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ABSTRACT
Identifying the top-K items in a set of items is a problem that finds

applications in many areas, such as recommender systems, social

review platforms, online contests, web search, and more. Crowd-

sourcing provides an effective way to collect input for such tasks

with low costs and has attracted significant attention.

We consider top-K problems in which the focus consists in select-

ing the set of top-K elements, regardless of their internal ordering.

Past algorithms for top-K problems were generally based on a global

sorting, which perform unnecessary work sorting elements that are

all selected or all rejected. The exceptions are specialized crowd-

sourcing algorithms that have been proposed especially for top-K
selection; these algorithms, however, require a fixed amount of work

to be performed, and produce no useful intermediate answer.

We propose here a dynamic top-K selection algorithm that uses

crowdsourced comparisons to progressively classify items into se-

lected in top-K , and rejected. As the comparisons proceed, more and

more elements are accepted; intermediate results can be provided at

any time by returning the already-accepted items along with the best

among the ones that are still unclassified. We show that the algorithm

we develop is efficient and robust with respect to comparison noise.

We illustrate the performance of algorithm both analytically and

experimentally, and show that our algorithm can achieve comparable

precision in the selection of top-K items with less crowdsourcing

work than previous algorithms.

CCS CONCEPTS
• Information systems → Learning to rank;

KEYWORDS
top-K selection, Crowdsourcing, Online algorithm, Pairwise compar-

ison.

1 INTRODUCTION
Selecting top-K items from large itemsets is a common task: it occurs

in college admissions, candidate selections, social review platforms,

online contests, and so on. Broadly, there are two approaches to the

top-K selection problem. One approach consists in determining a

global ranking, and then returning the top-K elements of such a

ranking. This approach can avail itself of a long line of work on

crowdsourced ranking, starting with now classical approaches such
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as the BTL model [5], ELO ranking [18], and Trueskill [22]. This

approach can be inefficient for the task of top-K selection, as it

determines a full ranking even among items that are all selected, and

all rejected. Nevertheless, the approach often has the advantage of

being able to offer partial results: as these algorithms maintain and

refine a global ranking (in various ways), at any point during the

crowdsourcing work, they can provide a best estimate of the ranking,

and thus, of the top-K elements.

Approaches that focus on selecting the top-K elements, rather than

building a global ranking, have been proposed in [12, 14, 16, 31, 35]

among others. As expected, these can be far more efficient than

global-ranking algorithms, as the crowdsourcing work is aimed at

separating the top-K elements from the rest, rather than obtaining

a full ranking. However, these specialized top-K algorithms require

the completion of a fixed amount of work, and do not provide useful

partial results if less work is performed. For instance, if the algorithms

of [16, 31] are interrupted, one is left with multiple lists of “best-

among-M” elements, for comparison batches of size M . Short of

randomly selecting K of these best-among-M elements, there is no

obvious way of compiling a global top-K result if only part of the

required work for the algorithm is performed. Yet, partial results are

often useful. For example, in candiate selection, one may wish to

extend offers to candidates as soon as they are determined to be in

the top-K set. If the crowdsourcing work takes longer than expected,

if a deadline makes it impossible to carry it to the end, or if the funds

for it are exhausted, having a usable partial result is the difference

between failure and (partial) success.

Here, we propose a top-K selection algorithm that dynamically

refines a classification of the items into accepted (in the top-K ) and
rejected (not in top-K). Initially all items are unclassified; for each

item, the algorithm maintains an estimated quality, and an estimated

uncertainty on the quality. Given an error tolerance ϵ > 0, the al-

gorithm creates a batch of comparisons, and as the results from the

crowd come in, the algorithm uses them to refine the classification,

promoting to accepting all the items that fall into the top-K with

probability at least 1−ϵ , and demoting to rejecting all items that have

probability at least 1 − ϵ of not belonging to the top-K elements. The

process is repeated until the top-K elements are accepted. Partial re-

sults can be obtained at any time by returning the accepted elements,

along with the unclassified elements that have largest estimated

quality. We show that not only can our algorithm provide partial

results; it is also more efficient than previous top-K algorithms. The

efficiency stems from the fact that items are classified into accepted

or rejected as soon as enough evidence is accumulated, rather than

after a prescribed amount of comparisons are performed. Hence, the

ability of our algorithm to provide partial results, and its superior

efficiency, both stem from the same underlying mechanism.

The contributions of this paper can be summarized as follows:

• We present an online algorithm, named BetaTopK, for top-K
item selection based on the dynamic classification of items
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into top-K , and rejected, items. The algorithm can at any time

provide a best-effort selection of the top-K elements.

• We show that, for a fixed error tolerance ϵ > 0 and fixed crowd

error probability, and for any top K/N percent, the expected

number of required comparisons isO(N logN ), whereN is the

total number of elements. The worst-case occurs for K = N /2.
• We propose several optimization techniques to improve Be-

taTopK.

• We evaluate the performance of our algorithm analytically

and experimentally, from the perspectives of selection loss

and number of required comparisons, and we show that it

improves on the state of the art. Both global ranking and

top-K selection approaches are used as benchmarks.

2 RELATED WORK
Identifying top-K items is a critical problem in many areas, such

as recommender systems, social review platforms, online contests,

candidate searches and so on. Crowdsourcing provides an efficient

way to collect input with relatively low costs, and it has been applied

extensively in learning tasks, such as ranking, classifying, labeling,

and more [4, 17, 27].

Extensive research has been done on obtaining a global ranking

from crowdsourced data. Among the foundational work, we recall

here the maximum likelihood estimation (MLE) model [20, 23], which

is one of the most commonly adopted schemas for global ranking.

Another approach is the Bradley-Terry-Luce (BTL) model [5, 26],

which has provided the foundations of many crowdsourcing works,

including the classical Elo rating [18]. For example, RankCentrality

by Negahban et. al extended the BTL model and used random walk

strategy on pairwise-choice Markov chain [30]. It is one of the most

representative works in the family of spectral-based ranking para-

digm, along with [28, 29, 32], to name a few. Another notable work

stemming from BTL model is TrueSkill by Microsoft [22]. It improved

Elo ranking [18] by constructing a factor graph and using approxi-

mate message passing, dramatically reducing the amount of input

required to converge. Much work followed, including the CrowdBT

model with BTL by Chen et al. [9], which took the quality of workers

into consideration. Wauthier et. al [36] suggested a weighted count-

ing algorithm on edges to achieve an approximate overall ranking

with noisy input. The work in [1, 2, 6–8, 21, 24] considered the sce-

nario in which input comparisons can be selected adaptively, and

proposed different active learning strategies to improve a global

ranking.

While comprehensive work exists for the problem of global rank-

ing with crowd input, a direct application of those methods to a top-K
problem increases the complexity unnecessarily, since determining a

global ordering is more expensive than determining the set of top-K
items.

Approaches that are tailored to top-K problem include [16, 31],

which generalized the tournament approach into a multi-round rank-

ing and selection process for determining the top-K elements. The

algorithm by Davidson et al. [15] also adopted the tournament ap-

proach and utilized a heap-based method to get the top-K list. These

three works can cope with errors in crowd comparisons, but they

require the completion of a fixed amount of work, namely the ranking-

and-selection rounds, before the final result becomes available. Eriks-

son proposed a top-K algorithm [19] by considering comparisons as

graph edges. It performed a ‘reverse’ depth first search and eliminated

the items with path length larger than K . However, this algorithm
can return the items far from the top-K items if not all comparisons

among the items are observed. Chen and Suh proposed a spectral

MLE approach [11] that recovered the top-K items with high proba-

bility, with the strict assumption that the comparisons follow the BTL

model. Jiang et al. [25] and Suh et al. [34] suggested top-K methods

by extending the spectral MLE algorithm with different restrictions

respectively, with the same BTL assumption. As the BTL model does

not account for the possibility of users purposely lying, the BTL

model and its variations fail to provide accurate estimations in prac-

tice [3, 13]. A Borda-count based algorithm was proposed in [33] to

achieve the O(N ) bound of input comparisons, with the assumption

of a Binomial distribution for the number of comparisons of each pair.

Our algorithm is related, except it performs active learning, using a

probability model to decide when to truncate the accumulation of

Borda counts and discard or promote an item, while offering precise

guarantees on the correctness probability of the top-K set. Chen et al.

studied bounds for the amount of comparison input that is needed,

under the setting in which comparisons can be requested uniformly

for all items [10]. In contrast, our algorithm is an on-line one, where

comparison requests are dynamically generated for the most needed

items. In [12], active learning strategies for top-K problems were dis-

cussed. However, it assumed the probabilities of preferences between

items are given, which is not realistic in practice.

3 ONLINE TOP-K SELECTION ALGORITHM
3.1 Definitions and Problem Settings
Our goal is to discover the top-K items from an itemset. We consider

an itemset I , where each item i ∈ I has an intrinsic quality ri . For
K ≤ |I |, the top-K problem consists in selecting the subset TK ⊆ I of
elements such that |TK | = K , and such that

∑
i ∈TK ri is maximized.

For a candidate top-K selectionU ⊆ I , |U | = K , we do not measure

the quality ofU by its elementwise difference fromTK , as this would
provide only a coarse measure of selection quality. Rather, we define

the selection loss Loss(U ) as the fraction of quality we fail to capture

by selecting U rather than Tk :

Loss(U ) =

∑
i ∈Tk ri −

∑
i ∈U ri∑

i ∈Tk ri
(1)

This notion of loss encodes the general goal of top-K selection: with

a constraint on the number of items that can be selected, the goal is

to amass as large a total quality as possible. Such measurement finds

its application in many real-world scenarios. For example, a graduate

program plans to admit 10 students, but one of the top-10 applicants

is not selected by mistake. In this case, selecting an applicant whose

ranking is close to top-10 will be better than a bottom-ranked one.

The loss defined in Equation (1) captures the degree of loss among

different results, while an elementwise measurement fails to do so.

3.2 Algorithm foundations
The core idea of our algorithm consists in modeling the quality of an

item via a Beta distribution, as the two parameters of Beta distribution

account for the number of wins and losses of an item in comparing

with others. If comparison outcomes are truthful, that is, if higher-

ranked itemswinwhen they are compared against lower-ranked ones,

a Beta distribution Beta(α , β)(x) represents the a-posterior probabil-
ity that an item ranks at a fraction x of the total rank, given that

α − 1 comparisons were won, and β − 1 lost. Thus, a Beta distribution
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accounts both for the estimated position of an item in the ranking,

and for the uncertainty with which the rank is known. The algorithm

accumulates evidence on items until the items can be accepted in the

top-K set, or discarded, with a specified amount of confidence.

If there are no comparison errors, the fractional rank of an item

after w wins and l losses has an a-posteriori distribution Beta(w +
1, l + 1)(x). If crowd comparisons are only correct with an average

probability of q, then the a-posteriori fractional rank distribution is

Beta(w + 1, l + 1)
(
xq + (1 − x)(1 − q)

)
. Thus, let

c(w, l ;q)(x) = CDF
Beta

(
xq + (1 − x)(1 − q);w + 1, l + 1

)
,

where CDF
Beta
(x ;α , β) is the cumulative distribution function of

Beta distribution, with parameters of α , β at x . Given a probability

bound ϵ > 0 of making a wrong decision, we can promote the item

to the top-K set when

c(w, l ;q)

(
N − K

N

)
< ϵ, (2)

and we can eliminate the item when

1 − c(w, l ;q)

(
N − K

N

)
< ϵ . (3)

Equation (2) and (3) suggest that a non top-K item can be selected

into top-K list with a probability of at most ϵ , and likewise a top-K
item can be eliminated with the same probability bound. Also, with

Equation (2), the probability of an item in top-K can be calculated any

time before BetaTopK algorithm completes. As a result, the top-K
list can be generated anytime by selecting the K items with highest

probabilities. In this way, the online property on our algorithm is

achieved.

We propose an initial algorithm, which determines the top-K
list by eliminating items until only K items remain. Later, we will

propose an optimized algorithm that performs item promotion and

elimination concurrently.

3.3 The BetaTopK Algorithm
The BetaTopK algorithm is detailed in Algorithm 1. In this algorithm,

the top-K list is achieved by eliminating unlikely candidates in it-

erations, and returning the remaining itemset. The notations of the

algorithm are:

• I : the itemset, in which the number of remaining items reduces

with the progress of algorithm.

• K : the number of top items to be selected.

• h: the number of comparisons an item receives in one iteration.

• ϵ : the probability of eliminating a top-K item erroneously.

• EK : the top-K result set.

• T : an itemset that holds the candidates for elimination.

At the beginning of an iteration, each item starts with zero wins and

losses. It is compared with h random opponents, and the number

of wins and losses are recorded, as illustrated in the PerformCom-

parisons procedure. The algorithm then eliminates the items with

probabilities of being top-K smaller than ϵ . Such iteration repeats

until K items remain. The remaining items are returned as the output

of the algorithm.

At any time before the BetaTopK algorithm completes, a best-effort

top-K list can be obtained via Algorithm 2; this algorithm calculates

the probability of being top-K of each item in the remaining itemset,

and returns the K items with the largest probabilities.

Algorithm 1 BetaTopK Algorithm

Input: I , K , h, ϵ
Output: EK
1: while |I | > K do
2: PerformComparisons(I ,h)

3: ei ← c(wi , li ;q)
(
|I |−K
|I |

)
4: // Demotion: identify items to be eliminated.
5: T ← {i ∈ I | 1 − ei < ϵ} // See Equation (3).

6: if |T | > |I | − K then
7: T ← |I | − K items in T with largest ei

8: I ← I \T

9: EK ← I
10:

11: procedure PerformComparisons(I ,h):
12: for all i ∈ I do
13: wi ← 0, li ← 0

14: c ← 0

15: while c < h
2
do

16: Shuffle I
17: for i = 1 to |I | do
18: Get items u,v at positions i and (i + 1)%|I |
19: Ask the crowd to compare u,v
20: Updatewu , lu ,wv , lv

21: c ← c + 1

Algorithm 2 Online retrieval of top-K

Input: I , K
Output: EK
1: ei ← c(wi , li ;q)

(
|I |−K
|I |

)
2: EK ← K items with smallest ei

Theorem 3.1. To select any percentage of top items, the expected
number of comparisons required in BetaTopK for an itemset of N items
is O(N logN ).

Proof. We use the following notations in the proof:

• q: the average probability of correct comparisons by crowd.

• i: the true rank of an item.

• t : the number of wins an item has to receive minimally, in

order to not be eliminated, i.e., to survive.

• Pdi : the probability of item i being eliminated in one iteration.

• pi : the probability of item i winning a randomly selected

opponent.

• xi : the total number of wins item i receives in one iteration.

In particular, the relationship between pi and q is:

pi =
(N − i)q + (i − 1)(1 − q)

N − 1
(4)

because for an item ranks at position i , i − 1 items are superior to it

and N − i items are inferior to it. With crowd’s average probability

of comparing correctly being q, an item wins with an expectation of

(i − 1)(1 − q) times when being compared with the i − 1 items that

are superior to it, and wins an expectation of (N − i)q times when

comparing to the N − i items that are inferior to it.

Based on Equation (4), we can derive the relationship between pi
and p(N+1−i) as follows:
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pi + p(N+1−i) =
(N−i)q+(i−1)(1−q)

N−1 +
(N−(N+1−i))q+(N+1−i−1)(1−q)

N−1

=
(N−1)q+(N−1)(1−q)

N−1 = q + 1 − q = 1

To sum up:

pi + p(N+1−i) = 1 (5)

An item ranking at position i is eliminated in an iteration with

a probability of Pdi . We can express this probability as a Bernoulli

variable since the outcome of elimination is binary. By characteris-

tics of Bernoulli distribution, the expected number of items being

eliminated in one iteration is:

N∑
i=1

Pdi (6)

We can prove Theorem 3.1 if the lower bound of

∑N
i=1 P

d
i

N is inde-

pendent ofN . The rationale behind is that, the lower bound of

∑N
i=1 P

d
i

N
being independent of N means a fraction of N items is eliminated

in one iteration, regardless of the value of N . Equivalently, it means

to reduce the remaining number of items to a constant value, logN
iterations are required. Note that in one iteration, all items receive

h comparisons respectively, making the complexity of the number

of comparisons in one iteration O(N ). Consequently, the expected
number of comparisons required in BetaTopK is O(N logN ).

We consider K ≤ N
2
in the following proof. However, the proof

remains valid when K > N
2
, because in that situation, the top-K

problem is equivalent to the problem of selecting the bottom-(N −K)
items, so the same proof applies.

The proof focuses on showing that the lower bound of

∑N
i=1 P

d
i

N
is independent of N herein. For an item that ranks at posision i , Pdi
can be calculated as: Pdi = Pr (xi < t). Note that any comparison

that item i receives is a Bernoulli trial with a winning probability

of pi . As a result, the total number of wins that item i receives in
one iteration with h comparisons, i.e., xi , is a random variable that

follows a Binomial distribution with parameters h and pi . With xi
expressed as a Binomial random variable,

∑N
i=1 P

d
i can be calculated

by:

N∑
i=1

Pdi =
N∑
i=1

Pr (xi < t) =
N∑
i=1

t−1∑
j=0

Pr (xi = j)

=

N∑
i=1

t−1∑
j=0

Binomial(j;h,pi )

(7)

where Binomial(k ;n,p) is the probability mass function of Binomial

distribution: Binomial(k ;n,p) = Pr (X = k) =
(n
k
)
pk (1 − p)n−k .

By the nature of Binomial distribution, since pi + p(N+1−i) = 1,

we have:

Binomial(j;h,p(N+1−i)) = Binomial(h − j;h,pi ) (8)

With Equation (8), Equation (7) can be calculated with the top half

of all items:

N∑
i=1

t−1∑
j=0

Binomial(j;h,pi ) =

N
2∑

i=1

t−1∑
j=0

{
Binomial(j;h,pi ) + Binomial(h − j;h,pi )

} (9)

By characteristics of Bernoulli distribution,

∑t−1
j=0

{
Binomial(j;h,pi )+

Binomial(h− j;h,pi )
}
is the total area of two sides of a Binomial prob-

ability mass function, and its value ranges from 0 to 1, i.e.:

0 ≤

t−1∑
j=0

{
Binomial(j;h,pi ) + Binomial(h − j;h,pi )

}
≤ 1 (10)

Based on information theory,

∑t−1
j=0

{
Binomial(j;h,pi )+Binomial(h−

j;h,pi )
}
is minimized when pi = 0.5. Consequently, Equation (9) has

a lower bound as follows:

N
2∑

i=1

t−1∑
j=0

{
Binomial(j;h,pi ) + Binomial(h − j;h,pi )

}
≥

N

2

·

t−1∑
j=0

{
Binomial(j;h, 0.5) + Binomial(h − j;h, 0.5)

} (11)

With Equation (10) and (11), we can derive the lower bound of

the expected number of items being eliminated in one iteration, i.e.∑N
i=1 P

d
i below:

N∑
i=1

Pdi ≥ N ·
1

2

·

t−1∑
j=0

{
Binomial(j;h, 0.5) + Binomial(h − j;h, 0.5)

}
(12)

where
1

2
·
∑t−1
j=0

{
Binomial(j;h, 0.5)+Binomial(h− j;h, 0.5)

}
is a value

within the range of [0, 1
2
].

If we can show that the variable t is independent of N , by Equation

(12), we can assert that the lower bound of

∑N
i=1 P

d
i

N is independent of

N .

As aforementioned, t is the number of minimal wins an item has

to receive to survive, and an item will be eliminated when the area of

Beta distribution to the right of threshold, i.e.,

(
1 − K

N

)
q + K

N (1 − q),

is smaller than ϵ . In other words, an item will be eliminated if the

area of Beta distribution to the left of the threshold is greater than

1 − ϵ . With h comparisons, t can be calculated as:

t = min

t

{
CDFBeta

((
1 −

K

N

)
q +

K

N
(1 − q); t + 1,h − t + 1

)
≤ 1 − ϵ

}
(13)

and t >= 0.

From above equation, it is apparent that the value of t depends on

the percentage of K out of N , i.e.,
K
N , but is independent of N .

With Equation (13) showing that t is independent of N , we can

conclude that the lower bound of

∑N
i=1 P

d
i

N is independent of N . As a

result, Theorem 3.1 is proved.

■

3.4 Optimized BetaTopK Algorithm
We present here an optimized version of the BetaTopK Algorithm

1, which improves the initial BetaTopK algorithm in two aspects.

First, it adds a promotion stage to each iteration, which selects items

with probabilities of being in top-K larger than 1 − ϵ . As a result, the
promotion stage can identify top-K items with a bounded error of ϵ .
Second, instead of resetting all wins and losses at the beginning of

each iteration, the optimized BetaTopK keeps the comparisons from
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previous iterations as long as the comparisons are performed among

the remaining items. In this way, the algorithm can converge faster

due to better utilization of historical information.

The optimized algorithm is illustrated in Algorithm 3. In the algo-

rithm, we use the previous notations with the following additions:

• Kдap : the number of top-K items yet to be discovered.

• T : an itemset that holds temporary results. It is used for dif-

ferent purposes at selection and elimination stages.

The reason for establishing a temporary itemset T is that, if the

number of top-K candidates retrieved in an iteration exceeds what

the algorithm expects, or if the number of elimination candidates

exceeds what the algorithm targets at, the algorithm should only

select or eliminate a subset of the items in T . Keeping the temporary

itemset allows the algorithm to further calculate the targeted subset.

Algorithm 3 Optimized BetaTopK Algorithm

Input: I , K , h, ϵ
Output: EK
1: EK ← ∅, Kдap ← K
2: while |I | > Kдap and |EK | < K do
3: PerformComparisonsCumulative(I ,h)

4: ei ← c(wi , li ;q)
(
|I |−Kдap
|I |

)
5: // Promotion: identify top-K items.
6: T ← {i ∈ I | ei < ϵ} // See Equation (2).

7: if |T | > Kдap then
8: T ← Kдap items in T with smallest ei

9: EK ← EK ∪T
10: // Demotion: identify items to be eliminated.
11: if |EK | < K then
12: T ← {i ∈ I | 1 − ei < ϵ} // See Equation (3).

13: if |T | > |I | − Kдap then
14: T ← |I | − Kдap items in T with largest ei

15: I ← I \ EK , I ← I \T , Kдap ← K − |EK |

16: if |EK | < K then
17: EK ← EK ∪ I

18:

19: procedure PerformComparisonsCumulative(I ,h):
20: for all i ∈ I do
21: wi ← number of wins item i obtains, from the compar-

isons with other remaining items in I
22: li ← number of losses item i receives, from the compar-

isons with other remaining items in I

23: c ← 0

24: while c < h
2
do

25: Shuffle I
26: for i = 1 to |I | do
27: Get items u,v at positions i and (i + 1)%|I |
28: Ask the crowd to compare u,v
29: Updatewu , lu ,wv , lv

30: c ← c + 1

4 EVALUATION
We evaluate the performance of BetaTopK from two aspects: selection

loss, and number of input comparisons required to complete the

selection task.

We conduct experiments with simulated crowdsourcing data as

it can provide a precise evaluation of the loss, since we know the

items’ true qualities. The items’ true qualities, or scores, are sampled

from a Gaussian distribution. The crowd’s perception on each item is

expressed as a Gaussian distribution as well. The mean of the latter

Gaussian distribution represents the crowd’s average perception on

the item, and it is set to the item’s true quality. The crowd’s uncer-

tainty about the item is expressed as the variance of this Gaussian

distribution, and is sampled uniformly.

Every time an algorithm requests a comparison from crowd, we

simulate it via a two-step process. First, we determine the true winner,

that is, the winner as perceived by a honest (or truthful) crowdworker.

To this end, we sample the perception distributions of the two items;

the item with the larger sample value is the true winner. Second, we

return the true winner with probability q, and the true loser with

probability 1 − q; this models the crowd accuracy q. In real-world

applications, q can be determined by the average rate of correct

answers from crowd empirically.

In the evaluations, we repeat every experiment 20 times, and we

report the average and confidence interval of the results.

4.1 Loss Evaluation
In this section, we evaluate our algorithm by comparing its loss

with other existing algorithms. The loss defined in (1) is used for the

comparison.

A experimental evaluation of top-K ranking and selection algo-

rithms appeared in [37]; the work showed that TrueSkill, a global

ranking algorithm, performs excellently in top-K problems among

the existing algorithms. As a result, it is used to compare with our

algorithm. TrueSkill estimates the qualities of items with any in-

coming comparisons, and uses the qualities to update the ranking

constantly. It is an online algorithm and does not have a definite

number of comparisons for termination. To compare our algorithms

to TrueSkill, we feed to the algorithms itemsets with the same size

and characteristics, and we record the loss at regular intervals along

the working of the (online) algorithms. In our experiments, 100 items

are compared against each other, with the goal of selecting the top

10 items. Each algorithm takes a total of 2000 comparisons, and the

losses are recorded in every 200 comparisons. The hyper-parameter

h of BetaTopK is set to 4 in the experiments.

Figure 1 shows the losses of algorithms in two separate settings.

The left side of the figure shows the losses with the assumption of

a perfectly truthful crowd, i.e., q = 1.0. The right side shows the

losses with a more realistic assumption, where the crowd can make

mistakes and judge incorrectly, with the average correctness q being

0.8. In Figure 1, the x-axis is the number of pairwise comparisons

performed, and the y-axis is the average loss. The error bars indicate

the 95% confidence intervals.

The results in Figure 1 demonstrate that BetaTopK achieves much

lower selection loss than TrueSkill algorithm, when they consume

the same number of comparisons. In both settings, the differences

between two algorithms become evident after about 400 comparisons,

revealing the fast converge characteristic of BetaTopK. It can be

observed that the 95% confidence intervals between TrueSkill and

BetaTopK rarely overlap, illustrating that our algorithm is able to

consistently obtain substantial improvement. Overall, the results

demonstrate that the proposed algorithm can achieve significant loss
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Figure 1: Loss comparisons

reduction and return high quality top-K results comparing to one of

the best-performed top-K algorithms.

4.2 Evaluation: Number of Comparisons
We now analyze the number of comparisons required for algorithm

termination, by comparing our algorithm with the one proposed

in [16]. The algorithm in [16] is a recursive offline algorithm that

selects the top-K items by dividing the ranking task into reduction

and endgame phases. In the reduction phase, the itemset is partitioned

into small sets that can be sent out for ranking by crowd workers;

the items that end up in top position in such rankings are used

to construct a reduced itemset. The process continues, recursively

reducing the itemset size, until the complete set of items can be sorted.

In the endgame phase, the complete sorting of the reduced itemset is

used to reconstruct a top-K selection of the original itemset, following

the recursion backwards. We name the algorithm in [16] RecurTopK,

due to its recursive structure. RecurTopK needs a pre-established

number of comparisons before the top-K set is constructed. Here,

we compare the number of crowdsourced comparisons required by

RecurTopK, with the number required by the BetaTopK algorithm

we introduced in this paper.

4.2.1 Complexity Analysis. The number of comparisons required

by RecurTopK can be derived analytically. Due the the space limit, we

do not present the analytical details and summarize here the results.

In the following, let:

• s : size of a ranking task in the reduction phase, i.e., the number

of elements that RecurTopK can send to each crowd worker

for comparison;

• η: probability of an item being incorrectly ranked in a recursive

call.

• CDFBinomial (k ;n,p): the cumulative distribution function of

Binomial distribution. CDFBinomial (k ;n,p) = Pr (X ≤ k) =∑ ⌊k ⌋
i=0

(n
i
)
pi (1 − p)n−i , where X is a random variable.

In a perfect scenario where the crowd is perfectly truthful, i.e.,

q = 1.0, we have:

Reduction phase: N
s−1 · s log s .

Endgamephase,whereK < s :
⌈
logs (

N
K )

⌉
·

(
(K+1)·K

2

)
log

(
(K+1)·K

2

)
.

Endgame phase, where K ≥ s :
⌈
logs (

N
K )

⌉
· sK log(sK).

In scenarios where the crowd is inaccurate, i.e. q < 1.0, we get:

Reduction phase: R · N
s−1 · s log s , where

R = min

R

{
CDFBinomial

(⌊
R

2

⌋
;R,q

)
≤

η

log s

}
.

Endgame phase, where K < s :

U ·

⌈
logs (

N

K
)

⌉
·

(
(K + 1) · K

2

)
log

(
(K + 1) · K

2

)
,

whereU = min

U

{
CDFBinomial

(⌊
U

2

⌋
;U ,q

)
≤

η

log

(
(K+1)·K

2

) }.
Endgame phase, where K ≥ s :U ·

⌈
logs (

N
K )

⌉
· sK log(sK),

whereU = min

U

{
CDFBinomial

(⌊
U

2

⌋
;U ,q

)
≤

η

log(sK)

}
.

In the equations above, we relate the probability η of error in a

recursive call to the error bound ϵ of BetaTopK via:

η =
Eϵ

2(D + 1)
(14)

where D =
⌈
logs (

N
K )

⌉
− 1 is the number of recursive calls required

by the RecurTopK algorithm.

For BetaTopK, we perform the evaluation both analytically and

experimentally. In the analytical evaluation, we calculate the expected

number of comparisons required by BetaTopK to complete. In the

experimental evaluation, we demonstrate the average number of

comparisons required by BetaTopK.

4.2.2 Analytical Comparison. Table 1 shows the number of crowd-

sourced comparisons required by RecurTopK(denoted as Recur) and

BetaTopK(denoted as Beta) in Algorithm 1 analytically, with various

K , N and q settings. The algorithm used here does not adopt the

optimization techniques described in Section 3.4. Also, the analytical

results only use the lower bound of expected number of eliminated

items for calculation. The value of ϵ is set at 0.01 for BetaTopK, and

the same level of error is set for RecurTopK via (14).

We can see that in most settings, BetaTopK requires less compar-

isons than RecurTopK, and as K grows, the advantage of BetaTopK

becomes more significant. This observation is in line with our ex-

pectation. The BetaTopK Algorithm 1 generates the top-K list by dy-

namically reducing candidates, promoting or discarding them. When

K is large, many candidates can be easily promoted, or many easily
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discarded. In contrast, the RecurTopK performs a more thorough

analysis of the top-K elements; in particular, the number of recursive

calls is independent of K . As a consequence, the algorithm does not

exploit the ease with which some elements can be determined to be

in the top-K set. As a result, the differences between BetaTopK and

RecurTopK get larger, the larger the value of K .
Furthermore, Table 1 reveals that with the same setting of K , N

and s , BetaTopK gains a larger advantage when the crowd is more

prone to mistakes, i.e., when q is smaller. This demonstrates that the

dynamic nature of BetaTopK enables the more efficient handling of

crowd errors.

4.2.3 Experimental Comparison. In Table 2 we compare the ana-

lytical evaluation of the BetaTopK Algorithm 1 (denoted as A), with

the experimental evaluation of the optimized BetaTopK Algorithm

3 (denoted as E). The comparison uses the same ϵ = 0.01 as in the

analytical results. This comparison shows the value of the optimiza-

tions, which in many cases reduce the number of crowdsourced

comparisons by a factor of two.

In Figure 2, we plot the number of crowdsourced comparisons

required by RecurTopK, BetaTopK Algorithm 1 analyzed analyti-

cally (termed BetaTopK Analytical), and the BetaTopK Algorithm

3 analyzed experimentally (termed BetaTopK Experimental) when

N = 10, 000. The x-axis is the average probability of correctness of

the crowd, and y-axis is the number of comparisons. The results in

Table 2 demonstrate the dramatic reduction in number of crowd-

sourced comparisons required by BetaTopK compared to RecurTopK.

The results also show that the number of comparisons required by

experiments is significantly smaller than that of analytical results.

5 CONCLUSION
In this paper, we propose an online top-K algorithm in crowdsourcing

environments, which focuses on maximizing the total qualities of the

selected top-K items, while is indifferent to their ordering. We prove

that the expected number of comparisons required by this algorithm

is O(N logN ). Our analysis shows that the algorithm can achieve

comparable selection outcome while require fewer comparisons than

existing algorithms; the advantage is especially marked when the

value K of selected items is a non-negligible proportion of the total

number of items. We also show how the algorithm can be optimized,

further improving its performance.

An interesting direction for future research is to study active

learning strategies that would further accelerate convergence, and

that would improve the quality of the partial results that are available

before the algorithm completes. We believe that by using sampling

strategies that focus on the items with less confidence in qualities,

the algorithms may be further sped up.
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Table 1: Number of comparisons required by RecurTopK and analytical BetaTopK

Parameters q = 0.6 q = 0.7 q = 0.8 q = 0.9 q = 1.0

Recur Beta Recur Beta Recur Beta Recur Beta Recur Beta
K <
s
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