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ABSTRACT
In online labor marketplaces two parties are involved; employers
and workers. An employer posts a job in the marketplace to receive
applications from interested workers. After evaluating the match to
the job, the employer hires one (or more workers) to accomplish the
job via an online contract. At the end of the contract, the employer
can provide his worker with some rating that becomes visible in the
worker online profile. This form of explicit feedback guides future
hiring decisions, since it is indicative of worker true ability. In this
paper, first we discuss some of the shortcomings of the existing
reputation systems that are based on the end-of-contract ratings.
Then we propose a new reputation mechanism that uses Bayesian
updates to combine employer implicit feedback signals in a link-
analysis approach. The new system addresses the shortcomings
of existing approaches, while yielding better signal for the worker
quality towards hiring decision.

Categories and Subject Descriptors
H.4.4.3.4 [Information Systems]: World Wide Web—Web appli-
cations, Crowdsourcing, Reputation Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Elo Ratings, Reputation, Link Analysis, Crowdsourcing

1. INTRODUCTION
In online labor marketplaces, such as oDesk 1, Elance 2 and Free-

lancer 3, two parties are involved; employers and workers. Employ-
ers post job openings and candidate workers apply to them, based
on their qualifications, skills and interests. The employers review

1http://www.odesk.com
2http://www.elance.com
3http://www.freelancer.com
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the applicants’ online resumes, and interview few applicants to de-
cide hiring. The worker reputation, i.e., the ratings that the worker
has received in his past jobs in the platform, is one of the most
important considerations for the employer hiring decision, since
it reveals how other employers evaluate the worker true ability in
real job scenarios. Although the reputation information is a use-
ful signal, reputation scores are usually skewed towards high rat-
ings [19], because employers care about the impact of their feed-
backs on the workers’ future opportunities for jobs in the market-
place. The skewed distribution of ratings makes them less helpful
in identifying very competent workers.

The reputation signal is also very sparse, since a worker needs
to apply, get hired and complete few jobs to obtain a representa-
tive reputation score. Usually, an unknown rating implies that we
have no explicit information about the employer’s preference for
the worker. In that case we need to build a model to predict the
unknown information, or, alternatively make inferences from the
employer’s behavior[4].

To address the limitations of the existing reputation systems in
labor marketplaces, we present WorkerRank, a new reputation sys-
tem that leverages employers’ implicit judgements at the applica-
tion evaluation moment, rather than the employer’s explicit feed-
back at the job completion moment. Although the implicit judge-
ments are more noisy than the explicit ones, they are more broadly
available, since the number of applications is usually one to two
orders of magnitudes higher than the number of hires. Moreover,
the implicit actions of the employers are not revealed and, conse-
quently, the employers do not bias their judgements towards high
ratings (as happens when they aim to avoid the negative impact on
the workers). As a result, the obtained ratings are not skewed.

We consider an employer decision to hire worker A, thus ranking
A above some other candidate B, as an input that “A won over B”
in a match. The employer decisions can thus be interpreted as a set
of match outcomes. There are many algorithms ([16], [17], [18],
[31]) that can be used to aggregate match outcomes. Our reputa-
tion system builds upon the Elo ratings system[16] that is widely
used to evaluate chess players. In particular, we assign each worker
an initial rating and we treat the applicants to a job opening as the
participants in a chess tournament. Applicants that get hired get
their scores increased and those who are rejected get their scores
decreased. The extent of the increase or the decrease depends upon
the ratings of the other applicants, i.e., the better the rejected appli-
cants are, the more the rating of the hired worker increases. Simi-
larly, the worse the hired applicants are, the more the ratings of the
rejected applicants decrease.

To deal with the noise of implicit judgements, we assign each
employer a score that quantifies the agreement of his decisions
with the observed quality of the workers. We then use the obtained



scores to weigh the employer judgements. For example, if an em-
ployer tends to take decisions that are very different from the rest
of the employers, his score will be low and his hiring decisions will
have a small impact on the worker ratings. The rest of the paper is
organized as follows. In Section 2 we present some notation and in
Section 3 we introduce WorkerRank, the new proposed reputation
system. We evaluate the new reputation approach on a real-world
dataset from oDesk in Section 4. Our results show that the new rep-
utation system not only provides information for far more workers
in the marketplace, but it also serves as a better discriminatory sig-
nal for hiring decisions. In Section 5 we discuss some related work
and we conclude in Section 6.

2. NOTATION
We represent the labor marketplace data with a directed bipartite

graph G = (U, V,A) (Figure 1); U is the set of jobs posted by
employers within a specific time period; V is the set of workers
who applied to the posted jobs (see Figure 1). Edge (v, u) ∈ A
represents the application of worker v ∈ V to job u ∈ U . Edge
(u, v) ∈ A represents the employer action on the the worker’s ap-
plication. We consider the following six employer actions:

• hire, the employer hires the worker;

• interview, the employer contacts the worker to obtain a better
understanding of his skills, but the worker is not eventually
hired;

• shortlist, the employer shortlists the worker for future con-
sideration, but the worker is not invited for interview;

• ignore, the employer reviews the worker online resume, but
he takes no action on it;

• hide, the employer reviews the worker resume and he “hides”
the applicant without notifying him; and

• reject, the employer reviews the worker resume and notifies
him that he will not be considered for the job.

Among the six actions, we consider the first three as positive in-
dications of the worker ability to accomplish the posted job, while
the last three are rather negative. We also assume that the employer
actions imply some ranking on the applicant perceived ability to
accomplish the job in the following decreasing order: hire > inter-
view > shortlist > ignore > hide > reject. For example, a worker
that is selected to be interviewed is considered to be a better fit for
the job than a worker who is ignored.

The goal of this paper is to compute a score r(v) for each worker
v that is informative of the worker ability to accomplish the jobs
that he applies to. A score r(v) is considered informative if the
relative difference between scores r(v) and r(v′) for workers v
and v′ is predictive for the relative ranking of v and v′ in the future
jobs that they apply.

3. PROPOSED REPUTATION SYSTEM
In this section we describe a reputation system that builds upon

the employer decisions on the worker applications. In Section 3.1
we provide our generic approach and in Section 3.2 we show how
we can improve our scores by leveraging job specific information.
Finally, in Section 3.3 we discuss how we can combine our rep-
utation system scores with the end-of-contract ratings to obtain a
hybrid reputation system.

offer

shortlist

interview

ignore

reject

hide

Workers Jobs
Employer A
Employer B

Application
Feedback

Figure 1: Bipartite graph between workers and jobs posted by
employers

3.1 WorkerRank
The WorkerRank reputation system assigns reputation scores r(v)

to each worker v ∈ V . Along with reputation scores, WorkerRank
also computes an importance score b(u) for each opening u ∈ U
that reflects how a job is important in terms of how objective its
employer is when judging candidates. The scores are computed via
a reputation calculation process on the application graph G, using
the Elo constants for telo, K, as shown in Algorithm 1.

Comparing Performances: The intuition of simulating jobs by
tournaments, and looking at the worker performances at each job
in pairwise manner, offers a dynamic way for comparing perfor-
mances in several cases; first, higher label workers clearly win
lower label opponents (for example, hire wins over interview, short-
list wins over hide). Also, draws in positive label workers pro-
vide useful information about how their qualities compare. While a
draw between two hired workers is an instance of equality between
their qualities, the same does not necessarily hold, though, in the
case of draws between negative label workers (such as two rejected
candidates). That is because in certain cases, rejecting or hiding a
candidate may reflect the fact that the employer had offered only a
limited number of positions hence he had to reject some good qual-
ity candidates. Other similar exceptions may apply too. Hence in
our algorithm we exclude draws among negative label workers.

Algorithm: In step 1 we initialize reputation r(v) of each worker
v to 1.0 and importance b(u) of each opening to 1.0. Then, in
steps 3 - 13 we consider each job as a tournament and in steps 5
- 13 we update the worker scores by considering every pair (v, v′)
of worker applications at a job u to be a game in the job tournament
with possible outcome of matches:

t(v, v′, u) =


0, if v lost against v′ at job u
0.5, if v came to draw with v′ at job u
1, if v won against v′ at job u

(1)

At step 3 we initialize the outcome variables Tv,u, Xv,u to 0 for
each candidate v who applied to job u. At step 5, we compute Tv,u

as the sum of the actual points that v scored in job u against the
other opponent candidates. At step 6, we compute Xi

v,u as the sum
of expected points that v would earn at time i against each opponent
candidate v′ 6= v at job u, according to Elo’s formula[16]:

tielo(v, v
′, u) =

1

1 + 10(ri(v′)−ri(v))/400
, ∀v′ : (v′, u) ∈ A (2)

For example, consider workers v1, v2, v3 and v4 who applied to a
job; v1 gets an offer, v2 is interviewed but never hired and v3 and



Algorithm 1 WorkerRank: Compute Workers Reputation Scores
and Jobs Importance Scores
Input: Graph G = (U, V,A)
Output: Reputation scores r(v) for workers v ∈ V , importance

scores b(u) for jobs u ∈ U
1: Initialize i = 0; r0(v) = 1, ∀v ∈ V ; b0(u) = 1, ∀u ∈ U
2: for u ∈ U do . for each job tournament
3: Tv,u = 0, Xi

v,u = 0, ∀v : ∃(v, u) ∈ A
4: for v, v′ : (v, u) ∈ A, (v′, u) ∈ A, v 6= v′ do
5: Tv,u += t(v, v′, u), and Tv′,u += t(v′, v, u)
6: Xi

v,u += tielo(v, v
′, u), and Xi

v′,u += tielo(v
′, v, u)

7: end for . for each worker pair game
8: i← i+ 1
9: δi(v, u)← bi−1(u) · (Tv,u −Xi−1

v,u )

10: δi(v′, u)← bi−1(u) · (Tv′,u −Xi−1
v′,u)

11: ri(v)← ri−1(v) + K

(n2)
· δi(v, u) . Update reputation

12: ri(v′)← ri−1(v′) + K

(n2)
· δi(v′, u)

13: bi(u)← ni
c(e)− ni

w(e)

ni
c(e) + ni

w(e)
. Update job importance

14: end for

v4 are rejected without interview. Each applicant participates in 3
games versus the other applicants. Worker v1 wins all three games
versus v2, v3 and v4, since he received an offer which is the most
positive employer judgement. Worker v2 loses against v1 but wins
over v3 and v4. Finally, each of the workers v3 and v4 loses in the
games against v1 and v2 but they draw when they face each other.
The worker points in this job are 3 for v1, 2 for v2 and 0.5 for either
of v3 and v4.

At step 9, the rating update δi(v, u) of worker v due to his appli-
cation to job u at the i-th time step is calculated as follows:

δi(v, u) = bi−1(u)(Tv,u −Xi−1
v,u ) (3)

where bi−1(u) is the importance score of job u from the i − 1-th
step, Tv,u is the sum of the actual points that v scored in job u and
Xi−1

v,u is the sum of points he was expected to score based on his
rating and the ratings of the other applicants from the previous step.
Time steps advance at each new job occurrence. Note that the score
update is multiplied by the importance of the job, b(u), so that em-
ployer bias is taken into account, as shown in Equation 5. Also note
that the more the applicants in an opening, the more the expected
points, since the update includes a summation term for each appli-
cant. What is more, the higher the difference between the rating of
worker v and the ratings of the other applicants of job u, the more
the points that v is expected to score. This is particularly useful
since application success of an applicant is not independent from
the application success of the remaining candidates at a particular
job.

Finally, to obtain the rating of worker v at the i-th time step,
at step 11, we add the average of his partial rating updates (Equa-
tion 3) to his rating from the previous time step, r(i−1)(v):

ri(v) = ri−1(v) +
K(
n
2

) · δi(v, u) (4)

The K-factor which represents the maximum possible adjustment
per game is set to 32, and is normalized by dividing over

(
n
2

)
, where

n is the number of the job applicants and 2 is the number of players
in the pair-wise worker comparison. Normalization is completed
by the summation over all pairs of candidates. Normalization is
important, since without it, worker scores would be increased or

decreased by the square of the number of applicants, which would
lead to dramatic inflation/deflation of scores at very popular jobs
(that is, jobs with high application rate). Very popular jobs usually
require generic skills, hence inflated scores would not necessarily
imply that the quality of their hired workers is higher.

After calculating the worker ratings, at step 13 we compute the
importance scores of jobs b(u). The intuition in Formula 5 is to
give more credence to rating updates (Equation 4) that come from
jobs posted by unbiased employers. The importance score is high
for employers who make decisions that respect the worker ratings
and it is low for employers who do not. Notice that after the oc-
currence of a small amount of job tournaments, the worker ratings
is an outcome taken out of the aggregation of all employers judge-
ments (step 11). At the same time, Elo scoring is based on a self-
correcting rating system[1]. Hence the following formula reflects
importance of a job as a measure of judgement deviation between
the job’s respective employer and the rest employers:

bi(u) =
ni
c(e, u)− ni

w(e, u)

ni
c(e, u) + ni

w(e, u)
(5)

e ∈ E denotes employer (in the set of employersE) who posted job
u ∈ U , nc(e, u) denotes the number of applicant pairs that were
“correctly” ranked by employer e in job u and nw(e, u) denotes the
number of applicant pairs that were “wrongly” ranked. We regard
a pair of applicants as correctly ranked if the employer prioritizes
the applicant with the highest reputation score. For example, if
applicants v and v′ have ratings r(v) = 1 and r(v′) = 2 and
employer e hires v′ and rejects v, then the pair is considered to be
correctly ranked.

3.2 Skill WorkerRank
The approach described in Section 3.1 predicts a reputation score

for each worker based on application data. That score is computed
in a global scope over all jobs where workers have applied. Al-
though global scores provide a signal for the quality of workers,
they may not be as powerful to discriminate among similar score
workers and guide hiring with accuracy. For example, consider
candidates v1, v2 in the example shown in Figure 2. The skills
listed under each job reflect the required skill-set the employer has
set in order for the candidates to get hired. Also assume that v2 is
better in java than v1, however v1 is better overall than v2, which
can be caused from the fact that v1 has applied to more jobs where
he has been successful (received offers). At this point our reputa-
tion system would prioritize v1 in the candidates list, missing the
fact that v2 is better in java.

Our goal is to achieve higher accuracy at predicting worker qual-
ity and prioritize candidates appropriate for the particular job. As
mentioned above, besides the information regarding which worker
applied to which job, there is further information regarding skills;
what skills each job requires and what skills each worker claims in
their profile description. Given this information, we use Worker-
Rank to derive scores for candidates in a skill-wise fashion, such
that eventually we learn how good each worker is at each particular
skill. Then, if a job requires a skill, we may rank candidates ac-
cording to their reputation scores at that particular skill and suggest
the top ranked ones for getting hired. In the used example, workers
v1, v2 who both claim to be experts in java (and they apply to job
u2 which requires java) will obtain a java score that will show their
quality in that skill. The expectation is that ranking v2 on top will
lead to successful hiring decision.

Skill-wise reputation algorithm: We consider set of skills S,
where Su ⊆ S denotes the skills required for job u ∈ U and
Sv ⊆ S denotes the skills claimed by worker v ∈ V . Also, we
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Figure 2: Skill-wise bipartite graph

consider bipartite graph GS = (U × S, V × S,AS) similar to the
definition in Section 3.1, where:

• each worker node v is replaced by set of pair {worker, skill}
nodes, {v, s}, one node for each skill claimed by the worker

• each job node u is replaced by set of pair {job, skill} nodes,
{u, s}, one node for each skill required for the job

• each (worker, job) edge (v, u) is replaced by set of pair ({worker,
skill}, {job, skill}) edges, ({v, s}, {u, s}), one edge for each
skill that the worker claims and the job requires.

Then we run Algorithm 1 on GS . The reputation and importance
scores are derived skill-wise, such that we obtain a set of reputation
scores r(v, s), where(v, s) ∈ V ×S and a set of importance scores
b(u, s), where(u, s) ∈ U×S. Obtaining reputation scores for each
{worker, skill} pair provides information about the performance of
the worker at the particular skill.

Figure 2 describes an example for graphs G and GS , with can-
didates v1, v2, v3 applying to jobs u1, u2. Workers v1, v3 apply
to job u1 (v1 receives an offer) and v1, v2 apply to job u2 (v2 re-
ceives an offer). The skills required for job u1 are {python, django}
and the skills required for job u2 are {java}. Worker v1 claims to
have skills {python, java django}, v2 claims {java}, and worker v3
claims {python, django}.

Correlation between skills and hires: Looking at the applica-
tion data (enriched with skills information) we observe that in most
cases jobs require more than one skills. In that case, we need to
decide a ranking for candidates based on the intersection of their
scores on a set of different skills. That ranking will reflect their
suitability for the multi-skill requiring job. In our example where
job u1 requires python and django, we need to rank candidates ac-
cording to their quality in python and their quality in django. How-
ever, the python-score may be more informative about hiring than
the django-score. For example, it may more beneficial to hire a can-
didate with a high python-score than hire one with a high django-

score. Hence it is important to measure how each skill contributes
towards hiring, before we rank candidates according to skills.

In order to combine a set of scores for each worker across the set
of skills required for a job, we allow for a weighted average over the
worker’s skill-wise scores. We use logistic regression to compute
coefficients for skills as features, where we use the binary outcome
of the application (hire/no-hire) as the response variable. Coeffi-
cients for skill scores will eventually show how informative each
skill is about the quality of the worker, measured by the worker’s
potential of getting hired.

In Algorithm 2 we aggregate skill-wise scores into a single repu-
tation/importance score for each worker/job respectively. The input
of the new algorithm is the set of scores derived by Algorithm 1 for
the sets of {worker, skill}, {job, skill} pairs. The output of Algo-
rithm 2 is the final reputation score for each worker and importance
score for each job, after examining workers’ quality across their
skill-set and tuning it according to the significance of each skill.

Algorithm 2 Combine Skill-wise Scores into Reputation
Input: Set of skill-wise scores r(v, s), b(u, s), where (v, s) ∈

V × S, (u, s) ∈ U × S
Output: Reputation scores r(v) for workers v ∈ V , Importance

scores b(u) for jobs u ∈ U
1: Consider feature variables f(s) ← r(·, s), ∀s ∈ S,

and set of feature variables F ← ∪s∈Sf(s)
2: Consider response variable y ← hiring outcome, where y ∈
{hire, no-hire}

3: Learn coefficients w(f)← LR(F,R), ∀f ∈ F
4: for v ∈ V and u ∈ U do

5: r(v)←
∑

s∈S r(v, s) · w(s)∑
s∈S w(s)

6: b(u)←
∑

s∈S b(u, s) · w(s)∑
s∈S w(s)

7: end for

In step 1 we consider set of features F , where one’s reputation
score r(·, s) at a particular skill s ∈ S is regarded as a feature.
We use f(s) = r(·, s) to denote feature regarding reputation score
at skill s. For example, if s = python, then any (denoted by ’·’)
worker’s score in python, r(·, python), is a feature. Recall that the
coefficients pertain to how each skill score of a worker contributes
towards his getting hired. In step 2 we consider response variable
y to be the binary hiring outcome y ∈ {hire, no-hire}. Then
in step 3 we run logistic regression (LR) on the set of features F
with response variable y and we obtain coefficients w(f) for each
skill-score variable f ∈ F . Finally, in steps 5 - 6 we aggregate the
input skill-wise scores using weights across skills learned at step 3.
The output of the algorithm is a single reputation score for each
worker (step 5) and a single importance score for each job of the
application data (step 6).

3.3 Hybrid Model
While it is interesting to compare implicit judgements against ex-

plicit judgements in order to infer a quality measurement for work-
ers, we expect that a hybrid model which combines both, shall yield
better results. In this section we use rank aggregation to combine
WorkerRank ranking with feedback ranking into an optimal list-
ing of workers such that we predict true ranking (as specified by
employer judgements) with higher accuracy.

In particular, we use the weighted rank aggregation method de-
scribed in [29]. In this approach the function performs rank aggre-
gation via a Cross-Entropy Monte Carlo algorithm. The algorithm
searches for a desired list which is as close to the provided ordered



lists as possible. In our implementation we use the Spearman dis-
tance to measure the correlation of the ordered lists of implicit and
explicit reputation rankings. The convergence criterion used is the
repetition of the same minimum value of the objective function in
a number of consecutive iterations.

4. EXPERIMENTAL RESULTS
To evaluate the proposed reputation system, we compare Work-

erRank with baseline schemes in terms of a) the sparsity of the sig-
nal in the marketplace, b) the time needed to obtain a signal for new
workers, and c) discriminatory power for hiring decisions. During
the evaluation, WorkerRank is compared against a baseline collab-
orative filtering approach which uses data of implicit reputation to
rank workers (as a reminder, WorkerRank also runs on implicit rep-
utation data). In addition, we compare WorkerRank against the
current ranking approach that is based on explicit reputation data.

4.1 Setting
Dataset: We use a sample of real-world application data, along

with explicit reputation scores provided by oDesk[27]. The oDesk
dataset spans the time period of 53 weeks between January 2013
through January 2014 and it contains approximately 10M applica-
tions submitted by 0.5M workers to 1.1M job openings posted by
0.2M employers. Note that we do not account for unseen appli-
cations (case where employer has taken no action). In table 1 we
provide some statistics regarding the dataset. In the experiments
we use a sample of the applications submitted during the testing
period. Tables 2 and 3 show a real job posting example. This ex-
ample includes information about the job title, category, descrip-
tion, required skills, candidate applicants along with their declared
skills, hire decision, reputation scores learned via WorkerRank and
via skill-based WorkerRank. We observe overlapping skills among
the job required skills and the skill-sets declared by the candidates.
In Figure 4 we show the distribution of the ratings data. As studied
in [19], we encounter skewness towards the high rating values.

Baseline - Explicit Data: A baseline approach currently used in
the marketplace is to represent the quality of workers based on ex-
plicit data; in particular, it collects the explicit star ratings assigned
to each worker by the employers according to their performance
on accomplished jobs, and aggregates them in an average ratings
score. Then the workers quality is estimated according to the aver-
age employers judgements. The average employers rating q(e, v)
is used to rank candidate workers v ∈ V who apply at a new job
posting of employer e ∈ E, as follows:

q(e, v) =
1

N

∑
e′:(v,u′)∈A

∑
u′∈Ue′

q(e′, v) (6)

where (v, u′) ∈ A denotes application of worker v to job u′ posted
by employer e′, Ue′ is the set of jobs posted by e′, q(e′, v) is the ex-
plicit ratings score in [1, 5] assigned to v by e′, andN =

∑
e′ |Ue′ |

is the number of accomplished jobs, posted by employers e′. Note
that employers provide explicit reviews only to workers who have
accepted their offer and upon completion of the job.

Baseline - Implicit Data: In certain cases, reputation systems
are used to provide rating scores in recommendation problems.
Since WorkerRank is applied on implicit reputation data represented
on a hiring actions bipartite graph, we use a collaborative filtering
score scheme as one of the baseline approaches, viewing Worker-
Rank as a collaborative filtering approach based on implicit data.
The baseline for representing quality of workers based on implicit
reputation data, is to compute their hire rate in the training set
neighborhoods. We collect the sets of jobs at which workers re-

Table 1: Dataset Statistics
Training Testing

Application dates 03/01/2013 −
03/01/2014

03/02/2014 −
18/02/2014

#Jobs 1, 151, 859 1, 446
#Workers 477, 464 21, 642
#Employers 232, 014 1, 405
#Applications 9, 214, 557 34, 054
Avg # cands / job 24.1 22.5
Min # cands / job 11 11
Max # cands / job 50 50
Median # cands / job 23 20
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Figure 3: Histogram of application success label rates

ceived an offer within the study training period. Then for each
employer we count the total number of offers assigned to each
worker by the neighbor employers in the training set and we esti-
mate worker quality score according to their hire rate. For employer
e who posts a new job u, we compute recommended score for can-
didates v as the hire rate in jobs posted by employers e′, neighbors
of e, weighed by their similarity, sim(e, e′). Denoting employer
implicit actions (offer, interview, reject, and more) by qim(e′, v),
we consider the following baseline implicit reputation score:

qim(e, v) =
1∑

e′ |sim(e, e′)|
∑

e′:(v,u)∈A

∑
u∈Ue′

sim(e, e′)qim(e′, v)

(7)
where qim(e′, v) takes values in {0 if v was not hired, 1 else}. Sim-
ilarity between employer e and neighbor e′, sim(e, e′), is defined
by their cosine similarity based on their ratings on workers that e
and e′ have co-rated. Then e receives recommendations from the
neighbor e′ judgements [4].

In the testing phase we rank candidates by collaborative implicit
hire rates and by explicit ratings reputation to recommend the top
ranked workers for the new job openings. Then we compare the
two baseline performances with WorkerRank performance.

Table 2: Job Posting Example (Applicants shown in table 3)
Title Wordpress Developer
Category Web Development
Required Skills wordpress, css, php
Description 1.Need Wordpress theme developed. Slider,

logo, left sidebar menu, copyright.
2.Must be experienced Wordpress developer.
3.Must know CSS, php, Wordpress, html.
4.Will provide visual design guide.



Table 3: Skill-based reputation versus global reputation scores
Candidate App.Success Skill 1 Skill 2 Skill 3 Skill 4 Skill5 reputation skill-reputation

v1 offer css3 php wordpress html css 2.54 2.28
v2 offer css3 php wordpress html5 css 1.42 4.67
v3 offer web dev sofw dev − − − 1.39 2.05
v4 reject css3 php wordpress html5 ajax 4.82 3.40
v5 reject gr.design visual-c++ wordpress web design illustration 1.38 1.06
v6 reject css3 php javascript html jquery 1.05 2.45
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Figure 4: Data Skewness

4.2 Coverage
First, we show that since WorkerRank’s results become available

at the time of application, the coverage of workers for whom we ob-
tain reputation signal is higher compared to the coverage obtained
from explicit ratings. In particular, we run WorkerRank over the
applications of the first 52 weeks of the dataset. During this time
period we also keep track of the feedback ratings that the workers
receive after the job is completed. Then we report the number of ap-
plications of the 53-rd week for which there is a WorkerRank score
versus the applications for which there is an employer feedback
score. Our results show that out of 88, 294 applications in the 53-
rd week, we have WorkerRank scores for 79, 083 (89.6%), while
we have feedback scores only for 52, 471 (59.4%). The increase in
the marketplace application coverage is +50.8%. We present these
results in table 5. Note that the above measurements account for
both active and inactive applications.

4.3 Cold Start
Second, we show that WorkerRank is faster in acquiring signal

for new workers joining the system, compared to the explicit ratings
approach. Since the online marketplaces grow fast, the identifica-
tion of new competent workers is very significant for their healthy
development. For all workers who joined the platform during the
last 3 months of our study period, we calculate the percentage of
workers for whom we obtain reputation signals within X days. X
is varying from 1 to 120 days. As presented in Figure 5, the Work-
erRank scores are available for more than 60% of the new workers
within 3 months of their joining the platform and the percentage
ratio grows to 75% after another 4 months. On the contrary, there
are less than 10% of new workers who received feedback at the end
of their first 3 months in the platform and this percentage does not
exceed 18% at the end of the additional 4-month period.

4.4 Ranking Precision
Third, we show that WorkerRank outperforms baseline approaches

accuracy in ranking workers by quality, thus yielding a more reli-
able system for ranking candidates in new job openings.

WorkerRank vs Implicit vs Explicit Baselines:
MAP: We use Mean Average Precision (MAP) to evaluate rank-
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Figure 5: Cold Start: WorkerRank vs Explicit Feedback
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Figure 6: MAP in predicting the hiring outcome

ings produced by the baseline approaches and the WorkerRank scores.
The truth rankings each method is compared against, are specified
by employer true scores that they implicitly assigned to candidates
through their hiring actions in past jobs. As shown in Figure 6,
by using WorkerRank, employers encounter approximately 1 good
worker for every 3 workers in the ranked list. That performance
is compared against 1 good worker for every 5 (or, 4 respectively)
workers that the employer encounters by using the baseline collab-
orative filtering ranking (or, explicit ratings, respectively). Overall,
the new algorithm improves the chances of identifying good work-
ers in the top results by 39.1% (33.3%, respectively).

Lift: To evaluate the quality of WorkerRank scores, we compare
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Figure 7: MAP@k in predicting the hiring outcome



Table 4: Performance Improvement: WorkerRank vs Baselines
Explicit Feedback Implicit Reputation % Improvement

Ratings Based (RB) Collab Filtering (CF) WorkerRank (WR) WR vs CF WR vs RB
MAP 0.24 0.23 0.32 +39.1% +33.3%
AUC 0.59 0.52 0.65 +25.0% +10.1%

% Covered applications 59.4% – 80.8% – +50.8%
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Figure 8: Lift in predicting the hiring outcome

them against the explicit reputation scores as signals for taking hir-
ing decisions. We use the data of the first 52 weeks of our dataset
to calculate the WorkerRank scores, and we then use these scores
as predictors for the hiring outcomes of the applications submitted
during the 53-rd week. In particular, we rank all of the applications
by the WorkerRank scores of the applicants. Then we calculate the
hiring lift in the top x percent of the applications as follows:

lift(x) =
hiring probability in the top-x% applicants

hiring probability across all applicants
(8)

Lift shows the performance of WorkerRank versus the performance
of a random scoring of applicants. Similarly, we calculate the lift
for the explicit ratings scores and we present the results in the bar-
plot of Figure 8. The plot has five triplets of bars and each triplet
looks at a different percentage value of the top ranked workers,
x ∈ {0.25, 0.35, 0.5, 10, 25}. Left bars look at the Elo ratings
obtained by WorkerRank, center bars look at the explicit feedback
ratings, while right bars reflect random worker ranking. The height
of each bar shows the lift value for the corresponding scheme and
for the corresponding x value. For example, the first left bar from
the left shows that the top-0.25% of applicants as ranked by the
Elo ratings are 2.66 times more likely to be hired than a random
applicant. We observe that the lift of the explicit feedback scores
is flat at 1.1 for all x values, since the top 25% of the applications
correspond to workers with perfect 5-score rating. As a result, the
existing reputation system does not provide a sufficient signal to
discriminate high quality workers. On the other hand, WorkerRank
Elo ratings yield an increasing lift as we limit the percentage of the
top-x% applications that we consider. The Elo lift is already higher
than the feedback lift for x = 25% and it exceeds 2.5 as we limit
x to the top 0.25% of the applications. Note that for an average
of 36 applications per job, that percentage implies that the top 9
candidates are 2.66 times more likely to be hired than any random
candidate, as opposed to the almost equal likelihood that explicit
feedback yields (1.1 times more likely than random) .
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Figure 9: MAP across different job segments and types

Performance across Job Types: We also illustrate how Work-
erRank outperforms the baseline approaches when studied in cate-
gory subsets of the datasets. Figure 9(a) shows how the algorithms
perform when applied on the different segments of jobs, Knowl-
edge Processing Outsourcing (KPO) and Information Technology
(IT). Figure 9(b) shows how the algorithms perform when applied
on different type jobs (fixed-price (fp) versus hourly-rate (hr)). An
interesting illustration is that of Figure 4.4, which shows how the
different approaches behave on different job categories. For ex-
ample, employers in software engineering jobs appear to provide
more precise feedback about the quality of workers they have col-
laborated with, whereas in sales and marketing feedback ratings do
not reflect the overall quality of workers as accurately.

Hybrid: WorkerRank and Explicit Reputation: In Figures 11(a)
and 11(b) we show how the hybrid approach performs at MAP and
MAP@k: for k ∈ [1, 5], compared to the two approaches it com-
bines; WorkerRank and explicit reputation. The hybrid model ap-
pears to slightly improve WorkerRank, the best of two approaches,
although the improvement is not as high as it was in the compar-
ison between implicit versus explicit reputation in Figures 6 and
7. It is interesting to mention that in all cases the hybrid model
improves WorkerRank and explicit feedback, except for the hourly
rate jobs and the Web Development category, where WorkerRank
marginally outperforms the hybrid model and significantly outper-
forms the explicit reputation model.

Finally, during rank aggregation which derives the hybrid model,
we tested a few weighting combinations to prioritize the influence
of one of the two rankings (WorkerRank or explicit). Equal weights
on the two rankings appears to be the best combination that makes
the hybrid model behave optimally. The Figures shown for the hy-
brid model performance assume equal weight on the two lists.

Skill-wise WorkerRank vs WorkerRank: In Figure 12 we show
how skill-wise WorkerRank performs at MAP compared to the plain
WorkerRank approach. Since skills are available for approximately
65% of the jobs, we use a subset of the dataset in this experiment.
As mentioned earlier, skill-wise WorkerRank produces specialized
scores for workers, pertaining specifically to the skills that potential
jobs require. The results show that ranking workers by skill-wise
scores is more accurate than ranking them based on the Worker-
Rank scores. In particular, the improvement shown in the MAP
Figure provides a better system to rank workers. However in cer-
tain cases skill-wise scores do not appear experimentally to differ
from WorkerRank scores. That is because for several jobs a sin-
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Figure 11: (a) MAP@Inf, (b) MAP@k for hybrid model in predicting the hiring outcome

Table 5: Performance Improvement: Hybrid vs WorkerRank
WorkerRank Hybrid % Improvement

WR HB HB vs WR
MAP@1 0.14 0.15 +9.1%
MAP@3 0.23 0.24 +5.6%
MAP@5 0.26 0.27 +4.8%

MAP@Inf 0.32 0.35 +3.5%
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Figure 12: MAP in skill-wise WorkerRank

gle skill is specified instead of a set of skills. This is one of the
reasons why skill scores do not add significant knowledge to our
estimations about workers quality. We apply logistic regression to
combine skill-wise scores in a weighted fashion such that the in-
tersection of our knowledge about the ability of the workers on
multiple scores is incorporated.

5. RELATED WORK
The problem tackled in this paper overlaps with four research

fields; graph link analysis, building online reputation systems, game
competition match analysis and predicting high-quality response in
query-answering.

Graph link analysis research is related to our work, since we rep-
resent our data using a bipartite graph and we perform link analysis
to examine the job applications of workers along with the respective
employer feedback (edge weight). Several approaches have been
proposed about ranking graph nodes in a network, such as PageR-
ank [28], [10] and HITS [21], while Donato et. al. extend the study
of HITS in [9] and Zhang et. al. in [36] study how PageRank and
HITS perform when applied on the Java forum domain. Finally,
Mishra et.al. [26], and Lescovec et. al. in [24] and [23] , present
their node scoring methods with the presence of both positive and
negative edge weights. Note that in our approach we also implic-
itly make use of negative information about applications, such as
the “ignore”, “hire” and “reject” feedback responses by the em-
ployer. However we only account for the relativity among different
feedback labels, that is, who won over whom, hence we do not face
restrictions of edge positivity.

Research on online reputation systems is directly related to our
work, as we build a reputation system for workers in the labor mar-
ketplace, and we derive additional heuristic de-bias scores for em-
ployers. In [3] and [2] Adler et.al. tackle the problem of mea-
suring the quality of contributions in Wikipedia, while Tan et.al.
expand on this problem in [33]. Kokkodis et.al. in [22] discuss
how to address data sparseness in building labor marketplace rep-
utation systems. In [15] , Dellarocas summarizes online reputation
mechanisms and challenges they face in terms of usage and eval-
uation. What is more, Archack in [7] discusses how reputation
challenges strategic behavior of contestants in the TopCoder mar-
ketplace, while Chen in [12] describes their de-biasing mechanism
for building a reputation system in a comments rating environment.
TwitterRank [35] is another reputation system which aims to build
reputation scores such that they incorporate a measure of influence
for the Twitter users. Finally, in our past approaches in [14] and
[13], we discuss the usage of link analysis using weighting schemes
in order to build reputation systems.

It is interesting to reference a few game competition works such
as the Elo method [16] that we are using in our current approach in
order to predict the expected hire probability of each worker given
our prior knowledge about their opponent’s performance and their

own performance. Elo is using a Bayesian update scheme to score
chess game players based on past matches activity and update their
scores by their expected performance in future tournaments. Glick-
man in [17] presents an improved approach, which keeps updating
the mean and variance of the player scores such that confidence in-
formation is also carried along with the player’s quality estimation.
Methods tackling further improvement of match updates are pro-
posed, such as TrueSkill [18] which tackles multi-player and multi-
team challenges, while Nikolenko et.al. further improve TrueSkill’s
challenges of multiway ties and variable team size. Finally, Sisma-
nis in [31] proposes a re-visit on the Elo method which incorporates
tournament recency and other parameters in the tournament analy-
sis in order to avoid over-fitting of the player ratings.

Moreover, query answering methods are referenced since they
tackle the challenge of predicting quality of a response content
such as question answers and social media content; that challenge
is similar to our work’s goal of predicting worker quality scores.
Several approaches have been proposed aiming to identify qual-
ity in social media content such as Agichtein et. al. [5] and Bian
et. al. [8]. Shah et.al. [30], Suryanto et.al. [32], Jurczyk et. al.
[20] and Anderson et. al. [6] study quality of answers in question
answering, while Tsaparas et.al. [34], study quality of online re-
view systems, such as in Yelp or Epinions. Finally, Chen et. al.
[11] study de-biasing approaches to set votes more informative in
question-answering systems towards higher quality in answer and
expert ranking.

Finally, Kokkodis et al. [25] formulate the problem of hiring in
work marketplaces as a binary classification problem, where the
target variable is the hiring decision. An informative reputation
mechanism like the one we present in this paper can be a very pre-
dictive signal in such classifiers.

6. CONCLUSIONS
The results of our experiments show that WorkerRank improves

ranking of candidates compared to baseline approaches, since its
reputation scores reflect worker quality more accurately. What is
more, WorkerRank solves the basic problems encountered in ex-
plicit reputation systems (unreliable employer ratings, limited cov-
erage of worker scores, cold start problem for new workers with no
history information). Our future work includes research on weight-
ing schemes as discussed in[14] and modeling implicit actions on
the marketplace website.
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