
Computer Communications 181 (2022) 58–68

M
M
U

A

K
C
A
R

1

A
H
a
s
t
p

a
t
(
n
b
o
s
a

t
a
r
w
t
e
d
i

p

h
R
A
0
(

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

aking slotted ALOHA efficient and fair using reinforcement learning
olly Zhang, Luca de Alfaro ∗, J.J. Garcia-Luna-Aceves

niversity of California Santa Cruz, United States of America

R T I C L E I N F O

eywords:
hannel access
LOHA
einforcement learning

A B S T R A C T

Reinforcement learning (RL) has been proposed as a technique that allows nodes to learn to coordinate
their transmissions in order to attain much higher channel utilization. Several RL-based approaches have
been proposed to improve the performance of slotted ALOHA; however, all these schemes have assumed that
immediate feedback is available at the transmitters regarding the outcome of their transmissions. This paper
introduces ALOHA-dQT, which is the first channel-access protocol based on the use of RL in the context of
slotted ALOHA that takes into account the use of explicit acknowledgments from receivers to senders. As such,
ALOHA-dQT is the first RL-based approach for channel access that is suitable for wireless networks that do not
rely on centralized repeaters or base stations. ALOHA-dQT achieves high utilization by having nodes broadcast
short summaries of the channel history as known to them along with their packets. Simulation results show
that ALOHA-dQT leads to network utilization above 75%, with fair bandwidth allocation among nodes.
. Introduction

Nodes simply transmit their packets without coordination in the
LOHA protocol, which makes it attractive because of its simplicity.
owever, the channel maximum utilization is limited to about 18%,
nd to about 37% if transmissions are organized in fixed-length time-
lots. To improve the utilization of the channel, coordination among
he nodes is essential, and a variety of medium-access control (MAC)
rotocols have evolved over the years to provide such coordination.

Recently, reinforcement learning has been proposed as a way to
chieve inter-nodal coordination without the need for a central au-
hority or complex signaling. The application of reinforcement learning
RL) to channel access has followed two main directions: using deep
eural networks to learn general strategies [1], and using ‘‘expert-
ased’’ systems that learn which strategies to use among a fixed number
f them [2–5]. The latter approaches are lighter-weight, and have been
uccessful in achieving high channel utilization in networks with many
ctive nodes.

The limitation of all the RL-based approaches proposed to date is
hat they assume that transmitters know the fate of their transmissions
s soon as they are done transmitting. Emulating this in practice
equires a central node using a secondary channel to either re-transmit
hat it receives from other nodes or transmit explicit acknowledgments

o transmissions received without interference. Using implicit acknowl-
dgments to drive the ‘‘reinforcement’’ in RL is an impediment for
eployment and use in wireless networks based on distributed control
n which such functionality cannot be provided.

This paper presents ALOHA-dQT, which is the first RL-based ap-
roach applied to slotted ALOHA that takes into account the use

∗ Corresponding author.
E-mail addresses: mollyzhang@ucsc.edu (M. Zhang), dealfaro@acm.org (L. de Alfaro), jj@soe.ucsc.edu (J.J. Garcia-Luna-Aceves).

of explicit acknowledgments from receivers to senders. Accordingly,
ALOHA-dQT is suitable for wireless networks with distributed con-
trol. The only requirement for the proposed scheme is a time-slotted
channel. ALOHA-dQT is based upon ALOHA-QTF [4], and adds to
it an explicit-acknowledgment scheme based on nodes transmitting
their knowledge about channel history along with their packets. When
nodes receive these channel histories from other nodes, they merge
them into their own knowledge of history: these history updates drive
the reinforcement learning. This history reconstruction is modeled
on knowledge-monotonic, distributed computation in distributed sys-
tems [6,7].

Section 3 summarizes the common elements of ALOHA-QTF and
ALOHA-dQT, and Section 4 presents the acknowledgment scheme of
ALOHA-dQT, and how it is used to drive reinforcement learning. The
reinforcement learning scheme of ALOHA-QTF is modified in ALOHA-
dQT to account for the delay in learning about transmission outcome.
The delay has an implication on which ‘‘experts’’ (strategies) are af-
fected, but more deeply, the reinforcement needs to be modified. For
instance, strategies that trigger transmissions need to be temporarily
demoted until their transmissions are acknowledged, or else they might
trigger ‘‘collision storms’’ under which no packet is received in periods
of high contention.

ALOHA-dQT is well suited for network nodes that can detect the
presence of radio energy during transmission slots, and thus can dis-
tinguish empty slots from slots where collisions occurred. However, it
also works well with nodes without energy-detection capabilities.

Section 5 presents a performance comparison of ALOHA-dQT with
previous protocols, including ALOHA-Q, ALOHA-QTF, and ALOHA with
ttps://doi.org/10.1016/j.comcom.2021.09.018
eceived 31 March 2021; Received in revised form 2 July 2021; Accepted 20 Septe
vailable online 29 September 2021
140-3664/© 2021 The Author(s). Published by Elsevier B.V. This is an open acce
http://creativecommons.org/licenses/by/4.0/).
mber 2021

ss article under the CC BY license

https://doi.org/10.1016/j.comcom.2021.09.018
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2021.09.018&domain=pdf
mailto:mollyzhang@ucsc.edu
mailto:dealfaro@acm.org
mailto:jj@soe.ucsc.edu
https://doi.org/10.1016/j.comcom.2021.09.018
http://creativecommons.org/licenses/by/4.0/

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68

a
i
A
w
e
o
a
A
d

i
t
r
c
a
t

s
n
r
o
n
e
A
t
a
s
i
d

3

n
n
s
s
𝑡

exponential backoff. Simulation results show that ALOHA-dQT offers
channel utilization that is generally above 75% if energy detection is
available, and above 65% if it is not available, under a wide range of
network dynamics. In addition to high utilization, ALOHA-dQT also
achieves high fairness in sharing the bandwidth between the nodes,
as measured using the Jain index. We also provide results on how the
values of the protocol hyper-parameters affect the results in terms of
both utilization and fairness.

2. Related work

The maximum channel utilization that can be achieved with the
ALOHA protocol is about 18%. Slotted-ALOHA improves this to about
37% by confining transmissions to time slots with a length equal to a
packet length [8]. To go beyond this limited channel utilization, some
kind of coordination among nodes is needed. A popular approach used
in the past to achieve inter-nodal coordination is via reservations, in
which nodes declare their transmission needs, and a central authority
assigns slots to individual nodes (e.g., [9]) or nodes engage in peer-to-
peer signaling to establish reservations. Other schemes adopt repetition
strategies with which each node transmits the same packet multiple
times, and relying on physical-layer techniques (e.g., code division
multiple access and successive interference cancellation) to improve
throughput [10–13].

Reinforcement learning has been proposed as a technique to achieve
coordination without requiring a central authority assigning slots, or
mechanisms related to the physical channel. The idea is that nodes can
observe the channel and learn how to coordinate their transmissions
to reduce collisions and achieve high network utilization. The most
powerful type of reinforcement learning is deep reinforcement learning
(DRL), in which a neural net learns the success of actions (transmit,
or wait) as a function of channel history [1]. Unfortunately, the very
generality of the approach slows down the learning: adaptation has
been demonstrated in [1] only for channels with two DRL nodes, and
it takes tens of thousands of time slots even in such simple scenarios.

Expert-based learning is a less powerful type of reinforcement than
DRL, but attains faster learning. Nodes in this approach learn which
of different ‘‘experts’’, or transmission strategies, to follow [14–16].
In ALOHA-Q, nodes consider a transmission frame of fixed length 𝐿,
and learns the quality 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝐿, of each frame slot [2,3]. At each
frame, ALOHA-Q transmits in the time-slot with highest 𝑞-value; if the
transmission is successful, the 𝑞-value of the slot used is increased, and
if the transmission is unsuccessful, the 𝑞-value is decreased. ALOHA-Q
can reach high utilization when the frame length is well matched to
the number of active nodes, even though adaptation is not always fast,
a function of the particular kind of updates used.

The approach based on experts has also been used coupled with the
schedule trees of [17]. In a schedule tree, each child schedule has twice
the period of the parent, and sibling schedules transmit in different slots
of the period. The variable period leads to frameless protocols that can
dapt to different numbers of active nodes. In [17] the tree structure
s used to resolve each collision as it arises. In ALOHA-QTF [4] and
T-ALOHA [5], each tree schedule is an ‘‘expert’’, and the nodes learn
hich experts to follow. In AT-ALOHA, each node tracks a subset of
xperts, and use a set of rules to update the set according to channel
utcomes. In ALOHA-QTF, weights are associated with each expert,
nd nodes select schedules with high weights. ALOHA-QTF AND AT-
LOHA attain high network utilization under a wide range of network
ynamics.

All of the channel-access approaches based on reinforcement learn-
ng mentioned above rely on implicit, immediate acknowledgments of
ransmissions. This type of feedback can be emulated with a centralized
epeater that rebroadcasts all received packets on a separate orthogonal
hannel. The immediate feedback is used to update weights (ALOHA-Q
nd ALOHA-QTF) or update the experts in use (AT-ALOHA). We adopt

he schedule-tree and schedule weights of ALOHA-QTF, and add to it an

59
explicit-acknowledgment scheme based on nodes broadcasting, along
with each packet, their knowledge of past channel history. Updates
to the knowledge about channel history trigger weight updates. The
history broadcasting and update is modeled after distributed monotonic
computation in distributed systems [6,7].

Concurrent to the work on ALOHA-dQT, we developed a related
approach to delayed acknowledgment in medium access with tree-
based schedules [18]. While the performances of the approaches are
comparable, the techniques used are different. The policy trees of [18]
do not have quantitative weights associated with them; rather, a set of
active nodes is kept, and the learning is driven by dynamically updating
such set rather than learning the weight of each node in the tree. The
acknowledgment mechanism is also different. Nodes executing ALOHA-
dQT broadcast their knowledge about the recent channel history to
build a consensus version of it. By contrast, the acknowledgments used
in the approach presented in [18] are sent via a gossip protocol.

3. Learning the schedules

ALOHA-dQT, like its predecessor ALOHA-QTF [4], is a protocol for
fully-connected networks in which the channel is time-slotted. At each
time slot a node can either transmit (T) or wait (W), and the channel
outcome can be either empty (E), if no node transmitted; success (S),
if exactly one node transmitted, or collision (C), if two or more nodes
transmit. Both ALOHA-QTF and ALOHA-dQT use reinforcement learn-
ing to allow the nodes to coordinate, and schedule their transmissions
in a way that reduces collisions while allocating bandwidth fairly.

The reinforcement learning and node adaptation in ALOHA-QTF
are driven by immediate feedback regarding each slot outcome in
{𝐸,𝑆, 𝐶}, as soon as the transmission slot ends. This is not practical in
ingle-channel wireless networks based on distributed control, because
odes in these networks must use their radios in either transmit or
eceive mode in each time-slot, and a sender can learn the outcome
f its transmission only by receiving an acknowledgment from other
odes. ALOHA-dQT differs from ALOHA-QTF by the use of an acknowl-
dgment mechanism and in how the reinforcement learning is driven.
LOHA-dQT drives the reinforcement learning with a mix of informa-

ion gleaned from observing the network and information received via
cknowledgments. However, the two protocols share the same policy
tructure and the same operations on such structure, which are covered
n this section. The acknowledgment structure and how the information
rives reinforcement learning. are presented in the following section.

.1. The policy tree

In the protocols considered in this paper, as in ALOHA-QTF of [4],
odes transmit according to the union of periodic schedules. Each
ode keeps a local time-slot counter 𝑡; these counters need not be
ynchronized across the network. A policy consists in a (periodic)
chedule 𝜎 = (𝑖, 𝑚), which prescribes transmitting at all times 𝑡 such that
mod 2𝑚 = 𝑖; the schedule has period 2𝑚 and offset 𝑖. For 𝜎 = (𝑖, 𝑚),

we let 𝛿(𝜎, 𝑡) be 1 if 𝑡 mod 2𝑚 = 𝑖 and 0 otherwise, so that 𝛿(𝜎, 𝑡) is the
indicator function of the transmit times of 𝜎.

A node uses as policies the set of schedules  = {(𝑖, 2𝑚) ∣ 0 ≤ 𝑖 <
2𝑚, 0 ≤ 𝑚 ≤ 𝑛}, up to some periodicity 2𝑛. For each policy 𝜎 in  , the
node stores a weight 𝑤𝜎 ∈ [0, 1] representing the quality of the policy,
that is, its ability to prescribe transmitting without causing collisions.

The policies can be organized into a tree, illustrated in Fig. 1, where
policy (𝑖, 𝑚) has as children (𝑖, 𝑚 + 1) and (𝑖 + 2𝑚, 𝑚 + 1). The nodes
at the same tree level have the same period but different offsets, and
thus prescribe non-colliding transmissions; every child node transmits
in half of the slots of the parent. To coordinate the transmissions of
𝑁 nodes, if the nodes can be all active at the same time, a policy
tree with at least 𝑁 leaves is needed. In practice, a tree with depth
at least 𝑛 = ⌊log2 𝑁⌋+2 is preferable, to allow nodes to modulate their

bandwidth.

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68

n
o
o
t
p
s
a
e
w
c
w
m
f
b

a
b

T
t
s


t
c

w
f
u
t
t
a
i
n
i
h

P
𝑤



w
t
g
m
a
p
o

W
t
m

𝑤

w
f
a
𝑡
b

W
t

r
b
e
e
t
L
𝑤
r

𝑤

w
f

Fig. 1. Policy tree in ALOHA-QTF.

The periodic structure of the policies, and their hierarchical orga-
ization, facilitates the learning process of the nodes. In fact, a node
f depth 𝑛 contains 2𝑛+1 − 1 policies, yet every policy conflicts with
nly 𝑛 others: thus, if we pick two policies at random, it is rare that
hey conflict (for 𝑛 = 8, the probability is ≈ 0.016). Further, if two
olicies conflict, they are guaranteed to do so at least every 2𝑛 time
lots, facilitating conflict detection. These two properties, that conflicts
re rare, and are detected early, are crucial in driving adaptation. We
xperimented using as policies the (larger) set of schedules ‘‘transmit
hen 𝑡 mod 𝑘 = 𝑖’’ for 0 ≤ 𝑖 < 𝑘 ≤ 2𝑛. In this set, conflicts are

ommon, and can be often discovered only with delay, as two schedules
ith periods 𝑘1, 𝑘2 cause a collision only once every minimum common
ultiple of 𝑘1, 𝑘2. Using this larger set of schedules prevented nodes

rom adapting, and yielded very poor performance: more freedom of
ehavior did not translate in better adaptation.

Another fundamental property of the policy tree is that it is invari-
nt with respect to clock offsets among nodes. Specifically, let ( , 𝑤)
e a policy tree with its set of weights. If we translate time by 𝛥, so

that the original time 𝑡 and translated time 𝑡′ are related by 𝑡′ = 𝑡 + 𝛥.
he weighed policy tree ( , 𝑤) for time 𝑡 is equivalent to the weighed
ree ( , 𝑤′) for 𝑡′, where 𝑤′

(𝑖′ ,𝑚) = 𝑤(𝑖,𝑚) for 𝑖′ = (𝑖 + 𝛥) mod 2𝑚, in the
ense that the two weighed trees ( , 𝑤) and ( , 𝑤′) prescribe the same

actions at the corresponding. Further, the relation that relates (𝑖, 𝑚) in
with ((𝑖+𝛥) mod 2𝑚, 𝑚) in  ′ preserves the tree structure, in the sense

hat related nodes have related children. This has the consequence that
lock synchronization among nodes is not required: every node can keep

its own local clock, which is incremented at each transmission slot;
offsets between clocks at different nodes simply correspond to different
arrangements of weights in the policy trees of the nodes.

3.2. Policy-tree protocols

Policy-tree protocols, such as the ALOHA-QTF protocol of [4] and
the protocols presented in this paper, consist in a weight initialization
step, which is then followed by three steps performed cyclically:

1. Policy selection: at the start of each network time-slot, a set of
active policies is selected; these policies drive the decision to
transmit, or to wait.

2. Weight update: at the conclusion of each network time-slot, the
weights of all policies are updated according to the outcome of
the time slot.

3. Weight normalization: following the weight update, the weights
are renormalized: the weight from ‘‘losing’’ policies is redis-
tributed to other policies, and the numerical values of the
weights are renormalized to ensure that they fall within a
prescribed range.
60
We describe these steps in detail below.

Weight initialization. The weight of policy (𝑖, 𝑚) ∈  is initialized by:

𝑤(𝑖,𝑚) = 𝛽 ⋅
0.9 + 0.1 ⋅𝑋(𝑖,𝑚)

1.2𝑚
, (1)

here {𝑋𝜎}𝜎∈ is a set of random variables independently sampled
rom the uniform distribution over [0, 1]. In [4] the value 𝛽 = 0.2 was
sed. The denominator 1.2𝑚 makes it so that nodes are initially likely
o adopt policies that transmit frequently, falling back on policies that
ransmit more rarely only as needed to avoid collisions. This allows
faster ramp-up of network utilization. Choosing completely random

nitial values would slow down somewhat the initial adaptation of the
odes. This initialization has a very small impact on performance, since
t happens only when a node is powered up, rather than each time it
as new packets to send.

olicy selection and transmission decision. At a time 𝑡, for a weight vector
for the policies, the set of active policies is

𝑡 = {argmax
𝜎

𝑤𝜎} ∪ {𝜎 ∣ 𝑤𝜎 ≥ 𝑤ℎ} , (2)

here 𝑤ℎ is a predefined threshold. In words, the active policies include
he best-performing policy, along with all policies with weight above a
iven threshold 𝑤ℎ. In our implementations, we use 𝑤ℎ = 0.95. Thus,
ore than one policy can be active, enabling nodes to utilize a flexible

mount of bandwidth. A node transmits at time 𝑡 if one of its active
olicies at time 𝑡 prescribes transmission, or ∑𝜎∈𝑡

𝛿(𝜎, 𝑡) > 0, and waits
therwise. The decisions to transmit or wait is indicate with 𝑇 or 𝑊 .

eight update. Given a time 𝑡′ (not necessarily equal to the current
ime), an update factor 𝛼 > 0, and an amount of randomness 𝛾 > 0, the
ultiplicative update of the weights 𝑤 is performed by
′
𝜎 = 𝑤𝜎 ⋅ exp

(

𝛼 𝑋𝛾
𝜎 𝛿(𝜎, 𝑡)

)

. (3)

here {𝑋𝜎}𝜎∈ is a set independent random variables sampled uni-
ormly at random from the interval [0, 1]. This update is written simply
s 𝑤′ = 𝑈 (𝑤, 𝛼, 𝑡′, 𝛾). Thus, only the weights of the policies active at
′ are updated, and the update is randomized, to help breaking ties
etween nodes that lay claim to the same transmission slot.

eight normalization. After the multiplicative updates are performed,
he weights are normalized in a two-step process.

First, some of the weights lost by policies that are downgraded is
edistributed across all policies. This is a classical technique in expert-
ased reinforcement learning, which facilitates transitioning to new
xperts when previous experts (in this paper, policies) become less
ffective [14,15]. Let 𝑤𝜎 , 𝑤′

𝜎 be the weights of policy 𝜎 before and after
he multiplicative update step, and let 𝑆 =

∑

𝜎∈ 𝑤𝜎 and 𝑆′ =
∑

𝜎∈ 𝑤′
𝜎 .

et 𝛥 = 𝑆 − 𝑆′ be the decrease in total weight. If 𝛥 > 0 and 𝑊 ′ <
𝑖𝑛𝑖𝑡 ⋅ ||, where 𝑤𝑖𝑛𝑖𝑡 is the initial reputation given to each policy, we

edistribute the lost weight via:

′
𝜎 ∶= 𝑤′

𝜎 + 𝛥
𝑋𝜎

∑

𝜎 𝑋𝜎
,

here {𝑋𝜎}𝜎∈ is a set of random variables independently sampled
rom the uniform distribution over [0, 1]. Thus, the redistribution of

the lost weight is randomized, again to break the symmetry between
the updates at different nodes.

Second, the weights of all policies is bound to the [𝑞𝑓𝑙𝑜𝑜𝑟, 1] interval,
setting:

𝑤𝜎 = max(𝑞𝑓𝑙𝑜𝑜𝑟,min(1, 𝑤𝜎)) . (4)

The normalization operation is summarized by 𝑤′ ∶= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑤, 𝑡).

3.3. The ALOHA-QTF protocol

The ALOHA-QTF protocol [4] is a policy-tree protocol. Its weight
update is as follows. At each time slot 𝑡, a node makes a decision

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68

a
n
l
i

𝑏
a
u
w

i

𝛼

𝑑 ∈ {𝑊 ,𝑇 } to transmit (T) or to wait (W), the outcome ℎ ∈ {𝐸,𝑆, 𝐶}
of the time slot is available as soon as the time slot is concluded, where
𝐸 indicates an empty slot, 𝑆 indicates a successful transmission by
some node, and 𝐶 indicates a collision occurred. Once the outcome is
received, the network performs a multiplicative weight update 𝑤′ =
𝑈 (𝑤, 𝛼, 𝑡′, 1), where 𝛼 is given by:

𝛼 =

{

0.2 if (𝑑, ℎ) ∈ {(𝑊 ,𝐸), (𝑇 , 𝑆)};
−0.5 if (𝑑, ℎ) ∈ {(𝑊 ,𝑆), (𝑊 ,𝐶), (𝑇 , 𝐶)}.

(5)

Thus, the weight is boosted when a slot is available for the node to use,
and is decreased when other nodes are transmitting into the slot. The
weights are then re-normalized via 𝑤′ ∶= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑤, 𝑡) as described
in Section 3.1, using a threshold 𝑞𝑓𝑙𝑜𝑜𝑟 = 0.

To this basic scheme are added two enhancements to ensure fairness
(see [4] for the details of the implementation).

The node measures the requested bandwidth 𝑏𝑟 and fair bandwidth
𝑏𝑓 . The requested bandwidth 𝑏𝑟 is the fraction of network slots the
node is currently transmitting at. The fair bandwidth 𝑏𝑓 is obtained
s 𝑏𝑓 = 1∕max(1, �̂�), where �̂� is an estimate of the number of active
odes obtained by collecting the distinct sender IDs collected in the
ast 2𝑛+1 time-slots. Once these bandwidths are available, the protocol
mplements two enhancements before the policy normalization step.

First, if a node is using more than its fair share of the bandwidth, or
𝑟 > 𝑏𝑓 , the node will set to zero the weight of its active policies with
small probability 𝜖𝑟 > 0 at every step. This ensures that nodes that

se more than their fair share eventually relinquish transmission slots,
hich are then captured by other nodes.

Second, the multiplicative update step (5) is performed not accord-
ng to 𝛼, but according to 𝛼′ given by:

′ = 𝛼 ⋅

{

min(1, (𝑏𝑟∕𝑏𝑓)1∕2)
)

if 𝛼 < 0;
max(0, 1 − (𝑏𝑟∕𝑏𝑓)2)

)

if 𝛼 ≥ 0.

This modified update makes it easier for nodes with less than their fair
share of bandwidth to gain more transmission slots, and for nodes with
more than their fair share of bandwidth to relinquish their slots. In
ALOHA-dQT we adopt these fairness enhancements as well.

4. ALOHA-dQT

The ALOHA-dQT protocol is designed for networks in which an
immediate-acknowledgment mechanism is not possible and transmit-
ters must be informed of the outcome of their transmissions via ac-
knowledgments. We thus introduce an acknowledgment mechanism,
and we show how the information the nodes glean from it is used
to drive adaptation and learning. We distinguish between two kind of
receivers:

• Energy-detecting receivers can distinguish between empty slots,
and slots in which a collision occurred, by measuring the amount
of energy carried in the channel during a time-slot. When such
receivers detect energy, but cannot decode any packet, a collision
is inferred.

• Non-energy-detecting receivers are the simplest ones, and they can
only tell whether in a time slot, a packet could or could not be
decoded.

We present acknowledgment mechanisms and protocol adaptations that
apply to both of these kinds of receivers, leading to our proposed pro-
tocol, ALOHA-dQT. While ALOHA-dQT can be used both for networks
with energy-detecting and non-energy-detecting nodes, some of the
numerical constants used for weight update and normalization have
different optimal values for networks comprising different kinds of
nodes. In Section 5 we will discuss in detail the changes in adapta-
tion coefficients that best accommodate networks of nodes with, and

without, energy detection.

61
4.1. Acknowledgments via channel histories

In ALOHA-dQT, every node stores a channel history of the last 𝑁
time-slot outcomes (in our experiments, we use 𝑁 = 16). This history
represents the knowledge the node has regarding what occurred in
the last 𝑁 time slots. Whenever a node transmits a packet, it attaches
to it its channel history. When a node receives a packet, it takes the
channel history received with the packet, which represents the best
reconstruction of what occurred as known to the sender node, and
merges it into its own channel history. This history revision step merges
the information in the two histories: for instance, if the current node
stored a 𝑇 (Transmit) for a time slot in the history, and the other node
stored an 𝑠 (successful reception), the current node can update the
time-slot information in its history to 𝑆 (successful transmission). This
process of history revision is what drives the reinforcement learning:
an update in a time slot in the history drives an update for the weights
of the policies that were active in that time slot.

The process of history transmission and update can be also under-
stood as a network-wide distributed monotonic reconstruction of the
true history of the channel [6,7]. Each network node can see only one
portion of the history, as it is deaf when transmitting. By constantly
transmitting the version of the channel history known to them, and
updating their history according to the transmissions by others, the
nodes’ stored histories will tend to converge to the true history of the
network.

Channel histories. A channel history  consists of a sequence of 𝑁
symbols  = [ℎ0,… , ℎ𝑁−1], where symbol ℎ𝑖 represents the channel
at time 𝑡− 𝑖. We denote by 𝑖 the symbol ℎ𝑖 in position 𝑖 of the history.
A channel history time-slot can contain one of the following symbols:

• ⊥ (bottom). There is no information for the slot yet. This will be
changed into 𝑇 or 𝑊 once the node decides to transmit or wait.

• 𝑇 (transmission). The node has transmitted in the time slot, and
the outcome is not known yet.

• 𝑊 (wait). The node has not transmitted, and its radio was in
receive mode. No packet was decoded, and it is not known yet
whether the slot was truly empty or whether a collision occurred.
This state is used in non-energy-detecting nodes only.

• 𝐸 (empty). The node has not transmitted, and the slot is known
to have been empty.

• 𝐶 (own collision). The node transmitted into a slot, and there was
a collision.

• 𝑐 (other collision). The node did not transmit in the slot, but
others did, and a collision ensued.

• 𝑆 (own success). The node has transmitted in the slot, and the
transmission was successful.

• 𝑠 (other success). Another node has transmitted in the slot, and
the transmission was successful.

We denote by 𝐻 the set of all channel symbols. There are eight symbols,
so that symbols can be encoded with three bits; a 16-slot history thus
requires six bytes.

Channel history extension. At the completion of each time slot, a node
first extends its history by adding a ⊥ symbol for its most recent
slot, and by discarding its now 𝑁 + 1th slot. This ⊥ symbol is then
immediately replaced, as follows:

• If the node transmitted, ⊥ is replaced by 𝑇 .
• If the node decided to wait, and was in receive mode, the behavior

differs according to whether the node can detect channel energy:

– If the node can detect channel energy, ⊥ is replaced by:

∗ 𝐸 if there was no energy,
∗ 𝑐 if there was energy but no packet was received, and
∗ 𝑠 if a packet was received.

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68

M

T

t
𝐶
t
o

d
b
i
a
s

I
s
(
(
a
s
t
c

{
o
a
g
i
c

E
T
t
e
𝑛
n
o

P
t
t
h
a
a

4

I
i
t
0
m

𝑤

w
a
t
b

Table 1
History merging: the merged value is indicated as function of the current and received
values.

Current ℎ Received ℎ′

𝑇 𝑊 𝑆 𝑠 𝐶 𝑐 𝐸

𝑇 𝐶 𝐶 𝐶a 𝑆 𝐶 𝐶 𝐶a

𝑊 𝑐 𝑊 𝑠a 𝑠a 𝑐 𝑐 𝐸

aCells should not occur under normal protocol conditions.

Table 2
An example of collision detection and successful transmission acknowledgment for
nodes that do not detect slot energy. The boldface and over-line symbols track
transmissions by 𝑛1 and 𝑛2, respectively.
𝑡1 1@𝑛1 𝑡2 2@𝑛2

1
3 1

2 1
1 1

0 2
3 2

2 2
1 2

0

6 𝑊 𝑠 𝑊 𝐓 11 𝑊 𝑠 𝑊 𝐖
7 s 𝑊 𝐂 �̄� 12 𝑠 𝑊 𝐖 �̄�
8 𝑊 𝐂 �̄� 𝑇 13 𝑊 𝐜 �̄� 𝑠
9 𝐂 �̄� 𝑆 𝑊 14 𝐜 �̄� 𝑠 𝑊

– If the node cannot detect channel energy, ⊥ is replaced by:

∗ 𝑠 if a packet was decoded,
∗ 𝑊 if nothing could be decoded.

erging channel histories. Histories are merged using a function 𝑟 ∶
𝐻 × 𝐻 ↦ 𝐻 that merges a symbol ℎ ∈ 𝐻 with a received symbol
ℎ′ ∈ 𝐻 into 𝑟(ℎ⊲ℎ′) ∈ 𝐻 . To merge histories, we apply 𝑟 element-wise,
letting ′′

𝑖 = 𝑟(𝑖,′
𝑖) for all 0 ≤ 𝑖 < 𝑁 . The merging function is as

follows.

• The state ⊥ is the bottom knowledge state, and we have 𝑟(⊥⊲ℎ) =
ℎ for all ℎ.

• The states 𝐸, 𝐶, 𝑐, 𝑆, and 𝑠 are full knowledge states, and are not
updated, so 𝑟(ℎ ⊲ ℎ′) = ℎ for ℎ ∈ {𝐸,𝐶, 𝑐, 𝑆, 𝑠}.

• The states 𝑇 and 𝑊 are partial knowledge states, and they are
updated as in Table 1.

he rules in Table 1 can be understood as follows.
If the node transmitted (ℎ = 𝑇), then a received 𝑠 confirms recep-

ion, leading to 𝑆. All other received states, and in particular 𝑇 , 𝑊 ,
, 𝑐, indicate that a collision occurred, either because some other node

ransmitted (ℎ′ = 𝑇), or because no packet could be decoded (ℎ′ = 𝑊),
r because a collision was already determined to have occurred.

If ℎ = 𝑊 , no packet could be decoded, and the node, unable to
etect channel energy, is unsure of the slot state. Since nothing could
e decoded, any indication of transmission or collision (ℎ′ = 𝑇 , 𝐶, 𝑐)
ndicates that a collision must have occurred. If ℎ′ = 𝐸, it means that
nother node was able through energy detection to determine that the
lot was empty, and we accept that information.

Other combinations cannot occur under normal protocol conditions.
n particular, a node cannot receive a notification that another node
ucceeded (ℎ′ = 𝑆) if the node transmitted (ℎ = 𝑇) or did not receive
ℎ = 𝑊), unless capture occurred. Similarly, a node that transmitted
ℎ = 𝑇) cannot receive a report ℎ′ = 𝐸 of no energy in the time-slot, and
node that did not decode packets (ℎ = 𝑊) cannot receive a report that

omeone else did decode a packet (ℎ = 𝑠), unless capture occurred. For
hese combinations, Table 1 reports the safest conclusion the protocol
an draw.

If we consider the information ordering {⊥} < {𝑇 ,𝑊 } <
𝑆, 𝑠, 𝐶, 𝑐, 𝐸}, where symbols in the same set are at the same level in the
rdering, we see that the merging function 𝑟 is monotonic in its first
rgument, so that 𝑟(𝑥 ⊲ 𝑦) ≥ 𝑥. Thus, the information each node has
rows as acknowledgments are received, and the greater information
s re-broadcast with the next packet. The nodes in a network are
omputing in distributed fashion a global information fixpoint.
62
xample: detecting collisions in networks that cannot detect channel energy.
able 2 illustrates how the acknowledgment mechanism enables a node
o detect that a collision occurred, for nodes that cannot detect channel
nergy. We depict only the first 4 steps of history for two nodes 𝑛1 and
2; the nodes start at times 𝑡1 = 6 and 𝑡2 = 11 respectively (slot counters
eed not be the same across nodes); we depict the history at the end
f each time slot.

• At step 𝑡1 = 6, 𝑛1 transmits and marks 𝑇 in its history; node 𝑛2
marks 𝑊 , as a collision occurred and the node did not receive
(nor it can detect the lack of energy).

• At 𝑡1 = 7, 𝑛1 receives a packet from 𝑛2, and marks 𝑠 in 1
0 . It then

updates 1
1 ∶= 𝑟(𝑇 ⊲2

1) = 𝑟(𝑇 ⊲𝑊) = 𝐶, so that the 𝑊 received
from 𝑛2 leads to update its transmission 𝑇 into a 𝐶.

• At 𝑡1 = 8, 𝑛1 transmits a packet, which is received from 𝑛2; 𝑛2
marks 𝑠 for the most recent history, and it updates the 𝑇 for its
own transmission into a 𝑆 using 2

1 = 𝑟(𝑇 ⊲1
1) = 𝑟(𝑇 ⊲ 𝑠) = 𝑆.

• At 𝑡1 = 9, the information about 𝑛1’s successful transmission is
relied to 𝑛1, so that 1

1 is set to 𝑆.

acket retransmission. Packets are queued for retransmission when
heir transmission, initially labeled as 𝑇 in the history, is updated
o 𝐶, and they are considered as successfully transmitted when the
istory is updated to 𝑆. Furthermore, if a packet transmission labeled
s 𝑇 ‘‘slides out’’ of the fixed-length history still as 𝑇 , the packet lacks
cknowledgment, and it is also queued for re transmission.

.2. Driving the learning

The history updates drive the updates to the weights of the policies.
nitially, a position in the history contains the ⊥ symbol; the position
s then updated one or more times as a consequence of the outcome of
he time slot, and of the subsequent history merging. When a position
≤ 𝑖 < 𝑁 is updated from ℎ𝑖 to ℎ′′𝑖 at time 𝑡, we perform the

ultiplicative update
′ = 𝑈 (𝑤, 𝛼𝑖, 𝑡 − 𝑖, 𝛾𝑖) (6)

here the multiplicative coefficients 𝛼𝑖, and the randomization
mounts 𝛾𝑖, are specified in Table 3. In (6), the time 𝑡− 𝑖 is the absolute
ime to which history position 𝑖 refers. The coefficients in Table 3 can
e understood as follows.

• If the new state is 𝑇 , we transmitted, but we have not yet received
an acknowledgment (which would change the 𝑇 into 𝑆). We
deterministically demote the policies responsible for the transmis-
sion by a small amount until an acknowledgment is received. This
ensures that during ‘‘collision storms’’ in which most outcomes
are collisions and few acknowledgments are received, the nodes
eventually back off from the policies that caused the collision
storms.

• If the state is updated to 𝑆, we successfully transmitted, and we
deterministically promote the policies that caused its use.

• If the state is updated to 𝐸, the slot is free, and we promote
policies that make use of it using randomization to break ties
among nodes claiming the slot.

• If the state is updated to 𝐶, 𝑐, or 𝑠, it means that there is
contention in the use of the slot, and we demote policies that use
the slot using randomization to break ties.

• Finally, if the state was 𝑊 , and we receive a 𝑊 , the state remains
classified as 𝑊 (last row of the table). If the node is non-energy-
detecting, we promote slightly policies that would have made use
of the time slot. We do this because non-energy-detecting nodes
can never explicitly detect that a slot was empty (𝐸): all they can
do is, whenever other nodes report that there was no transmission
in that slot (𝑊), we increase the belief that the slot was empty,
and we thus slightly promote policies that would have made use
of the slot.

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68

h

⊥
s
h
t
t
t
b
t
w
t
f
s
a

d
t
n
m
t
d
w

1
p

4

l
t
o
w
a
e

5

5

p
r
e
t
m
d
b

𝑝
s

Table 3
Multiplicative update coefficients for (3) according to the update in channel outcome;
ℎ refers to the slot outcome before the update, and ℎ′′ to the slot outcome after the
update.

Node type ℎ ℎ′′ 𝛼 𝛾

All ⊥ 𝑇 −0.1 0
All 𝑇 𝑆 0.2 0
All 𝑊 𝐸 0.2 1
All 𝑇 ,𝑊 𝐶, 𝑐, 𝑠 −0.8 1
Non-energy-detecting 𝑊 𝑊 0.01 1

The updates (6) are performed for all positions 1 ≤ 𝑖 ≤ 𝑁 of the
istory, after which the policy weights are re-normalized via 𝑤′ ∶=

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑤, 𝑡).
In transients periods when many nodes become active, many colli-

sions may occur, to the point where no acknowledgments are received
(the acknowledgments being also lost in the collisions). When this
happens, the negative update coefficient 𝛼 for the transition ℎ → ℎ′′ ∶

→ 𝑇 in the first row of Table 3 ensures that the nodes quench their
ending rate. Further, active policies lose their weight the faster, the
igher up they are in the policy tree: an active policy at level 𝑚 causes
ransmissions, and loses weight, every 2𝑚 slots, which is twice as fast
han the weight loss rate of any of its children at level 𝑚 + 1. Thus, in
hese congested transients, policies that are higher up in the tree will
e abandoned sooner, in favor of policies lower down in the tree, which
ransmit less frequently. This implements a self-regulating back-off:
hen many collisions occur, nodes automatically shift to using policies

hat cause rarer transmissions. In Section 5 we report detailed results
or the case in which 50 nodes turning on simultaneously. The results
how that the node overcome the initial period of high collisions, when
cknowledgments are lost, to achieve coordination.

From Table 3 and the above discussion, we see that the main
ifference between nodes that can, and cannot, detect slot energy lies in
heir ability to promptly react to empty channel slots. Energy-detecting
odes can immediately detect empty slots and promote policies that
ake use of them; we will see in Section 5 that they will be able

o make use faster of bandwidth that becomes available. Non-energy-
etecting nodes can detect empty slots only with some delay, and this
ill slow down somewhat their adaptation speed.

The ALOHA-dQT protocol is schematically presented as Algorithm
. We note that the algorithm uses the same fairness improvements
resented in Section 3.3.

.3. Algorithm complexity

At each time slot, the amount of work done by Algorithm 1 is
inear in the number of nodes of the policy tree, and thus, linear in
he maximum number of active nodes in the network. The expensive
perations in Algorithm 1 consist of vector operations, where the
eights of all nodes, represented collectively as a vector of numbers,
re updated. The vector nature of the expensive operations enables
fficient implementation.

. Performance evaluation

.1. Protocols

We compare the performance of ALOHA-dQT with that of its direct
redecessor, ALOHA-QTF [4], as well as with that of ALOHA-Q, the
einforcement-learning protocol proposed by [2,3], and ALOHA with
xponential backoff, or ALOHA-EB. We note that all of these prior pro-
ocols, ALOHA-QTF, ALOHA-Q, and ALOHA-EB, rely on implicit, im-
ediate acknowledgments, which gives them an advantage of ALOHA-
QT, which instead uses the mechanism of delayed acknowledgment

ased on transmission history merging and update.

63
Constants:
𝑛 = 8: depth of policy tree;
𝑁 = 16: history length;
𝜖𝑟 = 0.02: probability of relinquishing a time-slot;
𝛽 = 0.3: initialization value for (1);

State Variables:
 = {(𝑖, 𝑚) ∣ 0 ≤ 𝑖 < 2𝑚, 0 ≤ 𝑘 ≤ 𝑛}: policies;
{𝑤𝜎}𝜎∈ : policy weights;
: history;
active: True if the node is active; false otherwise;
𝑡 ∈ N: time slot counter;
�̂� : estimated number of active nodes;

Channel Variables:
𝑑 ∈ {𝑇 ,𝑊 }: decision (𝑇 ∶ transmit; 𝑊 ∶ wait);
𝜆 ∈ {𝑇 ,𝑊 , 𝑠, 𝑐, 𝐸}: channel outcome;

Initialization:
𝑡 ∶= 0;
Initialize  = [⊥,… , ⊥], and initialize the policy weights using (1);

At every time slot:
// Decision
if ∑

𝜎∈𝑡
𝛿(𝜎, 𝑡) > 0 then 𝑑 ∶= 𝑇 else 𝑑 ∶= 𝑊 ;

if 𝑑 = 𝑇 then transmit a packet alongside ;
// Reception
Listen for a packet, and receive channel outcome 𝜆;
if 𝜆 = 𝑠 then receive the packet and the history ′;
Shift the history:  ∶= [⊥,1,… ,𝑁−1];
Let �̂� be the number of different sender IDs seen in the last 2𝑛+1 time
slots;
// History update
0 ∶= 𝜆;
if 𝜆 = 𝑠 then  ∶= 𝑟(,′);
// Weight update
Perform the weight updates (6) corresponding to the history updates;
// Fair slot relinquishment
if 𝑏𝑟 > 𝑏𝑓 then with probability 𝜖𝑟 do 𝑤𝜎 ∶= (1 − 𝛿(𝜎, 𝑡))𝑤𝜎 ;
// Normalization and time increment
𝑤 ∶= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑤);
𝑡 ∶= 𝑡 + 1;

Algorithm 1: ALOHA-dQT Algorithm.

We consider two types of networks with ALOHA-dQT nodes: net-
works in which nodes can detect energy (indicated in our results
simply as ALOHA-dQT), and networks in which nodes cannot detect
energy (indicated in our results as ALOHA-dQT-NE). We compare these
two setups with ALOHA-QTF, described in [4] and summarized in
Section 3, as well as ALOHA-Q and ALOHA with exponential backoff
(ALOHA-EB).

ALOHA-Q. We implemented ALOHA-Q, the Q-learning version of slot-
ted ALOHA proposed in [2,3]. Since in our simulations the number
of active nodes is at most about 50, we use a frame length 𝐿 = 50
for ALOHA-Q. We experimented with other values, and they yielded
similar or worse performance.

ALOHA-EB. In slotted ALOHA with exponential back-off, which we
denote as ALOHA-EB, every node has an initial transmission probability
𝑝 = 1∕2 when it becomes active. The node then updates the probability

whenever a collision, or an empty slot, is detected on the network,
etting 𝑝 ∶= 𝑞 ∗ 𝑝 in case of collisions, and 𝑝 ∶= min(1, 𝑝∕𝑞) in case of

empty slots, where 𝑞 is a constant that determines adaptation speed;

in our simulations we use 𝑞 = 0.9. For large numbers of nodes, the

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68

o

5

s
s
s
u
r
a

R
n
o
3
t
t

C
c
h
e
f
t
F
s

bandwidth utilization of ALOHA-EB reaches the optimal value of 1∕𝑒,
or about 37% [19].

5.2. Simulation setup

The simulations were written on top of a simulator we wrote in
the Python programming language. The simulator is composed of two
main components: a network simulator, and node simulator modules. The
network simulator is quite simple: it takes the decisions of all nodes for
every time slot, computes the outcome (empty, successful transmission,
or collision), and relies the outcome to each node. The node modules
implement each protocol algorithm at each node. For ALOHA-dQT, for
instance, the node module implements the time-slot counter, the policy
tree, and Algorithm 1. Protocol modules for ALOHA-EB, ALOHA-Q, and
ALOHA-dQT-NE nodes can be similarly implemented.

5.3. Performance metrics

We evaluate protocols by measuring their network utilization and
fairness, defined as follows.

Network utilization. A time slot can either be empty, or it can contain
a successful transmission or a collision. We define the network utiliza-
tion as the fraction of slots that contain successful transmissions. To
compute the network utilization, we aggregate time slots in blocks of
100, and for each block we can compute the network utilization as the
ratio of individual slots that contains a successful transmission. Using
blocks of length 100 offers a compromise between having a fine time
resolution, and computing meaningful statistics on each block.

Fairness. The fairness of a protocol indicates how equitably the band-
width of the protocol is distributed among the nodes, and we use the
Jain’s index [20,21]. Assume that 𝑛 nodes are active in a time block
and let 𝑏𝑖 be the number of successful transmissions in the slot by node
𝑖 ∈ [1,… , 𝑛]. Let 𝐵 =

∑𝑛
𝑖=1 𝑏𝑖 be the bandwidth in the slot. Jain’s index

is computed as 𝐽 = 𝐵2 (𝑛
∑𝑛

𝑖=1 𝑏
2
𝑖
)−1.

Jain’s index is a quantity between 1∕𝑛 and 1; it is 1 for a perfectly
fair distribution of the channel (𝑏𝑖 = 𝐵∕𝑛 for all 𝑖), and it is 1∕𝑛 if only
ne node gets to use the channel.

.4. Simulation scenarios

We compare the performance metrics of different protocols in three
imulation scenarios: a ramp scenario, a churn scenario, and a 50-node
cenario. In the scenarios, we use a fully-connected single-channel time-
lotted wireless network. We simulate each scenario 20 times, each time
sing a different seed for the random number generator; our figures
eport the average (as a line) and the standard deviation (as a shaded
rea) of the set of 20 runs.

amp scenario. In the ramp scenario, there are initially 10 active
odes. The number of active nodes then increases gradually to 50, with
ne node becoming active each time-block. Then, after 100 time-blocks,
0 nodes become inactive, one each time block, starting from the nodes
hat have been active the longest. The number of active nodes at each
ime block is summarized in Fig. 2(c).

hurn scenario. The churn scenario simulates the case of nodes be-
oming active or turning inactive at random. More specifically, we
ave 20 nodes in a network. Initially, only one of them is active. At
very time block, every node has a probability 1/100 of switching state,
rom inactive to active or vice-versa. Thus, an average of one node per
ime block switches state. We ran the simulation for 200 time blocks.
ig. 3(c) shows the average number of active nodes throughout the
imulation.
64
Fig. 2. Ramp experiment result. The solid lines are the average of 20 simulations; the
colored bands are plus and minus one standard deviation.

50-node scenario. In the 50-node scenario, 50 nodes become active
simultaneously after their (synchronized) turn-on. This scenario, while
not particularly realistic, enables us to study how the protocol behaves
during periods of such high contention that most transmissions result
in collisions, and no acknowledgments are received.

5.5. Results

Comparison with ALOHA-QTF, ALOHA-EB and ALOHA-Q. The results
for the ramp scenario are reported in Fig. 2, and those for the churn
scenario in Fig. 3. We see from Figs. 2(a) and 3(a) that ALOHA-dQT and
ALOHA-dQT-NE yield high network utilization, generally over 75%. If
nodes can detect energy in network slots, as in the ALOHA-dQT setup,
and thus differentiate empty slots from collisions slots, the performance
is generally higher than in the ALOHA-dQT-NE setup, where energy
cannot be detected. The performance of ALOHA-dQT approaches that of
ALOHA-QTF, indicating that our delayed acknowledgments mechanism
yields an efficiency which is almost as good as the ideal case of
immediate acknowledgments. The performance for ALOHA-dQT-NE is
slightly inferior to that of ALOHA-dQT, indicating that the ability to
differentiate empty slots from collisions confers a clear, if relatively
small, performance advantage.

For the ramp scenario, we see that after a brief transient, the
network utilization for ALOHA-dQT is above 80% except in a brief
transient when nodes become inactive, after about 200 time blocks.

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68

i

Fig. 3. Churn experiment result. The solid lines are the average of 20 simulations; the
colored bands are plus and minus one standard deviation.

The utilization of ALOHA-dQT-NE is similar, but 10% to 15% lower.
ALOHA-QTF has overall a slightly greater utilization than ALOHA-dQT.
As for the other protocols, ALOHA-EB steadily tracks its optimal per-
formance of 37%. ALOHA-Q does not offer optimal performance when
the number of active nodes is 50, as one might expect. The reason is
that when the number of active nodes is close to the frame length, even
though the potential utilization is close to 1, the adaptation time is very
long, on the order of hundred of thousands of time slots [2]. Instead,
ALOHA-Q is able to reach better performance when the number of
active nodes is 30. All the protocols exhibit acceptable fairness, except
for a temporary dip when the number of active nodes is increasing.
ALOHA-EB, due to its symmetry, offers superior fairness, if not superior
utilization.

The utilization in the churn scenario follows a similar pattern, with
ALOHA-QTF having highest utilization, closely followed by ALOHA-
dQT, which at steady state offers utilization above 75%, and then by
ALOHA-dQT-NE with utilization around 65%. ALOHA-EB is once again
around 37%, and ALOHA-Q just below 50%. While in the ramp scenario
the fairness of ALOHA-dQT-NE was slightly better than the one of
ALOHA-dQT, the opposite is true in churn scenario.

In general, the fairness of ALOHA-dQT protocol can be improved
at the cost of lower utilization, and vice versa. We can adjust both by
using fairness parameter 𝜖 described in Section 3.3.
𝑟

65
Fig. 4. 50-node experiment result. The solid lines are the average of 20 simulations;
the colored bands are plus and minus one standard deviation.

Performance under simultaneous node startup. Fig. 4 reports the per-
formance of ALOHA-QTF, ALOHA-dQT, and ALOHA-dQT-NE for the
scenario in which 50 nodes become active simultaneously. In this
case, we see that the network utilization ramps up slower in ALOHA-
dQT than in its predecessor ALOHA-QTF. This is because ALOHA-dQT
relies on explicit acknowledgments, and initially, there are so many
collisions that most acknowledgments are lost. In this initial period,
the adaptation of ALOHA-dQT is due to the fact that the weight of
policies is decreased immediately after transmission (see the negative
coefficient 𝛼 in row 1 of Table 3), and nodes reduce policy weights
also in response to collisions in which they do not participate (row 4
of Table 3). Thus, even if all acknowledgments are lost, the nodes
can rapidly reduce their transmission rate and achieve coordination.
Utilization reaches 50% in less than 1000 time-slots (or, so to say, 20
slots per node).

For ALOHA-dQT-NE, we see from Fig. 4 that it takes almost 4000
time-slots for utilization to reach 50%. The slower adaptation of
ALOHA-dQT-NE is expected: the ability of ALOHA-dQT nodes to mea-
sure slot energy, and distinguish collisions from empty slots is partic-
ularly valuable in periods with very many collisions. In particular, in
the initial period an ALOHA-dQT-NE node confuses the many collisions
in which it does not participate with empty slots. The weight of
the corresponding policies is slightly increased rather than decreased,
slowing down adaptation (the last line of Table 3 applies). These results
clarify the benefit of energy detection in periods of high congestion.

5.6. Hyper-parameter analysis

The performance of the ALOHA-dQT protocol depends on several
parameters, including the choice of the update coefficients of Table 3,
the relinquishment probability 𝜖𝑟 of ceasing transmissions in a slot, and
the quality floor 𝑞𝑓𝑙𝑜𝑜𝑟 for the interval [𝑞𝑓𝑙𝑜𝑜𝑟, 1] of qualities used. The
update coefficients in Table 3 play a similar role in nodes with and
without energy detection, and our analysis did not identify specific
trade-offs or interesting variations in the choice of their values. On the
other hand, the two latter quantities 𝜖𝑟 and 𝑞𝑓𝑙𝑜𝑜𝑟, play a crucial role in
determining protocol efficiency, fairness, and performance, and we of-
fer here a more in-depth study of their influence on protocols with and
without energy detection. The relinquishment probability 𝜖𝑟 is crucial
n ensuring the fairness of the protocol, by ensuring that transmission

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68
Fig. 5. Varying the quality floor 𝑞𝑓𝑙𝑜𝑜𝑟 in the ALOHA-dQT protocol.
Fig. 6. Varying the relinquishment probability 𝜖𝑟 in the ALOHA-dQT protocol.
t

𝜖
p
T
t
a
c
w
a
f

slots are not permanently held by the same nodes. Furthermore, for the
reassignment of transmission slots to be effective, it is important that
the policy quality be bounded away from 0. To see this, consider what
happens at node 𝐵 when a policy that was used in transmissions by
node 𝐴 is relinquished. At node 𝐵, several policies would have caused
transmission in the slot: precisely, all policies (𝑖, 𝑚) with 𝑡 mod 2𝑚 = 𝑖.
If the slot was in regular use by a periodic policy of node 𝐴, the policies
of node 𝐵 associated with the slot would have had a quality close to the
quality floor 𝑞𝑓𝑙𝑜𝑜𝑟, due to the negative quality updates occurring each
time the slot is utilized by 𝐴. Thus, for node 𝐵 to start utilizing the slot
(or better, the periodic recurrences of the slot), it is necessary for the
policy quality to climb from 𝑞𝑓𝑙𝑜𝑜𝑟 all the way to 𝑤ℎ (see (2)). If 𝑞𝑓𝑙𝑜𝑜𝑟
is very low, this takes a long time, leading to an ineffective recycling
of slots. For the same reason, the choice of 𝑞𝑓𝑙𝑜𝑜𝑟 influences how fast
nodes are able to start using slots that become available due to nodes
stopping their activity: the higher 𝑞𝑓𝑙𝑜𝑜𝑟, the faster empty slots are put
back into service.

In general, the optimal values for these parameters depend on
the node’s ability to detect slot energy; we discuss the two cases
independently.
66
ALOHA-dQT. In Fig. 5 we depict the effect of varying the quality
floor 𝑞𝑓𝑙𝑜𝑜𝑟 in ALOHA-dQT, where all nodes can detect energy. Our
base values for ALOHA-dQT are 𝑞𝑓𝑙𝑜𝑜𝑟 = 0.1, and 𝜖𝑟 = 0.02. We see
hat values of 𝑞𝑓𝑙𝑜𝑜𝑟 greater than 0.2 can lead to markedly sub-optimal

performance.
Fig. 6 gives the corresponding data for varying the slot relinquish-

ment probability 𝜖𝑟. We see that there is a trade-off between fairness,
which is higher, the higher 𝜖𝑟 is, and utilization, which is higher when
𝑟 is lower — except in transition periods. Interestingly, in the transition
eriods of the ramp protocol, utilization benefits from higher fairness.
his occurs because, when fairness is low, it is the original 20 nodes
hat monopolize a good share of the utilization, even when 50 nodes are
ctive. When the original 20 nodes cease their activity, their departure
auses a large temporary drop in utilization. The drop is less marked
hen fairness is higher, as under higher fairness these 20 nodes control
smaller share of the total utilization in the 50-node regime. Our choice

or the relinquishment probability is 𝜖𝑟 = 0.02.

ALOHA-dQT-NE . Figs. 7 and 8 report the corresponding analysis for the
ALOHA-dQT-NE scenario, in which nodes cannot detect slot energy.
Our chosen values are 𝑞 = 0.3 and 𝜖 = 0.005. The interesting
𝑓𝑙𝑜𝑜𝑟 𝑟

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68
Fig. 7. Varying the quality floor 𝑞𝑓𝑙𝑜𝑜𝑟 in the ALOHA-dQT-NE protocol.
Fig. 8. Varying the relinquishment probability 𝜖𝑟 in the ALOHA-dQT-NE protocol.
result is that for ALOHA-dQT-NE, a higher quality floor 𝑞𝑓𝑙𝑜𝑜𝑟 is strongly
beneficial, as indicated by Fig. 7. This is due to the fact that, in
absence of energy detection, network nodes have a more difficult time
distinguishing empty slots, and ramping up policy quality to exploit
them. If qualities start from a higher floor, more empty slots end
up being used, benefiting utilization. Further, as acquiring the use of
empty slots is more difficult, our results indicate that it is beneficial to
keep the relinquishment probability lower than in nodes where energy
detection is possible.

6. Conclusions

We introduced ALOHA-dQT, a novel channel access protocol based
on the use of reinforcement learning (RL) in the context of slotted
ALOHA operating in a single-channel fully-connected wireless net-
work. All previous variants of slotted ALOHA based on reinforcement
learning, including ALOHA-Q [2,3], ALOHA-QTF [4], and the deep-
RL approach of [1], assume that a transmitter knows the fate of its
transmission at the conclusion of the time slot. In practice, this requires
the presence of a repeater that rebroadcasts on a separate channel all
67
packets or explicit acknowledgments. In contrast, ALOHA-dQT is based
on explicit acknowledgments. The acknowledgment mechanism con-
sists of nodes broadcasting and iteratively merging their information
about the channel history. Updates to the information history drive
the reinforcement learning and node adaptation. ALOHA-dQT offers
high network utilization, generally above 75%, with fair allocation of
bandwidth among active network nodes.

Channel access protocols based on RL hold the potential of offering
high channel utilization, as the nodes can coordinate their behavior,
and we view ALOHA-dQT as a first step in making these protocol
suitable for practical use in wireless networks.

As mentioned in Section 5.6, the performance of the protocols
we introduced depends on a set of hyper-parameters. In this paper,
we have offered fixed values for these hyper-parameters, resulting in
a particular trade-off between speed of adaptation, utilization, and
fairness. In future work, it would be interesting to study whether it
is possible to tune these hyper-parameters via reinforcement learning
itself, carried out over longer periods of time, and driven by a goal
function expressing the desired trade-off between utilization, speed of
adaptation, and fairness. This would enable the protocol adaptation

M. Zhang, L. de Alfaro and J.J. Garcia-Luna-Aceves Computer Communications 181 (2022) 58–68
itself to be tuned according to the particular characteristics and usage
patterns of each network. For instance, in networks where nodes, once
active, transmit for long periods of time (as in networks used for
bulk data transfers), one can trade off adaptation speed for higher
utilization. In networks where transmissions are short-lived, it may on
the other hand be useful to prioritize fast achievement of fairness rather
than utilization, to ensure that nodes can quickly receive their share of
bandwidth when they become active.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Anyone at UC Santa Cruz (institutional conflict).

Acknowledgments

This material is based upon work sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), United States and the
Air Force Research Laboratory (AFRL), United States. Any opinions,
findings, conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of DARPA
or AFRL.

References

[1] Y. Yu, T. Wang, S.C. Liew, Deep-reinforcement learning multiple access for
heterogeneous wireless networks, IEEE J. Sel. Areas Commun. (2019).

[2] Y. Chu, P.D. Mitchell, D. Grace, ALOHA and q-learning based medium access
control for wireless sensor networks, in: 2012 International Symposium on
Wireless Communication Systems (ISWCS), IEEE, 2012, pp. 511–515.

[3] Y. Chu, S. Kosunalp, P.D. Mitchell, D. Grace, T. Clarke, Application of reinforce-
ment learning to medium access control for wireless sensor networks, Eng. Appl.
Artif. Intell. 46 (2015) 23–32.

[4] L. de Alfaro, M. Zhang, J. Garcia-Luna-Aceves, Approaching fair collision-
free channel access with slotted ALOHA using collaborative policy-based
reinforcement learning, in: IEEE IFIP Networking Conference, 2020.

[5] M. Zhang, L. de Alfaro, J. Garcia-Luna-Aceves, Collision-free channel access
with delayed acknowledgements using collaborative policy-based reinforcement
learning, in: ACM SIGCOMM Conference, NetAI Workshop, 2020.
68
[6] P. Alvaro, N. Conway, J.M. Hellerstein, W.R. Marczak, Consistency analysis in
bloom: a CALM and collected approach, in: CIDR, 2011, pp. 249–260.

[7] N. Conway, W.R. Marczak, P. Alvaro, J.M. Hellerstein, D. Maier, Logic and lat-
tices for distributed programming, in: Proceedings of the Third ACM Symposium
on Cloud Computing, 2012, pp. 1–14.

[8] L.G. Roberts, ALOHA packet system with and without slots and capture, ACM
SIGCOMM Comput. Commun. Rev. 5 (2) (1975) 28–42.

[9] G. Jakllari, M. Neufeld, R. Ramanathan, A framework for frameless TDMA using
slot chains, in: 2012 IEEE 9th International Conference on Mobile Ad-Hoc and
Sensor Systems (MASS 2012), IEEE, Las Vegas, NV, USA, 2012, pp. 56–64,
http://dx.doi.org/10.1109/MASS.2012.6502502, URL http://ieeexplore.ieee.org/
document/6502502/.

[10] G. Liva, Graph-based analysis and optimization of contention resolution diversity
slotted ALOHA, IEEE Trans. Commun. 59 (2) (2010) 477–487.

[11] E.E. Khaleghi, C. Adjih, A. Alloum, P. Mühlethaler, Near-far effect on coded
slotted ALOHA, in: 2017 IEEE 28th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), IEEE, 2017, pp. 1–7.

[12] E. Paolini, G. Liva, M. Chiani, Coded slotted ALOHA: A graph-based method
for uncoordinated multiple access, IEEE Trans. Inform. Theory 61 (12) (2015)
6815–6832.

[13] F. Schoute, Dynamic frame length ALOHA, IEEE Trans. Commun. 31 (4) (1983)
565–568.

[14] D.P. Helmbold, D.D. Long, B. Sherrod, A dynamic disk spin-down technique for
mobile computing, in: Proceedings of the 2nd Annual International Conference
on Mobile Computing and Networking, ACM, 1996, pp. 130–142.

[15] M. Herbster, M.K. Warmuth, Tracking the best expert, Mach. Learn. 32 (2) (1998)
151–178.

[16] O. Bousquet, M.K. Warmuth, Tracking a small set of experts by mixing past
posteriors, J. Mach. Learn. Res. 3 (Nov) (2002) 363–396.

[17] J. Capetanakis, Generalized TDMA: The multi-accessing tree protocol, IEEE
Trans. Commun. 27 (10) (1979) 1476–1484.

[18] M. Zhang, L. de Alfaro, M. Mosko, C. Funai, T. Upthegrove, B. Thapa, D.
Javorsek, J. Garcia-Luna-Aceves, Adaptive policy tree algorithm to approach
collision-free transmissions in slotted ALOHA, in: 2020 IEEE 17th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), IEEE, 2020, pp.
138–146.

[19] L. Kleinrock, Queueing Systems. Volume I: Theory, wiley, New York, 1975.
[20] R.K. Jain, D.-M.W. Chiu, W.R. Hawe, A Quantitative Measure of Fairness and

Discrimination, Eastern Research Laboratory, Digital Equipment Corporation,
Hudson, MA, 1984.

[21] H. Shi, R.V. Prasad, E. Onur, I.G.M.M. Niemegeers, Fairness in wireless net-
works:Issues, measures and challenges, IEEE Commun. Surv. Tutor. 16 (1)
(2014) 5–24, http://dx.doi.org/10.1109/SURV.2013.050113.00015, URL http:
//ieeexplore.ieee.org/document/6517050/.

http://refhub.elsevier.com/S0140-3664(21)00355-8/sb1
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb1
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb1
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb2
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb2
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb2
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb2
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb2
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb3
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb3
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb3
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb3
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb3
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb6
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb6
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb6
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb8
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb8
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb8
http://dx.doi.org/10.1109/MASS.2012.6502502
http://ieeexplore.ieee.org/document/6502502/
http://ieeexplore.ieee.org/document/6502502/
http://ieeexplore.ieee.org/document/6502502/
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb10
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb10
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb10
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb11
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb11
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb11
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb11
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb11
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb12
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb12
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb12
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb12
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb12
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb13
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb13
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb13
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb14
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb14
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb14
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb14
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb14
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb15
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb15
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb15
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb16
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb16
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb16
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb17
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb17
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb17
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb19
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb20
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb20
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb20
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb20
http://refhub.elsevier.com/S0140-3664(21)00355-8/sb20
http://dx.doi.org/10.1109/SURV.2013.050113.00015
http://ieeexplore.ieee.org/document/6517050/
http://ieeexplore.ieee.org/document/6517050/
http://ieeexplore.ieee.org/document/6517050/

	Making slotted ALOHA efficient and fair using reinforcement learning
	Introduction
	Related work
	Learning the schedules
	The policy tree
	Policy-tree protocols
	The ALOHA-QTF protocol

	ALOHA-dQT
	Acknowledgments via channel histories
	Driving the learning
	Algorithm complexity

	Performance evaluation
	Protocols
	Simulation setup
	Performance metrics
	Simulation scenarios
	Results
	Hyper-parameter analysis

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

