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Abstract

Many prediction problems can be phrased as inferences over
local neighborhoods of graphs. The graph represents the in-
teraction between entities, and the neighborhood of each en-
tity contains information that allows the inferences or predic-
tions. We present an approach for applying machine learning
directly to such graph neighborhoods, yielding predictions for
graph nodes on the basis of the structure of their local neigh-
borhood and the features of the nodes in it. Our approach
allows predictions to be learned directly from examples, by-
passing the step of creating and tuning an inference model
or summarizing the neighborhoods via a fixed set of hand-
crafted features. The approach is based on a multi-level ar-
chitecture built from Long Short-Term Memory neural nets
(LSTMs); the LSTMs learn how to summarize the neighbor-
hood from data. We demonstrate the effectiveness of the pro-
posed technique on a synthetic example and on real-world
data related to crowdsourced grading, Bitcoin transactions,
and Wikipedia edit reversions.

Introduction

Many prediction problems can be naturally phrased as infer-
ence problems over the local neighborhood of a graph. Con-
sider, for instance, crowdsourced grading. We can construct
a (bipartite) graph consisting of items and graders, where
edges connect items to users who graded them, and are la-
beled with the grade assigned. To infer the grade for an item,
we can look at the graph involving the adjacent nodes: this
graph, known as the 1-neighborhood, consists of the peo-
ple who graded the item and of the grades they assigned.
If we wish to be more sophisticated, and try to determine
which of these people are good graders, we could look also
at the work performed by these people, expanding our anal-
ysis outwards to the 2- or 3-neighborhood of each item.

For another example, consider the problem of predicting
which bitcoin addresses will spend their deposited funds in
the near future. Bitcoins are held in “addresses”; these ad-
dresses can participate in transactions where they send or
receive bitcoins. To predict which addresses are likely to
spend their bitcoin in the near future, it is natural to build
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a graph of addresses and transactions, and consider neigh-
borhoods of each address. The neighborhood contains in-
formation on where the bitcoins came from, and on what
happened to bitcoins at the interacting addresses, which (as
we will show) can help predict whether the coins will be
transacted soon.

For a third example, consider the problem of predicting
user behavior on Wikipedia. Users interact by collabora-
tively editing articles, and we are interested in predicting
which users will have their work reverted. We can build
a graph with users as nodes, and interactions as edges: an
interaction occurs when two users edit the same article in
short succession, and one either keeps, or undoes, the work
of the other. The 1-neighborhood of a user will tell us how
often that user’s work has been kept or reverted. Again, we
can consider larger neighborhoods to gather information not
only on the user, but on the people she interacted with, trying
to determine whether they are good contributors, how expe-
rienced they are, whether they are involved in any disputes,
and so forth.

In this paper, we show how to solve these problems by
applying machine learning, using an architecture based on
multi-level Long Short-Term Memory (LSTM) neural nets
(Hochreiter and Schmidhuber 1997; Gers and Schmidhuber
2001; Graves 2012), with each LSTM level processing one
“degree of separation” in the neighborhood.

The challenge of applying machine learning to graph
neighborhoods lies in the fact that many common machine
learning methods, from neural nets (Hopfield 1982) to sup-
port vector machines (SVMs) (Cortes and Vapnik 1995), are
set up to handle fixed-length vectors of features as input. As
a graph neighborhood is variable in size and topology, it is
necessary to summarize the neighborhood into a fixed num-
ber of features to use in learning. Some machine learning
methods, such as logistic regression (Bishop 2007), can ac-
cept a potentially unbounded number of inputs, but every
input has its own index or name, and it is not obvious how
to map the local topology of a graph into such fixed naming
scheme in a way that preserves the structure, or the useful
information.

Machine-learning methods that can learn from sequences,
such as LSTMs or recurrent neural nets (Williams and
Zipser 1995; Hochreiter et al. 2001), offer more power. It
is possible to traverse the local neighborhood of a node in a



graph in some order (pre-, post-, or in-order), and encode the
neighborhood in a sequence of features complete with mark-
ers to denote edge traversals, and then feed this sequence
to an LSTM. We experimented with this approach, but we
did not obtain any useful results: the LSTMs were unable
to learn anything useful from a flattened presentation of the
graph neighborhood.

We propose a learning architecture based on the use of
multiple levels of LSTMs. We call our architecture Multi-
Level Sequence Learners since any structure capable of
learning from sequences, and not just LSTMs, can be used.
Our architecture performs predictions for one “target” graph
node at a time. First, the graph is unfolded from the target
node, yielding a tree with the target node as its root at level
0, its neighbors as level-1 children, its neighbors’ neighbors
as level-2 children, and so forth, up to a desired depth D. At
each tree node v of level 0 < d < D, alevel-d + 1 LSTM
is fed sequentially the information from the children of v at
level d 4 1, and produces as output information for v itself.
Thus, we exploit LSTMs’ ability to process sequences of any
length to process trees of any branching factor. The top-level
LSTM produces the desired prediction for the target node.
The architecture requires training D LSTMs, one per tree
level. The LSTMs learn how to summarize the neighbor-
hood up to radius D on the basis of data, avoiding the man-
ual task of synthesizing a fixed set of features. By dedicat-
ing one LSTM to each level, we can tailor the learning (and
the LSTM size) to the distance from the target node. For
instance, in the bipartite graph arising from crowdsourced
grading, it is desirable to use different LSTMs for aggre-
gating the edges converging to an item (representing grades
received), and for aggregating the edges converting to a user
(representing the grades assigned).

A consequence of the local nature of the learning mecha-
nism is that the amount of computation required is indepen-
dent of the total size of the graph. Indeed, the approach can
be applied even when the complete graph is unknown, or too
expensive to even construct. In order to train and apply our
LSTMs, we simply need a sufficient number of graph neigh-
borhoods to be available for training, testing, and prediction.

We demonstrate the effectiveness of the proposed ap-
proach over four problems. The first problem is a syn-
thetic example concerning the crowdsourcing of yes/no la-
bels for items. The other three are based on real data, and
they are the previously mentioned problems of aggregating
crowdsourced grades, predicting bitcoin spending, and pre-
dicting future reversions of user’s edits in Wikipedia. In
all four problems, we show that the ability of multi-level
sequence learners to exploit any feature in the data leads
to high performance with minimal feature engineering ef-
fort and no apriori model assumptions. We are making
available the open-source code implementing LSTMs and
multi-level sequence learners, along with the datasets, at
https://sites.google.com/view/ml-on-structures.

Related Work
Predicting properties of nodes in graph structures is a com-
mon problem that has been widely studied. Several exist-
ing approaches view this as a model-based inference prob-

lem. A model is created, and its parameters are tuned on the
basis of the information available; the model is then used
to perform inference. As the exact probabilistic inference
is generally intractable (Koller and Friedman 2009), most
techniques rely on iterative approximation approaches. It-
erative approximations are also at the root of expectation
maximization (EM) (Dempster, Laird, and Rubin 1977). It-
erative parameter estimation has been used, together with
Gibbs sampling, to reliably aggregate peer grades in massive
on-line courses (Piech et al. 2013). Iterative, model-based
approaches have also been used for reliably crowdsourcing
boolean or multi-class labels (Karger, Oh, and Shah 2011;
2013). In these works, a bipartite graph of items and workers
is created, and then the worker reliabilities, and item labels
or grades, are iteratively estimated until convergence.

Compared to these models, the benefit of our proposed
approach is that it does not require a model, and thus, it can
avail itself of all the features that happen to be available. For
instance, in crowdsourced grading, we can use not only the
agreement among the graders to judge their reliability, but
also any other information that might be available, such as
the time taken to grade, or the time of day, or the number
of items previously graded by the user, without need to have
a model of how these features might influence grade reli-
ability. We will show that this ability can lead to superior
performance compared to EM and (Karger, Oh, and Shah
2011) when additional features are available. On the other
hand, machine-learning based approaches such as ours are
dependent on the availability of training data, while model-
based approaches can be employed even in its absence.

A work closely related to ours is described in (Tai, Socher,
and Manning 2015), where tree-structured LSTMs are intro-
duced and used to learn distributed representations of sen-
tences of words. The authors present two types of tree-
structured LSTMs: child-sum ones, able to deal with arbi-
trary branching factors, and /N-ary ones, tailored for a fixed
branching factor. In child-sum LSTMs, the memory cell of
a node is obtained by summing contributions from its chil-
dren, each gated according to features of both children and
parent. The setting of this work is tailored to NLP tasks;
the goal is to improve the prediction of semantic relatedness
of two sentences and to classify sentiment. The word rep-
resentations are initialized using Glove vectors (Pennington,
Socher, and Manning 2014) , a well-known word embedding
technique, and fed as input to the LSTM architecture which
produces representations of sentences of words by parsing
the syntactic trees of sentences. These embeddings of sen-
tences are in turn used as input to a neural network that per-
forms the prediction task.

The deep convolutional network approach to machine
learning has been extended to graphs in (Bruna et al. 2013;
Henaff, Bruna, and LeCun 2015), where the spectrum of the
graph Laplacian is used in lieu of the translations in order
to reconstruct a notion of regularity on the graphs. The ap-
proach is applied to the Merck Molecular Activity Challenge
and to Reuter news datasets, among others. The spectral-
based approach requires a consideration of the graph as a
whole, and its complexity depends on the size of the graph.

Several approaches have been proposed for summarizing



graph structures in feature vectors. The algorithm node2vec
(Grover and Leskovec 2016) enables the construction of em-
beddings for graph nodes in such a way that the embedding
optimally represents the node’s location in the graph. The
objective function models the posterior probability of graph
neighborhoods for a given node. The resulting embedding
thus summarizes a node’s location in a graph, but it does not
summarize the original features of the node, or the possi-
bly existing features of the interactions between a node and
neighbors. In contrast, the techniques we introduce allow us
to leverage the node and edge features of the graph neigh-
borhood.

In DeepWalk (Perozzi, Al-Rfou, and Skiena 2014), fea-
ture vectors for graph nodes are constructed by performing
random walks from the nodes, and applying various sum-
marization techniques to the list of feature vectors of the
visited nodes. This approach enables the consideration of
variable-diameter neighborhoods, in contrast to our explo-
ration, which proceeds strictly breath-first. In DeepWalk,
nodes that are similar in their features and graph neighbor-
hood are mapped into similar feature vectors. The construc-
tion of the summarizing feature vector is guided by consid-
erations of similarity, rather than by backpropagation from
the learning goal, as in our approach.

LSTMs were proposed to overcome the problem of van-
ishing gradient over long sequences that affects recurrent
neural nets (Hochreiter and Schmidhuber 1997; Gers and
Schmidhuber 2001). LSTMs have been widely useful in
a wide variety of learning problems; see, e.g., (Graves
and Schmidhuber 2009; Sundermeyer, Schliiter, and Ney
2012). Recurrent neural nets and LSTMs have been gen-
eralized to multi-dimensional settings (Baldi and Pollastri
2003; Graves 2012). The multi-level architecture proposed
here can handle arbitrary topologies and non-uniform nodes
and edges (as in bipartite graphs), rather than regular n-
dimensional lattices, at the cost of exploring smaller neigh-
borhoods around nodes.

Learning over graphs can be reduced to a standard
machine-learning problem by summarizing the information
available at each node in a fixed set of features. This has
been done, for instance, with the goal of link prediction,
consisting in predicting which users in a social network will
collaborate or connect next (Al Hasan et al. 2006). Graph
summarization typically requires deep insight into the prob-
lem, in order to design the summary features. The multi-
level LSTMs we propose here constitute a way of learning
such graph summarization.

Some recent work has looked at the problem of summariz-
ing very large graphs into feature vectors (Tang et al. 2015).
The goals (and methods) are thus different from those in the
present paper, where the emphasis consists in considering
nodes together with their immediate neighborhoods as input
to machine learning.

There is much work on learning with graphs, where the
graph edges encode the similarity between the nodes (rather
than features, as in our case); see, e.g., (Zhu, Lafferty, and
Rosenfeld 2005; Bilgic, Mihalkova, and Getoor 2010; Gad
et al. 2016).

Learning from Graph Neighborhoods

We consider a graph G = (V, E) with set of vertices V
and edges £ C V x V. We assume that each edge e € E is
labeled with a vector of features g(e) of size M. Each vertex
v € V is associated with a vector of labels. The goal is to
learn to predict the vertex labels on the basis of the structure
of the graph and the edge labels.

This setting can model a wide variety of problems. Con-
sidering only edge features, rather than also vertex features,
involves no loss of generality: if there are interesting fea-
tures associated with the vertices, they can be included in
the edges leading to them. If the goal consists in predicting
edge outputs, rather than vertex, one can construct the dual
graph G’ = (E, V") of G, where edges of G are vertices of
G’, and where V' = {((u,v), (v,w)) | (u,v), (v,w) € E}.

Learning method overview. Our learning strategy can be
summarized as follows. In order to predict the label of a
node v, we consider the tree 7}, rooted at v and with depth
D, for some fixed D > 0, obtained by unfolding the graph
G starting from v. We then traverse 7, bottom-up, using
sequence learners, defined below, to compute a label for
each node from the labels of its children edges and nodes
in T},. This traversal yields an output label y, for the root v
of the tree. In training, the output ¥, can be compared with
the desired output, a loss be computed, and backpropagated
through the tree. We now present in detail these steps.

Graph unfolding. Given the graph G = (V, FE) and a
node v € V, along with a depth D > 0, we define the full
unfolding of G of depth D at v as the tree T, with root v,
constructed as follows. The root v has depth 0 in 7),. Each
node u of depth £ < D in T}, has as children in 7T, all nodes
z with (u,z) € E; the depth of each such z is one plus
the depth of u. A single graph node may correspond to more
than one node in the unfolding. We will rename the nodes of
the unfolding so that they are all distinct; nodes and edges in
the unfolding inherit their labels from their correspondents
in the graph.

It is possible to perform learning using asymmetric un-
folding, in which if a node u has parent u/, we let the de-
scendants of u be {z | (u,z2) € E,z # u'}. Figure 1 illus-
trates a graph and its asymmetric tree unfolding at node a
and depth 2. Which of the two unfolding is more useful de-
pends on the specifics of the learning problem, and we will
discuss this choice in our applications.

Sequence learners. Our proposed method for learning on
graphs leverages sequence learners. A sequence learner is
a machine-learning algorithm that can accept as input an
arbitrary-length sequences of feature vectors, producing a
single vector as output. Long Short-Term Memory neural
nets (LSTMs) (Hochreiter and Schmidhuber 1997) are an
example of such sequence learners. We denote a sequence
learner parameterized by a vector w of parameters by L{w].
In LSTMs, the parameter vector w consists of the LSTM
weights. We say that a sequence learner is of shape (N, K)
if it accepts a sequence of vectors of size N, and produces



Figure 1: An example of a graph and its asymmetric unfold-
ing at node a for depth 2. We rename the nodes that appear
in many locations so that they have distinct names, for in-
stance, we use e, e’ and e to denote the copies of e.
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a vector of size K as output. We assume that a sequence
learner L[w] of shape (N, K') can perform three operations:

e Forward propagation. Given a input sequence
M 2@ 2™ where each 2(%) is a vector of size N,
compute an output y, where y is a vector of size K.

e Loss backpropagation. For a loss function L, given
OL/dy for the output, it can compute 9L/9x) for
each z(M, 2 . 2(V)  Here, 0L /0y is a vector hav-
ing 0L/0y; as component for each component y; of
y, and likewise, 9L/ 8z is a vector with components

aL/02\7, for each component 2\ of 2.

o Parameter update. For a loss function £, given 0L/0y
for the output, it can compute a vector Aw of parame-
ter updates. The parameter updates can be for instance
computed via a gradient-descent method, taking Aw =
—adL /0w for some « > 0, but the precise method varies
according to the structure of the sequence learner; see,
e.g., (Gers and Schmidhuber 2001).

In an LSTM, backpropagation and parameter update are
performed via backpropagation through time; see (Werbos
1990; Williams and Zipser 1995) for details.

Multi-Level Sequence Learners

Given a graph G with labeled edges as above, we now de-
scribe the learning architecture, and how to perform the for-
ward step of node label prediction, and the backward step of
backpropagation and parameter updates. We term our pro-
posed architecture multi-level sequence learners, or MLSL,
for short.

We start by choosing a fixed depth D > 0 for the un-
folding. The prediction and learning is performed via D se-
quence learners Ly, Lo, ..., Lp. Each sequence learner L;
will be responsible for aggregating information from chil-
dren at depth ¢ in the unfolding trees, and computing some
information for their parent, at depth ¢ — 1. The sequence
learner Lp has shape (M, Kp), where M is the size of the
edge labels: from the edge labels, it computes a set of fea-
tures of size K p. For each 0 < d < D, the sequence learner
at depth d has shape (M + K41, Kq) for some Ky > 0,
so that it will be able to aggregate the edge labels and the
output of the learners below, into a single vector of size K.

Note that learners Ly for depth 1 < d < D can appear
multiple times in the tree, once for each node at depth d — 1

in the tree. All of these instances of L, share the same pa-
rameters, but are treated separately in forward and backward
propagation.

The behavior of these sequence learners is defined by the
parameter vectors w"), ..., w(P); the goal of the learning
is to learn the values for these parameter vectors that mini-
mizes the loss function. We stress that the sequence learners
L1, Lo, ..., Lp and their parameter vectors w(®), ... w(P)
can depend on the depth in the tree (there are D of them,
indeed), but they do not depend on the root node v whose
label we are trying to predict.

In order to learn, we repeatedly select root nodes v* € V,
for instance looping over them, or via some probability dis-
tribution over nodes, and we construct the unfoldings 7',~.
We then perform over 7~ the forward and backpropagation
steps, and the parameter update, as follows.

Forward propagation. The forward propagation step pro-
ceeds bottom-up along T),. Figure 2 illustrates how the se-
quence learners are applied to an unfolding of the root node
a of the graph of Figure 1 with depth 2 to yield a prediction
for node a.

e Depth D. Consider a node v of depth D — 1 with
children uq,...,u; at depth D. We use the sequence
learner Lp to aggregate the sequence of edge labels
g(v,uy),...,g(v,u;) into a single label f(v) for v.

e Depth 0 < d < D. Consider a node v at depth
d — 1 with children wuq,...,u; at depth d. We
forward to the learner L, the sequence of vectors
g(v,u1)~f(u1),...,9(,u,)~ f(u,) obtained by con-
catenating the feature vectors of the edges from v to the
children, with the feature vectors computed by the learn-
ers at depth d + 1. The learner L, will produce a feature
vector f(v) for v.

Backward propagation. Once we obtain a vector y =
f(v*) for the root of T),~, we can compute the loss L(y),
and we can compute OL/dy. This loss is then backpropa-
gated from the root down to the leaves of T,«, following the
topology of the tree (refer again to Figure 2). Consider a
node v at depth d — 1, for 0 < d < D, with computed fea-
ture vector f(v). We backpropagate through the instance
of the learner L, that computed f(v) the loss, obtaining
AL /dx; for the input vectors z(*), ... ) corresponding
to the children uq, ..., u; of v.

e If these children are at depth d < D, each vector ) con-
sists of the concatenation g(v, u;)~f(u;) of the features
g(v,u;) from the graph edge, and of the features f(u;)
computed for u;. As the former require no further back-
propagation, we retain the portion L/0f (u;) for further
backpropagation.

e At the bottom depth d = D of the tree, each vector ()
corresponds to the graph edge labels g(v,u;), and back-
propagation terminates.
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Figure 2: Forward propagation corresponding to the tree un-
folding of Figure 1. The elements of the sequence which
is fed to learner L; consist of the features of the respec-
tive edges concatenated with the output from learners below.
Note the use of three instances of the learner Lo, one for
each depth-2 node in the unfolding. These instances share
the same parameters. In the figure, the symbol — denotes
the concatenation of feature vectors.

Parameter update (learning). Consider a learner L, for
depth 1 < d < D, defined by parameters w@,  To
update the parameters w(?), we consider all instances
Lél), ceey LElm) of Ly in the tree T),«, corresponding to the
nodes vy, ..., v,, at depth d (refer again to Figure 2). For
each instance LS), fori = 1,...,m, from 9L/0f (v;) we
can compute a parameter update Aiw(d). We can then com-
pute the overall parameter update for L, as the average
Aw@ = (Ajw® + -+ A, w @) /m of the updates over
the individual instances.

Preserving learner instance state. As mentioned above,
a sequence learner for a given depth may occur in several
instances in the tree obtained by unfolding the graph (see
Figure 1). Commonly, to perform backpropagation and pa-
rameter update though a learner, it is necessary to preserve
(or recompute) the state of the learner after the forward prop-
agation step; this is the case, for instance, both for neural
nets and for LSTMs. Thus, even though all learner instances
for depth d are defined by a single parameter vector w(®, it
is in general necessary to cache (or reconstruct) the state of
every learner instance in the tree individually.

Training

During training, we repeatedly select a target node, unfold
the graph, feed the unfolding to the multi-level LSTMs, ob-
tain a prediction, and backpropagate the loss, updating the
LSTMs. An important choice is the order in which, at each
tree node, the edges to children nodes are fed to the LSTM.
The edges can be fed in random order, shuffling the order
for every training sample, or they can be fed in some fixed
order. In our applications, we have found each of the two
approaches to have uses.

Applications

We have implemented multi-level sequence learners
on the basis of an LSTM implementation perform-
ing backpropagation-though-time learning (Graves 2012),
which we combined with an AdaDelta choice of learn-
ing step (Zeiler 2012). We report the results on one
synthetic setting, and three case studies based on real
data. The code and the datasets can be found at
https://sites.google.com/view/ml-on-structures.

For imbalanced datasets, apart from the accuracy (per-
centage of correct guesses), we report the average recall,
which is the unweighted average of the recall of all classes.
This is suitable in the case of classes of different frequencies,
since for highly imbalanced datasets it is easy to inflate the
accuracy measure by predicting labels of the most frequent
classes.

Crowdsourcing boolean labels

We considered the common boolean crowdsourcing task
where users provide yes/no labels for items. This is modeled
as a bipartite graph, with items and users as the two kind of
nodes; the edges are labeled with yes/no. The task consists
in reconstructing the most likely labels for the items. We
generated synthetic data similar to the one used in (Karger,
Oh, and Shah 2011). In the data, items have a true yes/no
label (which is not visible to the inference algorithms), and
users have a hidden boolean variable indicating whether they
are truthful, or random. Truthful users report the item label,
while random users report yes/no with probability 0.5 each.
This is also called the spammer-hammer user model. We re-
port results for a graph of 3000 users and 3000 items where
item labels are balanced (50% yes/ 50% no) and the proba-
bility of a user being reliable is 60%. Each item gets 3 votes
from different users. We compare three algorithms:

e The iterative algorithm of (Karger, Oh, and Shah 2011),
abbreviated as KOS. The algorithm requires no prior.

e Expectation Maximization (EM) (Dempster, Laird, and
Rubin 1977), where user reliability is modeled via a beta
distribution. We used an informative prior (shape param-
eters « = 1.2 and 8 = 1.0) for the initial beta distribution
which reflects the proportion of reliable users in the graph.

e Our multi-level sequence learners with depths 1 and 3, de-
noted 1-MLSL and 3-MLSL, where the output (and mem-
ory) sizes of 3-MLSL are Ky = K3 = 3. We train on
1,000 items and test on the remaining 2, 000.

For multi-level LSTM, we also consider the case where
users have an additional observable feature that is corre-
lated to their truthfulness. This represents a feature such
as “the user created an account over a week ago”, which
is observable, but not part of standard crowdsourcing mod-
els. This feature is true for 90% of reliable users and for for
40% of unreliable users. We denote the algorithms that have
access to this extra feature as 1-LSL+ and 3-LSL+; KOS
and EM cannot make use of this feature as it is not part of
their model. Our intent is to show how machine-learning ap-
proaches such as MLSLs can increase their performance by
considering additional features, independently of a model.



Method | Accuracy
Method | Accuracy I-MLSL 0.8945
KOS 0.8016 3-MLSL 0.9045
EM 0.9136 I-MLSL+ | 0.9565
3-MLSL+ | 0.9650

Table 1: Performance of KOS (Karger, Oh, and Shah 2011),
EM (Expectation Maximization) and multi-level sequence
learners (MLSLs) of different depths.

Method | Accuracy | Average Recall
Average 0.5432 0.3316
EM-based | 0.5662 0.3591
1-MLSL 0.6044 0.3897
2-MLSL 0.6010 0.3913

Table 2: Performance of EM and 1,2-depth MLSL on peer
grading data.

We report the results in Table 1. When no additional infor-
mation is available, EM is superior to 1-MLSL and slightly
superior to 3-MLSL. When the additional feature is avail-
able, both 1-MLSL+ and 3-MLSL+ learn its usefulness, and
perform best.

Peer Grading

We considered a dataset containing peer grading data from
computer science classes. The data comes from an online
tool that lets students submit homework and grade each
other’s submissions. Each sumission is typically reviewed
by 3 to 6 other students. The data is a bipartite graph of
users and submissions, as in the previous crowdsourcing ap-
plication. Users assign grades to items in a predefined range
(in our case, all grades are normalized in the 0-10 range).
Each edge is labeled with the grade, and with some addi-
tional features: the time when the student started grading
the submission, and the time when they submitted the grade.
We treat this as a classification task, where the classes are
the integer grades 0, 1, ..., 10; the ground truth is provided
by instructor grades, available on a subset of submissions.
Our dataset contined 1,773 labeled (instructor-graded) sub-
missions; we used 1,500 for training and 273 for testing.
We compare three methods. One is simple average of
provided grades, rounded to the closest integer. Another
method is based on expectation maximization (EM), iter-
atively learning the accuracy of users and estimating the
grades. Finally, we employed MLSL with the following fea-
tures (derived from the graph): the time to complete a re-
view, the amount of time between review completion and
review deadline, and the median grade received by the stu-
dent in the assignment. The output of the learner at level 2
is of size 3 where it reaches its peak for this experiment.
Table 2 shows the results. The 1- and 2-depth MLSL
methods are superior to both the EM-based approach and
average. Average recall appears low due to the very high
class imbalance of the dataset: some low homework grades
are very rare, and mistakes in these rare grades have high

Average | F-1 F-1

Recall reverted | not reverted
1-MLSL | 0.8468 0.8204 0.8798
2-MLSL | 0.8485 0.8259 0.8817
3-MLSL | 0.8508 0.8288 0.8836

Table 3: Prediction of reversions in the Asturian Wikipedia,
using MLSL of depths 1, 2, 3.

impact.

Prediction of Wikipedia Reversions

Wikipedia is a popular crowdsourced knowledge repository
with contributions from people all around the world and in
various languages. Users occasionally add contributions that
are reverted by other users, either due to their low quality,
or as part of a quarrel, or simply due to carelessness. Our
interest is in predicting, for each user, whether the user’s
next edit will be reverted. We note that this is a different
(and harder) question than the question of whether a specific
edit, whose features are already known, will be reverted in
the future (Adler et al. 2011).

We model the user interactions in Wikipedia as a multi-
graph with users as nodes. An edge e from us to u; rep-
resents a “implicit interaction” of users uy and wuq, occur-
ring when wo creates a revision ro immediately follow-
ing a revision r; by u;. Such an edge e is labeled with
a feature vector consisting of the edit distances d(rq,r2),
d(rg,m2) and d(rg,71), where rg is the revision immedi-
ately preceding 71, and d(-) is edit distance. The fea-
ture vector contains also the elapsed times between the re-
visions, and the quality of r; measured from ry, defined
by d(ro,m1)/(d(ro,r2) — d(r1,72)) (Adler and De Alfaro
2007).

Since the English Wikipedia has a very large dataset, for
this experiment we used the complete dumps of the Asturian
Wikipedia (Asturian is a language in Spain). The graph con-
sists of over 32,000 nodes (users) and over 45,000 edges
(edits among users). To obtain the labels for each user, we
consider the state of this graph at a time 30 days before the
last date of content available in the dump; this leaves ample
time for reversions to occur in the extra 30 days, ensuring
that we label users correctly. To train the model, we repeat-
edly pick an edit by a user, and we construct the graph neigh-
borhood around the user consisting only of the edits preced-
ing the selected edit (we want to predict the future on the
basis of the past). We label the user with yes/no, according
to whether the selected edit was reverted, or not. This local
neighborhood graph is then fed to the MLSL. We performed
training on 60% of the data and validated with the remain-
ing 40%. We trained over 30 models for each depth and val-
idated them by measuring the average recall and F1-scores
for both labels. Table 3 shows the average results for each
depth level. We observe that F-1 scores for both “reversion”
and “no reversion” labels were high. Moreover, these results
show improvement in performance for increasing depth.



Avg. F-1 F-1

Accuracy Recall | ‘spent’ | ‘hoard’
Baseline | 0.6325 0.4944 | 0.7586 | 0.2303
1-MLSL | 0.7533 0.7881 | 0.8172 | 0.6206
2-MLSL | 0.7826 0.7901 | 0.8450 | 0.6361
3-MLSL | 0.7731 0.7837 | 0.8367 | 0.6284

Table 4: The prediction results on blockchain addresses us-
ing baseline approach, and MLSL of depths 1, 2, 3.

Prediction of Bitcoin Spending

The blockchain is the public immutable distributed ledger
where Bitcoin transactions are recorded (Nakamoto 2008).
In Bitcoin, coins are held by addresses, which are hash val-
ues; these address identifiers are used by their owners to
anonymously hold bitcoins, with ownership provable with
public key cryptography. A Bitcoin transaction involves a
set of source addresses, and a set of destination addresses:
all coins in the source addresses are gathered, and they are
then sent in various amounts to the destination addresses.

Mining data on the blockchain is challenging (Meiklejohn
et al. 2013) due to the anonymity of addresses. We use data
from the blockchain to predict whether an address will spend
the funds that were deposited to it.

We obtain a dataset of addresses by using a slice of the
blockchain. 1In particular, we consider all the addresses
where deposits happened in a short range of 101 blocks,
from 200,000 to 200,100 (included) . They contain 15,709
unique addresses where deposits took place. Looking at the
state of the blockchain after 50,000 blocks (which corre-
sponds to roughly one year later as each block is mined on
average every 10 minutes), 3,717 of those addresses still had
funds sitting: we call these “hoarding addresses”. The goal
is to predict which addresses are hoarding addresses, and
which spent the funds. We randomly split the 15,709 ad-
dresses into a training set of 10,000 and a validation set of
5,709 addresses.

We built a graph with addresses as nodes, and transac-
tions as edges. Each edge was labeled with features of the
transaction: its time, amount of funds transmitted, number
of recipients, and so forth, for a total of 9 features. We com-
pared two different algorithms:

e Baseline: an informative guess; it guesses a label with a
probability equal to its percentage in the training set.

e MLSL of depths 1, 2, 3. The outputs and memory sizes
of the learners for the reported results are Ko = K3 = 3.
Increasing these to 5 maintained virtually the same per-
formance while increasing training time. Using only 1
output and memory cell was not providing any advances
in performance.

Table 4 shows the results. Using the baseline we get poor
results; the F-1 score for the smaller class (the ‘hoarding” ad-
dresses) is particularly low. Tapping the transaction history
and using only one level the learner already provides a good
prediction and an average recall approaching 80%. Increas-
ing the number of levels from 1 to 2 enhances the quality of
the prediction as it digests more information from the his-

tory of transactions. Increasing the levels beyond 2 does not
lead to better results, with this dataset.

Discussion

The results from the above applications show that MLSL
can provide good predictive performance over a wide variety
of problems, without need for devising application-tailored
models. If sufficient training data is available, MLSL can
use the graph representation of the problem and any avail-
able features to achieve high performance.

One of our conclusions is that the order of processing
the nodes during training matters. In crowdsourced grad-
ing, randomly shuffling the order of edges for a learning in-
stance as it is used in different iterations during the training
process, was superior to using a fixed order. For Bitcoin, on
the other hand, feeding edges in temporal order worked best.
This seems intuitive, as the transactions happened in some
temporal order.

One challenge was the choice of learning rates for the var-
ious levels. As the gradient backpropagates across the mul-
tiple levels of LSTMs, it becomes progressively smaller. To
successfully learn we needed to use different learning rates
for the LSTMs at different levels, as the top levels will tend
to learn faster.
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