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Abstract Multithreaded programs coordinate their interaction through synchronization
primitives like mutexes and semaphores, which are managed by an OS-provided resource
manager. We propose algorithms for the automatic construction of code-aware resource
managers for multithreaded embedded applications. Such managers use knowledge about
the structure and resource usage (mutex and semaphore usage) of the threads to guarantee
deadlock freedom and progress while managing resources in an efficient way. Our algo-
rithms compute managers as winning strategies in certain infinite games, and produce a
compact code description of these strategies. We have implemented the algorithms in the
tool CYNTHESIS. Given a multithreaded program in C, the tool produces C code imple-
menting a code-aware resource manager. We show in experiments that CYNTHESIS pro-
duces compact resource managers within a few minutes on a set of embedded benchmarks
with up to 6 threads.
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1 Introduction

Embedded and reactive software is often implemented as a set of communicating and inter-
acting threads. The threads most commonly rely on primitives such as mutexes and counting
semaphores to coordinate their interaction, to ensure the atomic execution of critical code
regions, and to ensure that shared data structures are correctly accessed. These mutexes and
semaphores (which we collectively term resources) are managed independently of the appli-
cation code. In this paper, we propose the automated construction of code-aware managers
for resources. Such managers use their knowledge of the thread structure and resource usage
to manage resources in an efficient and deadlock-free fashion.

The simplest resource managers, found in the implementation of just about any thread
library, use the most liberal of policies: grant a resource whenever it is available. The liberal-
ity of this policy creates the possibility of deadlocks: the classical example is when thread 1
requests (and is granted) a mutex A, and thread 2 requests (and is granted) a mutex B. If
the next requests are for mutex B from thread 1, and for mutex A from thread 2, deadlock
ensues. Writing software that is deadlock-free under such a simple resource management
policy is a difficult and error-prone task [18, 33]. Monotonic locking [31] ensures deadlock
freedom, at the price of imposing additional bookkeeping on the programmer. Monotonic
locking also cannot be extended to counting semaphores, where there is no notion of a par-
ticular thread “holding” a resource. Priority ceiling uses information on the set of locks
used by each thread to guarantee deadlock freedom [5]. Like monotonic locking, however,
priority ceiling cannot cope with counting semaphores. Furthermore, in the setting that we
study in this paper, when all threads have the same priority and need to get a fair share of
CPU time, priority ceiling is a most restrictive policy: it allows at most one thread to hold
mutexes at any given time. Other algorithms, such as the banker’s algorithm [31], rely on a
manual analysis of the resources needed for given tasks, and again do not cover code with
semaphores.

We present an automatic static technique to synthesize code-aware resource managers
for multithreaded embedded applications that guarantee deadlock freedom while managing
resources in a liberal and efficient way. Rather than synthesizing the whole scheduler, we
focus on the resource policy, i.e., the part of the scheduler responsible for granting resources,
depending on the underlying OS scheduler to resolve the remaining scheduling choices. Our
formulation does not require special programmer annotations or code structures, nor any
change in programming style. Hence, it is directly applicable to existing bodies of code.

To illustrate the advantages of code-aware managers, consider the threads of Fig. 1.
Thread 1 and Thread 2 can lead to a deadlock under a standard, most liberal resource man-
ager. On the other hand, the code-aware manager we construct is able to differentiate, in
Thread 1, between the requests for the mutex a occurring on the then and else branches of
the if statement (during code analysis, information about the location of resource manager
calls is added to the calls themselves). When Thread 1 holds mutex a, and Thread 2 requests
mutex b, the request is granted if Thread 1 is in the else branch, and denied otherwise. Sim-
ilarly, when Thread 2 holds the mutex b, and Thread 1 requests the mutex a, the request
is granted if Thread 1 is in the else branch, and denied otherwise. In all cases, the code-
aware manager guarantees deadlock freedom while managing resources in a fair and liberal
manner.

We focus on the problem of ensuring fair, deadlock-free progress of all the threads com-
posing the embedded application. We assume that threads are correct, except possibly for
their resource interaction: for instance, we do not guarantee progress if a thread holding a
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Fig. 1 Two fragments of C code

mutex enters an infinite loop (no resource manager guarantees progress under these condi-
tions). In other words, we focus on the resource management problem, rather than on the
software verification problem.

We formulate the scheduling problem as a game between the manager and the threads,
where the goal for the manager is to avoid deadlocks while ensuring that all threads make
progress. A winning strategy in this game provides a code-aware manager that guarantees
progress for all threads at run time. In this game, the manager has two sources of antagonism:
first, there is the non-determinism of each thread (such as the if of Thread 1); second, the OS
scheduler chooses which thread to run when more than one is ready. Treating both sources
of antagonism in a purely adversarial way would lead to the conclusion that most systems
are doomed to starvation. Rather, we include a detailed analysis of what kind of fairness
assumptions are needed to obtain a more realistic model of the system. This analysis is not
present in some recent work on code-aware schedulers [27, 28], a circumstance that prevents
those schemes from addressing the problem of progress (or absence of starvation), which is
a major concern in the present paper. We argue that this analysis is also necessary to extend
the scope of the synthesis to address quality of service concerns.

To achieve compact, yet fair, managers, we consider winning strategies that may be ran-
domized, that is, scheduling decisions may use lotteries over available moves; the strategies
ensure progress and fairness with probability 1. We provide efficient algorithms that com-
pute winning strategies from the source code in quadratic time, while accounting for sched-
uler and thread fairness. We then take a closer look at the interaction between the resource
manager and the underlying operating system scheduler, and we show how the standard
strategy obtained by solving the game can be made more efficient in a real-world resource
manager. We show how the strategies can be represented compactly using BDDs, and we
discuss how to implement the resource manager so that it is compact in terms of code size
as well as efficient to execute at run-time.

1.1 The tool Cynthesis

We have implemented these algorithms in the tool CYNTHESIS. Our tool takes as input a
multithreaded application written in C, and produces code for a custom resource manager
for the application. The CYNTHESIS tool flow is illustrated in Fig. 2. First, CYNTHESIS

identifies the threads composing the embedded application, and extracts from each thread
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Fig. 2 CYNTHESIS tool flow:
from the source code of an
embedded application, to the
executable application with its
code-aware resource manager

a resource interface which summarizes the resource usage (mutexes, semaphores) of the
thread. These resource interfaces are then merged into a joint interface, and game-theoretic
methods are used to generate a code-aware resource manager from the joint interface; this
code-aware resource manager also consists of C code. While generating the resource inter-
faces, CYNTHESIS annotates the code of the embedded application, so that it can communi-
cate with the resource manager. The resulting annotated application, and resource manager,
can then be compiled and linked to obtain the complete embedded application. Currently,
CYNTHESIS produces code for the the eCos embedded operating system [17]; the tool can
be easily retargeted to other operating systems.

We have applied the tool to a set of small multithreaded embedded applications with up
to six threads. In each case, CYNTHESIS produced the custom resource manager within a
few minutes, and the resource manager could be compactly represented using BDD-based
data structures with a few hundred nodes. We have also applied CYNTHESIS to a larger case
study, described in Sect. 5, consisting in a multi-threaded program implementing an ad-hoc
network protocol for mobile robots. In this case study, CYNTHESIS correctly identified and
prevented a subtle deadlock that was present in the original application.

1.2 Related work

In closely related work, [27, 28] study the synthesis of code-aware managers for Java. The
focus is deadlock avoidance, and as mentioned earlier, the question of progress (absence of
starvation) is not addressed.

The ongoing focus on multi-core hardware architectures has given rise to a wide ar-
ray of formal techniques aimed at assisting the programmers in the difficult job of writing
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correctly-synchronized concurrent programs. Many of these techniques can be seen as forms
of partial synthesis, as they “complete” a given program by filling in some critical or hard-
to-get-right parts. For instance, Kuperstein et al. [29] propose a technique to automatically
place a minimal number of memory fences in a concurrent program in order to guarantee a
given safety property. Golan-Gueta et al. [22] show how to automatically synchronize con-
current programs which employ certain classes of dynamic data structures. Finally, program
sketching [3, 34] is a general purpose partial synthesis approach that has also been applied
to concurrent data structures [35]. In a recent paper, Cerny et al. [6] study the problem of
lock synchronizers for concurrent data-structures in such a way that the resulting program
satisfies a safety goal and is optimal w.r.t. a given performance model. As opposed to these
works, we consider a stronger liveness goal and we allow each thread to retain some non-
determinism, in order to over-approximate all branching and looping constructs. Our objec-
tive is to synthesize a resource manager that ensures all threads make progress as opposed
to [6], that is concerned with the optimal placement of locks to meet safety and quantitative
objectives.

The problem of deadlock prevention has been extensively studied in at least three dif-
ferent fields: databases, operating systems, and flexible manufacturing systems. In the latter
field [1, 16, 19, 24, 25, 37], it is assumed that a Petri Net model is constructed by hand. In
contrast, our approach and tool rely on the automated analysis of software, and we deal in
detail with the issues arising from code abstraction and interaction with operating-system
schedulers. Also, most of these works deal with processes that are terminating and/or deter-
ministic. The work of [11] is amongst the first to consider the problem of synthesis given
temporal logic specifications and much progress has been made since then [2, 21]. In [11],
the authors describe synthesizing synchronization skeletons for concurrent programs from
CTL specifications. A synchronization skeleton for a given process is a labeled graph, where
nodes correspond to blocks of code that are atomic and the labels on edges correspond to the
conditions under which the process can transition between nodes such that the CTL specifi-
cation is satisfied for the program. If the specifications are satisfiable, then the skeletons are
extracted from a finite model that satisfies the specification. Similar to this work our thread
interfaces abstract each process to the level of its interactions with the resource manager, but
in our case we explictly include the non-determinism introduced by the OS scheduler and the
non-determinism inherent in each process due to conditional branch statements. Introduc-
ing these sources of non-determinism entail synthesizing policies for the resource manager
against all possible, and hence adversarial, behaviors of the sources of non-determinism. Fi-
nally, the use of randomization to generate efficient resource managers has not been studied
before in these works.

Static compiler techniques have been used in high performance thread packages to im-
prove response time through better scheduling [38], however, the problem of resource in-
teraction and deadlock has not been studied. Finally, deadlock detection and prevention
methods from transactional databases do not apply in our setting, since our applications do
not have transactional semantics and rollback.

1.3 Paper organization

In Sect. 2, we define thread resource interfaces and joint interfaces, and outline how such
interfaces are extracted from the code of the embedded application. Section 3 covers the
game-theoretical techniques used to generate code-aware resource managers. This section
presupposes some knowledge of game theory, and may be skipped by readers interested in
forming a general idea of the tool CYNTHESIS. Section 4 explains how to adapt the resource
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managers obtained via game-theoretical methods to the characteristics of the runtime envi-
ronment of an embedded application, obtaining managers that are more efficient in practice.
Finally, Sect. 5 describes the tool CYNTHESIS, as well as the examples and case studies that
have been analyzed with it.

This paper is an improved and extended version of [14] with full proofs and examples
that illustrate the rationale behind our synthesis objective. Moreover, we introduce finitary
fairness and finitary progress objectives and argue that rather than progress under fairness
assumptions as proposed in [14], the more appropriate synthesis objective should be finitary
progress, under finitary fairness assumptions. The finitary progress objective, under finitary
fairness assumptions, provides a bound on the number of times that a thread waiting for a
resource can be bypassed. Interestingly, we show that the winning strategies we compute
in [14] are also winning for the case of the new finitary progress objectives, thus strength-
ening the results we presented in [14].

2 Thread resource interfaces

In this section we introduce resources, thread interfaces and the systems that consist of re-
sources and thread interfaces. Systems with semaphores may have an unbounded state space
as semaphore values may grow beyond bounds. We conclude this section by showing that
the problem of deciding whether or not the reachable state space of systems with semaphores
is finite, is EXPSPACE-complete.

2.1 Resources

A resource is a non-sharable, reusable quantity. For our purposes, a resource x is an integer-
valued variable together with a set of actions {wx !, gx?, rx !} on x. Intuitively, these actions
correspond to communications between the threads that manipulate the resource and the
resource manager, and have the following meaning:

– wx !: a thread requests the resource x (“want x”).
– gx?: the resource manager grants the resource x to a thread (“get x”).
– rx !: the thread releases the resource x (“release x”).

Given a set R of resources, the set of actions on R is Acts[R] = {wx !, gx?, rx ! | x ∈ R} ∪ {ε}.
The output actions over R are given by ActsO [R] = {wx !, rx ! | x ∈ R} ∪ {ε}, and correspond
to communication from the thread to the resource manager. In addition, we have a special
action ε which is needed in Definition 3 below. The input actions over R are given by
ActsI [R] = {gx? | x ∈ R}, and correspond to communication from the resource manager
to the thread. We consider two types of resources: mutexes and (counting) semaphores.
A mutex is a resource that takes value in {0,1} and starts from the initial value 1; a mutex
can only be released by the same thread that acquired it (as in POSIX). A semaphore, on
the other hand, can be initialized to any integer, and can be released and acquired without
constraints, except that its value can never become negative.

2.2 Thread interfaces

We model the behavior of threads by thread interfaces. Thread interfaces model only the
resource manipulation aspect of threads, and abstract out all data manipulation.
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Fig. 3 The thread interfaces
corresponding to the code in
Fig. 1

Definition 1 A thread interface I = (R,S,E, s init, λ) consists of a set R of resources, a
finite control-flow graph (S,E) with E ⊆ S × S, an initial state s init ∈ S, and an action label
λ : E → Acts[R] \ {ε} mapping each edge to a resource action, such that

– each wx ! edge leads to a state whose only outgoing edge is labeled with gx?;
– each gx? edge starts from a state whose incoming edges are all labeled with wx !.

Intuitively, the conditions on a thread interface guarantee that a “want” action is immedi-
ately followed by the corresponding “get” action; moreover, a “get” action has no siblings.
We say that a state s is final if it has no successors. For s ∈ S, let Isucc(s) = {t ∈ S | (s, t) ∈
E ∧ λ(s, t) ∈ ActsI [R]} be the set of input successors of s, and let Osucc(s) = {t ∈ S |
(s, t) ∈ E ∧ λ(s, t) ∈ ActsO [R]} be the set of output successors of s. We carry subscripts
over to components, so that an interface Ii will consist of (Ri, Si,Ei, s

init
i , λi); similarly, we

carry subscripts to Isucc and Osucc.

Example 1 Consider the POSIX interface for mutexes with functions mutex_lock(x)
and mutex_unlock(x). Each call mutex_lock(x) is represented by the pair of ac-
tions wx ! and gx?; a (nonblocking) call mutex_unlock(x) is represented by the ac-
tion rx !. Similarly, for a counting semaphore y, the function sem_wait(y) corresponds
to the two actions wy ! and gy?, and the function sem_post(y) corresponds to the release
action ry !. For example, our tool extracts the resource interfaces of Fig. 3 from the code
in Fig. 1.

2.3 Systems

2.3.1 Syntax

Given a set R of resources, a resource valuation is a function ν : R �→ N mapping each
resource to a natural number value. For a valuation ν and x ∈ R, we denote by ν[x := k] the
valuation obtained from ν by assigning the value k ∈ N to x. A system is a set of resources,
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an initial resource valuation of the resources, and a tuple of (a fixed number of) thread
interfaces.

Definition 2 A system is a tuple I = (R, ν0, (I1, . . . , In)), consisting of a set R of resources,
a mapping ν0 : R �→ N assigning an initial value to each resource, and of n > 0 thread
interfaces I1, . . . , In. We require that Ri ⊆ R, for 1 ≤ i ≤ n, and that if x ∈ R is a mutex,
ν0(x) = 1.

2.3.2 Semantics

Given a system, we can define its semantics using a joint interface, obtained by constructing
the product of the interfaces, annotated with the values of the resources at the states. The
joint interface models the execution of a multithreaded system on a single processor.

Definition 3 Given a system I = (R, ν0, (I1, . . . , In)), its joint interface is a tuple MI =
(R,S,E, s init, λ, θ), where R is as in I , and:

– S = (
∏

i Si) × (R �→ N);
– s init = (s init

1 , . . . , s init
n , ν0);

– E ⊆ S × S, and λ : E �→ Acts[R], θ : E �→ {0, . . . , n} are defined as follows. Let s =
(s1, . . . , sn, ν) ∈ S; we have (s, t) ∈ E, λ(s, t) = α, and θ(s, t) = i iff there is s ′

i ∈ Si such
that (si, s

′
i ) ∈ Ei , λi(si, s

′
i ) = α, and for t = (s1, . . . , si−1, s

′
i , si+1, . . . , sn, ν

′) we have:

[resource grant] if α = gx?, then ν(x) > 0 and ν ′ = ν[x := ν(x) − 1];
[resource request] if α = wx !, then ν ′ = ν; and
[resource release] if α = rx !, then ν ′ = ν[x := ν(x) + 1]; further, if x is a mutex,

then ν(x) = 0.

Moreover, let s be a state that has no successors according to the above rules. Then, we add
a self-loop (s, s) ∈ E and we set λ(s, s) = ε and θ(s, s) = 0.

Let s ∈ S and s = (s1, . . . , sn, ν); for all i = 1, . . . , n, we set loci (s) = si . We let Osucc,
Isucc refer to MI , and for 1 ≤ i ≤ n, we let Osucci , Isucci refer to Ii .

In MI , edges labeled with the special action ε are a technical addition, used to ensure
that all finite paths can be extended to infinite ones. The portion of the joint interface MI
that is reachable from its initial state s init may not be finite, as the value of resources could
grow beyond bounds. Of course, if all resources are mutexes (which take values 0 and 1),
the state space is finite. In general, we show that the problem is EXPSPACE-complete in the
following theorem.

Theorem 1 Let MI = (R,S,E, s init, λ, θ) be the joint interface of a system I . The problem
of deciding whether the portion of S that is reachable in (S,E) is finite is EXPSPACE-
complete.

Proof The EXPSPACE upper bound follows from the Karp-Miller Coverability Tree algo-
rithm [26] for Petri Nets that checks for boundedness. By modeling the tokens of the Petri
Nets as resource values, we have a reduction of the boundedness problem of Petri Nets to
our problem. This gives us the EXPSPACE lower bound. �

In the following, we only consider systems I such that the reachable portion of MI is
finite. In our tool CYNTHESIS we avoid solving the question of whether the portion of the
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joint interface reachable from the initial state is finite. Rather, we simply take as input the
maximum value to consider for any semaphore; this value is usually well known to the
programmer. If we find a reachable state where the value of a semaphore is greater than this
maximum, we stop and report the problem.

3 The scheduling game

In this section, unless otherwise noted, we consider a fixed system I = (R, ν0, (I1, . . . , In)),
which gives rise to a joint interface MI = (R,S,E, s init, λ, θ).

A joint interface evolves by the interaction between three entities: the threads, the re-
source manager, and the scheduler. From a given state, if there are any outgoing edges
labeled by input actions, the resource manager can choose to follow one of them: this cor-
responds to granting a resource to a thread. Once the input edge has been followed (and the
resource granted), the resource manager still retains control at the destination state. From a
given state, if there are any edges labeled by output actions that leave the state, the resource
manager can also decide to return control to the threads. At this point, which output ac-
tion occurs next depends on two factors. The underlying operating-system scheduler, using
its own policy (such as time-sharing with round robin), selects which of the ready threads
execute on the CPU. In addition, each thread has its own internal non-determinism, which
determines which output action the thread generates next. Thus, we identify three types of
non-determinism in the joint interface.

1. Resource manager non-determinism, due to the resource manager choosing an input
edge, or choosing to wait for an output action.

2. Inter-thread non-determinism, due to the operating-system scheduler resolving thread
interleaving.

3. Intra-thread non-determinism, which determines which of several possible output actions
a thread will do.

Resource manager The goal is to synthesize a resource manager that ensures that all
threads make progress, unless they terminate. In order to define the goal, we introduce the
following predicates over edges of MI : for 1 ≤ i ≤ n, the predicate progressi is true over
an edge (s, t) ∈ E if θ(s, t) = i, and the predicate finali is true over an edge (s, t) ∈ E if the
thread i is in a final state in s. Notice that for all thread interfaces, the set of final states is
absorbing. Therefore, finali being true over an edge (s, t) ∈ E, implies that it remains true
along all paths that originate at s; this means that �finali holds on all paths that originate
at s. Using temporal logic notation, the goal can therefore be written as a generalized Büchi
condition over the edges:

φ
goal

I =
n∧

i=1

�♦(progressi ∨ finali ).

Our aim is to synthesize a resource manager that satisfies the goal φ
goal

I . We first describe
the two sources of non-determinism that the resource manager plays against.

Inter-thread non-determinism This non-determinism is due to the scheduler. If there are
two or more threads that are waiting to issue output actions, then which thread gets to issue
an output action depends on the underlying OS scheduler. If two threads want to get a re-
source, which thread gets to call the OS primitive to acquire the resource is decided by the
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Fig. 4 A system of three threads to illustrate the assumptions on the sources of non-determinism and the
goal of the resource manager

scheduler. Similarly, if a thread wants to release a resource, whether or not it gets to release
the resource again depends on the scheduler.

Intra-thread non-determinism This non-determinism has two origins. The first is the en-
vironment: often, the behavior of a thread in an embedded system reacts to inputs (input
timings, or input values) received from the environment. The second is abstraction: our
thread interface is an abstraction of the actual thread behavior that disregards variable val-
ues. In particular, the outcome of control-flow statements such as loop tests, and if-then-else,
is modeled as intra-thread non-determinism. Assuming that intra-thread non-determinism is
resolved in an arbitrary way may easily lead to declaring the manager synthesis problem to
be infeasible.1 In fact, whenever a thread can execute a loop while holding a resource, the
arbitrary resolution of intra-thread non-determinism introduces the possibility that the loop
never terminates.

The synthesis objective We first show that the automatic synthesis of a resource manager
given the goal φ

goal
I will fail against arbitrary resolution of the inter-thread and intra-thread

non-determinism. We then use fairness assumptions on inter-thread and intra-thread non-
determinism and derive a synthesis objective that satisfies φ

goal
I , given these fairness assump-

tions. Consider the system of three threads in Fig. 4. If we assume that the scheduler never
schedules Thread 3, then the wb! action from Thread 3 never takes place. In this case, irre-
spective of the resource manager policy, φ

goal
I is not satisfied. We need to restrict the inter-

thread non-determinism and we do so by placing a fairness assumption on the underlying

1Recall that our goal is to schedule correct software, rather than to perform software verification.
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operating system scheduler: more precisely, if a thread is infinitely often ready to execute,
it will make progress infinitely often. We introduce a predicate readyi , for 1 ≤ i ≤ n, which
is true over an edge (s, t) ∈ E iff (i) (s, t) is labeled with an output action, and (ii) there
is (s, t ′) ∈ E with θ(s, t ′) = i. Intuitively, (i) means that the resource manager decided to
let the scheduler schedule some thread, and (ii) means that thread i was among the threads
that could have generated the next output. With this notation, the fairness assumption on the
scheduler is:

ϕinter
I =

n∧

i=1

(� � readyi ⇒ � � progressi ).

We now show that even if we assume that inter-thread non-determinism is resolved satisfy-
ing ϕinter

I , the goal of the resource manager can still be violated: more precisely, the resource
manager cannot ensure that ϕinter

I ⇒ φ
goal

I . Assume that the conditional expression exp in
Thread 1 and Thread 2 is always false. Thread 1 releases resource b and waits till Thread 2
acquires it before releasing resource c. Similarly, Thread 2 releases resource b and waits
till Thread 1 acquires it before releasing resource c. There is no way to resolve intra-thread
non-determinism in this case to ensure that Thread 3 makes progress for any policy followed
by the resource manager; either Thread 3 is starved or deadlock ensues. Notice that even if
we assume that the scheduler is fair and that Thread 3 is scheduled infinitely often it cannot
make progress because either the system is in a deadlock or one of Thread 1 or Thread 2 al-
ways hold resource b, thus starving Thread 3. Therefore the resource manager cannot ensure
that ϕinter

I ⇒ φ
goal

I .
We need to restrict intra-thread non-determinism and we do so by placing a fairness

constraint on intra-thread non-determinism: if each choice is presented infinitely often, then
each choice outcome is followed infinitely often. For all threads 1 ≤ i ≤ n, all u,v ∈ Si , and

all (s, t) ∈ E, we introduce the predicates fromu
i (s, t)

def= (loci (s) = u) and takeu,v
i (s, t)

def=
((loci (s) = u) ∧ (loci (t) = v)). The fairness assumption for intra-thread non-determinism
can then be written as

ϕintra
I =

n∧

i=1

∧

u∈Si

∧

v∈Osucci (u)

(
� � fromu

i ⇒ � � takeu,v
i

)
.

This entails that the conditional expression exp takes both values infinitely often. With this
assumption, Thread 1 (Thread 2) will enter the then (else) branch of the conditional state-
ment infinitely often. This implies that either Thread 1 is holding resource a or Thread 2 is
holding resource d infinitely often. The resource manager strategy is as follows:

– If both Thread 1 and Thread 2 are holding resources a and d , then a winning strategy for
the resource manager would be to assign resources b and c to Thread 3.

– If Thread 1 is holding resource a and Thread 2 is holding resources b and c. Then a
winning strategy for the resource manager would be to wait till Thread 2 releases both b

and c and then allocate these resources to Thread 3, thus ensuring that Thread 3 enters its
critical region.

– If Thread 2 is holding resource d and Thread 1 is holding resources b and c, then a strategy
similar to the one above will ensure that Thread 3 enters its critical region.

Therefore, the objective for resource manager synthesis requires fairness assumptions on
both inter-thread and intra-thread non-determinism. Formally, the objective for the resource
manager is:

φ2 = (
ϕinter

I ∧ ϕintra
I

) ⇒ φ
goal

I . (1)



Form Methods Syst Des (2013) 42:146–174 157

Finitary progress The progress objective φ
goal

I states that each thread that is ready makes
progress eventually, but the “eventual” time to make progress can be unbounded. A stronger
and more desirable notion of progress is that of finitary progress, which states that each
ready thread makes progress within bounded time. Let σ ∈ Sω be an infinite path that can
be taken in a joint interface MI ; we take σ [j ] for j = (0,1,2, . . .) as the sequence of states
in the path σ . Let progressi (s, t) be the predicate that is true for an edge (s, t) if θ(s, t) = i,
and the predicate finali is true over an edge (s, t) ∈ E if the thread i is in a final state in s.
The finitary progress goal φ

goal
I,f can be defined as follows:

φ
goal

I,f =
n⋂

i=1

(� finali ∪ {
σ ∈ Sω|∃b ∈ N,∀j ≥ 0,∃l ≤ j,

(
progressi

(
σ [l], σ [l + 1]) ∧ (

j < l ≤ (j + b)
))})

.

Intuitively, the winning set of paths for the resource manager is the set of paths such that
in each path for every thread i, progressi (s, t) is true over edges that are never more than
b apart. We now show that the fairness assumption on inter-thread and intra-thread non-
determinism is not sufficient to ensure finitary progress; we need finitary fairness assump-
tions on the sources of non-determinism.

Consider again the example in Fig. 4. From our earlier analysis of the example, the re-
source manager can give resources b and c to Thread 3 only when either Thread 1 is in
its then branch or Thread 2 is in its else branch. As long as Thread 1 and Thread 2 are
in their else and then branches respectively, the resource manager does not have a strat-
egy to ensure that Thread 3 enters its critical region. A fair strategy to resolve intra-thread
non-determinism is as follows. The strategy is played in rounds. In round i, Thread 1 and
Thread 2 collude such that Thread 1 is in the else branch of its conditional statement and
Thread 2 is in the then branch of its conditional statement for at least i executions of the
while loop. Thread 1 then enters its then branch or Thread 2 enters its else branch once before
proceeding to round i+1. For example, let the conditional expression exp be power_of _2(y)

where y is a variable shared by Thread 1 and Thread 2. The variable y is initially 0 and is in-
cremented by 1 in Thread 1 each time the while loop executes. The function power_of _2(y)

returns 1 if y is a power of 2 and 0 otherwise. For any bound β > 0, there exists a y > 0
with 2y−1 ≤ β < 2y such that the resource manager has no strategy to allocate resources b

and c to Thread 3 for 2y > β executions of the loop in Thread 1 and Thread 2. It follows
that ϕinter

I ∧ ϕintra
I ⇒ φ

goal
I,f fails. On the other hand, if Thread 1 and Thread 2 satisfy the

stronger notion of finitary fairness, where both branches of the conditional statement will be
executed within a bound β > 0, then as soon as Thread 1 enters its then branch or Thread 2
enters its else branch, the resource manager has a strategy to allocate b and c to Thread 3
and ensure that Thread 3 makes progress within bound β thus satisfying its goal φ

goal
I,f . We

now formulate the finitary fairness assumption on intra-thread non-determinism as:

ϕintra
I,f =

n⋂

i=1

{
σ ∈ Sω|∃β ∈ N,∀j ≥ 0,∀u ∈ Si,∀v ∈ Osucci (u),∃l ∈ N,

fromu
i

(
σ [j ], σ [j + 1]) ⇒ takeu,v

i

(
σ [l], σ [l + 1]) ∧ (

j < l ≤ (j + β)
)}

.

Intuitively, the finitary assumption ϕI,f is the set of paths such that in each path, if a thread
visits a state where it has multiple output successors, then each output successor can be
ignored at most a bounded number of times. A similar definition applies to the finitary
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fairness assumption ϕinter
I,f on inter-thread non-determinism. The amended objective for the

automatic synthesis of resource managers is then:

φ2
f = (

ϕinter
I,f ∧ ϕintra

I,f

) ⇒ φ
goal

I,f . (2)

3.1 Stochastic games

We base the synthesis of the resource manager on stochastic games. As we will see in detail
later, we use probabilities both to approximate the above types of non-determinism, and to
be able to generate manager strategies that are memoryless, but that may require random-
ization [8]. Given a finite set A, we denote by Dist(A) the set of probability distributions
over A. For d ∈ Dist(A) we let Supp(d) = {a ∈ A | d(a) > 0}. Given a ∈ A we denote by
δ(a) ∈ Dist(A) the probability distribution that associates probability 1 with a, and 0 to all
other elements of A. We also denote by Uniform(A) the probability distribution that asso-
ciates probability 1/|A| to every element of A.

Definition 4 A two-player game structure G = (S,Moves,Γ1,Γ2, τ ) consists of a set of
states S, of a set of moves Moves, of two mappings Γ1,Γ2 : S �→ 2Moves \ ∅ associating
to each state s and player i ∈ {1,2} the set of moves Γi(s) that player i can play at s, a
(probabilistic) destination function τ : S × Moves2 �→ Dist(S), which associates with each
s ∈ S and m1 ∈ Γ1(s), m2 ∈ Γ2(s), a probability distribution τ(s,m1,m2) over the successor
state.

For i ∈ {1,2}, we say that G is an i-Markov decision process (i-MDP) [15] if |Γ3−i (s)| =
1 at all s ∈ S; 1-MDPs are also called simply MDPs. A strategy for player i ∈ {1,2} in
a game G = (S,Moves,Γ1,Γ2, τ ) is a mapping πi : S+ �→ Dist(Moves), such that for all
σ ∈ S∗ and s ∈ S, we have πi(σ s)(m) > 0 implies m ∈ Γi(s). We denote by Π1, Π2 the set
of strategies for players 1 and 2 respectively. Once the strategies π1 and π2 are fixed, the
game is reduced to an ordinary stochastic process, and the probabilities of all measurable
events (which include all ω-regular properties [36]) are defined (see e.g. [20]). A the winning
condition ϕ is a measurable subset of Sω. We say that a state s ∈ S is winning if there is
π1 ∈ Π1 such that, for all π2 ∈ Π2, we have Prπ1,π2

s (ϕ) = 1. As we use randomized strategies,
winning with probability 1 is the natural notion of winning. Given a game structure G and a
winning condition ϕ we denote by Win(G,ϕ) the set of winning states. A winning strategy
is a strategy that wins from all winning states, that is, a strategy π1 ∈ Π1 such that, for all
s ∈ Win(G,ϕ) and all π2 ∈ Π2, we have Prπ1,π2

s (ϕ) = 1. The size of a game is defined by
|G| = ∑

s∈S

∑
m1∈Γ1(s)

∑
m2∈Γ2(s) |Supp(τ (s,m1,m2))|.

3.2 The scheduling game

Since our aim is to derive strategies that resolve resource manager non-determinism, we
formulate the resource manager synthesis problem as a game played on the joint interface
by the resource manager against a team consisting of the threads and the scheduler. Again,
unless otherwise noted, we refer to a system I = (R, ν0, (I1, . . . , In)) which gives rise to a
joint interface MI = (R,S,E, s init, λ, θ).

Definition 5 Given a game structure G corresponding to a system I , depending on whether
the objective is progress as defined in (1) or finitary progress as defined in (2), we get two
versions of the scheduling game. The scheduling game for progress is defined as the tuple
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G2 = (G,φ2), where φ2 corresponds to the objective (1). The scheduling game for finitary
progress is defined as the tuple G2

f = (G,φ2
f ), where φ2

f corresponds to the objective (2).
In a scheduling game, the sets of moves for player 1 (representing the resource manager)
and player 2 (representing the inter and intra-thread non-determinism) are as follows, for all
s ∈ S:

• If Osucc(s) �= ∅, then Γ1(s) = Isucc(s) ∪ {⊥} and Γ2(s) = Osucc(s).
• If Osucc(s) = ∅, then Γ1(s) = Isucc(s) and Γ2(s) = {⊥}.
The destination function is given by the following rules, where ∗ represents a wild-card, and
s ∈ S:

• For t ∈ Isucc(s), we have τ(s, t,∗) = δ(t);
• for t ∈ Osucc(s), we have τ(s,⊥, t) = δ(t).

The manager synthesis problem can thus be phrased as the problem of finding a winning
strategy in G2

f . We say that the system is schedulable if s init ∈ Win(G,φ2
f ). The winning

condition φ2
f has a finitary Streett assumption implying a finitary liveness guarantee. For

such winning conditions, finite memory winning strategies exist for player 1, the resource
manager, from the result of [7].

3.3 Theoretical solution of the scheduling game

In this section we present theoretical solutions for computing winning strategies in G2

and G2
f . We first note that the objectives in G2 and G2

f are different. In the finitary progress
objective φ2

f , the assumption ϕinter
I,f ∧ϕintra

I,f is stronger than the assumption ϕinter
I ∧ϕintra

I in ob-

jective φ2 but the guarantee φ
goal

I,f in φ2
f is also stronger than the guarantee φ

goal
I in φ2. Thus

in general there is no relation between the objective φ2 and φ2
f . In the following theorem we

show that in the special case of scheduling games that we consider, the set of winning states
in G2 and G2

f are the same and that further, a winning strategy for G2 remains winning for
G2

f and vice-versa.

Theorem 2 For all scheduling game structures G, given objectives φ2 and φ2
f , the following

assertions hold:

1. Win(G,φ2) = Win(G,φ2
f ).

2. If π1 ∈ Π1 is a winning strategy in G2, then it is also winning in G2
f and vice-versa.

Proof We prove assertion (2) and assertion (1) is an easy consequence of the proof.

– Assume that given a scheduling game G and the objective φ2 the resource manager has
a winning strategy. Since φ2 is an ω-regular objective, it follows from [23] that finite
memory winning strategies exist for the objective φ2 (the finite memory winning strategy
implements the latest appearance record data structure required for winning in ω-regular
games). Fix such a finite memory winning strategy π1. Given the strategy π1, the game
reduces to the special class of games, where there is only one player (the opponent).
Assume towards a contradiction that the opponent can falsify φ2

f : it follows from the
results of [7] that the opponent then has a finite memory strategy to do so. Fix such a
finite memory strategy π2. Consider the unique play arising from π1 and π2: since π2 is
a witness for violating φ2

f against π1 it follows that the play does not satisfy φ2
f . Since
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for finite deterministic systems (both player strategies are fixed), φ2 and φ2
f coincide, it

follows that π2 is a witness for violating φ2. This contradicts our assumption that π1 is
winning for φ2.

– In the other direction, consider a scheduling game G and objective φ2
f . We note that for a

scheduling game, the resource manager can never violate the objectives ϕinter
I,f and ϕintra

I,f ;
in general, violating ϕinter

I,f ∧ ϕintra
I,f may require infinite memory. Therefore, given that in

a scheduling game player 1 cannot violate ϕinter
I,f and ϕintra

I,f , and can satisfy φ2
f , it follows

that there is a finite memory winning strategy π1 for φ2
f . We argue that π1 is winning

for φ2 as well. Assume towards a contradiction that π1 is not winning for φ2. Then there
is a counter strategy for the opponent to violate φ2. Since φ2 is ω-regular, there is a
finite memory witness strategy π2 that violates φ2. As above, since π1 and π2 are both
finite memory, if φ2 is violated, then so is φ2

f . This contradicts our assumption that π1 is
winning for φ2

f . This completes the proof.

The desired result follows. �

Given a game structure G with |S| states and |E| edges we have the following complexity
results:

1. The algorithm for fairness. Given a fairness objective ϕ with d fairness constraints, the al-
gorithm to compute the winning set Win(G,ϕ) has time complexity O(|E| · |S|d ·d!) [32].
The algorithm is a classical recursive algorithm to solve games with fairness objectives.

2. The algorithm for finitary fairness. Given a finitary fairness objective ϕf with d finitary
fairness constraints, the algorithm to compute the winning set Win(G,ϕf ) has time com-
plexity O(2d · |E|2 · |S|) [10]. The key intuition to obtain the algorithm is a reduction to
a game of size 2d times the size of the original game structure with a generalized Büchi
objective.

For a scheduling game structure G = (S,Moves,Γ1,Γ2, τ ), we have |E| ≤ |G|, and
|S| ≤ |G|, where |G| is the size of the game. If there are n threads and at most m condi-
tional branches in each thread then there are n fairness assumptions on inter-thread non-
determinism and 2.n.m fairness assumptions on intra-thread non-determinism. Further, for
the special case of scheduling games, by Theorem 2 we have Win(G,φ2) = Win(G,φ2

f ).
Since the algorithm for solving finitary fairness has better time complexity as compared to
fairness, choosing the algorithm to compute finitary fairness with objective φ2

f for a schedul-
ing game G, we get the following complexity result.

Theorem 3 Given a scheduling game G with size |G|, n threads and at most m conditional
branches in each thread, computing Win(G,φ2

f ) has time complexity O(22·n·m+n · |G|3).

3.4 Practical solution of the scheduling game

Theorem 2 shows that the winning strategies in games G2 and G2
f are identical. We can

therefore compute a winning strategy in G2
f with an algorithm that can solve finitary Streett

games with complexity given in Theorem 3. Instead, we show that we can exploit the special
structure of the joint interface and solve the synthesis problem in a more efficient way,
consisting of two steps. We first consider two simplified versions of G2:

1. A game G2.5, resulting from resolving all intra-thread non-determinism in G2 in a purely
randomized fashion.
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2. An MDP G1.5, resulting from resolving both the intra-thread and the inter-thread non-
determinism in G2 in a purely randomized fashion.

Given G2, we show that we can construct in quadratic time in |G| a winning strategy for
the MDP G1.5 which is also a winning strategy of the game G2.5. We show that this win-
ning strategy, under many cases of practical importance, is also a winning strategy for the
original game G2, and hence by Theorem 2 winning in G2

f . In all cases, we show that it is
possible to check efficiently whether the strategy for game G2.5 also works for G2—and in
our experience, this has always been the case in the examples we have studied so far.

Definition 6 Given a game structure G = (S,Moves,Γ1,Γ2, τ ) and the scheduling game
G2 = (G,ϕI ), the games G2.5 = (G′, φ2.5) and G1.5 = (G′′, φ1.5) are obtained as follows.
We take G′ = (S,Moves′,Γ1,Γ

′
2, τ

′) and G′′ = (S,Moves,Γ1,Γ
′′

2 , τ ′′) We have Moves′ =
Moves ∪ {1, . . . , n}, φ2.5 = ϕinter

I ⇒ φ
goal

I , and φ1.5 = φ
goal

I . The functions Γ ′
2, τ

′ and Γ ′′
2 , τ ′′

coincide with Γ2, τ , except that:

– For all s ∈ S such that |Osucc(s)| > 1, we let Γ ′
2(s) = {i | ∃t ∈ Γ2(s) . θ(s, t) = i}, and for

i ∈ Γ ′
2(s), we let τ ′(s,⊥, i) = Uniform({t ∈ Γ2(s) | θ(s, t) = i}).

– For all s ∈ S, we let Γ ′′
2 = {⊥}, and we let τ ′′(s,⊥,⊥) = Uniform(Osucc(s)).

Given G2.5 and G1.5, let G2.5
f = (G′, φ2.5

f ) and G1.5
f = (G′′, φ1.5

f ) be the corresponding
simplified finitary versions of G2

f , where for the finitary objectives we require the expected
number of steps to visit each winning state to be bounded. First, we show how to construct
the most liberal winning strategy for game G1.5; informally, this is the strategy that, among
the winning ones, plays with positive probability the largest possible sets of moves. We then
prove that a winning strategy in G1.5 is also winning in G1.5

f .
A memoryless strategy π ∈ Π1 gives rise to a graph (S,Eπ), where Eπ = {(s, t) |

π(s)(t) > 0 or π(s)(⊥) > 0 and λ(s, t) ∈ ActsO [R]}. A maximal end component (MEC) of
G1.5 is a maximal subgraph (C,F ) of (S,E) such that: there is a memoryless strategy π

such that C is closed, with no outgoing edge, and is a strongly connected component of
(S,Eπ), and such that F = {(s, t) ∈ Eπ | s ∈ C} [12]. We say that thread k is finished in a
state s if lock(s) is final in Ik . Notice that if a thread k is finished at some state of a MEC,
it is finished at all states of the MEC. We say that a MEC (C,F ) is fair iff, for every thread
1 ≤ k ≤ n, either k is finished in C, or there is (s, t) ∈ F with θ(s, t) = k. Let W be the
union of all sets of states belonging to fair end components. It can be shown that a state
is winning in G1.5 iff it can reach W with probability 1 [8]; we denote by Win(G1.5), the
set Win(G′′, φ1.5) of winning states of game G1.5. By the results of [12, 13], this set can be
computed in time quadratic in |G|.

The most liberal winning strategy π∗ for G1.5 is the strategy that selects uniformly
at random among moves of player 1 that lead only to winning states. Precisely, for
s ∈ Win(G′′, φ1.5), we let π∗(s) = Uniform({m ∈ Γ1(s) | ∀t ∈ S.(τ ′′(s,m,⊥)(t) > 0 ⇒ t ∈
Win(G1.5))}). π∗ is arbitrarily defined on states s ∈ S \ Win(G′′, φ1.5).

Theorem 4 For all scheduling games the following assertions hold,

1. the strategy π∗ is winning in G1.5,
2. the strategy π∗ is winning in G1.5

f and
3. π∗ can be computed in time O(|G|2).

Proof Notice that in G1.5 the objective φ1.5 is a generalized Büchi objective. Since π∗
chooses moves that lead to winning states with positive probability and the set of winning
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states is finite and closed, every state in Win(G′′, φ1.5) is eventually visited with probabil-
ity 1 [8]. This proves assertion (1). We now show that if π∗ is winning in G1.5 then it is
also winning in G1.5

f and vice-versa. In one direction, it is easy to see that since φ1.5
f ⇒ φ1.5,

if π∗ is winning in G1.5
f then it is also winning in G1.5. In the other direction, we show

that following π∗ in G′′, there exists a bound β ∈ N such that the expected number of steps
to visit every state in Win(G′′, φ1.5) is at most β with probability 1, which would imply
that π∗ is also winning in G1.5

f . Fix the memoryless randomized strategy π∗ in G′′. This
gives us a Markov chain. Further, the Markov chain is closed and recurrent, which implies
bounded expectation on the visit time to every state [20]. Therefore, there exists a bound
β ∈ N such that the expected number of steps to visit every state in Win(G′′, φ1.5) within
bound β is probability 1, thus completing the proof. The third assertion follows from the
results of [12, 13]. �

In Theorem 2 and Theorem 4 we have shown that strategies that are winning in the
non-finitary scheduling games are also winning in their respective finitary versions. Given
that the winning strategies coincide for the finitary and the non-finitary objectives, we do
not consider the finitary objectives in the sequel. In the following we present properties of
scheduling game structures that we exploit to compute winning strategies in time quadratic
in the size of the game structures. We show that these strategies suffice in almost all practical
scenarios and fail only in contrived examples.

3.5 Properties

In order to argue that π∗ is winning not only in G1.5, but also in G2.5, we need to develop
some properties of π∗ and MI . First, we state a simple property of MI .

Lemma 1 In MI , there is no loop made entirely of input edges, and there is no loop made
entirely of output edges.

Proof The first statement is due to the fact that each input edge decreases the value of a re-
source. The second statement is due to the fact that resource requests (wx !) are immediately
followed by an input edge, and resource releases (rx !) increase the value of a resource. �

We now show that, in MI , input and output moves commute, as they are independent. In
the following, we write s

x−→
i

t to signify that (s, t) ∈ E, λ(s, t) = x and θ(s, t) = i.

Lemma 2 For all s, s1, s2 ∈ S, if s
α!−→
i

s1 and s
β?−→
j

s2, then there is t ∈ S such that s2
α!−→
i

t

and s1
β?−→
j

t .

Proof First, notice that i �= j , as input edges have no siblings in their respective thread (see
Definition 1). Second, the value of each resource in s1 is at least as much as it is in s. Thus,

there is a state t such that s1
β?−→
j

t . In s2, the value of a certain resource is lower than it is s.

However, output edges are not affected by the value of the resources, so there is a state t ′

such that s2
α!−→
i

t ′, and by construction of MI , we have t = t ′. �

The following lemma states an equivalent commutativity property for outputs belonging
to different threads.
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Fig. 5 Outputs cannot link
winning states to losing ones

Lemma 3 For all s, s1, s2 ∈ S, if s
α!−→
i

s1 and s
β!−→
j

s2, with i �= j , then there is t ∈ S such

that s2
α!−→
i

t and s1
β!−→
j

t .

Proof Since output edges can either decrease resource usage (in the case of resource release
actions), or leave resource usage unchanged (in the case of resource request actions), α! will
still be enabled from s2, and β! will be enabled from s1; moreover, by construction of MI ,

we have s2
α!−→
i

t and s1
β!−→
j

t for the same t . �

The following lemma shows that, in G1.5, an edge labeled with an output cannot connect
a winning state to a losing state.

Lemma 4 Let s ∈ Win(G1.5) and s
α!−→
i

t . Then, t ∈ Win(G1.5).

Proof Suppose that, starting from s, we keep following winning inputs, as long as there is a
winning input in the current state. By Lemma 1, we must eventually reach a state sm−1 that
has no winning inputs. By repeated applications of Lemma 2, the output α! is still enabled
in sm−1.

Summarizing, as illustrated in Fig. 5, we can find a path σ = ss1 . . . sm such that (i) all
states in σ are winning, (ii) all edges in σ except the last one are labeled with inputs, and
(iii) the last edge (sm−1, sm) is labeled with α!.

Again by repeated applications of Lemma 2, from t we can mimic the path σ , by tak-
ing similar input edges, finally reaching sm. We obtain the conclusion that t can reach the
winning state sm be means of input edges only. So, t itself is a winning state. �

In the following, we say that a path is in Win(G1.5) to mean that it is a path in G1.5 made
entirely of winning states. We now introduce a binary relation “�” over the set of winning
states of G1.5. For all s, s ′ ∈ Win(G1.5), let s � s ′ if and only if there is a path σ in Win(G1.5)

that goes from s to s ′ using only output edges. The following lemma shows that if s � s ′
and an input edge is winning from s, the corresponding input edge from s ′ is also winning.

Lemma 5 Let s � s ′. For all t ∈ Win(G1.5) such that s
α?−→
i

t there is t ′ ∈ Win(G1.5) such

that s ′ α?−→
i

t ′ and t � t ′.

Proof Let σ be a path from s to s ′ in Win(G1.5) that contains only outputs edges. By repeated
applications of Lemma 2, we can take a similar path σ ′ from t , leading to a state t ′ such that

t � t ′. Moreover, by construction s ′ α?−→
i

t ′. By applying Lemma 4 to all edges in σ ′ we obtain

that, since t is winning, t ′ is also winning. �
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The following lemma will be instrumental in showing that π∗ is a winning strategy also
in G2.5.

Lemma 6 There is p > 0 such that, for all s ∈ Win(G1.5), if in Win(G1.5) there is an acyclic
path from s to a state s ′, then using π∗ in G2.5, for all player 2 strategies, with probability
at least p, starting from s the game reaches a state t ′ such that s ′ � t ′.

Proof Let ρ be the path from s to s ′; the proof is by induction on the length of ρ. Fix an
arbitrary strategy of player 2. For |ρ| = 0, the result trivially holds. As induction hypoth-
esis, assume that there is a path ρ from s to s ′ in Win(G1.5), and assume that using π∗ in
G2.5 we can reach from s a state t ′ such that s ′ � t ′ with positive probability. Let σ be the
sequence of output actions leading from s ′ to t ′, and let θ be the path from s to t ′. We will
show that, if we prolong ρ by one step, reaching s ′′, then we can prolong θ by 0 or more
steps, obtaining a path θ ′′ to t ′′, such that s ′′ � t ′′, and such that θ ′′ is followed with posi-
tive bounded probability in G2.5. Notice that, due to Lemma 3, outputs of different threads
commute. Hence, we can consider the ordering in σ restricted to outputs belonging to the
same thread. Equivalently, rather than σ , we can reason about the collection of sequences
of output actions {σi}i=1..n, where σi represents the sequence of actions of thread i along σ .
There are then three cases, depending on the step s ′s ′′:

– Assume that s ′ α?−→
i

s ′′, for some α and i ∈ {1, . . . , n}. By Lemma 5, there is also a winning

step t ′ α?−→
i

t ′′, and a path from s ′′ to t ′′ that uses the sequence of output actions σ . As π∗

takes this step with positive probability, this leads to the result.

– Assume that s ′ α!−→
i

s ′′, for some α and i ∈ {1, . . . , n}; assume also that α does not appear in

σi . By Lemma 3, from t ′, the same output α is enabled, so that π∗ will play with positive
probability action ⊥, and in G2.5 some output β will occur. If β belongs to thread i, then
with positive probability (according to the randomized resolution of intra-thread non-
determinism) it must be β = α, and the destination state t ′′ will be related to s ′′ again by
σ . If β does not belong to thread i, we add β to σ . By Lemma 3 we have that output
α is still enabled from the destination state after β , so that π∗ will again play ⊥ from
the destination with positive probability. Eventually, an output belonging to thread i will
occur, as by Lemma 1 there cannot be an infinite path consisting entirely of output actions.

– Assume that s ′ α!−→
i

s ′′, for some α and i ∈ {1, . . . , n}; assume also that α appears in σi .

Then, with positive probability (due to the resolution of inter-thread non-determinism), α

will be the first action of σi . We remove α from σi , obtaining a shorter σ ′; we have that
s ′′ � t ′, and s ′′ and t ′ are related by σ ′.

The existence of a constant bound p > 0 derives from the fact that the length of ρ, and the
size of σ , are bounded, as is the number of ways in which intra-thread non-determinism can
be resolved. �

3.6 Comparing games

We now proceed to prove that the strategy π∗ is also a winning strategy for G2.5.

Theorem 5 The strategy π∗ is winning in game G2.5, and Win(G1.5) = Win(G2.5).
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Proof For i ∈ {1, . . . , n} and s ∈ Win(G1.5), we say that thread i is enabled in s if there is an
edge (s, t) ∈ E such that θ(s, t) = i and t ∈ Win(G1.5). Note that this definition is correct,
as by Lemma 4 output edges are always winning.

For i ∈ {1, . . . , n} and s∗ ∈ Win(G1.5), we have to prove that, using π∗ in G2.5 and starting
from s∗, with positive probability a state is reached where thread i is enabled. Since this is
true of every winning state s∗, and since the game stays forever in the set of winning states,
it follows that the probability of enabling thread i infinitely often, ensuring that it is also
taken infinitely often, is in fact 1.

If in s∗ the next action of thread i is an output, then by Lemma 4 it is available directly
from s∗. Thus, assume in the following that the next action of thread i in s∗ is an input.
Since s∗ is winning in G1.5, there is a path in Win(G1.5) from s∗ to a state t∗ where thread
i is enabled. By applying Lemma 6 to states s = s∗ and s ′ = t∗, we obtain that in G2.5 from
s∗ with positive probability a state t ′ is reached such that t∗ � t ′, and therefore thread i is
enabled in t ′. �

The previous result, which depends in a crucial way on the structural properties of G2.5 (it
is certainly not valid for an arbitrary two-person game), enables us to compute in quadratic
time a winning strategy for game G2.5. We now show how to use this result for G2.5 also for
our original problem G2.

Our first result concerns systems where all resources are mutexes (called mutex-only
systems), and where the threads satisfy the periodically mutex-free (PMF) assumption.
Informally, this assumption states that, if the intra-thread non-determinism is resolved
in a fair fashion, then the thread is infinitely often not holding any mutex. In practice,
threads in mutex-only systems invariably satisfy the PMF assumption. To make this pre-
cise, consider a fixed thread interface Ii = (Ri, Si,Ei, s

init
i , λi), for 1 ≤ i ≤ n. A path

in Ii is a path in the graph (Si,Ei). We say that an infinite path is fair iff it satisfies∧
u∈Si

∧
v∈Osucci (u) �♦fromu

i ⇒ �♦takeu,v
i . Moreover, for a finite path σ and a resource x ∈

R, let decr(x, σ ) = |{(s, t) ∈ σ | λi(s, t) = gx?}|, incr(x, σ ) = |{(s, t) ∈ σ | λi(s, t) = rx !}|,
and balance(x, σ ) = incr(x, σ ) − decr(x, σ ). We say that Ii is mutex-correct if for all finite
traces σ and all mutexes x ∈ Ri , it holds balance(x, σ ) ∈ {−1,0}.

Definition 7 We say that a thread is periodically mutex free (PMF) if it only uses mutexes,
it is mutex-correct, and in all fair paths σ , there exist infinitely many prefixes σ ′ of σ that
satisfy balance(x, σ ′) = 0 for all mutexes x.

For mutex-only systems consisting of threads satisfying the PMF assumption (called, for
short, PMF systems), the strategy π∗ is winning also in G2. Hence, for PMF systems we can
derive resource managers in time quadratic in |G2|.

Theorem 6 For PMF systems, π∗ is winning in game G2, and Win(G1.5) = Win(G2).

Proof By Theorem 5, we have that π∗ is winning in game G2.5. The difference between
G2.5 and G2 is in the resolution of intra-thread non-determinism; ϕintra

I may not hold in G2,
implying that some conditional branches may never be taken. Towards the proof, we first
show that Win(G2.5) = Win(G2). In one direction, if a state s ∈ Win(G2) then s ∈ Win(G2.5);
if a state s is winning against arbitrary resolution of intra-thread non-determinism, then
it must be the case that s is winning if ϕintra

I holds. Therefore, Win(G2) ⊆ Win(G2.5). In
the other direction, consider s ∈ Win(G2.5) but s �∈ Win(G2). By Lemma 4, since output
edges never lead to losing states, it must be the case that there exists s ′ ∈ Win(G2) with
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Fig. 6 Thread interface from Example 2

s ′ α?−→
i

s for some thread i and input action α; specifically, a resource was granted to thread

i in state s ′ leading to state s from which the resource was never released as a conditional
branch was never taken. But this can never happen, given the system is PMF, as along all
fair paths, there occur infinitely many states where thread i is not holding any resource
for all threads i ∈ {1, . . . , n}. Therefore, it must be the case that s ∈ Win(G2) and hence
Win(G2.5) ⊆ Win(G2) leading to Win(G2.5) = Win(G2). Further, given π∗ is winning in
G2.5, Win(G2.5) = Win(G2) and using π∗, the game forever remains in the set of winning
states, we have that for PMF systems π∗ is winning in G2. Finally, given Win(G1.5) =
Win(G2.5) by Theorem 5 and Win(G2.5) = Win(G2), we conclude Win(G1.5) = Win(G2). �

The next example shows that π∗ may not be winning in G2, when the system is not PMF.
Notice that a rather special thread structure is required for this to happen.

Example 2 Consider the 5-mutex, 3-thread system ({a, b, c, d, e}, ν0, (I1, I2, I3)) where I1

is as in Fig. 7(a), I2 is as in Fig. 7(b), and I3 is as in Fig. 6. First, at all times after thread 1
reaches state 2, it will always own at least one mutex among {a, b, c}. Similarly, thread 2
will always own at least one of {a, d, e}. For this reason, the system is not PMF. However,
the initial state (0,0,0, ν0) of G1.5 is winning. Clearly, threads 1 and 2 can make infinite
progress, since they only share mutex a, and they both release said mutex periodically.
It remains to show that under the most general winning strategy π∗, thread 3 is allowed
to perform its critical region (i.e. state 6) with probability 1. In G1.5 (and G2.5) the non-
determinism that threads 1 and 2 exhibit in state 2 is resolved by a uniform distribution. So,
while making infinite progress, with probability 1 those threads will acquire mutexes b and
d at the same time, thus leaving mutexes c and e free. At that point, as soon as mutex a is
released, thread 3 can safely execute its critical region, by acquiring mutexes a, c, e.

On the other hand, in game G2 threads 1 and 2 can cooperate in order to never release
both c and e at the same time. When thread 1 is in state 2, thread 2 can only be in state 6
or 11 (because those are the only states where thread 2 does not hold a). So, player 2 can
choose to acquire c when thread 2 is in 6 (thus holding d) and acquire b when thread 2 is in
11 (thus holding e). This ensures that c and e are never free at the same time. Now, consider
a state where a is free. Giving a to thread 3 inevitably leads to a deadlock, because thread
3 needs c and e before releasing a, and either of them is currently owned and will not be
released before a is.
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Fig. 7 Thread interfaces from Example 2

Our next result, useful for threads that may use semaphores, enables us to establish
whether the strategy π∗ is winning also for G2. To develop the result, note that the game G2,
once player 1 fixes strategy π∗, is a 2-MDP. For such 2-MDPs, we can compute in polyno-
mial time the set of winning states for player 2 with respect to the complementary goal ¬φ2

using an algorithm that is a modified version of the algorithm proposed in [9] for Streett
MDPs. This leads to the following result.
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Theorem 7 We can check in time O(|G|2 ·n ·∑n

i=1 |Ei |) whether the strategy π∗ is winning
in G2.

In our experience, the strategy π∗ is almost invariably winning in G2; indeed, the only
counterexamples we have been able to construct are based on threads with fairly special
structure, where inter-thread communication can be used to synchronize the usage of re-
sources by threads in particular ways. Therefore, we claim that in most cases, we can con-
struct a resource manager strategy in time quadratic in |G2|.

4 Towards efficient resource managers

The strategy π∗, even when winning, may not be an efficient strategy in practice. According
to it, the resource manager would issue ⊥ (wait for a resource request or release) with
positive probability when there are input moves that are available and winning. First, this
potentially reduces CPU utilization. In fact, other things being equal, it is better to grant
immediately as many resource requests as possible: this ensures that the OS scheduler has
the widest choice of threads to execute on the CPU, helping to avoid idle time when all
available threads are blocked, e.g., waiting for I/O. More importantly, as a consequence of
how we abstract thread interfaces, there is no guarantee that a thread whose next action is an
output will issue that output within a short amount of time. For instance, the next resource
request may be issued only after some user input has occurred.

In this section, we propose several improvements to π∗, aimed at reducing the number
of times when the manager issues ⊥ when input actions are available.

4.1 Maximal progress and critical progress strategies

The simplest idea consists in issuing ⊥ only in the states S ! = {s ∈ S | π∗(s)(⊥) = 1}
where ⊥ is the only winning move: this corresponds to waiting for output moves only when
no resource can be granted. This idea leads to the maximal progress strategy πp, defined
by πp(s) = δ(⊥) for s ∈ S !, and πp(s) = Uniform(Supp(π∗(s)) \ {⊥}) otherwise. Unfor-
tunately, the maximal progress strategy is not always winning, as the following example
demonstrates.

Example 3 Consider the 3-thread system ({a, b}, {a �→ 1, b �→ 1}, (I1, I2, I3)) where I1 and
I2 are as in Fig. 8(a), while I3 is as in Fig. 8(b). Figure 8(c) shows a fragment of the corre-
sponding joint interface. Let us analyze this fragment as part of G2, and assume that player 1
employs πp. One can check that, starting from the initial state (0,0,0, ν0), player 2 can steer
the game to state (5,1,1, ν), where ν = {a �→ 0, b �→ 1}. At this point, all of the edges, ex-
cept for the dashed ones, can be taken under πp. The objective for the player 1 is to reach
one of the states labeled as “good”, as in those states thread 3 can make progress without
risking a deadlock. However, player 2 can steer the game away from the two good states,
thus reaching (1,5,1, ν) with certainty. Since (1,5,1, ν) is symmetrical w.r.t. (5,1,1, ν),
this strategy enables player 2 to keep thread 3 starving forever. Thus, πp is not a winning
strategy in this game. The same applies to G2.5, since the threads under consideration have
no inter-thread non-determinism.

It should be noted that the situation is different in G1.5. Since all output edges happen
uniformly at random, πp is winning in this case, as state (0,0,1, ν0) is eventually reached
with probability 1.
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Fig. 8 A system where the
maximal progress strategy is not
winning

The example above suggests that sometimes, as in state (5,1,1, ν), it is necessary to wait
for output actions, even when there are resources that are ready to be granted. The problem
of waiting for outputs, as mentioned earlier, is that in general there is no guarantee that
the outputs will be generated in a timely fashion. However, in mutex-only systems, we can
assume that when a thread holds a mutex it will generate an output in a timely fashion, either
to release the mutex, or to request another mutex. This captures the idea that, in well-written
code, critical regions have short durations. Based on this idea, we let Sc be the set of states of
a mutex-only system where there is some thread holding a mutex, and we propose a strategy
that waits for outputs only in Sc. We define the critical progress strategy π c by letting,
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for all s ∈ S, π c(s) = π∗(s) if s ∈ Sc or s ∈ S !, and π c(s) = Uniform(Supp(π∗(s)) \ {⊥})
otherwise. The following result shows that, for PMF systems, π c is an efficient resource
manager strategy.

Theorem 8 In a PMF system, π c is winning for G2.

Proof For all states s ∈ Sc ∪ S !, since π c(s) = π∗(s), given π∗ is winning in G2 for PMF
systems by Theorem 6, we have π c is winning in G2. For all states s ∈ S \ (Sc ∪S !), given π∗
is winning in G2, all moves in Supp(π∗(s)) are winning. As none of the threads are holding
a resource at s by the definition of Sc, and choosing ⊥ is necessary only when some thread
is holding a resource, we have π c(s) = Uniform(Supp(π∗(s)) \ {⊥}) is winning in G2. �

4.2 Efficient strategies for systems with semaphores

A natural extension of π c to systems with semaphores is a strategy that waits for outputs only
when there is at least one thread waiting for a resource that is not available (so that another
thread must be holding a resource, and it may be reasonable to expect an output action in
a timely manner). Unfortunately, there are examples showing that such an extension is not
winning in general. We discuss two related strategies that are winning, and efficient, for
systems with semaphores.

To obtain our first strategy, we reason as follows. Once a memoryless strategy π ∈ Π1 is
fixed, the game G2 is equivalent to a 2-MDP G2(π). If an end-component in this 2-MDP
is not fair, that is, if there is a thread k that is neither finished, nor progresses in the end
component, then it can be seen that thread k must be stuck waiting for an input (a resource)
at all states of the end component. This suggests to skip ⊥ (waiting for outputs) only when
no thread is blocked: in this way, if the strategy differs from π∗ by cutting ⊥, it can do
so only in a winning component. Precisely, for s ∈ S we let Succ(s,π∗) = {t ∈ S | ∃m1 ∈
Γ1(s).∃m2 ∈ Γ2(s).(π

∗(m1) > 0 ∧ τ(s,m1,m2)(t) > 0)} be the set of possible successors of
s according to π∗, and we let Sb = {s ∈ S | ∃k ∈ [1..n].∀t ∈ Succ(s,π∗).θ(s, t) �= k} be the
set of states where some thread is blocked. For s ∈ S, we then define πb by πb(s) = π∗(s)
if s ∈ Sb ∪ S !, and πb(s) = Uniform(Supp(π∗(s)) \ {⊥}) otherwise.

Theorem 9 The strategy πb is winning in G2 iff π∗ is winning in G2.

Proof In one direction, if πb is winning in G2, then not skipping ⊥ in states where none of
the threads are holding a resource is also winning in G2 and hence π∗ is winning in G2. In
the other direction, similar to the proof of Theorem 8, if π∗ is winning in G2, then cutting
⊥ in states where no thread is holding a resource is winning in G2. Hence πb is winning
in G2. �

Finally, we can obtain an efficient strategy with memory as follows. We say that a thread
k is bypassed whenever it is waiting for an input, and the scheduling strategy does not give
that input. Then, given a bypass bound M ∈ N, we can construct a strategy π

p
M as follows.

For each thread k ∈ [1..n], π
p
M keeps track of the number bk of times for which thread k has

been consecutively bypassed. As long as bk ≤ M for all 1 ≤ k ≤ n, the strategy π
p
M behaves

like πp. When bk > M for some k ∈ [1..n], on the other hand, π
p
M reverts to behave like π∗,

thus sometimes waiting for outputs when there are input actions (resource grants) that could
be taken. The idea, informally, is as follows: if a thread is bypassed for a large number of
consecutive times, it means that some other threads may be holding the resources it needs to
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proceed. Favoring output actions (among which are resource releases) enables the system to
reach a state where the bypassed thread can be finally granted the resource it needs.

Theorem 10 For all M ∈ N, we have that π
p
M is winning in G2 iff π∗ is winning in G2.

Proof In one direction, consider an arbitrary fixed bound M ∈ N and the resulting strategy
π

p
M that is winning in G2 from a starting state s∗. We show that π∗ is winning in G2. For

all states s ∈ S !, where the only winning move is ⊥, since π
p
M and π∗ will choose ⊥, π∗ is

winning at s. If bi ≤ M for all threads i ∈ {1, . . . , n} for all paths starting at s∗, then given π
p
M

is winning, we can always reach a state t∗i where thread i is enabled with positive probability.
This implies using π∗, which only differs from π

p
M by playing ⊥ with positive probability,

we can again reach t∗ with positive probability. Therefore, we have π∗ is winning. If bk > M

for some thread k ∈ {1, . . . , n} for some path starting at s∗, then as π
p
M reverts to π∗ and π

p
M

is winning, π∗ is winning as well.
In the other direction, given π∗ is winning in G2 from a starting state s∗, if M = 0, then

as π
p
M is the same as π∗, we have π

p
M is winning in G2. Consider an arbitrary fixed M > 0.

The strategy π
p
M differs from π∗ by cutting ⊥ in states Win(G2) \ S ! as long as bi ≤ M

for all threads i ∈ {1, . . . , n}. Since the game always remains in Win(G2) and π
p
M reverts to

π∗ when bk > M for some thread k ∈ {1, . . . , n}, given π∗ is winning, we have π
p
M is also

winning in G2. �

5 The tool

We have developed a prototype tool called CYNTHESIS that realizes the theory hereby pre-
sented. The tool takes as input a C program, and it either produces a warning that the system
is not schedulable (according to the definition in Sect. 3.2), or it outputs a custom resource
manager encoded as a C program that can be compiled and linked to the original program.
The result is an executable that is deadlock-free whenever the OS scheduler is fair, and the
threads do not block for reasons other than resources (such as infinite loops). The tool is
currently tailored to the eCos embedded OS [17], but it can be easily modified to work with
another OS.

To extract thread interfaces, the tool uses the CIL library [30] to build a control-flow
graph (CFG) for each thread. For the purpose of this graph, function calls are treated as
inlined. While building the CFG, each time a synchronization primitive is detected, edges
labeled with the appropriate action are added to the thread interface, as follows: (i) calls
to mutex_unlock(x) and sem_post(x) are represented by an edge labeled rx !, and
(ii) calls to mutex_lock(x) and sem_wait(x) are represented by a sequence of two
edges labeled with wx ! and gx? respectively. The original calls are also automatically an-
notated with location information, to allow the resource manager to distinguish them at
run-time. The graph is then minimized to remove transitions that do not involve resources.

In order for the tool to correctly identify resources, they must be declared as global
variables and then used by their original names; we are working to add alias analysis to the
tool to overcome this limitation. Once the thread interfaces are extracted, the tool solves the
game G1.5 and it outputs a custom resource manager in the form of compilable C code. The
resource manager behaves like the strategy π∗, or optionally like one of the other winning
strategies discussed in Sect. 4. In order to simulate the behavior of a strategy, the custom
manager needs to know which winning moves are available at any given decision point. In
turn, this means that it has to know in which state of the joint interface the system currently
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Table 1 Experiments

# threads |MI | # bad states # BDD nodes Size of BDD (kbytes) Time (seconds)

2 37 3 45 0.5 0.04

3 171 18 113 1.3 0.05

4 13905 580 181 2.2 0.6

6 17496 2592 267 3.2 12

6 33120 5490 1084 13 150

is, and what are the winning moves from that state. Rather than keeping a copy of the joint
interface, which can be of exponential size in the number of threads, the manager keeps
separate copies of the individual thread interfaces, along with the value of the resources.
With this information, the manager is aware of all moves; all that remains to encode are the
moves that are not part of the winning strategy: to do this, it suffices to store the set of losing
states. As the number of losing states can grow exponentially with the number of threads,
we encode the losing states using a BDD [4], leading to a very compact representation. In
Table 1, we report the result of some experiments, all run on a 3.4 GHz AMD Phenom II
machine with 4 GB of memory. The threads involved in the test give rise to thread interfaces
having between 5 and 12 states; apart from the resource primitives, the size of the source
code of the threads has a negligible effect on the running time of the tool, and it is irrelevant
to the size of the synthesized manager and the BDD. The second column reports the number
of states in the joint interface, and the last column reports the total time needed to synthesize
the manager.

5.1 A case study

We conducted a more extensive test, consisting in analyzing a multi-threaded program im-
plementing an ad-hoc network protocol for Lego robots. As illustrated in Fig. 9, the program
is composed of five threads, represented by ovals in the figure, that manage four message
queues, represented as boxes in the figure.

Threads user and generator add packets to the input queue. The router thread removes
packets from the input queue, and dispatches them to the other queues. Packets in the user
queue are intended for the local node, so they are consumed by the user thread. Packets in
the broadcast queue are intended for broadcast, and they are moved to the output queue by
the delay thread, after a random delay, intended to avoid packet collisions during broadcast
propagations. Packets in the output queue are in transit to another node, so they are treated
by the sender thread. Notice that if the sender fails to send a packet on the network, it puts
it in the broadcast queue (even if it is not a broadcast packet), so that it will be re-sent after
a delay.

Each queue is protected by a mutex, and two semaphores that count the number of empty
and free slots, respectively. Altogether, the program employs 6 mutexes and 8 semaphores.
By restricting all queues to having 1 slot, the resulting joint interface contains 200,000 states,
and the tool terminates its analysis in under 30 seconds. The BDD which encodes the set of
deadlock states occupies 16 kB.

The tool found a deadlock that corresponds to the following situation. Suppose that
queues output and broadcast are both full. Suppose also that the sender thread extracts a
packet from output and tries to send it on the network. If the send fails, the thread will try
to insert the packet in the broadcast queue. Since the latter is full, the sender thread will
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Fig. 9 Scheme of an ad-hoc network protocol implementation

hang on a semaphore, waiting for an empty slot in broadcast. However, the only way a slot
in broadcast can be emptied is for the delay thread to move a packet to output, which is still
full. Therefore, the sender will hang forever, and the whole system will consequently block.

Interestingly, the tool reports that there is a winning strategy in this situation. The strategy
consists in “slowing down” the router, preventing it from adding packets to broadcast if
output is full, and vice-versa.
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