀α ≥ 0.∃ξ2 ∈ χs
2.∀ξ1 ∈ χs

1.



















































(

P ξ1,ξ2
s (Yn) ≥ β · P ξ1,ξ2

s (¬Xn)
∧

P ξ1,ξ2
s (Yn) > 0

)

∨

P ξ1,ξ2
s (Yn−1) > α · P ξ1,ξ2

s (¬Xn)
∨

P ξ1,ξ2
s (Yn−2) > α · P ξ1,ξ2

s (¬Xn−1)
∨

...
∨

P ξ1,ξ2
s (Yn−i) > α · P ξ1,ξ2

s (¬Xn−i+1)
∨

P ξ1,ξ2
s (Xn−i) = 1



















































}

.

FPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1) =

{

s ∈ S | ∃β > 0.∀α ≥ 0.∃ξ2 ∈ χs
2.∀ξ1 ∈ χs

1.



















































(

P ξ1,ξ2
s (Yn) ≥ β · P ξ1,ξ2

s (¬Xn)
∧

P ξ1,ξ2
s (Yn) > 0

)

∨

P ξ1,ξ2
s (Yn−1) > α · P ξ1,ξ2

s (¬Xn)
∨

P ξ1,ξ2
s (Yn−2) > α · P ξ1,ξ2

s (¬Xn−1)
∨

...
∨

P ξ1,ξ2
s (Yn−i) > α · P ξ1,ξ2

s (¬Xn−i+1)
∨

P ξ1,ξ2
s (Yn−i−1) > α · P ξ1,ξ2

s (¬Xn−i)



















































}

.

The above definitions can be alternatively written as follows

FPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i) =

(Fpre2(Xn, Yn)
⋂

∗ Epre2(Yn))
⋃

∗ LPreEven2(i − 1,Xn, Yn−1, . . . ,Xn−i+1, Yn−i,Xn−i);

FPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1) =

(Fpre2(Xn, Yn)
⋂

∗ Epre2(Yn))
⋃

∗ LPreOdd2(i,Xn, Yn−1, . . . ,Xn−i, Yn−i−1).

We will prove the duality of LPreOdd1 and FPreOdd2 and LPreEven1 and FPreEven2 later. We

first show how to characterize the limit winning sets and its complement for parity games using
the above predecessor operators.

29

7.2 Limit winning in parity games

We will prove the following result by induction.

1. Case 1. For a parity function p : S 7→ [0..2n − 1] the following assertions hold.

(a) For all T ⊆ S we have W ⊆ 〈〈1〉〉limit

(

Parity(p) ∪ 3T
)

, where W is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.

















































T
∪

B2n−1 ∩ LPreOdd1(0, Yn,Xn)
∪

B2n−2 ∩ LPreEven1(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ LPreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ LPreEven1(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ LPreOdd1(n − 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ LPreEven1(n − 1, Yn,Xn, . . . , Y1,X1, Y0)

















































We refer to the above expression as the limit-expression for case 1.

(b) We have Z ⊆ ¬〈〈1〉〉limit

(

Parity(p)
)

, where Z is defined as follows

µYn.νXn.µYn−1.νXn−1. · · · µY1.νX1.µY0.







































B2n−1 ∩ FPreOdd2(0, Yn,Xn)
∪

B2n−2 ∩ FPreEven2(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ FPreOdd2(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ FPreEven2(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ FPreOdd2(n − 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ FPreEven2(n − 1, Yn,Xn, . . . , Y1,X1, Y0)







































We refer to the above expression as the positive-expression for case 1.

2. Case 2. For a parity function p : S 7→ [1..2n] the following assertions hold.

30

(a) For all T ⊆ S we have W ⊆ 〈〈1〉〉limit

(

Parity(p) ∪ 3T
)

, where W is defined as follows:

νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0

















































T
∪

B2n ∩ Pre1(Yn−1)
∪

B2n−1 ∩ LPreOdd1(0, Yn−1,Xn−1)
∪

B2n−2 ∩ LPreEven1(0, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ LPreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ LPreEven1(n − 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ LPreOdd1(n − 1, Yn−1,Xn−1, . . . , Y0,X0)

















































We refer to the above expression as the limit-expression for case 2.

(b) We have Z ⊆ ¬〈〈1〉〉limit

(

Parity(p)
)

, where Z is defined as follows

µYn−1.νXn−1. · · ·µY1.νX1.µY0.νX0







































B2n ∩ Epre2(Yn−1)
∪

B2n−1 ∩ FPreOdd2(0, Yn−1,Xn−1)
∪

B2n−2 ∩ FPreEven2(0, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ FPreOdd2(1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ FPreEven2(n − 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ FPreOdd2(n − 1, Yn−1,Xn−1, . . . , Y0,X0)







































We refer to the above expression as the positive-expression for case 2.

Proof structure. The base case follows from the coBüchi and Büchi case (see Lemma 16 and
Lemma 17 for correctness of case 1 and Lemma 10 and Lemma 11 for correctness of case 2). The
proof of induction proceeds in four steps as follows:

1. Step 1. We assume the correctness of case 1 and case 2, and then extend the result to parity
objective with parity function p : S 7→ [0..2n], i.e., we add a max even priority. The result
is obtained as follows: for the correctness of the limit-expression we use the correctness of
case 1 and for complementation we use the correctness of case 2.

2. Step 2. We assume the correctness of step 1 and extend the result to parity objectives with
parity function p : S 7→ [1..2n + 1], i.e., we add a max odd priority. The result is obtained
as follows: for the correctness of the limit-expression we use the correctness of case 2 and for
complementation we use the correctness of step 1.

31

[0 .. 2n-1] [0 .. 2n] [0 .. 2n+1]

[1 .. 2n+2][1 .. 2n] [1 .. 2n+1] [1 .. 2n+2]

ex

ex

ex

cc

[0 .. 2n]
c c

ex

[0 .. 2n]

[1 .. 2n]

Step 2 Step 3

l

l l

l

Step 4Step 1

Figure 8: Pictorial description of the proof structure. The back-arrows marked as l denote de-
pendence for proving correctness for the limit-expression; the back-arrows marked as c denote
dependence for proving correctness of the complementation; and the back arrows marked as ex
denote extension of a result. In each box, the upper line is the parity for case 1, and the lower line
is the parity for case 2.

3. Step 3. We assume correctness of step 2 and extend the result to parity objectives with parity
function p : S 7→ [1..2n + 2]. This step adds a max even priority and the proof will be similar
to step 1. The result is obtained as follows: for the correctness of the limit-expression we use
the correctness of step 2 and for complementation we use the correctness of step 1.

4. Step 4. We assume correctness of step 3 and extend the result to parity objectives with parity
function p : S 7→ [0..2n + 1]. This step adds a max odd priority and the proof will be similar
to step 2. The result is obtained as follows: for the correctness of the limit-expression we use
the correctness of step 1 and for complementation we use the correctness of step 3.

A pictorial view of the proof structure is shown in Fig 8.

Correctness of step 1. We now proceed with the proof of step 1 and by inductive hypothesis we
will assume that case 1 and case 2 hold.

Lemma 18 For a parity function p : S 7→ [0..2n], and for all T ⊆ S, we have W ⊆

32

〈〈1〉〉limit

(

Parity(p) ∪ 3T
)

, where W is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.

























































T
∪

B2n ∩ Pre1(Yn)
∪

B2n−1 ∩ LPreOdd1(0, Yn,Xn)
∪

B2n−2 ∩ LPreEven1(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ LPreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ LPreEven1(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ LPreOdd1(n − 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ LPreEven1(n − 1, Yn,Xn, . . . , Y1,X1, Y0)

























































Proof. The formula is obtained from the limit-expression for case 1 by just adding the expression
B2n ∩ Pre1(Yn). To prove the result we first rewrite W as follows:

νYn.µXn.νYn−1µXn−1 · · · νY1.µX1.νY0.

















































T ∪ (B2n ∩ Pre1(W))
∪

B2n−1 ∩ LPreOdd1(0, Yn,Xn)
∪

B2n−2 ∩ LPreEven1(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ LPreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ LPreEven1(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ LPreOdd1(n − 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ LPreEven1(n − 1, Yn,Xn, . . . , Y1,X1, Y0)

















































Treating T ∪ (B2n ∩ Pre1(W)), as the set T for the limit-expression for case 1, we obtain from the
inductive hypothesis that

W ⊆ 〈〈1〉〉limit

(

Parity(p) ∪ 3(T ∪ (B2n ∩ Pre1(W)))
)

.

By Lemma 9, with B = B2n and A = Parity(p) we obtain that

W ⊆ 〈〈1〉〉limit

(

Parity(p) ∪ 3T ∪ 23B2n

)

.

Since B2n is the maximal priority and it is even we have 23B2n ⊆ Parity(p). Hence W ⊆
〈〈1〉〉limit

(

Parity(p) ∪ 3T
)

and the result follows.

33

Lemma 19 For a parity function p : S 7→ [0..2n], we have Z ⊆ ¬〈〈1〉〉limit

(

Parity(p)
)

, where Z is
defined as follows

µYn.νXn.µYn−1.νXn−1. · · ·µY1.νX1.µY0.

















































B2n ∩ Epre2(Yn)
∪

B2n−1 ∩ FPreOdd2(0, Yn,Xn)
∪

B2n−2 ∩ FPreEven2(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ FPreOdd2(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ FPreEven2(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ FPreOdd2(n − 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ FPreEven2(n − 1, Yn,Xn, . . . , Y1,X1, Y0)

















































Proof. For k ≥ 0, let Zk be the set of states of level k in the above µ-calculus expression. We
will show that in Zk player 2 can ensure that either Zk−1 is reached with positive probability or
else coParity(p) is satisfied with probability arbitrarily close to 1. Since Z0 = ∅, it would follow by
induction that Zk ∩ 〈〈1〉〉limit

(

Parity(p)
)

= ∅ and the desired result will follow.
We simplify the computation of Zk given Zk−1 and allow that Zk is obtained from Zk−1 in the

following two ways.

1. Add a set states satisfying B2n ∩ Epre2(Zk−1), and if such a non-emptyset is added, then
clearly player 2 can ensure from Zk that Zk−1 is reached with positive probability. Thus the
inductive case follows.

2. Add a set of states satisfying the following condition:

νXn.µYn−1.νXn−1. · · ·µY1.νX1.µY0.







































B2n−1 ∩ FPreOdd2(0, Zk−1,Xn)
∪

B2n−2 ∩ FPreEven2(0, Zk−1,Xn, Yn−1)
∪

B2n−3 ∩ FPreOdd2(1, Zk−1,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ FPreEven2(1, Zk−1,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ FPreOdd2(n − 1, Zk−1,Xn, . . . , Y1,X1)
∪

B0 ∩ FPreEven2(n − 1, Zk−1,Xn, . . . , Y1,X1, Y0)







































If the probability of reaching to Zk−1 is not positive, then the following conditions hold:

• FPreOdd2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i) simplifies to the predecessor operator
LPreEven2(i − 1,Xn−1, Yn−2, . . . , Yn−i,Xn−i) and

34

• FPreEven2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1) simplifies to the predecessor oper-
ator LPreOdd2(i,Xn−1, Yn−2, . . . , Yn−i,Xn−i, Yn−i−1).

Hence if we rule out the possibility of positive probability to reach Zk−1, then the above
µ-calculus expression simplifies to

Z∗ = νXn.µYm−1νXm−1 · · ·µY1.νX1.µY0.







































B2n−1 ∩ Pre2(Xn)
∪

B2n−2 ∩ LPreOdd2(0,Xn, Yn−1)
∪

B2n−3 ∩ LPreEven2(1,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ LPreOdd2(1,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ LPreEven2(n − 2,Xn, . . . , Y1,X1)
∪

B0 ∩ LPreOdd2(n − 1,Xn, . . . , Y1,X1, Y0)







































.

We now consider the parity function p + 1 : S 7→ [1..2n], and by applying the correctness of
the limit-expression for case 2 (inductive hypothesis) with the roles of player 1 and player 2
exchanged we have Z∗ ⊆ 〈〈2〉〉limit

(

coParity(p)
)

(since Parity(p + 1) = coParity(p)). Hence
the desired claim follows.

The result follows from the above case analysis.

Correctness of step 2. We now prove correctness of step 2 and we will rely on the correctness
of step 1 and the inductive hypothesis. Since correctness of step 1 follows from the inductive
hypothesis, we obtain the correctness of step 2 from the inductive hypothesis.

Lemma 20 For a parity function p : S 7→ [1..2n + 1], and for all T ⊆ S we have W ⊆
〈〈1〉〉limit

(

Parity(p) ∪ 3T
)

, where W is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY0.µX0

























































T
∪

B2n+1 ∩ LPreOdd1(0, Yn,Xn)
∪

B2n ∩ LPreEven1(0, Yn,Xn, Yn−1)
∪

B2n−1 ∩ LPreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ LPreEven1(1, Yn,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ LPreOdd1(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ LPreEven1(n − 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ LPreOdd1(n, Yn,Xn, Yn−1,Xn−1, . . . , Y0,X0)

























































35

Proof. We first explain how the µ-calculus expression is obtained from the limit-expression for
case 2: we add a νYn.µXn (adding a quantifier alternation of the µ-calculus formula), and every
LPreOdd and LPreEven predecessor operators are modified by adding Lpre1(Yn,Xn)

⋃

∗ with the
respective predecessor operators, and we add B2n+1 ∩ LPreOdd1(0, Yn,Xn).

We first reformulate the algorithm for computing W in an equivalent form.

W = µXn.νYn−1.µXn−1. · · · νY0.µX0

























































T
∪

B2n+1 ∩ LPreOdd1(0,W,Xn)
∪

B2n ∩ LPreEven1(0,W,Xn, Yn−1)
∪

B2n−1 ∩ LPreOdd1(1,W,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ LPreEven1(1,W,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ LPreOdd1(2,W,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ LPreEven1(n − 1,W,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ LPreOdd1(n,W,Xn, Yn−1,Xn−1, . . . , Y0,X0)

























































.

This mu-calculus formula computes W as the limit of a sequence of sets W0 = T , W1, W2, At
each iteration, both states in B2n+1 and states satisfying B≤2n can be added. The fact that both
types of states can be added complicates the analysis of the algorithm. To simplify the correctness
proof, we formulate an alternative algorithm for the computation of W ; an iteration will add either
a single B2n+1 state, or a set of B≤2n states.

To obtain the simpler algorithm, notice that the set of variables Yn−1,Xn−1, . . . , Y0,X0 does not
appear as an argument of the LPreOdd1(0,W,Xn) = Lpre1(W,Xn) operator. Hence, each B2n+1-
state can be added without regards to B≤2n-states that are not already in W . Moreover, since the
νYn−1.µXn−1. . . . νY0.µX0 operator applies only to B≤2n-states, B2n+1-states can be added one at
a time. From these considerations, we can reformulate the algorithm for the computation of W as
follows.

The algorithm computes W as an increasing sequence T = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tm = W of
states, where m ≥ 0. Let Li = Ti \ Ti−1 and the sequence is computed by computing Ti as follows,
for 0 < i ≤ m:

1. either the set Li = {s} is a singleton such that s ∈ Lpre1(W,Ti−1) ∩ B2n+1.

36

2. or the set Li consists of states in B≤2n such that Li is a subset of the following expression

νYn−1.µXn−1. · · · νY0.µX0







































B2n ∩ LPreEven1(0,W, Ti−1, Yn−1)
∪

B2n−1 ∩ LPreOdd1(1,W, Ti−1, Yn−1,Xn−1)
∪

B2n−2 ∩ LPreEven1(1,W, Ti−1, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ LPreOdd1(2,W, Ti−1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ LPreEven1(n − 1,W, Ti−1, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ LPreOdd1(n,W, Ti−1, Yn−1,Xn−1, . . . , Y0,X0)







































The proof that W ⊆ 〈〈1〉〉limit

(

Parity(p) ∪ 3T
)

is based on an induction on the sequence T = T0 ⊂
T1 ⊂ T2 ⊂ · · · ⊂ Tm = W . For 1 ≤ i ≤ m, let Vi = W \ Tm−i, so that V1 consists of the last block
of states that has been added, V2 to the two last blocks, and so on until Vm = W . We prove by
induction on i ∈ {1, . . . ,m}, from i = 1 to i = m, that for all s ∈ Vi, for all η > 0, there exists a
strategy πη

1 for player 1 such that for all π2 ∈ Π2 we have

Pr
πη
1 ,π2

s

(

3Tm−i ∪ Parity(p)
)

≥ 1 − η.

Since the base case is a simplified version of the induction step, we focus on the latter. There
are two cases, depending on whether Vi \ Vi−1 is composed of B2n+1 or of B≤2n-states.

• If Vi \ Vi−1 ⊆ B2n+1, then Vi \ Vi−1 = {s} for some s ∈ S and s ∈ Lpre1(W,Tm−i). The
result then follows from the application of the basic Lpre principle (Lemma 5) with Z = W ,
X = Tm−i, Z \ Y = Vi−1 and A = Parity(p).

• If Vi \ Vi−1 ⊆ B≤2n, then we analyze the predecessor operator that s ∈ Vi \ Vi−1 satisfies.
The predecessor operator are essentially the predecessor operator of the limit-expression for
case 2 modified by the addition of the operator Lpre1(W,Tm−i)

⋃

∗ . If player 2 plays such the
Lpre1(W,Tm−i) part of the predecessor operator gets satisfied, then the analysis reduces to
the previous case, and player 1 can ensure that Tm−i is reached with probability close to 1.
Once we rule out the possibility of Lpre1(W,Tm−i), then the µ-calculus expression simplifies
to the limit-expression of case 2, i.e.,

νYn−1.µXn−1. · · · νY0.µX0







































B2n ∩ Pre1(Yn−1)
∪

B2n−1 ∩ LPreOdd1(0, Yn−1,Xn−1)
∪

B2n−2 ∩ LPreEven1(0, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ LPreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ LPreEven1(n − 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ LPreOdd1(n − 1, Yn−1,Xn−1, . . . , Y0,X0)







































37

This ensures that if we rule out Lpre1(W,Tm−i) form the predecessor operators, then by
inductive hypothesis (limit-expression for case 2) we have Li ⊆ 〈〈1〉〉limit

(

Parity(p)
)

, and if
Lpre1(W,Tm−i) is satisfied then Tm−i is ensured to reach with probability arbitrary close to 1.
Hence player 1 can ensure that for all η > 0, for all s ∈ Vi, there is a strategy πη

1 for player 1
such that for all π2 for player 2 we have

Pr
πη
1 ,π2

s

(

3Tm−i ∪ Parity(p)
)

≥ 1 − η.

This completes the inductive proof. With i = m we obtain that for all η > 0, there exists a strategy

πη
1 such that for all states s ∈ Vm = W and for all π2 we have Pr

πη
1
,π2

s (3T0 ∪ Parity(p)) ≥ 1 − η.
Since T0 = T , the desired result follows.

Lemma 21 For a parity function p : S 7→ [1..2n + 1] we have Z ⊆ ¬〈〈1〉〉limit

(

Parity(p)
)

, where Z
is defined as follows:

µYn.νXn.µYn−1.νXn−1. · · · µY0.νX0

















































B2n+1 ∩ FPreOdd2(0, Yn,Xn)
∪

B2n ∩ FPreEven2(0, Yn,Xn, Yn−1)
∪

B2n−1 ∩ FPreOdd2(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ FPreEven2(1, Yn,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ FPreOdd2(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ FPreEven2(n − 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ FPreOdd2(n, Yn,Xn, Yn−1,Xn−1, . . . , Y0,X0)

















































Proof. For k ≥ 0, let Zk be the set of states of level k in the above µ-calculus expression. We
will show that in Zk player 2 can ensure that either Zk−1 is reached with positive probability or
else coParity(p) is satisfied with probability arbitrarily close to 1. Since Z0 = ∅, it would follow by
induction that Zk ∩ 〈〈1〉〉limit

(

Parity(p)
)

= ∅ and the desired result will follow.

38

We obtain of Zk from Zk−1 as follows:

νXn.µYn−1.νXn−1. · · ·µY0.νX0

















































B2n+1 ∩ FPreOdd2(0, Zk−1,Xn)
∪

B2n ∩ FPreEven2(0, Zk−1,Xn, Yn−1)
∪

B2n−1 ∩ FPreOdd2(1, Zk−1,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ FPreEven2(1, Zk−1,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ FPreOdd2(2, Zk−1,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ FPreEven2(n − 1, Zk−1,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ FPreOdd2(n,Zk−1,Xn, Yn−1,Xn−1, . . . , Y0,X0)

















































If player 1 risks into moving to Zk−1 with positive probability, then the inductive case is proved
as Zk−1 is reached with positive probability. If the probability of reaching to Zk−1 is not positive,
then the following conditions hold:

• FPreOdd2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i) simplifies to the predecessor operator
LPreEven2(i − 1,Xn−1, Yn−2, . . . , Yn−i,Xn−i) and

• FPreEven2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1) simplifies to the predecessor operator
LPreOdd2(i,Xn−1, Yn−2, . . . , Yn−i,Xn−i, Yn−i−1).

Hence if we rule out the possibility of positive probability to reach Zk−1, then the above µ-calculus
expression simplifies to

Z∗ = νXn.µYn−1.νXn−1. · · · µY0.νX0

















































B2n+1 ∩ Pre2(Xn)
∪

B2n ∩ LPreOdd2(0,Xn, Yn−1)
∪

B2n−1 ∩ LPreEven2(0,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ LPreOdd2(1,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ LPreEven2(1,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ LPreOdd2(n − 1,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ LPreEven2(n − 1,Xn, Yn−1,Xn−1, . . . , Y0,X0)

















































.

We now consider the parity function p − 1 : S 7→ [0..2n] and by applying the correctness of the
limit-expression for step 1 (Lemma 18) with the roles of player 1 and player 2 exchanged we have
Z∗ ⊆ 〈〈2〉〉limit

(

coParity(p)
)

(since coParity(p) = Parity(p − 1)). Hence the result follows.

Correctness of step 3. The correctness of step 3 is similar to correctness of step 1.

39

Lemma 22 For a parity function p : S 7→ [1..2n + 2], and for all T ⊆ S, we have W ⊆
〈〈1〉〉limit

(

Parity(p) ∪ 3T
)

, where W is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY0.µX0

































































T
∪

B2n+2 ∩ Pre1(Yn)
∪

B2n+1 ∩ LPreOdd1(0, Yn,Xn)
∪

B2n ∩ LPreEven1(0, Yn,Xn, Yn−1)
∪

B2n−1 ∩ LPreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ LPreEven1(1, Yn,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ LPreOdd1(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ LPreEven1(n − 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ LPreOdd1(n, Yn,Xn, Yn−1,Xn−1, . . . , Y0,X0)

































































Proof. Similar to step 1 (Lemma 18), we add a max even priority. The proof of the result is
essentially similar to the proof of Lemma 18, the only modification is instead of the correctness of
the limit-expression of case 1 we need to consider the correctness of the limit-expression for step 2
(i.e., Lemma 20 for parity function p : S 7→ [1..2n + 1]).

Lemma 23 For a parity function p : S 7→ [1..2n + 2] we have Z ⊆ ¬〈〈1〉〉limit

(

Parity(p)
)

, where Z
is defined as follows:

µYn.νXn.µYn−1.νXn−1. · · · µY0.νX0

























































B2n+2 ∩ Epre2(Yn)
∪

B2n+1 ∩ FPreOdd2(0, Yn,Xn)
∪

B2n ∩ FPreEven2(0, Yn,Xn, Yn−1)
∪

B2n−1 ∩ FPreOdd2(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ FPreEven2(1, Yn,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ FPreOdd2(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ FPreEven2(n − 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ FPreOdd2(n, Yn,Xn, Yn−1,Xn−1, . . . , Y0,X0)

























































40

Proof. The proof of the result is essentially similar to the proof of Lemma 19, the only modification
is instead of the correctness of the limit-expression of case 2 we need to consider the correctness
of the limit-expression for step 1 (i.e., Lemma 18). This is because in the proof, after we rule
out states in B2n+2 and analyze the sub-formula as in Lemma 18, we consider parity function
p − 1 : S 7→ [0..2n] and then invoke the correctness of Lemma 18.

Correctness of step 4. The correctness of step 4 is similar to correctness of step 2.

Lemma 24 For a parity function p : S 7→ [0..2n + 1], and for all T ⊆ S, we have W ⊆
〈〈1〉〉limit

(

Parity(p) ∪ 3T
)

, where W is defined as follows:

νYn+1.µXn+1. · · · νY1.µX1.νY0.

































































T
∪

B2n+1 ∩ LPreOdd1(0, Yn+1,Xn+1)
∪

B2n ∩ LPreEven1(0, Yn+1,Xn+1, Yn)
∪

B2n−1 ∩ LPreOdd1(1, Yn+1,Xn+1, Yn,Xn)
∪

B2n−2 ∩ LPreEven1(1, Yn+1,Xn+1, Yn,Xn, Yn−1)
∪

B2n−3 ∩ LPreOdd1(2, Yn+1,Xn+1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ LPreEven1(2, Yn+1,Xn+1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ LPreOdd1(n, Yn+1,Xn+1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ LPreEven1(n, Yn+1,Xn+1, Yn,Xn, . . . , Y1,X1, Y0)

































































Proof. Similar to step 2 (Lemma 20), we add a max odd priority. The proof of the result is
essentially similar to the proof of Lemma 20, the only modification is instead of the correctness of
the limit-expression of case 2 we need to consider the correctness of the limit-expression for step 1
(i.e., Lemma 18 for parity function p : S 7→ [0..2n]).

Lemma 25 For a parity function p : S 7→ [0..2n + 1] we have Z ⊆ ¬〈〈1〉〉limit

(

Parity(p)
)

, where Z

41

is defined as follows:

µYn+1.νXn+1. · · · µY1.νX1.µY0.

























































B2n+1 ∩ FPreOdd2(0, Yn+1,Xn+1)
∪

B2n ∩ FPreEven2(0, Yn+1,Xn+1, Yn)
∪

B2n−1 ∩ FPreOdd2(1, Yn+1,Xn+1, Yn,Xn)
∪

B2n−2 ∩ FPreEven2(1, Yn+1,Xn+1, Yn,Xn, Yn−1)
∪

B2n−3 ∩ FPreOdd2(2, Yn+1,Xn+1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ FPreEven2(2, Yn+1,Xn+1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ FPreOdd2(n, Yn+1,Xn+1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ FPreEven2(n, Yn+1,Xn+1, Yn,Xn, . . . , Y1,X1, Y0)

























































Proof. The proof of the result is essentially similar to the proof of Lemma 21, the only modification
is instead of the correctness of the limit-expression of step 1 (Lemma 18) we need to consider the
correctness of the limit-expression for step 3 (i.e., Lemma 22). This is because in the proof, while
we analyze the sub-formula as in Lemma 22, we consider parity function p + 1 : S 7→ [1..2n + 2]
and then invoke the correctness of Lemma 22.

7.3 Duality of predecessor operators

In this section we prove the duality of the predecessor operators of subsection 7.1. We present the
details of result for Lpre1(Y1,X1)

⋃

∗ Lpre1(Y0,X0) and its complement; the general result follows
similarly by an induction.

Lemma 26 Given X1 ⊆ X0 ⊆ Y0 ⊆ Y1 ⊆ S, and s ∈ S, let

B = µW2 . νW1 . µW0 .





Stay1(s, Y1,W0) ∩ Stay1(s, Y0,W1)
∪

Cover1(s,X1,W0) ∩ Cover1(s,X0,W2)



 .

If Γ2(s) ⊆ B, then s ∈ Lpre1(Y1,X1)
⋃

∗ Lpre2(Y0,X0).

Proof. We first analyze the computation of B. The set B of moves is obtained as follows:

∅ = W 0
2 ⊆ W 1

2 ⊆ W 2
2 ⊆ · · · ⊆ W k

2 = B;

and the set W i+1
2 is obtained from W i

2 as follows:

W i+1
2 = νW1 . µW0 .





Stay1(s, Y1,W0) ∩ Stay1(s, Y0,W1)
∪

Cover1(s,X1,W0) ∩ Cover1(s,X0,W
i
2)



 .

42

Alternatively we have

W i+1
2 = µW0 .





Stay1(s, Y1,W0) ∩ Stay1(s, Y0,W
i+1
2)

∪
Cover1(s,X1,W0) ∩ Cover1(s,X0,W

i
2)



 .

Equivalently, we can characterize the computation of W i+1
2 as follows:

W i+1,0
2 = W i

2 ∪ Cover1(s,X0,W
i
2) (we call moves in W i+1,0

2 \ W i
2 as “openers”);

W i+1,j+1
2 = W i+1,j

2 ∪ (Stay1(s, Y1,W
i+1,j
2) ∩ Stay1(s, Y0,W

i+1
2)) ∪ Cover1(s,X1,W

i+1,j
2).

Properties. We now describe the following key properties of the moves.

1. for all b ∈ W i+1,0
2 \ W i

2, there exists a ∈ W i
2 such that Dest(s, a, b) ∩ X0 6= ∅ (by property of

Cover1(s,X0,W
i
2)).

2. for all b ∈ W i+1,j+1
2 \ W i+1,j

2 , there exists a ∈ W i+1,j
2 such that Dest(s, a, b) ∩ X1 6= ∅ (by

property of Cover1(s,X1,W
i+1,j
2)).

3. for all a ∈ W i+1
2 , for all b ∈ Γ2(s) \ W i+1

2 we have Dest(s, a, b) ⊆ Y0 ⊆ Y1 (by property of
Stay1(s, Y0,W

i+1
2)).

4. for all a ∈ W i+1,j+1
2 , for all b ∈ Γ2(s) \ W i+1,j

2 we have Dest(s, a, b) ⊆ Y1 (by property of

Stay1(s, Y1,W
i+1,j
2)).

For all 0 < ε < 1, consider a distribution for player 1 ξ1[ε] that plays moves in W i+1,j+1
2 \ W i+1,j

2

with probability proportional to ε|W
i+1,j
2 |+1. For a move b ∈ Γ2(s) we have the following case

analysis.

1. If b ∈ W i+1,0
2 for some i (i.e., b is an opener move), then (a) there exists a ∈ W i

2 with
Dest(s, a, b)∩X0 6= ∅ (property 1), i.e., the probability of going to X0 is at least proportional
to ε|W

i
2|; and (b) for all a ∈ W i

2 we have Dest(s, a, b) ⊆ Y0 ⊆ Y1 (property 3), i.e., the

probability of leaving Y0 (or Y1) is at most proportional to ε|W
i
2|+1.

2. If b ∈ W i+1,j+1
2 for some i, j, then (a) there exists a ∈ W i+1,j

2 with Dest(s, a, b) ∩ X1 6= ∅

(property 2), i.e., the probability of going to X1 is at least proportional to ε|W
i+1,j
2 |; and (b)

for all a ∈ W i+1,j
2 we have Dest(s, a, b) ⊆ Y1 (property 4), i.e., the probability of leaving Y1

is at most proportional to ε|W
i+1,j
2 |+1.

It follows from above that given the distribution ξ1[ε] for player 1, and for a distribution ξ2 for
player 2, (a) if ξ2 plays only openers with positive probability then the probability of going to
X0 as compared to leaving Y0 is proportional to 1

ε ; (b) otherwise, the probability of going to
X1 as compared to leaving Y1 is proportional to 1

ε . Since ε > 0 is arbitrary, it follows that
s ∈ Lpre1(Y1,X1)

⋃

∗ Lpre1(Y0,X0).

Lemma 27 Given Y1 ⊆ Y0 ⊆ X0 ⊆ X1 ⊆ S, and s ∈ S, let

C = νW2 . µW1 . νW0 .





Cover2(s, Y1,W0) ∪ Cover1(s, Y0,W1)
∪

Stay2(s,X1,W0) ∩ Stay2(s,X0,W2)



 .

If Γ2(s) ∩ B 6= ∅, then s ∈
(

Fpre2(X1, Y1)
⋂

∗ Epre2(Y1)
)

⋃

∗ Lpre2(X1, Y0)
⋃

∗ Pre2(X0).

43

Proof. We first observe that for moves a ∈ Γ1(s) \C, and b ∈ C we have Dest(s, a, b) ⊆ X0 ⊆ X1

(this follows from the condition Stay2(s,X0,W2)). Hence by playing a distribution with support
subset of C player 2 can ensure that for moves of player 1 outside C the set X0 and also X1 is not
left. We have

C = µW1 . νW0 .





Cover2(s, Y1,W0) ∪ Cover1(s, Y0,W1)
∪

Stay2(s,X1,W0) ∩ Stay2(s,X0, C)





⊆ µW1 . νW0 .





Cover2(s, Y1,W0) ∪ Cover1(s, Y0,W1)
∪

Stay2(s,X1,W0)





Compare the above µ-calculus with the formula of Lemma 13, and by Remark 2 it follows that
player 2 can play distribution with support subset of C such that if player 1 plays a distribution
with support subset of C, then

(

Fpre2(X1, Y1)
⋂

∗ Epre2(Y1)
)

⋃

∗ Lpre2(X1, Y0) can be ensured. It
follows that s ∈

(

Fpre2(X1, Y1)
⋂

∗ Epre2(Y1)
)

⋃

∗ Lpre2(X1, Y0)
⋃

∗ Pre2(X0).

From Lemmas 26 and 27 we obtain the following lemma.

Lemma 28 Given X1 ⊆ X0 ⊆ Y0 ⊆ Y1 ⊆ S, and s ∈ S, the following assertions hold.

1. Let

B = µW2 . νW1 . µW0 .





Stay1s, (Y1,W0) ∩ Stay1(s, Y0,W1)
∪

Cover1(s,X1,W0) ∩ Cover1(s,X0,W2)



 .

We have s ∈ Lpre1(Y0,X0)
⋃

∗ Lpre1(Y1,X1) iff Γ2(s) ⊆ B.

2. We have
(

Fpre2(¬X1,¬Y1)
⋂

∗ Epre2(¬Y1)
)
⋃

∗ Lpre2(¬X1,¬Y0)
⋃

∗ Pre2(¬X0) = ¬(Lpre1(Y0,X0)
⋃

∗ Lpre1(Y1,X1)).

Generalization. In the proof of Lemma 26 the basic idea is as follows: the computation of the set
B is obtained as chunks of sets W j

2 , within the chunks of a W j
2 the condition for Lpre1(Y1,X1) was

satisfied, and across the chunks of W j
2 the condition for Lpre1(Y0,X0) is satisfied. In the general

case for LPreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i) we have a similar µ-calculus formula for a set B of
moves that is obtained as chunks of W j

2i, such that within the chunks of W j
2i the condition for

LPreOdd1(i − 1, Yn,Xn, . . . , Yn−i−1,Xn−i−1) is satisfied and across the chunks the condition for
Lpre1(Yn−i,Xn−i) is satisfied. The proof structures is essentially similar to Lemma 26. Lemmas 26
and 27 present the basic arguments of the inductive step to generalize Lemma 28 to obtain the
following result.

Lemma 29 Given Xn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn and s ∈ S, the
following assertions hold:

1. Let

B = µW2i . νW2i−1 . · · · . µW0 .







(

Stay1(s, Yn,W0) ∩
⋂i

j=1 Stay1(s, Yn−j,W2j−1)
)

∪
⋂i

j=0 Cover1(s,Xn−j ,W2j)






.

We have s ∈ LPreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i) iff Γ2(s) ⊆ B.

44

2. We have

FPreOdd2(i,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i) = ¬LPreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i).

The basic principle to obtain Lpre
⋃

∗ Pre from Lpre also extends to obtain LPreEven1 from
LPreOdd. This gives us the following lemma.

Lemma 30 Given Xn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i−1 ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn and s ∈ S,
the following assertions hold:

1. Let

B = νW2i+1 . µW2i . νW2i−1 . · · · . µW0 .











(

Stay1(s, Yn,W0) ∩
⋂i

j=1 Stay1(s, Yn−j,W2j−1)

∩ Stay1(s, Yn−i−1,W2i+1)
)

∪
⋂i

j=0 Cover1(s,Xn−j ,W2j)











.

We have s ∈ LPreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1) iff Γ1(s) ∩ B 6= ∅.

2. We have

FPreEven2(i,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i,¬Yn−i−1) = ¬LPreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1).

Characterization of limit winning set. From Lemmas 18—25, and the duality of predecessor
operators (Lemmas 29 and 30) we obtain the following result characterizing the limit-winning sets
for Rabin-chain objectives.

Theorem 5 For all concurrent game structures G, for all parity objectives Parity(p) for player 1,
the following assertions hold.

1. If p : S 7→ [0..2n − 1], then 〈〈1〉〉limit

(

Parity(p)
)

= W , where W is defined as follows

νYn.µXn. · · · νY1.µX1.νY0.







































B2n−1 ∩ LPreOdd1(0, Yn,Xn)
∪

B2n−2 ∩ LPreEven1(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ LPreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ LPreEven1(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ LPreOdd1(n − 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ LPreEven1(n − 1, Yn,Xn, . . . , Y1,X1, Y0)







































(24)

45

Complexity Winning Spoiling

Safety O(|G|) ΠDM
1 ΠM

2

Reachability O(|G|2) ΠM
1 ΠM

2

Büchi O(|G|2) ΠH
1 ΠM

2

coBüchi O(|G|4) ΠM
1 ΠH

2

parity O(|G|2m+2) ΠH
1 ΠH

2

Table 1: Complexity, and types of limit-winning and limit-spoiling strategies for Rabin-chain games;
|G| is the size of the game, and 2m is the number parities.

2. If p : S 7→ [1..2n], then 〈〈1〉〉limit

(

Parity(p)
)

= W , where W is defined as follows

νYn−1.µXn−1. · · · νY0.µX0







































B2n ∩ Pre1(Yn−1)
∪

B2n−1 ∩ LPreOdd1(0, Yn−1,Xn−1)
∪

B2n−2 ∩ LPreEven1(0, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ LPreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ LPreEven1(n − 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ LPreOdd1(n − 1, Yn−1,Xn−1, . . . , Y0,X0)







































(25)

3. The set of limit-winning states can be computed using the relations (24) and (25) in time
O(|S|2n+1 ·

∑

s∈S |Γ1(s) ∪ Γ2(s)|
2n), where |S| is the number of states of the game.

4. Limit-winning strategies for player 1 require infinite-memory in general.

5. Limit-spoiling strategies for player 2 require infinite-memory in general.

The time complexity of item Theorem 5 is obtained as follows. A µ-calculus formula of nesting depth
2n converges in at most |S|2n iterations to the fixpoint. The convergence of µ-calculus formula,
and the fact that where a state s ∈ LPreOdd1 (resp. s ∈ LPreEven1) with 2n-arguments (resp.
2n + 1 arguments) can be decided in time O(|Γ1(s) ∪ Γ2(s)|

2n) gives the desired time complexity
of Theorem 5. Table 1 summarizes the types of the limit-winning and limit-spoiling strategies that
can be found, along with the complexity of computing the set of limit-winning states.

7.4 Strategy complexity and computational complexity

Strategy constructions. The limit-winning strategies for parity objectives requires infinite-
memory (for counting the number of rounds). However, similar to the construction of limit-winning
strategies for Büchi objectives, there exists limit-winning strategies that in the limit converge to
a memoryless strategy. However, the memoryless strategy to which the sequence of limit-winning

46

strategies converges is not limit-winning in general (this fact also holds for reachability objectives,
this follows from Example 1). We formalize this in a lemma below. Example 2 shows that limit-
winning strategies require infinite-memory in general.

Lemma 31 Let G be a concurrent game structure with a parity objective Parity(p), and let W =
〈〈1〉〉limit

(

Parity(p)
)

be the limit-winning states for player 1. For all s ∈ W , there exist A(s) ⊆ Γ1(s)
such that the following condition hold.

For any memoryless strategy πm
1 ∈ ΠM

1 such that Supp(π1(s)) = A(s) for all s ∈ W , we
have that there exists a sequence of (εi)i≥0 such that:

• ε0 > ε1 > ε2 > . . . and limi→∞ εi = 0,

• for all i ≥ 0 there exists a strategy πεi

1 such that for all π2 ∈ Π2 and for all s ∈ W

we have Pr
π

εi
1 ,π2

s (Parity(p)) ≥ 1 − εi, and

• the strategies πεi

1 converges to πm
1 as i → ∞, i.e., limi→∞ πεi

1 = πm
1 .

Witness of limit-winning strategies. The witness strategy for a limit-winning strategy as
constructed in lemmas of subsection 7.2 can be described in two parts: a ranking function of the
states, and a ranking function of the actions at a state. These ranking functions are described by
µ-calculus formulas. At the round k of a play, the witness strategy π1 plays at a state s in the
limit-winning set, the actions with least rank with positive-bounded probabilities, and the other
actions with vanishingly small probabilities as ε → 0. Hence, the strategy π1 can be described as

π1 = (1 − εk)π
ℓ
1 + εk · πd

1(εk),

where πℓ
1 is a memoryless strategy such that, at each state s, Supp(πℓ

1(s)) is the set of actions
with least rank at s (as stated in Lemma 31). The µ-calculus formula and the ranking of the
states and the actions can be described as polynomial witness and can be verified in polynomial
time. This shows that whether a state is limit-winning for a parity objective can be decided in
NP. The existence of polynomial witness for limit-spoiling strategies for player 2 and polynomial
time verification procedure is similar, which shows that the problem is also in coNP. This gives us
Theorem 6.

Theorem 6 Given a concurrent game structure G, a parity objective Parity(p), and a state s ∈ S,
whether s ∈ 〈〈1〉〉limit

(

Parity(p)
)

can be decided in NP ∩ coNP.

7.5 Properties: duality and bounded-limit law

The duality of concurrent games with parity objectives is stated in the corollary. The result follows
from the characterization of limit-winning sets as µ-calculus formulas, and the limit-spoiling states
as the complementary µ-calculus formulas.

Corollary 1 For all concurrent game structures G and all parity objectives Parity(p), we have
〈〈1〉〉limit

(

Parity(p)
)

= S \ 〈〈2〉〉bounded

(

coParity(p)
)

.

The following corollary establishes relation between the bounded and limit-winning states in
concurrent games with parity objectives.

47

Corollary 2 (Limit-law for parity games) Let G be a concurrent games structure with a parity
objective Parity(p). The following assertions hold.

1. If 〈〈2〉〉limit

(

coParity(p)
)

= ∅, then 〈〈1〉〉limit

(

Parity(p)
)

= S.

2. If 〈〈1〉〉limit

(

Parity(p)
)

= S, then 〈〈1〉〉limit

(

Parity(p)
)

= S.

3. If 〈〈1〉〉bounded

(

Parity(p)
)

6= ∅, then 〈〈1〉〉limit

(

Parity(p)
)

6= ∅.

Proof. We prove the results as follows.

1. Consider the proof of Lemma 19, Lemma 21, Lemma 23, and Lemma 25. Let Z1 be the
set of states obtained in the first iteration of the compuatation of the respective µ-calculus
expression. It follows from the proof of the lemmas that Z1 ⊆ 〈〈2〉〉limit

(

coParity(p)
)

. If
〈〈1〉〉limit

(

Parity(p)
)

6= S, then we have Z0 6= ∅, and hence the result follows.

2. If 〈〈1〉〉limit

(

Parity(p)
)

= S, then by duality (Corollary 1) we have 〈〈2〉〉bounded

(

coParity(p)
)

= ∅,
and hence 〈〈2〉〉limit

(

coParity(p)
)

= ∅. The result then follows from part 1.

3. If 〈〈1〉〉limit

(

Parity(p)
)

= ∅, then by part 1 we have 〈〈2〉〉limit

(

coParity(p)
)

= S (by exchanging
roles of palyer 1 and player 2 in part 1). Then we have 〈〈1〉〉bounded

(

Parity(p)
)

= ∅.

Independence from precise probabilities. Observe that the computation of all the predecessor
operators only depends on the supports of the transition function, and does not depend on the
precise transition probabilities. Hence the computation of the limit-winning sets is independent
of the precise transition probabilities, and depends only on the support. We formalize this in the
following result.

Theorem 7 Let G1 = (S,A,Γ1,Γ2, δ1) and G2 = (S,A,Γ1,Γ2, δ2) be two concurrent game struc-
tures with the same set S of states, same set A of moves, and same move assignment functions
Γ1 and Γ2. If for all s ∈ S, for all a1 ∈ Γ1(s) and a2 ∈ Γ2(s) we have Supp(δ1(s, a1, a2)) =
Supp(δ2(s, a1, a2)), then for all parity objectives Parity(p), the set of limit-winning states for
Parity(p) in G1 and G2 coincide.

References

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc.
38th IEEE Symp. Found. of Comp. Sci., pages 100–109. IEEE Computer Society Press,
1997.

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of
reactive systems. In ICALP’89, LNCS 372, pages 1–17. Springer, 1989.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. In Proc. 5th IEEE Symp. Logic in Comp. Sci., pages
428–439. IEEE Computer Society Press, 1990.

[BL69] J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state strategies.
Trans. Amer. Math. Soc., 138:295–311, 1969.

48

[BLV96] N. Buhrke, H. Lescow, and J. Vöge. Strategy construction in infinite games with strett
and rabin chain winning conditions. In TACAS 96, volume 1055 of Lect. Notes in Comp.
Sci., pages 207–225. Springer, 1996.

[Chu62] A. Church. Logic, arithmetic, and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35. Institut Mittag-Leffler, 1962.

[Con93] A. Condon. On algorithms for simple stochastic games. In Advances in Computa-
tional Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 51–73. American Mathematical Society, 1993.

[dAH00] L. de Alfaro and T.A. Henzinger. Concurrent omega-regular games. In LICS’00, pages
141–154. IEEE, 2000.

[dAHK98] L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games. In
Proc. 39th IEEE Symp. Found. of Comp. Sci., pages 564–575, 1998.

[dAHK07] L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games.
Theoretical Computer Science, 386(3):188–217, 2007.

[dAHM00] L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. The control of synchronous systems.
In CONCUR’00, Lecture Notes in Computer Science 1877, pages 458–473. Springer,
2000.

[dAHM01] L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. The control of synchronous systems,
part ii. In CONCUR’01, Lecture Notes in Computer Science 2154, pages 566–580.
Springer, 2001.

[Dil89] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. The MIT Press, 1989.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In 32nd Symp. on Foundations of Computer Science (FOCS), pages 368–377,
1991.

[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.

[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. 14th ACM Symp.
Theory of Comp., 1982.

[Kec95] A. Kechris. Classical Descriptive Set Theory. Springer, 1995.

[KPBV95] S. Krishnan, A. Puri, R. Brayton, and P. Varaiya. Rabin index, chain automata and
applications to automata and games. In Proc. 7th Intl. Conference on Computer Aided
Verification, volume 939 of Lect. Notes in Comp. Sci. Springer-Verlag, 1995.

[KS81] P.R. Kumar and T.H. Shiau. Existence of value and randomized strategies in zero-sum
discrete-time stochastic dynamic games. SIAM J. Control and Optimization, 19(5):617–
634, 1981.

49

[KSK66] J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains. D. Van
Nostrand Company, 1966.

[LW95] H. Lescow and T. Wilke. On polynomial-size programs winning finite-state games. In
Proc. 7th Intl. Conference on Computer Aided Verification, volume 939 of Lect. Notes
in Comp. Sci., pages 239–252. Springer-Verlag, 1995.

[McN93] R. McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65:149–
184, 1993.

[Mos84] A.W. Mostowski. Regular expressions for infinite trees and a standard form of au-
tomata. In Computation Theory, volume 208 of Lect. Notes in Comp. Sci., pages
157–168. Springer-Verlag, 1984.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89, pages
179–190. ACM Press, 1989.

[RF91] T.E.S. Raghavan and J.A. Filar. Algorithms for stochastic games — a survey. ZOR —
Methods and Models of Op. Res., 35:437–472, 1991.

[RW87] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event
processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

[Sha53] L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. USA, 39:1095–1100, 1953.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 4, pages 135–191. Elsevier Science
Publishers (North-Holland), Amsterdam, 1990.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. of 12th Annual
Symp. on Theor. Asp. of Comp. Sci., volume 900 of Lect. Notes in Comp. Sci., pages
1–13. Springer-Verlag, 1995.

[Var85] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems. In
Proc. 26th IEEE Symp. Found. of Comp. Sci., pages 327–338, 1985.

50

