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ABSTRACT

Machine learning models may perform differently on different data
subgroups, which we represent as itemsets (i.e., conjunctions of sim-
ple predicates). The identification of these critical data subgroups
plays an important role in many applications, for example model
validation and testing, or evaluation of model fairness. Typically,
domain expert help is required to identify relevant (or sensitive)
subgroups.

We propose the notion of divergence over itemsets as a measure
of different classification behavior on data subgroups, and the use
of frequent pattern mining techniques for their identification. A
quantification of the contribution of different attribute values to
divergence, based on the mathematical foundations provided by
Shapley values, allows us to identify both critical and peculiar be-
haviors of attributes. Extended experiments show the effectiveness
of the approach in identifying critical subgroup behaviors.
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1 INTRODUCTION

The evaluation of classification models generally focuses on overall
performance, estimated over all the data. However, the overall esti-
mation provides no indication if differences in the model behavior
exist across subsets of data.

In this paper, we introduce the notion of divergence to estimate
the different classification behavior in data subgroups with respect
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Itemset
age=25-45, #prior>3, race=African-Am, sex=Male 𝐹𝑃𝑅=0.308
age>45, race=Caucasian 𝐹𝑁𝑅=0.929
race=African-Am, sex=Male 𝐹𝑃𝑅=0.150
race=African-Am, sex=Male, #prior>3 𝐹𝑃𝑅=0.267
race=African-Am, sex=Male, #prior=0 𝐹𝑃𝑅=0.097

Table 1: Example of patterns in the COMPAS dataset, along

with their FPR or FNR. The overall FPR and FNR are 0.088

and 0.698.

to the overall behavior. A subgroup is a subset of the data charac-
terized by a set of attribute values, also referred to in the paper as
patterns or itemsets. The divergence of the subgroup measures the
difference in statistics such as false positive and false negatives on
the subgroup compared to the entire dataset.

The identification of data subgroups in which a machine learning
model performs differently is relevant in many applications such as
model validation and testing [8], model comparison [8, 15], error
analysis [26] and evaluation of model fairness [7, 8]. Divergence
exploration can reveal in which subgroups a model performs poorly,
helping data scientists in model debugging. Moreover, the analysis
of divergent subgroups provides indication of model behavior and
hence can be a tool for model understanding. It may also reveal if
divergence from the overall behavior occurs for sensitive attributes.

As an example, consider the COMPAS dataset [3] containing de-
mographic information and criminal history of defendants. For each
criminal defendant, the COMPAS score of recidivism risk assesses
the defendant’s likelihood of committing another offense in a period
of two years. COMPAS scores are determined by a proprietary algo-
rithm and we do not have access to its inner workings. We compare
the predicted recidivism rate with the actual one. The overall false
positive (FPR) and false negative (FNR) rates are 0.088 and 0.698,
where the positive class indicates being recidivist. However, the
rates are different when subgroups are considered (see Table 1). The
subgroup identified by pattern (age=25-45, #prior>3, race=African-
American, sex=Male) has a FPR equal to 0.308. Instances belonging
to this data subset tend to be wrongly assigned to high risk of recidi-
vism with a rate higher than the dataset overall. On the other hand,
the FNR of the pattern (age>45, race=Caucasian) is 0.929, indicating
that caucasians with age greater than 45 tend to be wrongly labelled
with a low risk of recidivism more than in the dataset overall.

Several existing approaches that explore differences in subgroup
performance [5, 15] require users to specify the attributes or at-
tribute values of interest. This requires human expertise, and hin-
ders the identification of unexpected and previously unknown criti-
cal subgroups. Instead, our approach belongs to automatic subgroup
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detection techniques. Differently from existing methods [7, 8, 14],
we introduce algorithms that allow us to efficiently estimate the di-
vergence in classifier behavior for all subgroups with the condition
of being sufficiently represented in the dataset. Furthermore, our
approach is model agnostic. Hence, it treats the classification model
as a black box, without knowledge of its internal working.

The contributions of this paper are both theoretical and algorith-
mic, and are implemented in the DivExplorer tool [20]. On the
theoretical side, we introduce the notion of divergence over itemsets,
and we provide a way of measuring its statistical significance that
is informed by Bayesian statistics. Next, we introduce the use (and
generalization) of Shapley values to analyze the contribution of
atomic patterns (single-attribute patterns such as sex=Male) both
within larger patterns, and overall in the dataset.

Recall our example dataset COMPAS. Once we determine that the
pattern (age=25-45, #prior>3, race=African-American, sex=Male) has
high divergence, one might wonder about the relative contribution
to divergence of the four members of the pattern, to which we refer
as items. The problem of measuring individual contributions to a
collective outcome has been considered in game theory, and the
celebrated notion of Shapley value [24] answers precisely this ques-
tion. We propose to apply Shapley values to divergence analysis.
This will enable us to determine that the item contributing most
to the divergence is #prior>3, followed by race=African-American,
with sex=Male giving only marginal contribution (see Figure 2).

In a dataset such as COMPAS, one is often interested not only in
analyzing particular patterns where divergence is high (of which
there are many; see Table 2 and Figure 7), but also in understand-
ing what is the role of each item in leading to divergence across
all patterns. The simplest approach is to measure the individual
divergence of the item in isolation. We propose to extend the no-
tion of Shapley value to measure the contribution to divergence
of each item, in the context of all other items. The result, which
we call global divergence, measures how much an item contributes
to increasing the divergence when added to patterns. We prove
that our generalization satisfies the fundamental axioms of Shapley
values, stated in our modified context. Individual and global item
divergence have different properties. We argue that among the two,
global divergence is often a better measure of the effect of an item
on divergence. In fact, individual item divergence is often unable
to capture divergence that results from the association of multiple
items. Global item divergence captures such associated contribu-
tions, due to its basis in the team-analysis underlying Shapley values
(see Figure 4).

The second class of contributions of the paper are algorithmic,
and they rest on the realization that item and pattern divergences
can be computed efficiently by augmenting well known frequent
pattern mining algorithms [25]. This enables us to efficiently com-
pute the divergence of all patterns whose support (frequency in the
dataset) is above a specified threshold. A boundary on support is
reasonable, as patterns with small support are less relevant, due to
the few data instances they affect, and measurements on them are
more affected by statistical fluctuations. We provide experimental
results on multiple real-world datasets showing that our algorithms
enable full exploration up to the support threshold typically in a
matter of seconds (see Figure 6).

The need for a complete exploration derives from the considera-
tion that the considered metrics to estimate differences in classifica-
tion performance are not monotone. Therefore, from the divergence
of a pattern we cannot make assumptions on the divergence of the
patterns that are contained in it. Let 𝐺 and 𝐻 be two data subsets
of dataset 𝐷 , with 𝐻 ⊂ 𝐺 ⊂ 𝐷 . The divergence of 𝐻 can be higher,
equal or lower than that of its superset 𝐺 .

Previous approaches, such as [8], adopted heuristics to prune the
search, stoppingwhen divergence reaches sufficient values, or when
a prescribed number of divergent patterns has been found. Our
complete exploration not only enables the measurement of metrics
such as global divergence, but it also makes visible phenomena
that might be invisible under pruning. One of the most intriguing
is the notion of corrective items, which are items that reduce the
divergence when added to patterns.

Summarizing, our main contributions, implemented in the Div-
Explorer tool, are as follows.

• Divergence.We introduce the notion of divergence and we
characterize each relevant data subgroup by its divergence.
We estimate the local contribution of each attribute value
to the subgroup divergence through the notion of Shapley
value.

• Global item divergence. We generalize the notion of Shapley
value to estimate the global contribution to divergence of
each attribute value.

• Corrective attribute value. We introduce the notion of correc-
tive attributes values, which tend to renormalize the diver-
gence.

• Bayesian treatment of statistical significance.We propose a
way to measure the statistical significance of the results that
can be applied to black-box classifications.

• Divergence computation algorithm.We propose an efficient
algorithm to automatically extract and explore all divergent
subgroups with sufficient support.

After a discussion of related work, Section 3 gives our main defi-
nitions of items, itemsets, divergence and statistical significance.
Section 4 uses the notion of Shapley value to define local and global
item contribution to divergence. Section 5 introduces our algorithm,
and Section 6 presents experimental results on several real-world
datasets, reporting running times and divergence results.

2 RELATEDWORK

Data grouping solutions often rely on domain experts to identify
the relevant subgroups of interest. In TensorFlow Model Analysis
(TFMA) [2, 5], the users specify the input features on which to
partition the data used for classification performance evaluation.
MLCube [15] is an interactive and explorative visualization tech-
nique that estimates aggregate statistics and performance metrics
over subgroups defined by users. For model fairness, the diagno-
sis concentrates on evaluating if results are dependent on certain
sensitive or protected attributes (e.g., gender, ethnicity, sexual ori-
entation) [6, 23]. Several works [10, 11, 16, 19] consider fairness
for an intersection of multiple sensitive attributes, known as inter-
sectional fairness. For intersectional fairness diagnosis, protected
attributes are generally specified a priori [19].



The identification of problematic attributes might not be straight-
forward. Hence, to limit the required human intervention, several
automatic subgroup detection techniques to identify interesting
data subgroups have been recently proposed [7, 8, 14, 26]. These
works are close to our approach.

Slice Finder [8, 9] is an interactive framework that automatically
identifies large data slices in which the model performs poorly, de-
fined as “problematic” slices. A top-down lattice search finds top-k
slices of interest in a breadth-first traversal. The lattice search is con-
trolled by statistical techniques that measure the significance and
magnitude of performance discrepancy on subgroups. To identify
large and interpretable subgroups, the breadth-first traversal does
not proceed if the considered data group is already statistically sig-
nificant and the model performs sufficiently poorly. However, since
the metrics used for assessing model performance on subgroups
are typically non-monotone, the grade of discrepancy of a group
provides no indication on the behavior of its super/sub-groups. We
propose a more thorough exploration of the lattice, considering
all data slices, identified by itemsets having support greater than
a given threshold. Frequency constraints allow us to identify data
subsets (i.e., slices) large enough to be of interest. To improve in-
terpretability, concepts of coalition game theory are exploited to
characterize subgroup divergence. Since the work in [8] is the clos-
est to DivExplorer, a more detailed comparison is performed later
in the paper.

FairVIS [7] is a visual analytics system to discover intersectional
bias in machine learning models that integrates a clustering-based
generation technique to identify subgroups. Groups with significant
statistical similarity are then described by a few dominant features
using feature entropy. Performance metrics are evaluated on the
identified clusters. Differently from FairVis, we identify data sub-
groups directly by slicing attribute domains. As a result, identified
subgroups are already interpretable.

Errudite [26] exploits data grouping for NLP error analysis. A
domain specific language is proposed to systematically group in-
stances. Despite the system suggestions and guidance to formulate
group queries, data grouping highly depends on users. Differently
from [26], we deal with structured data and we automatically slice
the dataset with respect to the actual attribute domains.

DeepDiver [4] addresses the lack of adequate coverage in a
dataset. Inadequate representation may cause errors in predictions
and undesirable outcomes such as algorithmic racism. Uncovered
patterns are introduced to identify attribute space regions not ade-
quately covered by the data. Data subgroups, as in our work, are
identified by attribute value combinations. However, [4] addresses
a different problem, because the target attributes and classification
outcome are not considered in the coverage problem, while we ex-
plicitly consider classification performance and identify subgroups
in which a classification model performs differently with respect
to the overall population. Furthermore, differently from [4] which
considers underrepresented groups, we consider subgroups with
adequate representation selected by a frequency threshold.

Many techniques have been proposed for understanding the rea-
sons behind model predictions in the explainable AI literature [12].
LIME [21], Anchor [22] and SHAP [18] focus on explaining the
factors influencing an individual prediction for a given instance.
Differently, our work focuses on studying the statistical behavior

of a classifier on the entire dataset. Rather than understanding in-
dividual predictions, we provide an analysis of the entire dataset
by characterizing the subgroups in which a different behavior than
overall is observed. As SHAP [18], we exploit the concept of Shapley
value from coalition game theory. In SHAP, the Shapley value is
used to compute the contribution of each feature value to the predic-
tion for a single instance. In our work, the notion of Shapley value
is adopted to characterize the contribution of each attribute value
to the subgroup divergence, hence characterizing a subgroup rather
than a specific instance. Furthermore, we generalize the notion of
Shapley value to estimate the global contribution to divergence of
each attribute value over the entire dataset.

3 ITEMSET DIVERGENCE

In this section, we first review basic concepts of frequent pattern
mining, and we then define the notion of divergence that will be
used in the paper.

3.1 Dataset and Itemsets

An 𝑛-dimensional dataset 𝐷 consists of a set of instances over a set
𝐴 of attributes (i.e., with schema 𝐴), with |𝐴| = 𝑛. We assume that
every attribute 𝑎 ∈ 𝐴 can take a discrete, finite set D𝑎 of values,
and we let𝑚𝑎 = |D𝑎 |. An instance 𝑥 ∈ 𝐷 assigns value 𝑥 (𝑎) ∈ D𝑎

to every attribute 𝑎 ∈ 𝐴. We only consider discretized attributes;
continuous-valued attributes are discretized before our analysis
techniques are applied.

An item 𝛼 is an attribute equality 𝑎 = 𝑐 for 𝑎 ∈ 𝐴 and 𝑐 ∈ D𝑎 (e.g.
sex=Male). We say that an instance 𝑥 is covered by the item 𝛼 : 𝑎 = 𝑐 ,
written 𝑥 |= 𝛼 , if 𝑥 (𝑎) = 𝑐 . Thus, covering is the equivalent of the
logical notion of satisfaction. We denote with attr(𝛼) the attribute
to which an item refers, so that attr(𝑎 = 𝑐) = 𝑎.

An itemset is a set of items 𝐼 = {𝛼1, . . . , 𝛼𝑘 } that refer each
to a distinct attribute, i.e., such that attr(𝛼𝑖 ) ≠ attr(𝛼 𝑗 ) for all
1 ≤ 𝑖 < 𝑗 ≤ 𝑘 . An itemset 𝐼 = {𝛼1, . . . , 𝛼𝑘 } can be represented as
the conjunction 𝛼1 ∧ · · · ∧ 𝛼𝑘 of its items (e.g. {sex=Male, #prior=0}).
An instance 𝑥 ∈ 𝐷 is covered by an itemset 𝐼 , written 𝑥 |= 𝐼 , if
𝑥 |= 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . Itemsets can also be depicted as data cubes.

The support-set 𝐷 (𝐼 ) = {𝑥 ∈ 𝐷 | 𝑥 |= 𝐼 } of an itemset 𝐼 consists
of the instances that satisfy 𝐼 , while the support of 𝐼 is given by
𝑠𝑢𝑝 (𝐼 ) = |𝐷 (𝐼 ) |

|𝐷 | .
The length of an itemset is the number of items contained in it,

that is, the number of conjuncts. The length can range between 0,
for the empty itemset, and𝑛, the number of attributes. We denote by
attr(𝐼 ) = ⋃

𝛼 ∈𝐼 attr(𝛼) the set of attributes included in an itemset.
For a subset of attributes 𝐵 ⊆ 𝐴, we write I𝐵 = {𝐼 | attr(𝐼 ) = 𝐵}
for the itemsets over attributes 𝐵. In particular, the set I𝐴 consists
of the itemsets that contain all attributes of our dataset.

3.2 Outcome Function and Itemset Divergence

Consider a dataset𝐷 with schema𝐴, alongside a function 𝑓 : 2𝐷 ↦→
IR. The function 𝑓 represents a statistics that can be computed
over (subsets of) the dataset, such as the false positive or negative
classification rates. For an itemset 𝐼 , we write for brevity 𝑓 (𝐼 ) for
𝑓 (𝐷 (𝐼 )), denoting 𝑓 evaluated on the set of instances that satisfy 𝐼 .



We define the 𝑓 -divergence over an itemset 𝐼 as the difference
between the statistics 𝑓 as measured on 𝐼 , and as measured on the
complete dataset.

Definition 3.1. (itemset divergence). Let 𝐼 be an arbitrary itemset
in dataset 𝐷 and 𝑓 : 2𝐷 ↦→ IR a function defined over subsets of the
dataset. The 𝑓 -divergence of itemset 𝐼 is:

Δ𝑓 (𝐼 ) = 𝑓 (𝐼 ) − 𝑓 (𝐷) (1)

We do not provide 𝑓 directly to DivExplorer. Rather, we specify
𝑓 as the outcome rate of an outcome function. This will be instru-
mental in allowing the efficient algorithmic computation of itemset
divergences.

Definition 3.2. (outcome function and positive outcome rate). Given
a dataset 𝐷 , an outcome function is a function 𝑜 : 𝐷 ↦→ {t, f,⊥}.
The positive outcome rate 𝑓𝑜 (𝑋 ) of 𝑜 over a set of instances 𝑋 ⊆ 𝐷

is defined as
𝑓𝑜 (𝑋 ) = |{𝑥 ∈ 𝑋 | 𝑜 (𝑥) = t}|

|{𝑥 ∈ 𝑋 | 𝑜 (𝑥) ≠ ⊥}| (2)

Thus, instances 𝑥 with 𝑜 (𝑥) = ⊥ are not considered in the com-
putation of the positive rate. In this paper, we will concern ourselves
mostly with classifiers, and the outcome 𝑜 (𝑥) will indicate whether
𝑥 is a false-positive, or false-negative, instance in the classifica-
tion. Specifically, if 𝑣 : 𝐷 ↦→ {t, f} is the ground truth, and if
𝑢 : 𝐷 ↦→ {t, f} is the classification outcome, to study the false-
positive rate we use

𝑜 (𝑥) =


t if 𝑢 (𝑥) ∧ ¬𝑣 (𝑥);
f if ¬𝑢 (𝑥) ∧ ¬𝑣 (𝑥);
⊥ if 𝑣 (𝑥).

An outcome function reflecting the false-negative rate can be simi-
larly defined. If we wish to study the positive rate of the ground
truth, we can obviously set 𝑜 (𝑥) = 𝑣 (𝑥) for 𝑥 ∈ 𝑋 . The classifica-
tion outcome 𝑢 can be the output of a generic classification model,
making the approach model agnostic.

We will refer to Δ𝑓 (𝐼 ) as the 𝑓 -divergence of 𝐼 . When 𝑜 is the
false positive outcome, we will call this the false positive divergence
of 𝐼 , and so forth. When 𝑓 is generic or can be understood from the
context, for brevity we omit it by using the notation Δ(𝐼 ).

By relying on a Boolean outcome function, we can apply Div-
Explorer to classifiers as black boxes, without need for accessing
their internal loss or classification probability, as would be needed
for real-valued outcome functions. As we shall see in Section 6.1,
the focus on Boolean outcome functions also allows efficiently
exploring itemsets and measuring their divergence.

The DivExplorer tool supports multiple metrics to assess classi-
fier performance, such as accuracy, misclassification error, positive
predictive value, true positive and negative rates, false discovery
and false omission rates. We will mostly focus on false positive and
false negative rates as our measures 𝑓 of interest. The 𝑓 -divergence
satisfies the following property.

Property 3.1. (divergence is not hidden by finer discretization). Let
𝑋 be a set of instances, and let 𝑋1, .., 𝑋𝑛 be a partition of 𝑋 , so
that

⋃𝑛
𝑖=1 𝑋𝑖 = 𝑋 and 𝑋𝑖 ∩ 𝑋 𝑗 = ∅ for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. For any

𝑓 -divergence measure, there is at least one subset 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑛,
with 𝑓 -divergence equal or greater than 𝑋 in absolute value.

0.0 0.2

(a)

#prior=0

#prior=[1,3]

#prior>3

0.0 0.2

(b)

#prior=0

#prior=1

#prior=2

#prior=3

#prior=[4-7]

#prior>7

Figure 1: Individual item divergence for false-positive rate

of prior attribute value of the COMPAS dataset where the

attribute is discretized in 3 (a) and 6 (b) intervals (𝑠=0.05.)

The property holds because the divergence of 𝑋 is simply the
weighted average of 𝑋1, . . . , 𝑋𝑛 , where the weight of 𝑋𝑖 is the
number of instances with non-bottom outcome function in 𝑋𝑖 ,
for 1 ≤ 𝑖 ≤ 𝑛. The property has an important implication for the
discretization of continuous-valued attributes. If we refine a dis-
cretization, for every divergent itemset in the coarser discretization
there is at least one finer itemset that has equal or greater diver-
gence. In other words, a finer discretization never hides divergence.
This is illustrated in Figure 1: when the item #prior>3 is split into
the two finer ones #prior=[4-7] and #prior>7, the finer #prior>7 has
greater divergence than #prior>3.

3.3 Statistical Significance

Once an itemset with high divergence is identified, the question
arises as to whether the divergence is statistically significant, or
whether it originates from statistical fluctuations due to the finite
size of the itemset.We can exploit the fact that the outcome function
is Boolean, and follow an approach based on Bayesian statistics.

Our aim is to estimate the precision in the knowledge of the
positive rate. We reason as follows. Consider a Bernoulli trial (a coin
toss) with outcomes t with probability 𝑍 , and f with probability
1 − 𝑍 . In our setting, the Bernoulli trial is the evaluation of the
outcome function 𝑜 over an instance in the itemset, and 𝑍 is the
positive rate in the itemset. Before any trial is carried out, 𝑍 is not
known, and it is natural to assume a uniform prior, which is the
least information prior, Pr(𝑍 = 𝑧) = 1 for 0 ≤ 𝑧 ≤ 1. If we then
perform trials and we observe 𝑘+ t outcomes and 𝑘− f ones, that
is, if

𝑘+ = |{𝑥 | 𝑥 |= 𝐼 ∧ 𝑜 (𝑥) = t}| , 𝑘− = |{𝑥 | 𝑥 |= 𝐼 ∧ 𝑜 (𝑥) = f}|

we can use Bayes’ rule to obtain the posterior distribution for the
positive rate 𝑍 :

Pr(𝑍 = 𝑧) = 𝜅 𝑧𝑘
+
(1 − 𝑧)𝑘

−
= Beta(𝑘+ + 1, 𝑘− + 1) (𝑧) ,

where 𝑧 ∈ [0, 1], Beta(𝛼, 𝛽) (𝑧) = 𝜅 𝑧𝛼−1 (1 − 𝑧)𝛽−1 is the Beta dis-
tribution with parameters 𝛼, 𝛽 , and 𝜅 is a normalization constant
ensuring the distribution’s integral in [0, 1] is 1. This states the
well-known fact that the Beta distribution is the posterior distri-
bution that results from carrying Bernoulli trials starting from a
uniform prior. We can then measure the mean and variance of our
positive rate 𝑍 via the mean 𝜇𝐼 and standard deviation 𝜈𝐼 of the



Beta distribution:

𝜇𝐼 =
𝑘+ + 1

𝑘+ + 𝑘− + 2
𝜈𝐼 =

(𝑘+ + 1) (𝑘− + 1)
(𝑘+ + 𝑘− + 2)2 (𝑘+ + 𝑘− + 3)

(3)

Once mean and variance are known, we can compare the positive
rate on 𝐼 to the positive rate on the whole dataset using Welch’s
t-test:

𝑡 =
|𝜇𝐼 − 𝜇𝐷 |
√
𝜈𝐼 + 𝜈𝐷

.

The advantage of the form (3) with respect to simply considering
the mean and variance of the outcome function includes numerical
stability when 𝑘+ + 𝑘− = 0, which happens when the outcome
function is ⊥ on the itemset (e.g., if we are measuring the FPR in
an itemset where all instances have ground truth 𝑣 = t).

3.4 Frequent Itemsets and DivExplorer

The number of itemsets in a dataset is exponential in the number
of attributes. Many itemsets may have very small or empty support,
and these itemsets are of lesser interest for divergence analysis,
for two reasons. First, in itemsets with small support, the measure
of the positive rate of 𝑜 will be affected by statistical fluctuations,
as discussed. Second, it is reasonable to assume that divergence
affecting a larger portion of the dataset is more consequential than
divergence affecting only a smaller portion of it. For these reasons,
DivExplorer will only consider frequent itemsets, that is, itemsets
𝐼 whose support size 𝑠𝑢𝑝 (𝐼 ) is above a given threshold 𝑠 specified
at the outset of the exploration.

The problem of finding all frequent itemsets in a dataset is a
fundamental one in data mining, and much effort has been devoted
to developing efficient algorithms for this task; see, e.g., [1, 13].
DivExplorer will leverage those algorithms, augmenting them so
that the performance statistics 𝑓 can be computed for all frequent
itemset. The detailed algorithms are presented in Section 5.

3.5 Summarizing divergent itemsets

To provide a compact representation of pattern divergence, we
present a post-exploration pruning approach. A pattern 𝐼 is pruned
if there exists an item 𝛼 ∈ 𝐼 whose absolute marginal contribution is
lower than a threshold 𝜖 , i.e. |Δ𝑓 (𝐼 ) −Δ𝑓 (𝐼 \ {𝛼}) | ≤ 𝜖 . The pattern
𝐼 \ 𝛼 captures the divergence of pattern 𝐼 , since the inclusion of
item 𝛼 only slightly alters the divergence (slightly with respect to
the threshold 𝜖). In Section 6.3, the impact of the 𝜖 input parameter
on the number of resulting itemsets is studied.

3.6 Our Running Example: COMPAS
As a running example to illustrate the previous definitions, we
again consider the COMPAS dataset. We compare the predicted
recidivism rate with the actual rate, defined as the new occurrence
of a misdemeanor or felony offense over a two-year period. For an
instance (a person) 𝑥 , we let 𝑣 be the ground truth, with 𝑣 (𝑥) = t
iff recidivism occurred, and 𝑣 (𝑥) = f if none occurred. The classi-
fication outcome 𝑢 (𝑥) corresponds to the output of the COMPAS
system. We let 𝑢 (𝑥) = t if COMPAS classifies person 𝑥 as being at
high recidivism risk, and f otherwise.

Table 2 shows the most divergent patterns with respect to the
false positive rate (FPR), false negative rate (FNR), error rate (ER)
and accuracy (ACC) for a support threshold 𝑠=0.1. The pattern with

Itemset Sup Δ𝐹𝑃𝑅 𝑡

age=25-45, #prior>3, race=Afr-Am, sex=Male 0.13 0.22 7.1
age=25-45, #prior>3, race=Afr-Am 0.15 0.211 7.4
age=25-45, charge=F, #prior>3, race=Afr-Am 0.11 0.202 6.2

Sup Δ𝐹𝑁𝑅 𝑡

age=25-45, stay<week, #prior=0 0.15 0.236 12.1
charge=M, stay<week, #prior=[1,3] 0.10 0.233 12.2
age>45, race=Cauc 0.10 0.231 10.3

Sup Δ𝐸𝑅 𝑡

age<25, stay<week, race=Afr-Am 0.10 0.098 4.7
age<25, stay<week, sex=Male 0.13 0.095 5.2
age<25, race=Afr-Am, sex=Male 0.11 0.090 4.5

Sup Δ𝐴𝐶𝐶 𝑡

stay<week, #prior=0, race=Cauc 0.12 0.141 8.4
charge=M, stay<week, #prior=0 0.15 0.133 8.6
charge=M, #prior=0 0.16 0.129 8.5
Table 2: Top-3 divergent patterns with respect to FPR, FNR,

error rate (ER) and accuracy (ACC) for the COMPAS dataset.

The support threshold is 𝑠 = 0.1.

highest false-positive rate divergence is 𝐼1 = (age=25-45,#prior>3,
race=African-American, sex=Male) with Δ𝐹𝑃𝑅 (𝐼1)=0.220. The model
tends to be biased towards African-Americans with age in the
range 25-45 that have a high number of prior offenses. These three
items are shared for all the top-3 FPR divergent patterns. Another
influencing item is having been convicted of a felony (charge=F).

The results also indicate that the model has a higher false nega-
tive rate for people with fewer than 3 prior offenses, short stays in
jail (stay<week) and having a prior conviction of a misdemeanor
charge (charge=M) rather than a felony. Caucasians with age greater
than 45 also have higher-than-overall FNR. We note that the model
has a higher error rate for African-American defendants with age
lower than 25 and short stays in jail. The model tends to be more
accurate for Caucasian defendants with short stays in jail and no
prior offenses.

4 ITEM CONTRIBUTION TO DIVERGENCE

Once itemsets with large divergence are identified, such as those
of Table 2, the question arises as to which of the items appearing
in the itemsets are most responsible for the divergence. We intro-
duce methods both for attributing the divergence of an itemset
to its items, and for estimating the overall impact of an item on
divergence.

4.1 Item Contribution to Itemset Divergence

Our definition of the item contribution to itemset divergence is
based on the notion of the Shapley value of a player in a coalition.

The Shapley value [24] is defined in the context of a cooperative
𝑁 -player game. Let 𝑣 (𝜎) be the value that can be attained by a
coalition 𝜎 ⊆ {1, . . . , 𝑁 } of players. When all players cooperate,
they can achieve the value 𝑣 ({1, . . . , 𝑁 }) = 𝑣∗. The Shapley value
measures the contribution 𝑣 (𝑖) of each player to 𝑣∗, in such a way
that

∑𝑁
𝑖=1 𝑣 (𝑖) = 𝑣∗. The Shapley value of player 𝑖 , for 1 ≤ 𝑖 ≤ 𝑛, is
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Figure 2: Contributions of individual items to the diver-

gence of the COMPAS frequent patterns having greatest

false-positive and false-negative divergence.

given by:

𝑣 (𝑖) =
∑

𝜎 ∈𝜋 (1,...,𝑁 )
𝑣 (𝜎 [:𝑖]+) − 𝑣 (𝜎 [:𝑖]−) (4)

=
∑

𝜙⊆{1,...,𝑁 }\{𝑖 }

|𝜙 |!(𝑁 − |𝜙 | − 1)!
𝑁 !

[
𝑣 (𝜙 ∪ {𝑖}) − 𝑣 (𝜙)

]
,

where 𝜋 (1, . . . , 𝑁 ) is the set of permutations of 1, . . . , 𝑁 , and where,
for a permutation 𝜎 , 𝜎 [: 𝑖]+ is its prefix up to 𝑖 included, and 𝜎 [: 𝑖]−
is its prefix up to 𝑖 excluded. The notion of Shapley value directly
yields a way to measure the (local) contribution of an item to the
divergence of an itemset.

Definition 4.1. (item contribution to itemset divergence). Given an
itemset 𝐼 and an item 𝛼 ∈ 𝐼 , the contribution Δ(𝛼 | 𝐼 ) of 𝛼 to the
divergence of 𝐼 is:

Δ(𝛼 | 𝐼 ) =
∑

𝐽 ⊆𝐼\{𝛼 }

|𝐽 |!( |𝐼 | − |𝐽 | − 1)!
|𝐼 |!

[
Δ(𝐽 ∪ 𝛼) − Δ(𝐽 )

]
. (5)

In (5), if 𝐼 is a frequent itemset, then all the itemsets appearing in
the formula are frequent, being subsets of 𝐼 . Therefore, we can com-
pute the local item contributions to frequent itemsets on the basis
of the exploration performed by DivExplorer, which is limited to
frequent itemsets.

Consider again the COMPAS dataset. Figure 2 gives the item
contributions to the divergence of the frequent itemsets with largest
false-positive and false-negative divergence. The item with the
greatest influence on the false-positive divergence of the itemset
is whether the person has at least 3 prior criminal charges. This is
followed by belonging to the African-American race. The sex=Male
item gives only minor contribution. For the divergence in false-
negative rate, the greatest contribution is given by not having
prior convictions. In general, we see that the items’ contribution to
itemset divergence can be quite different.

We note that the Shapley value tends to under-estimate the
contribution to divergence of correlated items appearing jointly.
For example, consider two fully-correlated items 𝛼 and 𝛽 in itemset
𝐼 ∪ {𝛼, 𝛽}. When appearing jointly, 𝛼 and 𝛽 are attributed only part
of the contribution to divergence that they receive in isolation.

This effect is intrinsic to the way in which the Shapley value
attributes contributions. In DivExplorer, users can explore the
lattice around any divergent itemset (see Section 6.4). The lattice
would show that the divergence of 𝐼 ∪ {𝛼, 𝛽} was already present
in 𝐼 ∪ {𝛼} and 𝐼 ∪ {𝛽}. Users can appreciate the contribution of
the items 𝛼 and 𝛽 by looking at their contributions to these shorter

I corr. item Δ(I) Δ(I ∪𝛼) c_f 𝑡

𝐹𝑃𝑅

race=Afr-Am, sex=Male #prior=0 0.062 0.009 0.053 2.8
race=Afr-Am #prior=0 0.051 -0.001 0.051 3.4
stay<week, #prior=0 race=Afr-Am -0.044 -0.003 0.041 3.1
𝐹𝑁𝑅

charge=F, race=Afr-Am,
sex=Male #prior=[1,3] -0.123 -0.011 0.112 3.8

charge=F, race=Afr-Am #prior=[1,3] -0.113 0.004 0.109 4.3
race=Afr-Am, sex=Male charge=M -0.090 -0.001 0.089 3.3

Table 3: Top corrective items for FPR and FNR of COMPAS
dataset.
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Figure 3: An itemset where an item has a negative diver-

gence contribution.

itemsets. Furthermore, this situation is mitigated by the redundancy
pruning described in Section 3.5. According to this pruning, the
itemset 𝐼 ∪ {𝛼, 𝛽} is omitted from the output, since it is no more
divergent than its subsets 𝐼 ∪ {𝛼} and 𝐼 ∪ {𝛽}.

4.2 Corrective Items

Divergence is not monotonic: 𝐼 ⊆ 𝐽 does not imply Δ(𝐼 ) ≤ Δ(𝐽 ) for
itemsets 𝐼 , 𝐽 . We call items that decrease divergence when added to
an itemset corrective items.

Definition 4.2. (corrective item and corrective factor). Given an
itemset 𝐼 and an item 𝛼 ∉ 𝐼 , we say that 𝛼 is a corrective item
for 𝐼 if |Δ(𝐼 ∪ 𝛼) | < |Δ(𝐼 ) |. The corrective factor of 𝛼 w.r.t. 𝐼 is
|Δ(𝐼 ) | − |Δ(𝐼 ∪ 𝛼) |.

By performing an exhaustive exploration of all frequent itemsets,
DivExplorer can identify the corrective items.

Table 3 shows the top corrective items for false-positive and false-
negative divergence in COMPAS. The FPR-divergence of itemset
I3=(race=Afr-Am, sex=Male) drops from 0.062 to 0.009 when item
#prior=0 is included, with a corrective factor of 0.053. The absence of
prior convictions tends to lower the wrong assignments of African-
American male defendants to the recidivist class to a similar FPR
rate to the overall.

Figure 3 shows that the corrective effect of having no prior con-
victions is also reflected in the item contributions to the divergence
of the corrected itemset, measured according to the Shapley value.

4.3 Global Item Divergence

Given an individual item 𝛼 , there are two ways of measuring the
effect of 𝛼 on divergence. One is via its divergence Δ(𝛼) defined
in (1). This individual measurement is the most common way of
measuring the effect of an item on divergence. For example, when



studying the effect of race = African-American on classification, we
can measure the false-positive or false-negative divergence for this
item, to see if the classifier behaves differently for people in the
support-set of the item compared to people at large.

Another way of measuring the effect of an item on classification
is to consider the effect of adding the item to other itemsets. As
this measures the effect of the item on all itemsets, it provides a
global measurement of the effect of the item. Roughly, the global
divergence of an item will tell us whether the item 𝛼 tends to skew
the classification in every possible context. The definition is based
on the notion of Shapley value, adapted to account for the fact that
only items for different attributes can be part of the same itemset.

Definition 4.3. (global itemset divergence). Let 𝐷 be a dataset with
schema 𝐴, and let Δ be the divergence of its itemsets measured for
a given outcome function. We define the global divergence Δ𝑔 (𝐼 ) of
an itemset 𝐼 of 𝐷 as:

Δ𝑔 (𝐼 ) =
∑

𝐵⊆𝐴\attr(𝐼 )

|𝐵 |!( |𝐴| − |𝐵 | − |𝐼 |)!
|𝐴|!∏𝑏∈𝐵∪attr(𝐼 )𝑚𝑏

∑
𝐽 ∈I𝐵

[
Δ(𝐽 ∪ 𝐼 ) − Δ(𝐽 )

]
.

(6)

The definition parallels (4), except for the additional factor
1/(∏𝑏∈𝐵∪attr(𝐼 )𝑚𝑏 ), which is necessary to normalize the sums, ac-
counting for the number of different itemsets with given attributes.
The following theorem gives the properties of the above notion of
global divergence. Together, these properties formalize the fact that
(6) is the generalization of Shapley value to the itemset case.

Theorem 4.1. (properties of global divergence). Consider a
dataset 𝐷 with set 𝐴 of attributes, alongside a divergence Δ for its
itemsets. The global divergence defined as in (6) satisfies the following
properties:

• Efficiency:∑
𝑎∈𝐴

∑
𝑐∈D𝑎

Δ𝑔 (𝑎 = 𝑐) =
1

|I𝐴 |
∑
𝐼 ∈I𝐴

Δ(𝐼 ) . (7)

• Null items: if there is an attribute 𝑎 ∈ 𝐴 such that, for all
𝑐 ∈ D𝑎 and all itemsets 𝐼 ∈ I with 𝑎 ∉ attr(𝐼 ), Δ(𝐼 ) =

Δ(𝐼 ∪ {𝑎 = 𝑐}), then Δ𝑔 (𝑎 = 𝑐) = 0. Furthermore, under the
above hypotheses, removing 𝑎 from 𝐴 does not affect the value
of Δ𝑔 (𝐼 ) for any itemset 𝐼 not containing 𝑎.

• Symmetry: if for two itemsets 𝐼 , 𝐼 ′ we have Δ(𝐽∪𝐼 ) = Δ(𝐽∪𝐼 ′)
for all 𝐽 ∈ I with attr(𝐽 )∩attr(𝐼 ) = ∅ and attr(𝐽 )∩attr(𝐼 ′) =
∅, then Δ𝑔 (𝐼 ) = Δ𝑔 (𝐼 ′).

• Linearity: If two notions of divergence Δ1,Δ2 : 2𝑋 ↦→ IR
are combined into a single one Δ = 𝛾1Δ1 + 𝛾2Δ2 via a lin-
ear combination, for every item 𝐼 we will have Δ𝑔 (𝐼 ) =

𝛾1Δ
𝑔

1 (𝐼 ) +𝛾1Δ
𝑔

2 (𝐼 ), where Δ
𝑔 is computed from Δ, and Δ𝑔1 ,Δ

𝑔

2
from Δ1,Δ2, respectively.

These properties are the generalization of the corresponding
properties of Shapley values. The difference in the forms is due to
the fact that there is more than one complete itemset.

Accounting for support lower bound. In DivExplorer we cannot
use (6) directly, as it involves the consideration of all itemsets.
Rather, we opt for an approximation of (6), in which we limit the
summation to frequent itemsets, whose support is at least 𝑠 . Let

I★
𝐵

be the set of frequent itemsets with attributes B. We define the
global divergence approximated to support 𝑠 via:

Δ̃𝑔 (𝐼 , 𝑠) = (8)∑
𝐵⊆𝐴\attr(𝐼 )

|𝐵 |!( |𝐴| − |𝐵 | − |𝐼 |)!
|𝐴|!∏𝑏∈𝐵∪attr(𝐼 )𝑚𝑏

∑
𝐽 :𝐽∪𝐼 ∈I★

𝐵∪attr(𝐼 )

[
Δ(𝐽 ∪ 𝐼 ) − Δ(𝐽 )

]
.

If 𝐼 is frequent, the summations can be computed in terms of
frequent itemsets only, and the approximation can be computed
on the basis of the output of DivExplorer, which only outputs
frequent itemsets.

4.4 Global vs. Individual Item Divergence

For an item 𝛼 , we can measure both the individual divergence Δ(𝛼)
defined by (1), and the global divergence Δ̃𝑔 (𝛼, 𝑠) defined by (8).
The individual divergence Δ(𝛼) is independent of support thresh-
old (provided the item itself is above the threshold). The global
divergence Δ̃𝑔 (𝛼, 𝑠), on the other hand, depends on the support
threshold 𝑠 chosen for its analysis.

The value of global divergence lies in its ability to highlight the
role of items in giving rise to divergence via association with other
items. For instance, assume that in a dataset there are two items 𝛼, 𝛽
that cause divergence in the itemset {𝛼, 𝛽}, but less so in isolation.
The individual divergence of 𝛼 and 𝛽 may be low, masking the
effect of the items when jointly present. On the other hand, global
divergence is able to capture the effect of 𝛼 and 𝛽 on divergence,
provided the itemset {𝛼, 𝛽} has support above the threshold. We
make this observation precise via a theorem, and via an example
on an artificial dataset.

Theorem 4.2. ( individual and global divergence do not coincide).
There is a dataset 𝐷 with schema 𝐴, a minimum support 𝑠 > 0,
and items 𝑎 = 𝑐 for 𝑎 ∈ 𝐴, 𝑐 ∈ D𝑎 , such that Δ(𝑎 = 𝑐) = 0 but
Δ̃𝑔 (𝑎 = 𝑐, 𝑠) ≠ 0.

To illustrate how global item divergence is able to capture the
role of items that cause divergence when joint with other items, we
constructed an artificial 10-dimensional dataset, denoted artificial,
with 50,000 instances and attributes 𝑎, 𝑏, 𝑐, . . . , 𝑗 with domain {0, 1}.

We construct the dataset, and a classifier, so that the itemsets
𝑎 = 𝑏 = 𝑐 = 1 and 𝑎 = 𝑏 = 𝑐 = 0 are divergent. To this end, we create
the instances by setting each of their attributes 𝑎, . . . , 𝑗 randomly
and independently to values 0 and 1, with equal probability. We first
train a classifier with respect to a class label that is twhen 𝑎 = 𝑏 = 𝑐

and f otherwise. Then, to simulate classification errors, during test,
we flip the class label for half of the instances in 𝑎 = 𝑏 = 𝑐 (without
retraining the classifier).

The global and individual item divergence for the false positive
rate, analyzed with minimum support 𝑠 = 0.01, are given in Figure 4.
We see that individual item divergence is unable to capture the role
of 𝑎, 𝑏, 𝑐 , together, to cause high divergence. The divergence of
𝑎 = 𝑏 = 𝑐 is completely masked by statistical fluctuations in the
overall dataset, to the point that unrelated items such as 𝑔 = 0, 𝑔 =

1, ℎ = 0, ℎ = 1 have much larger individual divergence that items for
attributes 𝑎, 𝑏, 𝑐 . On the other hand, the global divergence is clearly
able to identify the attributes 𝑎, 𝑏, 𝑐 as those causing divergence
when appearing together.
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Figure 5: Relativemagnitudes of global Shapley value and in-

dividual item divergence, for false-positive rate in the COM-
PAS dataset with 𝑠 = 0.1

For the COMPAS dataset, Figure 5 compares the global and indi-
vidual false-positive divergence for items. Global divergence assigns
more importance to racial factors: for instance, being African Amer-
ican introduces almost as much bias to an itemset as having been
convicted more than 3 times. This indicates how race plays a role
jointly with other factors in creating highly divergent itemsets.

5 THE DIVEXPLORER ALGORITHM

The DivExplorer algorithm extracts frequent subsets of attribute
values and estimates their divergence. The computation is embed-
ded in the frequent pattern extraction process, and DivExplorer
can leverage any frequent pattern mining (FPM) technique [25] to
extract frequent subsets. More specifically, when the support of an
itemset is estimated, the outcome function 𝑜 and outcome rate 𝑓 are
also computed. Hence, the performance of DivExplorer directly

depends on the efficiency of the selected FPM algorithm, because
the dataset is accessed as many times as the selected underlying
FPM method does.

FPM algorithms require discrete data. Thus, continuous at-
tributes (if any) are firstly discretized. This discretization is only
performed after the classification process. In particular, DivEx-
plorer does not require the classification algorithm to rely on
discretization.

Algorithm 1: The DivExplorer algorithm.
Input: 𝐷 , 𝑢, 𝑣 , 𝑜 , 𝑓 , 𝑠
Output: FP divergence 𝐹𝑃Δ

1 𝑜 (𝐷) = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐷,𝑜, 𝑓 );
2 t̂𝐷 , f̂𝐷 , ⊥̂𝐷 = 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑂𝑛𝑒𝐻𝑜𝑡𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑜 (𝐷));
3 𝐹𝐼_𝑤𝑖𝑡ℎ𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠 = [];
4 for 𝑠𝑡𝑒𝑝𝑖 in Frequent Pattern Mining steps do
5 𝐼𝑠𝑡𝑒𝑝𝑖 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠 (𝐷, 𝑠𝑡𝑒𝑝𝑖 );
6 for 𝐼 in 𝐼𝑠𝑡𝑒𝑝𝑖 do

7 t𝐼 , f𝐼 ,⊥𝐼 = 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠𝐼 (𝐼 , (t̂𝐷 , f̂𝐷 , ⊥̂𝐷 ));
8 if (t𝐼 + f𝐼 + ⊥𝐼 )/𝑙𝑒𝑛(𝐷) ≥ 𝑠 then

9 𝐹𝐼_𝑤𝑖𝑡ℎ𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ((𝐼 , (t𝐼 , f𝐼 ,⊥𝐼 ));
10 end

11 end

12 end

13 𝐹𝑃𝑓 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑓 (𝐹𝐼_𝑤𝑖𝑡ℎ𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠, 𝑓 );
14 𝐹𝑃Δ𝑓

= 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝐹𝑃𝑓 , 𝑓 (𝐷));
15 return 𝐹𝑃Δ𝑓

Algorithm 1 outlines the main steps of DivExplorer. Given the
input data set𝐷 , the ground truth 𝑣 , the classification outcome𝑢, the
outcome function 𝑜 and outcome rate of interest 𝑓 , the algorithm
returns the divergence coefficient for all frequent itemsets. The
algorithm requires the definition of the minimum support threshold
𝑠 as its (single) input parameter.

The first step (Line 1) of Algorithm 1 computes the outcome func-
tion on all instances 𝑥 ∈ 𝐷 (see Section 3.2). The outcome function
results are then input to the OutcomeOneHotEncoding function that
maps each outcome to a one-hot representation. More specifically,
for each instance 𝑥 ∈ 𝐷 , t𝑥 , f𝑥 and ⊥𝑥 are estimated, with t𝑥
equal to 1 if 𝑜 (𝑥) = t and 0 otherwise (f𝑥 and ⊥𝑥 are computed
analogously). This representation enables us to tally the outcome
function values simply by adding the one-hot representations. The
results are t̂𝐷 , f̂𝐷 and ⊥̂𝐷 one-hot representations of outcome
function 𝑜 (𝑥) for dataset 𝐷 .

Next, for each 𝑠𝑡𝑒𝑝𝑖 of a generic FPM technique, itemsets are
extracted (Line 5). The general function extractItemsets extracts
the itemsets to be evaluated for support threshold at 𝑠𝑡𝑒𝑝𝑖 and
varies depending on the FPM algorithm of choice. For example,
𝑠𝑡𝑒𝑝𝑖 could be level 𝑖 iteration in level-wise approaches such as
Apriori [1], or the recursive step performed by FP-growth [13] on
the FP-tree compressed representation. We implemented both an
Apriori-based and an FP-growth-based version of DivExplorer.

The cardinalities t𝐼 , f𝐼 , ⊥𝐼 of each itemset 𝐼 extracted at 𝑠𝑡𝑒𝑝𝑖
are then estimated, with t𝐼 = |{𝑥 | 𝑥 |= 𝐼 ∧ 𝑜 (𝑥) = t}|, f𝐼 = |{𝑥 |
𝑥 |= 𝐼 ∧ 𝑜 (𝑥) = f}| and ⊥𝐼 = |{𝑥 | 𝑥 |= 𝐼 ∧ 𝑜 (𝑥) = ⊥}|. Note that



dataset |𝐷 | |𝐴| |𝐴|𝑐𝑜𝑛𝑡 |𝐴|𝑐𝑎𝑡
adult 45,222 11 4 7
bank 11,162 15 6 9
COMPAS 6,172 6 2 4
german 1,000 21 7 14
heart 296 13 5 8
artificial 50,000 10 0 10

Table 4: Dataset characteristics.𝐴𝑐𝑜𝑛𝑡 is the set of continuous

attributes, 𝐴𝑐𝑎𝑡 of categorical ones.

function cardinalityOutcomesI does not require access to the dataset
𝐷 , because it is integrated in the FPM algorithm. t𝐼 , f𝐼 and ⊥𝐼 are
computed as the sum of the t̂𝐷 , f̂𝐷 and ⊥̂𝐷 terms that satisfy 𝐼 . The
sum of t𝐼 , f𝐼 and ⊥𝐼 represents the support count of itemset 𝐼 , i.e.
| 𝐷 (𝐼 ) |. Hence, it is exploited to estimate if 𝐼 is frequent, i.e. with
a support greater or equal than 𝑠 (Line 8). Frequent itemsets and
their cardinality outcomes are stored in 𝐹𝐼_𝑤𝑖𝑡ℎ𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠 (Line 9).

Once all frequent itemsets are extracted, the outcome rate of
outcome function 𝑓 is estimated for all frequent itemsets with eval-
uateFunctionf (Line 13). Finally, the 𝑓 -divergence (Equation 1) of
all frequent itemsets is computed (Line 14) and returned (Line 15).
The extracted frequent itemsets can be ranked according to many
different metrics, such as their statistical significance, support,
or 𝑓 -divergence. In this paper, we rank itemsets according to 𝑓 -
divergence, to identify subgroups where the behavior diverges
strongly. Users can choose their preferred ranking according to the
problem, and to their desired analysis goals.

It is straightforward to extend Algorithm 1 to efficiently compute
the 𝑓 -divergence of multiple outcome functions simultaneously.

Theorem 5.1. (Soundness and completeness) Algorithm 1, called
with minimum support 𝑠 , is sound and complete:

• Sound: If Algorithm 1 outputs an itemset 𝐼 along with 𝑓 -
divergence Δ𝑓 (𝐼 ), then there is an itemset 𝐼 in the dataset
with support above 𝑠 and with divergence Δ𝑓 (𝐼 ).

• Complete: If there is an itemset 𝐼 with support above 𝑠 and
with divergence Δ𝑓 (𝐼 ), the itemset 𝐼 along with its divergence
will be part of the output.

We note that completeness does not hold for Slice Finder, since the
search for problematic itemsets is pruned whenever sufficiently
problematic itemsets are found, so that longer (more specific) item-
sets, even if more problematic, can be missed. This will be illustrated
later in Section 6.5.

6 EXPERIMENTAL RESULTS

We present here results on the running time of DivExplorer, on
its ability to extract and summarize divergence information on
real-world datasets, and on the visualizations and explorations that
can be created on the basis of its output. We also outline the main
differences between our approach and Slice Finder [8].

The main features of the datasets used in our experiments are
reported in Table 4. The cardinalities are reported after standard
preprocessing steps (e.g., removing instances with missing values).
For most of our experiments, we used the COMPAS dataset [3],
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Figure 6: DivExplorer execution time when varying the

minimum support threshold.

already introduced in Section 3.6, and the adult dataset [17]. The
adult dataset includes census data and the prediction of individual
incomes, divided in two classes “≤50K” and “‘>50K”. In our analysis
we used the age, workclass, education, marital-status, occupation,
relationship, race, sex, capital-gain, capital-loss, hours-per-week
features. For the performance experiments, we also used the Ger-
man Credit Data, Bank Marketing, and heart datasets [17]. The
German Credit Data (german) dataset is devoted to the prediction
of an individual’s credit risk using loan application data, according
to attributes as age, sex1, checking_account, credit_amount, du-
ration, purpose, etc. The Bank Marketing (bank) dataset contains
information related to a direct marketing campaign of a Portuguese
banking institution. The heart dataset contains data to detect the
presence of a heart disease in patients. Its features describe the
demographic and health information (as serum cholesterol, rest-
ing blood pressure) of patients. Finally, we also used the artificial
dataset already described in Section 4.4.

DivExplorer has been developed in Python. The source code
and all the datasets used in our experiments are available [20],
together with the description of all performed preprocessing steps.
In all the reported experiments, DivExplorer is coupled with FP-
growth as frequent pattern mining technique to extract frequent
itemsets [13].

6.1 Performance analysis

We evaluated the efficiency of DivExplorer by measuring the
execution time required to (i) extract all frequent itemset and (ii) es-
timate their divergence and statistical significance. We repeated
each experiment 5 times and reported the average execution time.
The experiments were performed on a PC with Ubuntu 16.04.1 LTS
64 bit, 16 GB RAM, 2.40GHz×4 Intel Core i7. For all the datasets,
except COMPAS and the artificial dataset (for which the class label
is already provided), we used a random forest classifier with default
parameters to provide the classification outcome 𝑢.

Figure 6 shows DivExplorer execution time as a function of the
support threshold. The higher the support threshold, the lower the
running time. Note that the execution time depends on the FPM

1From the the original features, we derived “sex” and “civil-status” from the “personal-
status” attribute.
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Figure 8: Contributions of individual items to the divergence

of the adult frequent patterns having greatest FPR (Line 1 of

Table 5) and FNR (Line 4 of Table 5) divergence.

algorithms used for the extraction of the itemsets (FP-growth in the
reported experiments). For all considered datasets, except german,
the execution time is below 20s, even for minimum support thresh-
olds as low as 0.01. For the german dataset the worst case execution
time is anyway lower than 150s. The execution time required to
compute itemset divergence and statistical significance is negligible
(<7%) compared to the time required for itemset extraction.

The number of frequent itemsets extracted by DivExplorer
when varying the minimum support is reported in Figure 7. For low
support thresholds, the number of extracted patterns for the german
dataset is very high, thus impacting the execution time, as shown in
Figure 6. For this dataset, a support threshold equal to 0.01 is rather
low, as it corresponds to 10 records only (see Table 4). Nevertheless,
the ability of DivExplorer to find divergent itemsets with very low
levels of support enables the analysis of under-represented group
behavior in the dataset.

6.2 Exploring dataset divergence

In this section, we demonstrate the capability of DivExplorer to
(a) detect the itemsets that mostly contribute to misclassifications,
(b) provide a “drill-down” analysis to highlight most influential
items in an itemset divergence, and (c) explore the global contribu-
tion of single items to divergence. We focus on the adult dataset,
as similar results for COMPAS have been presented throughout the
paper. A complete report of the experimental outcome for all the
datasets under analysis is available [20].

Table 5 shows the top divergent itemsets for adult, both for
the FPR and FNR rate, with 𝑠 = 0.05. The reported itemsets show

Itemset Sup Δ𝐹𝑃𝑅 𝑡

gain=0, status=Married, occup=Prof, race=White 0.05 0.469 25.8
gain=0, loss=0, status=Married, occup=Prof 0.05 0.462 26.6
loss=0, status=Married, occup=Prof, race=White 0.06 0.458 25.3

Sup Δ𝐹𝑁𝑅 𝑡

age≤28, gain=0, hoursXW≤40, status=Unmarried 0.17 0.61 21.8
gain=0, loss=0, edu=HS, hoursXW≤40,
status=Unmarried 0.14 0.61 28.2

gain=0, loss=0, status=Unmarried,
relation=Own-child 0.12 0.61 18.9

Table 5: Top-3 divergent itemsets for FPR and FNR. adult
dataset, 𝑠 = 0.05.
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Figure 9: Relative magnitude of global Shapley value (a) and

individual item divergence (b), for FPR, adult dataset, 𝑠 =

0.05. Top 12 global item positive contributions are reported.

some degree of overlap, which will be discussed in Section 6.3.
Figure 8 reports the item contributions to the top divergent itemsets
of Table 5. Figure 8(a) shows that the most relevant items which
contribute to the higher-than-overall misclassification rate for the
high income class are being married and working as a professional.
The items gain=0 (capital gain) and race=White have instead a very
small influence. For the top FNR itemset (Figure 8(b)), we observe
that age ≤ 28, capital gain = 0, and being unmarried are the most
important items, while number of hours per week ≤ 40 provides a
limited contribution.

Figure 9 shows the relative magnitude of global and individual
item contribution to FPR divergence, again for adult; for concise-
ness, only the 12 items with largest positive contribution are shown.
Consider the item edu = Masters. While its individual divergence is
the highest overall, its global divergence is markedly lower, indi-
cating its limited role in giving rise to divergence via association
(in longer itemsets). Indeed, edu = Masters does not appear in the
top divergent itemsets of Table 5.

6.3 Summarizing divergent itemsets

As seen in Table 5, the top divergent itemsets often include some
level of redundancy. DivExplorer can reduce such redundancy
via the heuristic pruning approach discussed in Section 3.5, which



Itemset Sup Δ𝐹𝑃𝑅 𝑡

status=Married, occup=Prof 0.07 0.434 26.1
occup=Prof, relation=Husband 0.06 0.423 23.4
edu=Bachelors, status=Married 0.09 0.413 29

Table 6: Top-3 divergent itemsets for FPR with redundancy

pruning. adult dataset, 𝜖 = 0.05, 𝑠 = 0.05.
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pruning threshold 𝜖 for FPR divergence of COMPAS and

adult datasets.

eliminates itemsets that are not significantly more divergent than
their shorter subsets. We report in Table 6 the top FPR-divergent
itemsets for the adult dataset when applying a redundancy thresh-
old 𝜖 = 0.05. Comparing this result with Table 5, we note how
pruning helps in presenting more diverse, and thus relevant, infor-
mation. Themost FPR-divergent itemset in Table 6 is status=Married,
occup=Prof (occupation=Professional), with a slightly lower diver-
gence and similar statistical significance. The importance of these
two itemswas already shown by Figure 8(a), in which they were pro-
viding the most relevant contribution to the itemset divergence. On
a global scale, for the FPR-divergence, the total number of extracted
itemsets drops from 4534 to just 40.

Figure 10(a) and 10(b) report a quantitative evaluation of the
impact of the pruning parameter 𝜖 , and minimum support 𝑠 on
the number of divergent itemsets returned, for FPR-divergence in
COMPAS and adult. We see how the heuristic post-pruning, even
with relatively small values of 𝜖 , leads to an effective summarization
of divergent itemsets.

6.4 Lattice visual exploration

DivExplorer allows the interactive exploration of divergent pat-
terns by means of a visual representation of the itemset lattice. In
this lattice, nodes correspond to frequent itemsets and edges to
subset relationships between itemsets. Given a divergent pattern of
interest 𝐼 , the itemset lattice shows all its subsets and their diver-
gence coefficient. The root represents the empty subset (with Δ𝑓 =0
by definition) and the last level the pattern 𝐼 itself. Figure 11 reports

Figure 11: Lattice showing a corrective phenomenon for

FNR divergence on the adult dataset. Nodes showing a cor-

rective phenomenon appear as rhombus in light blue. Nodes

with FNR-divergence ≥ 𝑇 = 0.15 are squares in red.

a portion of the lattice for the adult dataset. The itemset lattice may
be actively navigated. The visualization allows the identification of
the items driving divergence increases, i.e., items that, when added
to a subset, increase the divergence. Furthermore, the user may
interactively select a divergence threshold𝑇 . The lattice nodes with
divergence coefficient larger than the threshold are highlighted.

The itemset lattice can also be exploited to explore corrective
behaviors. The visualization highlights the subsets (i.e., nodes in
the lattice) in which a corrective phenomenon is observable. An
example of corrective phenomenon visualization is reported in
Figure 11. The example shows the lattice for the FNR-divergence
of itemset I𝑥=(edu=Bachelors, gain=0, loss=0, workclass=Private) in
the adult dataset. Item edu=Bachelors is a corrective item for pat-
tern 𝐼𝑦=(gain=0, loss=0, workclass=Private). The FNR-divergence
drops from 0.17 for itemset 𝐼𝑦 to -0.03 for itemset 𝐼𝑥 when the item
edu=Bachelors is included. Besides pattern 𝐼𝑥 , item edu=Bachelors
introduces a corrective effect for all the itemsets including it in the
lattice. Hence, the exploration of the itemset lattice also allows a
deeper and more comprehensive analysis of corrective behaviors.

6.5 Comparison with Slice Finder

Slice Finder [8] is the closest approach to DivExplorer. It identifies
slices of the data, denoted by conjunctions of literals, i.e., itemsets,
in which the model performs poorly. Slice Finder measures how
“problematic” a slice is by comparing the classifier loss on the slice,
and on the remainder of the dataset. This notion is similar to our no-
tion of divergence, with two differences. First, Slice Finder measures
classifier loss, while DivExplorer is based on an outcome function
that encodes metrics such as FPR and FNR. Second, Slice Finder
measures the difference between an itemset and its complement,
while DivExplorer measures the difference between the itemset
and thewhole dataset. The main difference between Slice Finder and
our approach, however, is that Slice Finder’s search is not exhaus-
tive: the exploration of an itemset is stopped (no larger itemsets
are considered) when sufficiently large deviation is found, and the
overall exploration stops once a prescribed number of itemsets has
been found. We can afford to perform an exhaustive search due to
our reliance on efficient frequent pattern mining algorithms. Our
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jected bias according to the provided information.

exhaustive search allows us to study item contribution to individual
itemsets and global divergence. The exhaustive search also enables
the identification of corrective items.

It is difficult to provide a comparison of Slice Finder and Div-
Explorer on a general dataset, because the two tools drive their
exploration differently (effect size and bound on result size for Slice
Finder, support size and divergence for DivExplorer). For this rea-
son, we compare them on the artificial dataset of Section 4.4, where
the divergent itemsets 𝑎 = 𝑏 = 𝑐 = 0 and 𝑎 = 𝑏 = 𝑐 = 1 are well
characterized and drive both explorations equally. Unless differ-
ently specified, we executed Slice Finder with its default parameters.
We use the predicted and class labels as inputs to DivExplorer. We
used a Random Forest classifier with default parameters to provide
the loss function required by Slice Finder. DivExplorer minimum
support is set to 0.01. For Slice Finder, we set degree to 3 to obtain
itemsets of length 3.

Since DivExplorer does not enforce parallel execution, for a
fair comparison we turned it off in Slice Finder. In this case, DivEx-
plorermean execution time is 4s, 4.5 times faster than Slice Finder.
If parallel execution is turned on (max-workers=4), DivExplorer
is 3.5 times faster than Slice Finder.

DivExplorer successfully identifies (a=0,b=0,c=0) and
(a=1,b=1,c=1) as the itemsets with the highest FPR divergence.
Slice Finder finds all 6 subsets of length 2 of ( a=0,b=0,c=0) and
(a=1,b=1,c=1). These subsets are already highly “problematic” (in
our terms, they have high divergence). Hence, Slice Finder’s search
stops. The stopping criterion based on “problematicity” fails to
identify the two itemsets that are the true source of divergence,
returning their many subsets instead. If the threshold of the effect
size is increased to 1.65, Slice Finder identifies the true source of
divergence. This search requires 18s with 1 worker.

6.6 User study

We conducted a user study to assess how useful is the information
provided by DivExplorer in helping users identify data subgroups
with anomalous behavior. The study compared the information
provided by DivExplorer, Slice Finder, and LIME [21], the latter as
a relevant representative method from the Explainable AI domain.
For the study, we considered the COMPAS dataset. We performed
a controlled experiment in which we artificially injected bias in a
subgroup, and we measured how well the information provided
by the different tools allowed users to identify the injected bias.
Specifically, in the training set we injected bias in the subgroup char-
acterized by the pattern {age_cat>45, charge_degree=M}, changing

all outcomes to recidivate, and we trained a (biased) multi-layer per-
ceptron neural network on such modified dataset. We then analyzed
the misclassifications of such a biased classifier on the (unmodified)
testing dataset with DivExplorer, Slice Finder, and LIME.

The study involved 35 undergraduate computer science students,
who had some knowledge of the notions of classifiers, and false
positive and negative errors. We divided the users in four groups.
Group 1 was shown examples of correctly and mis-classified in-
stances drawn uniformly at random. The other groups were shown
the same information as group 1, and in addition:

• Group 2: the top 6 itemsets and their Δ𝐹𝑃𝑅 computed by
DivExplorer with 𝑠 = 0.05, and the global item divergence.

• Group 3: the itemsets computed by Slice Finder and their
impact factors, with degree=3 and default parameters.

• Group 4: LIME explanations for 8 correctly classified and 8
mis-classified instances drawn uniformly at random.

The amount of information received by groups 2, 3, and 4, was
similar, amounting to a couple of pages in PDF format. We asked
the participants to select the top 5 itemsets that are most affected
by errors. We consider the following metrics in evaluating the user
answers: hit and partial hit. The metric hit ∈ {0,1} is 1 if the user
included the injected bias itemset {age_cat>45, charge_degree=M},
and 0 otherwise. Themetric partial hit ∈ {0,1} is 1 if the user included
the items {age_cat>45} or {charge_degree=M}, and 0 otherwise.

Figure 12 summarizes the percentage of hits and partial hits for
each user group. The information provided by DivExplorer was
the one that led the users most directly to identify the injected bias,
with a combined hit rate of 88.89%. In group 1, 20% of the users
completely or partially identified the biased subgroups by carefully
inspecting the misclassified instances. In group 3 (Slice Finder),
most of the users only partially selected the biased itemset. Slice
Finder with default parameters identifies the two items composing
the itemset as already highly ‘problematic’, and prunes the search.
Finally, in group 4 the explanations provided by LIME led to a com-
bined hit rate of 37.5%. Interestingly, LIME had more full hits than
Slice Finder, in spite of LIME’s goal being to provide classification
explanations, rather than identifying critical subgroups.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we propose the notion of divergence over itemsets as
a measure of different classification behaviors in subsets of a given
dataset. A solid theoretical foundation, based on Shapley values,
is proposed to quantify divergence contributions, both for pattern
and dataset. The concept of divergence also allows capturing inter-
esting item behaviors, for example corrective items. An efficient
algorithm for divergence computation is provided and an extended
experimental evaluation shows the effectiveness and efficiency of
the proposed approach.

Given the generality of the divergence notion, as future work
we plan to study its extension to other data science tasks, including,
e.g., the preprocessing tasks.
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