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ABSTRACT
When analyzing the behavior of machine learning algorithms, it
is important to identify specific data subgroups for which the con-
sidered algorithm shows different performance with respect to
the entire dataset. The intervention of domain experts is normally
required to identify relevant attributes that define these subgroups.

We introduce the notion of divergence to measure this perfor-
mance difference and we exploit it in the context of (i) classification
models and (ii) ranking applications to automatically detect data
subgroups showing a significant deviation in their behavior. Fur-
thermore, we quantify the contribution of all attributes in the data
subgroup to the divergent behavior by means of Shapley values,
thus allowing the identification of the most impacting attributes.
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1 INTRODUCTION
Machine learning models and automated-decision making proce-
dures are becoming more and more pervasive, thus a growing inter-
est is arising on the careful understanding of their behavior [11, 25].
A relevant step in the explanation of the outcome of machine learn-
ing algorithms is the identification of data subgroups in which
the considered algorithm may show a different, and potentially
anomalous, behavior. The identification of peculiar behaviors of
data subgroups finds important applications in the KDD pipeline,
ranging from model validation and testing [7, 21] to the evaluation
of model fairness [5, 7]. In particular, societal bias [4] is becom-
ing a growing concern and researchers are increasingly working
on measuring and ensuring fairness in machine learning. To this
aim, human experts are frequently required to manually identify
sensitive attributes (e.g., gender, ethnicity) or problematic data sub-
groups.
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Data subgroup FPR FNR Δ𝐹𝑃𝑅 Δ𝐹𝑁𝑅

Entire dataset 0.09 0.70 0.00 0.00
age<25, #prior>3, sex=Male 0.68 0.36 0.59 -0.34
age>45, charge=M, race=Cauc 0.01 1.00 -0.08 0.30

Table 1: Example of patterns in the compas dataset, along
with their false-positive rate (FPR), false-negative rates
(FNR) and divergence Δ.

The behavior of machine learning algorithms is frequently evalu-
ated by means of global metrics, which consider the performance of
the algorithm on a global level, for the entire dataset, or for specific
class labels. Differently, in this paper we propose the concept of
divergence as a measure of the difference in statistics (e.g., false
positive rate) between the behavior of the machine learning algo-
rithm on a data subgroup and on the entire dataset. Data subgroups
showing a significant deviation in their behavior are automatically
identified by our approach, which characterizes data subgroups by
means of a combination of attribute values, denoted in the paper
as patterns, or itemsets.

To illustrate the concept of divergence, consider the compas
dataset [3], in which a score measuring recidivism risk is assigned
to criminal defendants by a proprietary algorithm. In this case, the
positive class corresponds to high recidivism scores. Table 1 shows
the false-positive (FPR) and false-negative (FNR) rates occurring in
the entire dataset (first row) and in the data subgroups characterized
by the highest FPR (second row) and FNR (third row) divergence.
For example, the pattern (age>45, charge=M, race=Cauc) shows a
high Δ𝐹𝑁𝑅 divergence. Hence, instances belonging to this data
subgroup will be wrongly assigned to the negative class with a
higher rate with respect to the entire dataset.

We propose a general framework for divergence computa-
tion, that allows the automatic identification of problematic data
subgroups both in classification and ranking problems. Our ap-
proach builds on well-known itemset mining algorithms (e.g., FP-
growth [12]) and allows the efficient identification of all the prob-
lematic patterns above a (low) frequency threshold. Moreover, given
a specific pattern, we exploit the notion of Shapley value [18] to
quantify the contribution of each attribute value to the pattern
divergence. For example, as will be shown in the following sections,
the attribute value age>45 is contributing the most to the divergent
behavior of the pattern discussed before.

2 RELATEDWORK
Existing techniques for analyzing data subgroups include both su-
pervised and unsupervised techniques. Supervised techniques rely
on domain experts and users to identify the subgroups of interest.
Several tools analyze performance over data subgroups specified
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by the user of a classification model for validation purposes [2, 13].
Many efforts have been devoted to detecting and mitigating bias in
classification tasks. Several approaches evaluate if different treat-
ment or performance occur on groups determined by some sensitive
or protected attributes [9, 10, 14, 16]. Recently, researches focused
the attention on fairness in rankings [25]. Different works propose
measures and mechanisms to audit ranking outputs and mitigate
bias over protected groups [6, 22–24]. The analysis of group fair-
ness in both the classification and the ranking tasks generally as-
sumes that the sensitive attributes (e.g. sex, race, age, degree of
disability) that define the protected groups are known or specified
a priori. We propose an approach for the automatic identification
of critical subgroups treated differently by a generic model, be it a
classifier or a ranker, without the a priori knowledge of the groups
and attributes of interest. We concern ourselves on auditing differ-
ences in subgroups, rather than mitigation strategies, which may
be application-dependent.

Several works have been proposed to automatically identify crit-
ical subgroups in the classification domain [5, 7, 21]. FairVIS [5] au-
dits the fairness of classification models leveraging on a clustering-
based subgroup identification technique. Fairness and performance
metrics are evaluated on the identified clusters described by a few
dominant features obtained via feature entropy. Differently, we
exploit frequent pattern mining algorithms to identify frequent crit-
ical subgroups. The subgroups are obtained by slicing the attribute
domains. Hence, the characterizing features are known and readily
interpretable. Errudite [21] is an interactive system that enables
data grouping for NLP error analysis using a domain-specific lan-
guage. Differently from [21], our approach deals with structured
data and slices the data by (discrete) attribute values.

Slice Finder [7, 8] automatically detects data slices in which a
classification model performs poorly. Similarly to our approach, the
data subgroups are identified by slicing via attribute values. Slice
Finder defines a top-down lattice search to find the top-k critical
slices. The data exploration, based on breadth-first traversal, stops
when it reaches a subgroup characterized by a sufficiently large dif-
ference in performance which is statistically significant. However,
this stopping criterion may prevent finding relevant critical sub-
groups, because the metrics used for assessing model performance
on subgroups are typically non-monotone. Thus, from the critical
behavior of a group, we cannot make assumptions on the behavior
of its super/sub-groups. We propose a more comprehensive explo-
ration by identifying all the subgroups adequately represented (i.e.,
above a frequency threshold) in the dataset. We then characterize
the subgroups using the notion of Shapley values [18] to estimate
the contribution of each attribute value to the subgroup divergence.

We introduced the notion of divergence, and the use of Shapley
value to measure the contribution of attributes to divergence, in
[17]. This paper extends the definitions to handle ranking systems,
as well as general quantitative prediction functions.

3 EXAMPLE DATASETS
As running examples to illustrate the concepts, we use two well-
known datasets. The first is the compas dataset [3], which consists
of defendants considered for release on parole. For each individual,
the dataset contains personal data such as age range, race, gender,

and data related to criminal history, such as number of prior of-
fenses. The compas dataset contains also a score that estimates the
likelihood that a defendant commits another offense (recidivates) in
the next two years. From this score, via comparison with a thresh-
old, we can obtain a binary classification. For each defendant, the
ground truth is known, so that the false-positive and false-negative
rates of the classification can be computed. We are interested in
characterizing the subgroups for which these rates deviate from
the average.

The second dataset we consider is the Law School Dataset. The
Law School Admission Council conducted a survey across 163
law schools in the United States in 1998 [20]. The resulting Law
School Dataset contains information on 21,791 law students such
as their entrance exam scores (LSAT), their grade-point average
(GPA) collected prior to law school, and their normalized first year
average grade (ZFYA), in addition to their race and sex. We use
the dataset as prepared by [15]. In this dataset, we study how the
average ZFYA score, and the average rank of students after the first
year, vary across subgroups.

4 DIVERGENCE
We provide here the definition of divergence, which captures the
difference between statistical measures computed on individual sub-
groups, versus the entire dataset, and we illustrate the divergence
of various measures on our example datasets.

4.1 Datasets and itemsets
We consider datasets 𝐷 in tabular form: there is a fixed set 𝐴 of
columns, and a set 𝑋 of rows; every row 𝑥 assigns value 𝑥 (𝑎) to
attribute 𝑎 ∈ 𝐴. Thus, 𝐴 is the schema of the dataset, and the rows
𝑋 are the instances. We assume that every attribute 𝑎 ∈ 𝐴 has a
finite domain 𝐷𝑎 . Thus, the dataset is discretized. For example, in
our compas dataset, an instance is a defendant, and the attributes
are age range, gender, and so on.

An item 𝛼 consists in a selection 𝑎 = 𝑐 for an attribute 𝑎 ∈ 𝐴

and a value 𝑐 ∈ 𝐷𝑎 . An itemset is a set of items, with each item
involving a distinct attribute. For instance, in compas, an itemset is
{age>45, race=Caucasian}. The support-set 𝐷 (𝐼 ) = {𝑥 ∈ 𝐷 | 𝑥 |= 𝐼 }
of an itemset 𝐼 consists of the instances that satisfy 𝐼 ; the support
of 𝐼 is the fraction of dataset instances in 𝐷 (𝐼 ), or sup(𝐼 ) = |𝐷 (𝐼 ) |

|𝐷 | .

4.2 Itemset divergence
We are interested in identifying subgroups of data that behave dif-
ferently, compared to the overall dataset, with respect to statistical
measures. For instance, in classifiers we are interested in identi-
fying data subgroups where the false-positive and false-negative
rates differ from the average. In rankings, we are interested in data
subgroups where the average rank deviates from the global one.
We use itemsets to describe data subgroups, and we use an outcome
function to capture the statistic of interest.

An outcome function 𝑜 : 𝑋 ↦→ {⊥} ∪ IR associates with each
instance either a do-not-consider value ⊥, or a real number. For a
(possibly empty) dataset 𝐼 , we define the outcome 𝑜 (𝐼 ) on 𝐼 via:

𝑜 (𝐼 ) = 𝐸{𝑜 (𝑥) | 𝑥 |= 𝐼 , 𝑜 (𝑥) ≠ ⊥} . (1)
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Itemset Sup Δ𝑍𝐹𝑌𝐴 𝑡

LSAT>41.0, UGPA>3.5, race=White, sex=Female 0.03 0.4115 11.1
LSAT>41.0, UGPA>3.5, race=White 0.07 0.4063 16.8
LSAT>41.0, UGPA>3.5, race=White, sex=Male 0.04 0.4025 13.0

LSAT≤33.0, race=Black, sex=Male 0.02 -1.0257 21.2
LSAT≤33.0, UGPA≤3.0, race=Black, sex=Male 0.01 -1.0049 17.05
LSAT≤33.0, race=Black 0.05 -0.9787 33.3
Table 2: Top-3 itemsets with highest and lowest ZFYA diver-
gence for the Law School Dataset. The support threshold is
𝑠 = 0.005.

If 𝐼 is empty, 𝑜 (∅) is the outcome of the complete dataset. We then
define the divergence of 𝐼 (with respect to outcome function 𝑜) to
be:

Δ𝑜 (𝐼 ) = 𝑜 (𝐼 ) − 𝑜 (∅) . (2)

The divergence of an itemset captures the difference in behavior
between the itemset, and the entire dataset, with respect to the
outcome function under consideration. We illustrate, via examples,
how different outcome functions enable the analysis of raw datasets,
as well as the behavior of classifiers and ranking systems.

4.3 Attribute divergence
In many cases, one can take the outcome of an instance to be
one of the quantitative attributes of the instance itself. For the
Law School Dataset, the simplest choice consists in taking 𝑜 (𝑥) =
𝑍𝐹𝑌𝐴(𝑥), setting the outcome equal to the normalized first-year
average of each student. Table 2 lists the three itemsets with greatest
positive and negative divergence, among those with support at
least 𝑠 = 0.005, which corresponds to about 100 students. The table
reports also the 𝑡-value of the divergence, computed according to
Welch’s 𝑡-test. We use a support limit both to provide a termination
criterion for the divergence computation algorithm, as discussed
in Section 4.6, and to exclude itemsets with such small support
that the analysis is affected by statistical fluctuations. From the
results, we see that the itemset with greatest positive divergence
is {LSAT>41.0, UGPA>3.5, race=White, sex=Female}, for which the
ZFYA-divergence is 0.41. The itemset with the greatest negative
divergence is {LSAT≤33.0, race=Black, sex=Male}, for which the
ZFYA score is on average lower by 1.03 compared with the dataset
average. In Section 5, we will see how to analyze the contribution
of each of the three items LSAT≤33.0, race=Black, and sex=Male,
to the divergence of this itemset.

4.4 Classifier divergence
Divergence can also be applied to analyze classifier behavior. Given
a classifier, let 𝑝 (𝑥) ∈ {t, f} be the predicted value for an instance
𝑥 , and let 𝑡 (𝑥) be the true value (ground truth). In a classifier, it is
often of interest to study the divergence of the false-positive rate
(FPR) and false-negative rate (FNR). The variation of these rates
across data subgroups gives an indication of how the subgroups are
advantaged, or disadvantaged, by classifier errors. To capture the

Itemset Sup Δ𝐹𝑃𝑅 𝑡

age<25, #prior>3, sex=Male 0.02 0.594 6.1
age<25, #prior>3 0.02 0.527 5.7
age<25, stay=1w-3M, race=Afr-Am, sex=Male 0.02 0.306 3.8

Sup Δ𝐹𝑁𝑅 𝑡

age>45, charge=M, race=Cauc 0.05 0.302 17.6
age>45, charge=M, #prior=0 0.04 0.302 10.4
age>45, charge=M, #prior=[1,3] 0.03 0.302 14.1

Table 3: Top-3 divergent patterns with respect to FPR and
FNR for the compas dataset. The support threshold is 𝑠 =

0.0175.

divergence of the false-positive rate, we use the outcome function:

𝑜 (𝑥) =


⊥ if 𝑡 (𝑥) = t
0 if 𝑡 (𝑥) = f and 𝑝 (𝑥) = f
1 if 𝑡 (𝑥) = f and 𝑝 (𝑥) = t

for 𝑥 ∈ 𝑋 . Here, the outcome ⊥ is used to exclude from the statistic
the true-positives, so that the outcome 𝑜 (𝐼 ) of an itemset 𝐼 is its
FPR. Outcome functions for capturing the FNR, true-positive rate,
and so on, can be similarly defined.

In Table 3 we report the top-3 divergent patterns with respect to
FPR and FNR, for a minimum support of 𝑠 = 0.0175, equivalent to
about 100 instances. An itemset with positive divergence for FPR is
an itemset consisting of defendants that are incorrectly predicted to
recidivate at a rate higher than the average for the dataset. We see
that young males, with prior crimes, are the defendants most often
falsely predicted to recidivate. Conversely, old Caucasian males are
the most frequent instances incorrectly predicted not to recidivate.

4.5 Ranking divergence
In a ranking system, every instance 𝑥 has a rank 𝑖 (𝑥) ∈ IN>0, where
𝑖 = 1 is the top rank. It is natural to define the outcome function 𝑜
via a rank valuation function 𝛾 : IN>0 ↦→ IR, where 𝛾 (𝑖) represents
the value, to an instance, of being ranked in position 𝑖 . We define
the outcome of instance 𝑥 ∈ 𝑋 via:

𝑜 (𝑥) = 𝛾 (𝑟 (𝑥)) (3)

The outcome 𝑜 (𝐼 ) of an itemset 𝐼 would then correspond to the
average value an instance in 𝐼 receives from being ranked.

As an example, consider admissions to a university. If applicants
are ranked, and the top 𝑘 admitted, we can take 𝛾 (𝑖) = 1 for 𝑖 ≤
𝑘 and 𝛾 (𝑖) = 0 otherwise. The outcome 𝑜 (𝐼 ) corresponds to the
admission rate of 𝐼 , that is, the fraction of applicants in 𝐼 that are
admitted, and the divergence Δ𝑜 (𝐼 ) would then represent howmore,
or less, likely applicants in 𝐼 are to be admitted, compared with the
general population. Notice that the use of a rank-value function 𝛾 ,
rather than simply the rank, is key to capturing the impact of the
ranking on instances in top-𝑘 admissions.

As another example, returning to our Law School Dataset, as-
sume that at the end of their first year, students internship appli-
cations are displayed to internship hosts sorted according to the
first-year average grade (ZFYA) of a student. Assume that the ben-
efit of being ranked in position 𝑖 to the student is proportional
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Itemset Sup Δ𝛾 𝑡

LSAT>41.0, UGPA>3.5, race=White, sex=Female 0.03 0.0206 8.7
LSAT>41.0, UGPA>3.5, race=White 0.07 0.0196 13.0
LSAT>41.0, UGPA>3.5, race=White, sex=Male 0.04 0.0189 9.9

LSAT≤ 33.0, race=Black, sex=Male 0.02 -0.0283 25.6
LSAT≤ 33.0, UGPA≤ 3.0, race=Black, sex=Male 0.01 -0.0280 21.0
LSAT≤ 33.0, UGPA≤ 3.0, race=Black 0.03 -0.0278 31.4
Table 4: Top-3 itemsets with highest and lowest divergence
for the Law School Dataset, for the internship example, with
𝛾 (𝑖) = 𝑖−0.1. The support threshold is 𝑠 = 0.005.

to 𝛾 (𝑖) = 𝑖−0.1; this type of relation between rank and benefit is
common in search applications. Table 4 gives the itemsets with
top and bottom divergence with respect to this benefit. We see
that the itemset that derives the most benefit out of internships
would be {LSAT>41.0, UGPA>3.5, race=White, sex=Female}, and the
one deriving the least benefit would be {LSAT≤33.0, race=Black,
sex=Male}.

4.6 Computing the divergence
We compute the outcome (1) of itemsets, and hence their divergence,
by extending frequent-pattern mining algorithms [1, 12, 19].

The input to the algorithms is a support threshold 𝑠 : only itemsets
𝐼 with sup(𝐼 ) ≥ 𝑠 are considered. The support threshold is chosen
according to the minimum size of the data subgroup that one is
interested in investigating. For each itemset 𝐼 above the support
threshold, its outcome 𝑜 (𝐼 ) is computed by tallying, during itemset
extraction, (a) the sum of all instance outcomes in 𝐼 that are not ⊥,
and (b) the number of such instances, and then taking the ratio.

By extending frequent-pattern mining algorithms, we obtain
algorithms that compute the divergence of all itemsets above the
support size extremely efficiently. Even when there are 105 item-
sets above the support threshold, they can be identified and their
divergence computed in a matter of a dozen seconds or so.

5 ITEM CONTRIBUTION TO DIVERGENCE
Once one has identified the itemsets for which the relevant clas-
sification or rank statistics most deviate from the average, it is of
interest to determine the contributions of the individual items to
the divergence of the itemset. For instance, we see from Table 3 that
the defendants most likely to be incorrectly predicted to recidivate
are those in {age<25, #prior>3, sex=Male}; which one of the three
items age<25, #prior>3, and sex=Male, is the most important? Of
which fraction of the divergence 0.594 is each item responsible?

To answer this question, we use the notion of Shapley values
[18]. In game theory, Shapley values are a way of distributing the
value 𝑣 (1, 2, . . . , 𝑁 ) of a team of 𝑁 players, to each of the players
1, 2, . . . , 𝑁 , in such a way that the sum of the player’s values is equal
to the team’s value. We define the contribution Δ(𝛼 | 𝐼 ) of item 𝐼

to the divergence Δ(𝐼 ) as the Shapley value of 𝛼 in 𝐼 , for value Δ:

Δ(𝛼 | 𝐼 ) =
∑

𝐽 ⊆𝐼\{𝛼 }

|𝐽 |!( |𝐼 | − |𝐽 | − 1)!
|𝐼 |!

[
Δ(𝐽 ∪ 𝛼) − Δ(𝐽 )

]
. (4)

0.0 0.2

(a)

sex=Male

age<25

#prior>3

∆FPR

0.0 0.1

(b)

race=Cauc

charge=M

age>45

∆FNR

Figure 1: Contributions of individual items to the divergence
of the compas frequent patterns having greatest FPR and
FNR divergence in Table 3.

.

−0.5 0.0

race=Black

LSAT≤33.0

sex=Male

∆ZFYA

Figure 2: Contributions of individual items to the divergence
of the frequent patterns having lowest ZFYA divergence for
the Law School Dataset (𝑠 = 0.005).

Note that, if an itemset is above the support threshold, all its subsets
also are, so all divergences of itemsets in (4) can be computed by
our algorithm.

Figure 1 reports the influence of individual items to the itemsets
with greatest FPR and FNR divergence. We see that sex=Male is re-
sponsible only for a small fraction of the FPR divergence of {age<25,
#prior>3, sex=Male}, while age<25 and #prior>3 have effects of
similar magnitude.

Figure 2 reports the results of a similar analysis for the itemset
with lowest ZFYA divergence in the Law School Dataset. We see
that race=Black is the predominant factor, with LSAT≤33.0 giving
a minor contribution, and sex=Male a negligible one. The predomi-
nant role of race stands out as a warning signal, indicating that this
negative rank divergence merits further investigation.

6 CONCLUSIONS
In this paper we presented a method for finding data subgroups
that behave differently from the overall dataset in classification,
ranking, or other automated prediction systems. At the core of the
approach is the notion of divergence, which quantifies the difference
in behavior, andwhich can be efficiently determined via datamining
approaches. We believe our approach may provide a useful building
block in strategies to mitigate algorithmic bias.



Identifying Biased Subgroups in Ranking and Classification Responsible AI @ KDD 2021, August 14-18, 2021, Virtual Event

ACKNOWLEDGMENTS
This work has been partially supported by the SmartData@PoliTO
center on Big Data and Data Science.

REFERENCES
[1] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining

Association Rules in Large Databases. In Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB ’94). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 487–499.

[2] TensorFlow Model Analysis. 2018. Introducing TensorFlow Model Analysis:
Scaleable, Sliced, and Full-Pass Metrics. https://medium.com/tensorflow/
introducing-tensorflow-model-analysis-scaleable-sliced-and-full-pass-
metrics-5cde7baf0b7b.

[3] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine
Bias. https://www.propublica.org/article/machine-bias-risk-assessments-in-
criminal-sentencing

[4] Solon Barocas and Andrew D Selbst. 2016. Big data’s disparate impact. Calif. L.
Rev. 104 (2016), 671.

[5] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie
Morgenstern, and Duen Horng Chau. 2019. FairVis: Visual analytics for discov-
ering intersectional bias in machine learning. In 2019 IEEE Conference on Visual
Analytics Science and Technology (VAST). IEEE, 46–56.

[6] L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. 2017. Ranking with
fairness constraints. arXiv preprint arXiv:1704.06840 (2017).

[7] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong
Whang. 2019. Automated Data Slicing for Model Validation: A Big data - AI
Integration Approach. IEEE Transactions on Knowledge and Data Engineering
(2019). https://doi.org/10.1109/TKDE.2019.2916074

[8] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong
Whang. 2019. Slice Finder: Automated Data Slicing for Model Validation. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). 1550–1553.

[9] Cynthia Dwork and Christina Ilvento. 2018. Group fairness under composition.
In Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency
(FAT* 2018).

[10] James R Foulds, Rashidul Islam, Kamrun Naher Keya, and Shimei Pan. 2020. An
intersectional definition of fairness. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, 1918–1921.

[11] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. 2018. A Survey of Methods for Explaining Black
Box Models. ACM Comput. Surv. 51, 5, Article 93 (Aug. 2018), 42 pages. https:
//doi.org/10.1145/3236009

[12] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without
Candidate Generation. In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, Weidong
Chen, Jeffrey F. Naughton, and Philip A. Bernstein (Eds.). ACM, 1–12. https:
//doi.org/10.1145/342009.335372

[13] Minsuk Kahng, Dezhi Fang, and Duen Horng Chau. 2016. Visual exploration of
machine learning results using data cube analysis. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics. 1–6.

[14] Michael J. Kearns, Seth Neel, Aaron Roth, and Zhiwei StevenWu. 2018. Preventing
Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine
Learning Research, Vol. 80). PMLR, 2569–2577. http://proceedings.mlr.press/v80/
kearns18a.html

[15] Matt J. Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counter-
factual Fairness. In Advances in Neural Information Processing Systems (NIPS).
4069–4079.

[16] Giulio Morina, Viktoriia Oliinyk, Julian Waton, Ines Marusic, and Konstantinos
Georgatzis. 2019. Auditing and Achieving Intersectional Fairness in Classification
Problems. arXiv:1911.01468 [cs.LG]

[17] Eliana Pastor, Luca de Alfaro, and Elena Baralis. 2021. Looking for Trouble:
Analyzing Classifier Behavior via Pattern Divergence. In Proceedings of the 2021
International Conference on Management of Data (Virtual Event, China) (SIG-
MOD/PODS ’21). Association for Computing Machinery, New York, NY, USA,
1400–1412. https://doi.org/10.1145/3448016.3457284

[18] Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory
of Games 2, 28 (1953), 307–317.

[19] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. In-
troduction to Data Mining (2nd Edition) (2nd ed.). Pearson.

[20] Linda F. Wightman. 1998. In LSAC research report series. https://eric.ed.gov/?id=
ED469370

[21] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. 2019.
Errudite: Scalable, Reproducible, and Testable Error Analysis. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Florence, Italy, 747–763. https:
//doi.org/10.18653/v1/P19-1073

[22] Ke Yang and Julia Stoyanovich. 2017. Measuring fairness in ranked outputs.
In Proceedings of the 29th International Conference on Scientific and Statistical
Database Management. 1–6.

[23] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Mega-
hed, and Ricardo Baeza-Yates. 2017. Fa* ir: A fair top-k ranking algorithm. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement. 1569–1578.

[24] Meike Zehlike and Carlos Castillo. 2020. Reducing disparate exposure in ranking:
A learning to rank approach. In Proceedings of The Web Conference 2020. 2849–
2855.

[25] Meike Zehlike, Ke Yang, and Julia Stoyanovich. 2021. Fairness in Ranking: A
Survey. arXiv preprint arXiv:2103.14000 (2021).

https://medium.com/tensorflow/introducing-tensorflow-model-analysis-scaleable-sliced-and-full-pass-metrics-5cde7baf0b7b
https://medium.com/tensorflow/introducing-tensorflow-model-analysis-scaleable-sliced-and-full-pass-metrics-5cde7baf0b7b
https://medium.com/tensorflow/introducing-tensorflow-model-analysis-scaleable-sliced-and-full-pass-metrics-5cde7baf0b7b
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1109/TKDE.2019.2916074
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1145/342009.335372
https://doi.org/10.1145/342009.335372
http://proceedings.mlr.press/v80/kearns18a.html
http://proceedings.mlr.press/v80/kearns18a.html
https://arxiv.org/abs/1911.01468
https://doi.org/10.1145/3448016.3457284
https://eric.ed.gov/?id=ED469370
https://eric.ed.gov/?id=ED469370
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073

	Abstract
	1 Introduction
	2 Related Work
	3 Example Datasets
	4 Divergence
	4.1 Datasets and itemsets
	4.2 Itemset divergence
	4.3 Attribute divergence
	4.4 Classifier divergence
	4.5 Ranking divergence
	4.6 Computing the divergence

	5 Item Contribution to Divergence
	6 Conclusions
	Acknowledgments
	References

