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Abstract—The evaluation of spoken language understanding
(SLU) systems is often restricted to assessing their global perfor-
mance or examining predefined subgroups of interest. However,
a more detailed analysis at the subgroup level has the potential
to uncover valuable insights into how speech system performance
differs across various subgroups.

In this work, we identify biased data subgroups and describe
them at the level of user demographics, recording conditions,
and speech targets. We propose a new task-, model- and dataset-
agnostic approach to detect significant intra- and cross-model
performance gaps. We detect problematic data subgroups in SLU
models by leveraging the notion of subgroup divergence. We
also compare the outcome of different SLU models on the same
dataset and task at the subgroup level. We identify significant
gaps in subgroup performance between models different in size,
architecture, or pre-training objectives, including multi-lingual
and mono-lingual models, yet comparable to each other in
overall performance. The results, obtained on two SLU models,
four datasets, and three different tasks—intent classification,
automatic speech recognition, and emotion recognition—confirm
the effectiveness of the proposed approach in providing a nuanced
SLU model assessment.

Index Terms—Speech representation, E2E-SLU models, Sub-
group identification, Model bias analysis, Divergence

I. INTRODUCTION

SPEECH and language technologies have advanced sig-
nificantly over the years, enabling the development of

intelligent systems that can recognize, transcribe, and under-
stand speech. These systems find applications in virtual assis-
tants [1], customer service [2], healthcare [3], speech emotion
recognition [4], and more. However, system evaluations often
focus on overall performance, neglecting performance dispar-
ities across subgroups. Furthermore, the rise of large self-
supervised pre-trained neural network models [5], character-
ized by larger size and complexity, significantly hampers inter-
pretability and amplifies the challenges in accurately assessing
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capabilities and identifying potential performance inequalities.
Thus, a comprehensive evaluation framework is necessary to
capture nuances and ensure equitable performance assessment
in speech and language technologies.

Recent studies revealed model bias and disparate treatment
in data subgroups ([6], [7], [8], [9], [10], [11], [12], [13],
[14]). A data subgroup is a subset of the data sharing some
properties, such as similarity in the embedding space or
common feature values (e.g., utterances of female speakers).
Prior works generally focus on predefined subgroups defined
by protected and known features of interest. However, identi-
fying subgroups typically requires human expertise and often
involves analyzing each attribute separately, which limits the
exploration of unexpected and crucial subgroups. Our study
introduces an automated approach for identifying critical sub-
groups to address these limitations. Unlike existing methods,
that rely on clustering speaker embeddings [6], our approach
allows for intersectional analysis, enabling the examination
of combined effects across multiple attributes. Speech data
often comes with additional information about the speaker
(e.g., the age), recording conditions (e.g., the noise level), or
task characteristics (e.g., the uttered intent). Other information,
such as speaking rate and number of words, can be readily
derived from the speech or transcripts. By combining meta-
data values, we can identify data subgroups. The subgroups
generated through our method are easily understandable by
humans, addressing the interpretability challenge often faced
by existing automated methods.

Research goal. In this work, we study the presence of bias in
spoken language understanding (SLU) model performance on
data subgroups. We automatically identify those combinations
of metadata values yielding maximal:

• Intra-model performance gap, i.e., a significant difference
in performance between the overall dataset and the data
subgroup. We quantify it by means of an established
divergence metric [15] or

• Cross-model performance gap, i.e., a significant gap in
the subgroup performance of models different in size,
architecture, or pre-training objectives.

Evaluating intra-model subgroup divergence allows a more
nuanced analysis of subgroup performance within a specific
SLU model, whereas estimating cross-model gaps can guide
end-users in choosing the best SLU model to use on a
proprietary dataset.
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Research questions. We aim to answer the following ques-
tions:

• RQ1. How can we automatically identify and describe
the most problematic subgroups for a given combination
of SLU model, dataset, and task?

• RQ2. What is the effect of the model size on subgroup
performance? Does the larger, the better hold true?

• RQ3. Are the performance disparities on specific sub-
groups independent of the model architecture?

• RQ4. Are multilingual SLU models more sensitive to
subgroup performance disparities than monolingual ones?

Running example. Let I={trimmed speaking rate=high, gen-
der=female, total duration=low} be a conjunction of meta-
data values extracted from the LIBRISPEECH benchmark
dataset [16]. I indicates a data subgroup consisting of short-
lasting speeches made by female speakers at a relatively
high speaking rate (words per second). Regarding the intra-
model performance gap, an end-to-end user would like to
analyze the WER performance of an established transformer-
based SLU model, i.e., wav2vec 2.0 base [17] on the given
data subgroup I for the ASR task. The WER of the global
model (6.06%) is significantly better than that achieved on
I (17.03%). The divergence of I , given by the performance
difference (10.97%), indicates the presence of a potential bias.
Let us now compare the WER of two different wav2vec 2.0
versions, i.e., base and large, on I . The cross-model WER
gap between wav2vec 2.0 base (17.03%) and its large version
(11.31%) is significant, showing a clear benefit in using a
larger model.

Proposed approach. We present a novel methodology for
automating the characterization and comparison of metadata-
generated subgroups. The number of subgroups grows expo-
nentially with the number of metadata attributes. Hence, it
becomes infeasible to enumerate and evaluate them using naive
approaches. Our proposed approach leverages recent advance-
ments in model bias analysis to address this challenge [15],
[18]. The critical insight lies in recognizing that, although the
number of subgroups is exponential, the number of subgroups
that exceed a certain coverage threshold (e.g., containing at
least 0.1% of the dataset) is generally manageable. These
subgroups, called “frequent subgroups”, possess practical and
statistical significance. On top of the generated patterns, we
shortlist the subgroups with maximal intra- and cross-model
gaps. They respectively provide end-users with explainable
representations of problematic subgroups within a given SLU
task and across different (but comparable) SLU models.

The main paper contributions, hereafter denoted by C1-5,
are summarized below:

C1) Problematic subgroup definition and error analysis. We
propose a new approach to explain SLU models at the
level of data subgroups based on the concepts of intra-
and cross-model performance gaps.

C2) Impact of the size on model behavior. Generally speaking,
larger models will likely be more accurate and fair [19].
While the overall performance of a model likely increases
as it is scaled up, our analysis shows that there may be

subgroups where it unexpectedly decreases.
C3) Impact of multi-lingual pre-training objective on model

behavior. Given the emerging trend of switching to multi-
lingual models, we leverage our approach to explore
advantages and disadvantages at the subgroup level when
going from mono- to multi-lingual models.

C4) Impact of the architecture on model behavior. Our
methodology can also be applied to compare models with
different structures.

C5) Datasets and models benchmarking. We thoroughly ana-
lyzed four speech datasets, three tasks, and two models
with two different sizes to discover and study models’
behavior on specific subgroups. We conducted exper-
iments on LIBRISPEECH [16] for Automatic Speech
Recognition (ASR), FSC [20] and SLURP [21] for Intent
Classification (IC), and IEMOCAP [22] for Emotion
Recognition (ER), using two transformer-based models
in base and large sizes, namely wav2vec 2.0 [17] and
HuBERT [23]. We measured the accuracy and word error
rate (WER) metrics and assessed their divergence across
subgroups.

A preliminary version of the present work, focused on the
intent classification task, has been presented in [24]. We ana-
lyzed the wav2vec 2.0 large model at the subgroup level and
the impact of size (when changing from wav2vec 2.0 base to
large) and architecture (when transitioning from wav2vec 2.0
to HuBERT base) for a single dataset, FSC [20]. This paper
proposes a more comprehensive analysis across various speech
datasets and tasks, including intent classification, emotion
recognition, and automatic speech recognition. We analyze the
performance at the subgroup level of two models, wav2vec
2.0 and HuBERT, in their two base and large sizes for four
datasets. We further investigate how the size and architecture
affect the overall and subgroup model performance, and we
also study the impact of multilingual pre-training objectives.

To foster the reproducibility and dissemination of our
research work, the source code and its documentation are
available at https://github.com/koudounasalkis/
Subgroup-Analysis-in-Speech-Models.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related works. Section III describes the
methodology. Section IV reports the main experimental results.
Finally, Section V draws conclusions and future directions.

II. RELATED WORK

The study of bias and fairness in speech models has
gained significant attention recently. A growing body of work
(e.g., [6], [7], [8], [9], [10], [11], [12], [13], [14]) has fo-
cused on identifying, measuring, and possibly mitigating the
existence of model bias and unfairness in data subgroups,
particularly on features such as gender, accents, or age.

Prior works focused on identifying bias in specific demo-
graphics metadata, such as the skin tone [7], the ethnicity [13],
or in specific combinations of metadata, e.g., demographics
and geolocation [6], [8], gender and ethnicity [10], gender,
age, and accents [9] or gender, age, skin tones [11]. In [14],
the authors study how to detect and mitigate ASR performance
also for dysarthric speakers.

https://github.com/koudounasalkis/Subgroup-Analysis-in-Speech-Models
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To the best of our knowledge, the first attempt to auto-
matically identify arbitrary speech data subgroups was made
in [6]. They identify underperforming speaker subgroups via
speaker embeddings’ clustering. Clusters in the latent space,
however, are generated directly from the raw data and thus are
not easily explainable. Unlike previous approaches, our work
focuses on identifying problematic subgroups consisting of
arbitrary metadata combinations. Differently from [6], we rely
on explainable patterns consisting of conjunctions of metadata
values and possibly covering non-disjoint speaker groups.

III. METHODOLOGY

Our approach analyzes model performance at the subgroup
level. A subgroup is a subset of the data characterized by a set
of metadata and their value, denoted in our paper as itemsets
or patterns. The metadata can represent user characteristics
(e.g., gender, age), speech targets (e.g., speaking rate, duration
of silence), and dataset-related features (e.g., intents, labels).
In our work, for example, the subgroup {gender=female,
age∈[20-40]} indicates the subset of utterances of female
speakers in the age 20-40.

We inspect subgroup behavior via two complementary no-
tions, i.e., the intra-model divergence and cross-model gap:

• Intra-model divergence is the difference in model perfor-
mance on a data subgroup and the whole dataset. We use
this notion to inspect the behavior of an individual model
to reveal which subgroups are associated with lower-than-
average performance (but also higher or equal).

• Cross-model performance gap is the difference in perfor-
mance between the two models on the same subgroup.
It is used to compare different models at the level of
subgroups.

The exploration of subgroups and the computation of their
performance and divergence are efficiently performed via a
lattice-based method.

The following subsections analyze our approach in detail.
Specifically, Section III-A outlines the notion of slicing via
interpretable metadata, Section III-B defines subgroup diver-
gence and gap, and Section III-C describes the evaluation of
the local and global contribution to divergence and gap via
game theory concepts. Finally, Section III-D illustrates the
DIVEXPLORER algorithm that we leverage for an efficient
subgroups exploration.

A. Slicing via interpretable metadata

We aim to characterize and understand speech model behav-
ior in terms of interpretable data subgroups. We define inter-
pretable metadata as data that humans can easily understand,
such as the age or gender of the speaker or the utterance level
of noise. We leverage such metadata to define subgroups. For
example, a directly interpretable subgroup is the young women
in a noisy environment utterances. In the following, we first
illustrate the notion of metadata as interpretable attributes to
enhance speech data. We then illustrate the process of slicing
via metadata to define subgroups.

Metadata. We annotate speech data with metadata consist-
ing of interpretable attributes. Metadata describes utterances in

a human-understandable manner. Below, we report a (partial)
characterization of what metadata can describe:

• speaker demographics such as gender or age;
• speaking features, e.g., the speaking rate and the duration

of silences;
• recording conditions, such as type of environment and

presence and type of noise;
• task- or dataset-specific features, e.g., an intent descrip-

tion for an intent classification task.
Metadata can be already available in the dataset under

analysis, such as demographic information of the speakers
or the target intent in a labeled dataset. We can also derive
metadata from utterances or their transcriptions, such as the
utterance duration, number of words, or speaking rate as the
ratio of words per second.

We denote by D our dataset under analysis and by A its
set of metadata attributes.

Slices, items, and itemsets. An item is an attribute equality
with the form a = v, for an attribute a ∈ A and a value
v. If gender and age are attributes, examples of items are
gender = female and age ∈ [20 − 40]. The subgroup
corresponding to an item is the portion of the dataset that
satisfies it. We require that the item subgroups form a dataset
partition for each attribute. For instance, the age ranges must
be non-overlapping for the age attribute, and their union must
cover all possible ages. For an attribute a ∈ A, we denote its
number of possible values with ma.

An item enables us to slice, or select, a subset of the data
concerning one attribute. We can also slice the data concerning
multiple attributes by considering itemsets, which are col-
lections of zero or more items, each referring to a distinct
attribute. An example of itemset is {gender = male, age ∈
[10, 20]}. We define data subgroups via itemsets, allowing
for an interpretable definition of subgroups. We denote by
attr(I) the set of attributes included in an itemset I . For
an itemset I , we let the support of I be the fraction of the
dataset corresponding to I , that is, the ratio between the size
of the subgroup satisfying I and the size of the whole dataset.
Thus, an itemset with support of 0.02 will appear in 2% of
the dataset. The empty itemset, denoted by ∅, corresponds to
the entire dataset and has support 1. We say that an itemset is
frequent with respect to a minimum support threshold u if its
support is greater or equal to u.

For a subset of attributes B ⊆ A, we denote by IB =
{I| attr(I) = B} the itemsets over attributes B and by IA the
itemsets that contain all attributes of D. By I⋆,u

B , we denote the
set of frequent itemsets with attributes B for support threshold
u. We will use I⋆

B when u is clear from the context.

B. Subgroup Divergence and Performance Gap

We are interested in identifying subgroups with different
performances than the overall dataset. We use the notion of
subgroup divergence as the difference in the performance of a
subgroup compared to the whole dataset [15]. Evaluating dif-
ferences at the subgroup level is also critical when comparing
models. We introduce the notion of cross-model performance
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gap as the difference in performance between the two models
on the subgroup.

Subgroup divergence. Let f be a generic statistic for a down-
stream SLU task so that for a model M and a subgroup (i.e.,
itemset) I , f(I,M) is the average of the statistic of the model
on the subgroup. The statistic can reflect correctness, top-n
correctness, or other standard measures of model performance.
The divergence of itemset I with respect to model M is the
difference between the model performance over I , and the one
over the whole dataset [15]:

∆f (I,M) = f(I,M)− f(∅,M) . (1)

The higher the divergence (in absolute terms), the more
the performance in the subgroup diverges from the overall
behavior. Consider, for example, the accuracy as the statistic
f . A subgroup with negative (and high) divergence indicates
that the model is underperforming. We use Welch’s t-test, as
outlined in [15], to determine the statistical significance of
divergence. Our hypothesis tests whether the means of the
subgroup I and the entire population D are equal for the
statistic f .

Cross-model performance gap. We define the performance
gap from model M1 to model M2 for itemset I as the change
in performance on I obtained by replacing model M1 with
model M2:

gapf (I,M1,M2) = f(I,M2)− f(I,M1) . (2)

The definition of subgroup divergence and performance
gap can apply to generic SLU models for a generic task to
assess the subgroup performance of a statistic f of a generic
dataset annotated via metadata. This makes the methodology
model-, task-, and metric- agnostic. To assess the statistical
significance of performance gaps, we again use Welch’s t-test.
We test the hypothesis that the means of statistic f for models
M1 and M2 are equal.

C. Local and global contribution to divergence or gap

Once we identify the itemsets with significant divergence
or gap, it is interesting to characterize the role of their items
in their divergence or gap. We use notions from game theory
to provide a local and global understanding of the subgroup
behavior.

Local contribution. Given an itemset I , the local contri-
bution quantifies the local role of each item to its gap or
divergence. Let g(I) be the metric of interest for itemset
I (g can be divergence or gap). Following [15], we define
the contribution of i ∈ I to g(I) using the game-theoretical
notion of Shapley value. The Shapley value assigns each team
member their contribution to the team’s total score. Paralleling
its definition, we consider the items in I as team members and
g(I) as the total score. Given an itemset I and an item i ∈ I ,
the contribution sg(i, I) of i to g(I) is:

sg(i, I) =
∑

J⊂I\{i}

|J |!(|I| − |J | − 1)!

|I|!
[g(J ∪ i)− g(J)] .

(3)
The Shapley value sg(i, I) of i in I captures the notion of

how much i contributed to the divergence or gap of I , and

Notation Description

Item Attribute equality with the form a = v,
for an attribute a ∈ A and a value v

Itemset (Subgroup) I A set of items,
each item referring to a distinct attribute

∆f (I,M)
Divergence of Itemset I

with respect to model M and statistic f

gapf (I,M1,M2)
Cross-model performance gap from model M1

to model M2 for Itemset I and statistic f

sg(i, I)
Shapley value of item i in I , showing how much
i contributed to the divergence or gap of I g(I)

S̃g(i, u)
Global Shapley value of item i, measuring the average
effect to g of adding i to all other compatible itemset

TABLE I: Summary of the notation used in this work.

we have
∑

i∈I sg(i, I) = g(I). The Shapley values for g(I)
represent the local contribution of the items of the individual
subgroup I to g(I). The higher the value sg(i, I), the more
the item i locally contributes to the total value g(I).

Global contribution. We evaluate the divergence or gap
for all itemsets with adequate representation in the dataset,
given by a frequency threshold u. The global contribution
estimates the average role of an item on the divergence or gap,
considering its effect on all explored itemsets. We consider
the global Shapley value S̃g(i) of an item i, which measures
the average effect of adding item i to all other compatible
itemsets [15].

Let D be a dataset with attributes A, and let g be the gap
or divergence of its itemsets measured for a given outcome
function. Let I⋆

B be the set of frequent itemsets with attributes
B for support threshold u. The global divergence S̃g(i, u) of
a frequent item i is computed as follows:

S̃g(i, u) = (4)∑
B⊆A\attr(i)

|B|!(|A|−|B|−1)!
|A|!

∏
b∈B∪attr(i) mb

∑
J:J∪i∈I⋆

B∪attr(i)

[
g(J ∪ i)− g(J)

]
,

where a = attr(i) is the attribute of item i. The global Shapley
value S̃g(i, u) of i appropriately averages the effect of adding
i to all itemsets not containing items for a. The computation
accounts only for frequent itemsets to reduce the enumeration
while ensuring the statistical significance of measure g over
itemset. Further details are given in [15]. The advantage of
using S̃g(i, u), rather than simply g(i), is that it captures the
incremental effect of adding item i to all other itemsets, rather
than just measuring the effect on item i. We will use S̃g(i)
when u is clear from the context to ease the notation.

Table I summarizes the concepts introduced in this section
with the corresponding notation.

D. DIVEXPLORER for subgroup exploration

We leverage DIVEXPLORER [15] to extract itemsets and
compute the statistic f and subgroup divergence or gap.

DIVEXPLORER extracts all itemsets above a given support
threshold, i.e., frequent ones. The support threshold u (such
as 0.1% of the dataset) binds the exploration and ensures
subgroups’ statistical and operational significance. By com-
pletely slicing the metadata domain, the number of subgroups
in the number of attributes is exponential. However, multiple
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Dataset Samples Subgroups Avg Time Worst Time

FSC [20] 3793 47736 1.33s 1.40s

SLURP [21] 13078 3896 0.75s 0.81s

IEMOCAP [22] 4490 7932 1.03s 1.09s

LIBRISPEECH [16] 2620 2414 0.14s 0.19s

TABLE II: Average (across ten runs) and worst execution time
[s] of DIVEXPLORER subgroup exploration. Note that FSC
counts 47736 subgroups due to the high number of metadata.

extracted itemsets may have very small or empty support.
These itemsets are less of interest for our subgroup perfor-
mance analysis. Performance measures for subgroups with
small support can be subject to statistical fluctuations that
render divergence or gap measures not statistically significant.
Itemsets that contain sufficient data are also operationally
significant. Divergence or gap affecting a more significant
portion of the dataset is more consequential than the ones
that only affect a smaller amount. These reasons also suit
our context. We will only consider frequent itemsets, that is,
itemsets whose support size is above a given threshold u.

Finding frequent itemsets in a dataset is a fundamental task
in data mining, known as frequent pattern mining [25], [26].
DIVEXPLORER augments frequent pattern mining techniques
to efficiently extract frequent itemsets while computing the
statistics f and divergence.

Given a dataset D with metadata attributes A, we leverage
DIVEXPLORER to analyze a model M at the subgroup level
with respect to statistic f . The result is the set of frequent
itemsets over all the input metadata. For each frequent itemset
I , we have its statistic f(I,M), its divergence ∆f (I,M), and
its statistical significance t. To analyze the gap in performance
between two models M1 and M2, we can adopt DIVEX-
PLORER separately for them. We can then directly compute for
each frequent itemsets the gap in performance as the difference
between f(I,M2) and f(I,M1).

In the next section, we show that the proposed methodology
can reveal how model performance varies across subgroups
and compare models at the subgroup level, identifying mod-
eling biases towards peculiar subgroups.

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of our approach by showing its
ability to reveal sources of error (Section IV-A), analyzing how
model size (Section IV-B1), architecture (Section IV-B2) and
pre-training objective (Section IV-B3) impact performance at
the subgroup level. Section IV-A also evaluates the difference
between our analysis and a baseline approach. The experi-
mental results show that our approach allows understanding
model behaviors at the subgroup and global levels. They
also highlight the generalizability of the method for multiple
performance measures and tasks. Section IV-C discusses how
our findings translate into practical insights.

We run the experiments on a machine equipped with Intel®

CoreTM i9-10980XE CPU, 2 × Nvidia® RTX A6000 GPU,
128 GB of RAM running Ubuntu 22.04 LTS. Once model

fine-tuning and inference are performed, the subgroup explo-
ration typically takes a few seconds. Table II summarizes
the average and worst-case time for subgroup exploration
with our approach on each dataset. We set the user-defined
minimum support threshold u equal to 0.03 to ensure that
all subgroups in our datasets are well-represented. For the
smallest test set, LIBRISPEECH, the smallest subgroups will
include at least 75 instances. This cardinality aligns with the
standard practice requiring between 50 to 100 instances for
reliable results [27]. We used Welch’s t-statistic, denoted with
t, to assess the statistical significance of performance gaps.
Adopting a common rule of thumb [28], when Welch’s t-
statistic for a subgroup performance gap was larger than 2,
we rejected the null hypothesis and identified the performance
gap as statistically significant.

Datasets. We evaluated our approach on four datasets and
three tasks. Specifically, we considered LIBRISPEECH [16]
for the ASR task, FSC [20] and SLURP [21] for the IC
task, IEMOCAP [22] for the ER task. We provided a detailed
description of the datasets in Section V-A of the supplementary
material. We considered as our target statistics the accuracy
metric for FSC, SLURP, and IEMOCAP, while we adopted
the Word Error Rate (WER) for LIBRISPEECH.

Metadata. We annotated the datasets with several metadata.
Speaker Demographics: We considered demographic meta-

data characterizing the speaker, if available. We examined
all available (self-declared) demographic metadata within the
datasets. Specifically, we used the gender, age, and country
for FSC, the gender and country for SLURP, and the gender
for LIBRISPEECH and IEMOCAP.

Speech-oriented metadata: We analyzed the number and the
duration of silence, total and trimmed, the number of words,
and the “speaking rate” as the number of words per second.
Note that trimmed duration stands for the duration of the
utterance without considering the first and the last pause. In
contrast, “total silence” duration denotes the duration of an
utterance without considering any pause. We observed that the
number and length of intermediate pauses did not significantly
affect the performance of the models across the various
datasets and tasks, except for LIBRISPEECH. Consequently,
we chose to retain them solely for this dataset, given their
important role in achieving accurate ASR.

Dataset-dependent metadata: We examined the metadata
specific for each dataset and/or task, if available. We con-
sidered the intent for FSC and SLURP as the combination of
action, object, and location for the former, action and scenario
for the latter, and both the categorical-based and attribute-
based labels for IEMOCAP.

Table III summarizes the metadata we collected and ana-
lyzed for the considered datasets, separately for each domain.
These metadata cover different aspects of speech data, ranging
from demographics to speaking conditions. The flexibility of
our approach allows practitioners to expressly define and adopt
any metadata tailored to specific application contexts.

Metadata discretization. Attributes that are continuous in
nature, such as speaking rate or utterance duration, need to be
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Task Dataset Demographics Metadata Speech-Related Metadata Dataset-dependent Metadata

IC FSC gender, age, country number and duration of silences,
speech rate, number of words intent (action, object, location)

IC SLURP gender, country
number and duration of silences,

speech rate, number of words,
close/far field

intent (action, scenario)

ER IEMOCAP (IEMO) gender number and duration of silences,
speech rate, number of words

emotion label
arousal labels (activation, valence, dominance)

ASR LIBRISPEECH (LS) gender
number and duration of silences,

speech rate, number of words,
number and duration of middle pauses

none

TABLE III: Summary of each dataset collected demographic, speech-related, and dataset-dependent metadata.

Task Dataset w2v2-b w2v2-l hub-b hub-l

IC FSC 91.72 93.17 98.42 98.50

IC SLURP 86.86 85.59 87.69 89.25

ER IEMOCAP 74.66 71.18 67.44 74.99

ASR LIBRISPEECH 6.06 3.82 6.56 3.50

TABLE IV: Overall performance on the selected speech-
related datasets. We report Accuracy (%) for IC and ER tasks
and WER (%) for ASR. Best results are in boldface.

discretized into fixed ranges. In this work, we discretized these
metadata in three ranges using frequency-based discretization,
and we renamed the ranges as “low,” “medium,” and “high.”

Models. We considered the mono-lingual wav2vec 2.0 [17]
and HuBERT [23] models of two different sizes, base (ca. 90
million parameters) and large (ca. 300 million parameters).
For FSC and IEMOCAP, we used the public fine-tuned
checkpoints [29], while for SLURP and LIBRISPEECH, we
followed fine-tuning procedures and guidelines from relevant
literature [30]. Table IV highlights the performance of the fine-
tuned models on each of these datasets. Additionally, for the
impact of the mono- and multi-lingual pre-training objective
on the subgroup performance (Section IV-B3), we leveraged
XLSR large (with 300 million parameters) models pre-trained
on 53 [31] and 128 [32] languages.

A. Model understanding at the subgroup level: identification
of the most problematic intra-model subgroups

Here we address RQ1. We apply our methodology to detect
subgroups that diverge from the average behavior. We recall
that our approach involves exploring all adequately represented
subgroups across metadata and assessing their divergence from
the average behavior. A subgroup is deemed problematic if its
divergence is large in value, and statistically significant (as
determined via the Welch t-test). The specific threshold for
divergence to be deemed of large value depends on the nature
of the problem under analysis; what may be acceptable in one
context may not be in another. In the following results, we
consider the wav2vec 2.0 base model and all datasets in the
analysis. Table V highlights the most negatively and positively
divergent (i.e., problematic) subgroups for each dataset. The

5 0
gender=male

tot_silence=high
speakRate=high

age=22-40
loc=none

(a) w2v2-b. ∆acc = −31.22%

0 5
gender=female

tot_silence=high
speakRate=high

age=22-40
loc=none

(b) w2v2-b. ∆acc = −0.65%

Fig. 1: RQ1. FSC DATASET. Item contribution to accu-
racy for (a) the subgroup with the highest negative diver-
gence (Sup=0.03) and (b) when considering female gender
(Sup=0.04) rather than male.

divergence values for these subgroups are all significant (t > 2,
following [28]’s rule of thumb).

FSC. We examine model accuracy in data subgroups. The
higher the accuracy, the better the results. Thus, a negative di-
vergence denotes an accuracy lower than average. Conversely,
a positive divergence indicates a higher one.

wav2vec 2.0 base achieves the worst performance for the
subgroup {“age=22-40, gender=male, location=none, speak-
ing rate=high, tot silence=high”}, reported in the first block
of Table V, with divergence ∆acc = −31.2%. Analyzing the
influence of sensitive attributes, such as gender, is particularly
relevant. If we consider the female gender for this subgroup
while keeping the other metadata values constant, the subgroup
performance rises. Hence, for the identified subgroup, female
speakers achieve better accuracy than males. The Shapley
values in Figure 1(a) also confirm that the male gender is
associated with lower accuracy. Conversely, the female gender
has a positive impact and leads to higher accuracy scores
(Figure 1(b)).

Divergence analysis also reveals subgroups with better
performance than average. The most positively divergent sub-
group consists of utterances of speakers aged 22-40 with a
low speaking rate and long duration, having “washroom” as
the target location.The model correctly predicts all utterances
in this subgroup.

We can assess the influence of each metadata value on
divergence using the global Shapley values, as depicted in
Figure 2. Metadata values with negative global Shapley
value identify population characteristics that, when added
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Dataset Subgroups Sup train Sup test f ∆f t

FSC S-: {“age=22-40, gender=male, location=none, speaking rate=high, tot silence=high”} 0.03 0.04 60.50 -31.22 7.05
S+: {“age=22-40, location=washroom, speaking rate=low, trimmed duration=high”} 0.03 0.03 100.0 8.28 9.74

SLURP S-: {“action=quirky”} 0.04 0.05 67.37 -19.50 10.27
S+: {“gender=female, scenario=weather”} 0.03 0.03 95.93 9.07 8.32

IEMO S-: {“label=happy, activation=low”} 0.03 0.03 44.74 -29.92 7.37
S+: {“label=sad, valence=low, tot silence=low, trimmed duration=high”} 0.03 0.03 98.57 23.92 17.01

LS
S-: {“gender=female, trimmed speaking rate=high, trimmed duration=low, num pauses=low”} 0.05 0.03 17.30 11.24 4.16

S+:
{gender=female, speaking rate=low,
trimmed speaking rate=low, num pauses=low, tot duration=medium} 0.03 0.03 3.27 -2.79 5.57

TABLE V: RQ1. Gap in performance measure f (accuracy for FSC, SLURP, IEMOCAP, WER for LIBRISPEECH) for the
most negatively (S-) and positively (S+) divergent subgroups compared to overall test performance; wav2vec 2.0 base. The t
column indicates the Welch’s t-test value.

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3

trim_dur=low
n_words=low

speakRate=high
object=volume

tot_silence=high
action=increase

tot_dur=low
loc=none

object=music
gender=male

speakRate=medium
gender=female

age=41-65
object=none
action=bring
tot_dur=high

tot_silence=medium
n_words=medium

loc=kitchen
action=change lang

loc=washroom
speakRate=low

n_words=high
trim_dur=high

trim_dur=medium

Fig. 2: RQ1. Global Shapley values of Accuracy divergence;
FSC dataset, wav2vec 2.0 base model. Terms showing nega-
tive contributions indicate a lower-than-average accuracy.

to subgroups, lower accuracy on average, while metadata
with positive global Shapley values rise accuracy on average.
Speaking conditions notably influence performance: shorter
durations, fewer words, and faster speaking rates have neg-
ative global Shapley value, whereas longer durations, more
words, and slower speaking rates have positive values. These
speaking conditions align with factors highlighted in [33]
that influence error rates, confirming the observed subgroup
behaviors. Furthermore, intent targets have a distinct impact:
the object “volume” negatively impacts performance, whereas
the “washroom” location is associated with higher accuracy.

SLURP. The subgroup {“action = quirky”} experiences
the highest drop in accuracy. Hence, for this dataset and the
wav2vec 2.0 model, the target action equal “quirky” alone is
the term with the highest error rate, with a divergence ∆acc

equal to −19.5% (second block of Table V).

IEMOCAP is a dataset for the ER task, where utterances
are annotated with emotion labels. We analyze performance
variation for the class labels in conjunction with other emo-
tions or speaking conditions.

The analysis of the most divergent subgroups reveals

that happiness is associated with lower-than-average perfor-
mance, especially in conjunction with other attributes. The
subgroup {“label=happy, activation=low”} has the lowest
performance (third block of Table V). Note that the emotion
{“label=happy”} alone achieves an accuracy of 64.03%. This
highlights the relevance of its association with low activation,
showing a significant performance drop. To understand each
item importance, we can inspect this subgroup local Shapley
values, i.e., analyze each item contribution to the subgroup
performance. The Shapley values depicted in Figure 3(a)
shows the high impact of the label “happy” followed by
the “low activation”. If we change the label to “sad”, the
performance hugely increases (87.41%) (Figure 3(b) shows
the local Shapley values of the latter subgroup).

On the other hand, the label “sad”, in conjunction with
other items, is associated with the most positively divergent
subgroups, with accuracy higher than average. Figure 3(c)
shows the impact of each subgroup item. We notice the
predominant role of the sad label compared to the others.

LIBRISPEECH. We analyze the Word Error Rate (WER)
in data subgroups. A subgroup’s inferior performance relative
to the overall system is indicated by a higher divergence of
its WER value. Hence, unlike the previous cases, a positive
WER divergence indicates lower performance.

The subgroup with the highest positive divergence is
{“gender=female, trimmed speaking rate=high, trimmed du-
ration=low, num pauses=low”}. Hence, the model exhibits a
higher error rate for short utterances, low pauses, high speak-
ing rates, and the female gender. We now analyze the impact of
gender. When considering the male gender while keeping other
speaking conditions fixed, the models perform better, with a
WER score of 9.89% for wav2vec 2.0 base. This indicates a
disparate impact of gender on performance for this subgroup.
The Shapley values (Figure 4) confirm the positive influence of
the male gender, associated with lower WER. This aligns with
existing literature on the ASR and Speaker Recognition tasks
([34], [35], [36], [37], [38], [39], [40], [41]), in which male
speakers and speakers with lower speaking rates are associated
with higher performance. Conversely, female speakers and
faster-speaking speakers exhibit lower performance. We report
the impact of each item on the WER divergence using the
global Shapley values in the Supplementary material (Section
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20 0

label=happy

activation=low

(a) Most negatively divergent sub-
group. acc=44.74%, sup=0.03.

0 10

activation=low

label=sad

(b) Same subgroup as (a), with “sad”
label. acc=87.41%, sup=0.15.

0 10
tot_silence=low

trim_dur=high
valence=low

label=sad

(c) Most positively divergent sub-
group. acc=98.57%, sup=0.03.

Fig. 3: RQ1. Item contribution to performance. IEMOCAP dataset, wav2vec 2.0 base.

0 5
trim_dur=low

speakRate_trim=high
n_pauses=low

gender=F

0 5
trim_dur=low

speakRate_trim=high
n_pauses=low

gender=M

Fig. 4: RQ1. Item contribution to performance within the
same subgroup, either considering gender=female (left; WER
17.30%, support=0.03) or gender=male (right; WER 9.89%,
support=0.04). LIBRISPEECH; wav2vec 2.0 base.

V-B).

Comparison with a baseline. Traditional subgroup analysis
often examines performance disparities based on a single at-
tribute, such as gender or speaking rate. However, considering
subgroups at the intersection of multiple attributes allows for a
more comprehensive understanding of performance dynamics.
By exploring these intersectional subgroups, we can uncover
intricate relationships and patterns that may remain hidden
when analyzing subgroups based on one single attribute.

We compare the highest and lowest divergence scores
identified by our method (the ones reported in Table V)
with the ones obtained when only one-level subgroups are
considered. We report the comparison results in Figure 5.
Our approach demonstrates superior performance over the
baseline. For FSC, IEMOCAP, and LIBRISPEECH, the gap
in identified divergence is extremely large. For SLURP, the
two approaches exhibit comparable outcomes, because the
subgroups identified by our approach mostly coincide with
one-level subgroups. Our approach surpasses the baseline by
successfully identifying subgroups that exhibit greater diver-
gence than simpler one-level subgroups. This observation also
holds for all other models and sizes considered in our analysis
(wav2vec 2.0 large, HuBERT base, and large), as reported in
the supplementary material.

Summary of findings. We identified subgroups that exhibit
substantial deviations from the average performance of the
model, along with the corresponding error sources. By ex-
amining the influence of metadata values on divergence at
both local and global levels, we gained insights for model
debugging and comprehension. Our study uncovered the dis-
parate impact of gender on performance, illustrating the utility
of our approach as a tool for fairness evaluation. Moreover,
we showcased that the simultaneous consideration of multiple

metadata values, rather than isolated factors, enabled the
detection of highly divergent behaviors. These findings show
the proposed approach effectiveness in identifying subgroups
with pronounced divergence and highlight its potential to
enhance the performance of the analyzed models.

B. Model Comparisons

Identifying effective machine learning models capable of
achieving superior performance across diverse subgroups rep-
resents a critical challenge in contemporary data-driven re-
search. In this section, we present a comprehensive analysis
that aims to compare the performance of different models at
the overall and subgroup levels to examine which subgroups
are most likely to benefit from model modifications and which
are not. Our approach is entirely model-agnostic, enabling
us to extend our analysis to compare models with different
sizes (Section IV-B1), with entirely dissimilar architectures
(Section IV-B2) or trained with distinct pre-training objec-
tives (mono vs. multilingual, Section IV-B3). Through this
comparative analysis, we can identify models that offer the
most significant potential for enhancing subgroup performance
separately per dataset and task, thereby paving the way for
more equitable and inclusive data-driven research outcomes.

1) Effect of the model size on subgroup performance:
Here, we address RQ2. Larger machine learning models are
generally more accurate than smaller ones. [19] claims that
larger models are also fairer. However, we recently demon-
strated [24] that increasing the size of a model does not always
lead to better performance on a given dataset, as there may be
subgroups within the data for which the model’s performance
decreases. In [24], we thoroughly investigated the FSC dataset
and the effect of scaling size. To augment the empirical
evidence for this phenomenon, we conducted experimental
evaluations on the other three datasets. Table VI summarizes
the performance gap when scaling up the model size of
wav2vec 2.0 for each dataset, highlighting the subgroups
with the highest performance improvement and the highest
decrease.

FSC. Scaling up wav2vec 2.0 for FSC offers advantages
on a broader scale, encompassing both overall performance
improvements (93.17% vs. 91.72% accuracy) and specific sub-
group enhancements. Our analysis reveals that in 63.75% of
the examined subgroups, the larger model yields performance
improvements. Notably, the subgroup {action=increase, lo-
cation=none, tot duration=low, trimmed speaking rate=low,
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(b) SLURP dataset.
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(c) IEMOCAP dataset.
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(d) LIBRISPEECH dataset.

Fig. 5: Comparison with a baseline considering the most divergent one-level subgroups. Blue color indicates the baseline
performance (S1 and S2), while red denotes our approach (S− and S+). wav2vec 2.0 base model. The numbers above and
below the bars indicate the support of each considered subgroup.

Dataset Subgroups Sup gapf fw2v2-b fw2v2-l t

FSC ↑ {action=increase, location=none, tot duration=low, trimmed speaking rate=low, trimmed duration=low} 0.03 22.69 75.63 98.32 5.37

↓ {“action=activate, gender=male, speaking rate=low”} 0.03 -20.97 96.77 75.81 4.92

SLURP ↑ {gender=female, speaking rate=high, trimmed speaking rate=high, trimmed duration=low} 0.04 4.08 83.88 87.96 1.83

↓ {“action=remove, num words=low”} 0.03 -9.74 92.64 82.90 4.33

IEMO ↑ {“label=happy, trimmed speaking rate=low”} 0.04 12.96 67.28 80.25 2.66

↓ {“label=sad, trimmed speaking rate=low”} 0.03 -19.86 70.55 50.68 3.53

LS ↑ {gender=female, num pauses=low, trimmed speaking rate=high, trimmed duration=low} 0.03 -5.97 17.30 11.33 1.78

↓ {gender=male, num pauses=low, tot duration=low, trimmed speaking rate=high, trimmed duration=low} 0.04 0.46 10.17 10.64 0.14

TABLE VI: RQ2. Performance gap for performance measure f (WER for LIBRISPEECH, accuracy for the others) when scaling
up wav2vec 2.0 size, from base (90 million parameters) to large (300 million parameters). (↑) denotes the highest performance
improvement, (↓) indicates the largest decrease. The t column indicates the the Welch’s t-test value.
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(a) FSC. Performance improvement
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(b) SLURP. Performance improve-
ment for 16.86% of subgroups, de-
crease for 80.11% of them.
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(c) IEMOCAP. Performance im-
provement for 11.21% of subgroups,
decrease for 85.85% of them.
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(d) LIBRISPEECH. Performance im-
provement for 99.25% of subgroups,
decrease for 0.75% of them.

Fig. 6: RQ2. Gap contribution when scaling up wav2vec 2.0, considering different datasets.

trimmed duration=low”} exhibits the most significant en-
hancement, with a remarkable improvement of 22.69%, as
illustrated in the first section of Table VI ( t=5.37). However,
in 31.89% of the subgroups, performance decreases, with the
most substantial negative impact observed in the subgroup
{action=activate, gender=male, speaking rate=low”}, result-
ing in a maximum decline of 20.97%.

SLURP. Similar overall performance does not entail com-
parable performance also at the subgroup level. The base
and large wav2vec 2.0 models perform similarly (86.86%
for base and 85.59% for large). However, wav2vec 2.0 base
outperforms the large on 80.11% of the explored subgroups.
Table VI presents the subgroups with the highest decrease

(−9.74%) and the highest improvement (4.08%) when scaling
up this model. Figure 6(b) shows the gap distribution, which
is overall balanced with a peak at around −1%.

IEMOCAP. Scaling wav2vec 2.0 for IEMOCAP is not
beneficial overall and at the subgroup level. The accuracy
drops from 74.66% of the base version to 71.18% of the large
one. For many explored subgroups (85.85%), performance
decreases when scaling up wav2vec 2.0. Table VI reports the
subgroups with the highest decrease ({“label=sad, trimmed
speaking rate=low”}, with a negative gap of −19.86%) and
with the largest improvement ({“label=happy, trimmed speak-
ing rate=low”}, with a positive gap of 12.96%) when scaling
up the model. The gap distribution, reported in Figure 6(c), is
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skewed towards negative values, peaking at around −3%.

LIBRISPEECH. The base version of wav2vec 2.0 model
achieves an overall WER score of 6.06%, while the large
a much lower (thus, better) 3.82%. The improvement is
observed for almost all explored subgroups (99.25%). Hence,
the larger model shows better performance both overall and
at the subgroup level. The highest improvement is −5.97%
for the subgroup {“gender=female, num pauses=low, trimmed
speaking rate=high, trimmed duration=low”} (Table VI). Yet,
while we observe a slight improvement, the performance
gap is not statistically significant. Figure 6(d) shows the gap
distribution when scaling up the wav2vec 2.0 model, with peak
at around −2.5%.

Summary of findings. For the LIBRISPEECH dataset, we
demonstrate that scaling up the model enhances both over-
all and subgroup performance. However, in the IEMOCAP
dataset, enlarging the model leads to lower performance over-
all and within subgroups. Our evaluations on the FSC dataset
suggest that the efficacy of a larger model might vary sig-
nificantly based on the specific subgroup under examination.
Furthermore, our studies with the SLURP dataset highlight
that achieving similar overall performance does not necessarily
translate to similar performance also at the subgroup level.

Our findings suggest that the relationship between model
size and performance is complex, dataset- and task-dependent.
While increasing model size may lead to better performance
in some cases, it is essential to consider subgroup performance
carefully when evaluating larger models’ effectiveness.

2) Effect of the model architecture on the subgroup per-
formance: Here, we address RQ3. We adopt the proposed
methodology to evaluate the performance enhancement ob-
tained by replacing a particular model architecture with a
different one. Specifically, we evaluate the performance gaps
obtained by replacing the wav2vec 2.0 base model with the
HuBERT base model. We show that even when the overall
performance increases when one model is adopted instead of
another, there can be subgroups where performance decreases.
Similar considerations apply to the analysis of wav2vec 2.0
to HuBERT larger models, reported in the supplementary
material.

Table VII outlines the performance gap when changing
the models’ architecture, highlighting the subgroups with the
highest performance improvement and the highest decrease.

FSC. HuBERT base outperforms wav2vec 2.0 base
(98.42% vs. 91.72%). Upgrading to HuBERT results in a
positive gap for most subgroups (97.03% for the base models),
with a peak of approximately 5% accuracy gap observed in the
distribution (Figure 7(a)). The first block of Table VII reports
the subgroups with the most considerable improvement and
decrease in accuracy when changing the model structure.

SLURP. HuBERT outperforms wav2vec 2.0 in overall
accuracy. At the subgroup level, the HuBERT base model
performs better than wav2vec 2.0 in most explored subgroups
(77.16%). The distribution of accuracy gap is shown in Fig-
ure 7(b). The maximum gap is by 5.46% for the subgroup
{“field=far, gender=male, tot duration=high, tot silence=low,

trimmed duration=high”}, as shown in the second block
of Table VII (t=2.13). Yet, 16.86% of explored subgroups
experience a decrease in performance, with a drop that goes
up to -9.74%.

IEMOCAP. At a global level, the performance of Hu-
BERT base is lower than wav2vec 2.0 base (67.44% vs.
74.66%). Regarding subgroup analysis, 93.95% of the exam-
ined subgroups did not exhibit improvement upon transitioning
from wav2vec 2.0 to HuBERT base. The highest negative
impact on accuracy (-30.14%) was observed for the subgroup
{“label=sad, trimmed speaking rate=low”} (third block of
Table VII, t=5.41.

LIBRISPEECH. The wav2vec 2.0 base has a slightly better
performance than the HuBERT base, with a WER of 6.06%
and 6.56%, respectively. Switching from the wav2vec 2.0 base
to the HuBERT base introduces a decline in performance
for 89.77% of the analyzed subgroups. Still, the higher in-
crease in WER, observed for the subgroup {“gender=male,
num pauses=low, num words=low, tot silence=medium”} (last
block of Table VII), is not statistically significant (t = 1.33).
The distribution of the WER gap shows a peak around 0.5%
(Figure 7(d)).

Summary of findings. We show that changing architecture
from wav2vec base to HuBERT base benefits almost all sub-
groups for FSC and most subgroups for SLURP. On the other
hand, the change harms most subgroups for IEMOCAP and
LIBRISPEECH. Hence, the results show the disparate impact
of model architectures and the complexity of the relationship
between architecture and performance. Our findings show the
limitation of overall model comparison and motivate the need
to compare subgroup performance across architectures.

3) Comparison between multi- and mono-lingual pretrained
models: Here, we address RQ4. We investigate the impact
of the multi-lingual pre-training objective on model behav-
ior. Specifically, we compare the performance of three large
models, namely the mono-lingual wav2vec 2.0 [17] model and
the multi-lingual XLSR-53 [31] and XLSR-128 [32] models,
on the FSC dataset. We select this dataset for its widespread
use in literature, modest size, and previous examination by
researchers at the subgroup level [24]. Table VIII show the
highest and lowest performance gap when transitioning the
models’ pre-training objective from mono-lingual to multi-
lingual. Figure 8 shows the gap distribution when changing
the pre-training objective from mono- to multi-languages.
Specifically, Figure 8(a) presents the gap distribution when
transitioning to XLSR-53, while Figure 8(b) from mono to
XLSR-128. We observe different trends. The former displays
a left-skewed distribution, with a predominance of negative
values, whereas the latter reveals a right-skewed distribution,
mainly characterized by positive values.

Mono- to Multi- Languages (XLSR-53). The XLSR-53 large
model performs less effectively than the large mono-lingual:
the former achieves an accuracy of 90.07% while the latter
93.17%. The XLSR-53 model is worse at the subgroup level
than the mono-lingual on 72.30% of explored subgroups. The
decrease goes up to 55.83% (t = 11.49). Only 25.59% of the
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Dataset Subgroups Sup gapf fw2v2-b fhub-b t

FSC ↑ {“gender=male, location=none, num words=low, tot silence=high, trimmed duration=low”} 0.03 31.20 64.00 95.20 6.53

↓ {“action=decrease, age=22-40, location=washroom”} 0.03 -1.68 100.00 98.32 1.01

SLURP ↑ {“field=far, gender=male, tot duration=high, tot silence=low, trimmed duration=high”} 0.03 5.46 80.76 86.22 2.13

↓ {“field=far, gender=female, speaking rate=low, tot duration=low, tot silence=low”} 0.04 -3.27 85.81 82.53 1.35

IEMO ↑ {“activation=high, label=anger, duration=low, valence=low”} 0.03 7.54 75.34 82.88 1.57

↓ {“label=sad, trimmed speaking rate=low”} 0.03 -30.14 70.55 40.41 5.41

LS ↑ {“num pauses=medium, speaking rate=medium, tot duration=medium, tot silence=medium”} 0.04 -1.05 7.44 6.39 0.75

↓ {“gender=male, num pauses=low, num words=low, tot silence=medium”} 0.03 2.5 7.60 10.11 1.33

TABLE VII: RQ3. Gap for performance measure f when changing the models’ architecture, from wav2vec 2.0 to HuBERT
base. (↑) denotes the highest performance improvement, (↓) indicates the largest decrease. The t column indicates the Welch’s
t-test value.
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(a) FSC. Performance improvement
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(b) SLURP. Performance improve-
ment for 77.16% of subgroups, de-
crease for 18.99% of them.
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(c) IEMOCAP. Performance im-
provement for 4.15% of subgroups,
decrease for 93.95% of them.
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(d) LIBRISPEECH. Performance im-
provement for 10.23% of subgroups,
decrease for 89.77% of them.

Fig. 7: RQ3. Gap distribution when changing wav2vec 2.0 base to HuBERT base.

Dataset Subgroups Sup gapf fmono fxlsr-53 t

FSC

↑ {“action=activate, gender=male, trimmed speaking rate=low”} 0.04 23.84 74.83 98.68 6.39

↓ {“action=increase, object=heat, trimmed speaking rate=medium, trimmed duration=high”} 0.03 -55.83 96.67 40.83 11.49

Subgroups Sup gapf fmono fxlsr-128 t-test

↑ {“gender=male, speaking rate=high, tot silence=high, trimmed duration=low, location=none”} 0.03 24.06 75.19 99.25 6.14

↓ {“action=increase, object=heat, age=22-40, gender=male, tot silence=low”} 0.04 -4.51 98.50 93.98 1.79

TABLE VIII: RQ4. Performance gap when changing the pre-training objective from mono- to multi-lingual (XLSR-53 and
XLSR-128m, respectively), FSC dataset. (↑) denotes the highest performance improvement, (↓) indicates the largest decrease.
The t column indicates the Welch’s t-test value.

50 40 30 20 10 0 10 20
Gap in performance

0
200
400
600
800

1000
1200
1400
1600

# 
Su

bg
ro

up
s

(a) Mono- to XLSR-53. Performance
improvement for 25.59% of sub-
groups, decrease for 72.30% of them.
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(b) Mono- to XLSR-128. Perfor-
mance increase for 92.90% of sub-
groups, decrease for 4.05% of them.

Fig. 8: RQ4. Gap distribution when changing the pre-training
objective from mono- to XLSR-53 (a) and from mono- to
XLSR-128 (b). FSC dataset.

subgroups experience a performance gap, with an increase up
to 23.84% (t = 6.39).

Mono- to Multi- Languages (XLSR-128). Differently,
switching to the XLSR-128 model is beneficial, both overall
and at the subgroup level. The multi-lingual model achieves an
overall 98.34% of accuracy (compared to 93% of the mono-
lingual). At the subgroup level, it performs better than the
mono-lingual on 92.90% of the explored subgroups. As shown
in the second-last row of Table VIII, the most significant
improvement is by 24.06% (t=6.14). We are interested in
analyzing the 4.04% of subgroups for which we observe
a decrease in performance instead. The highest decrease is
small and not statistically significant (−4.5%, t=1.79) and the
performance is still higher than the average of the mono-
lingual model. This suggests the multi-lingual XLSR-128
model is more robust and suitable, considering the subgroup
level performance.

Global item role in performance gap. We use the notion of
global Shapley value to quantify the contribution of metadata
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Fig. 9: RQ4. Global Shapley values of accuracy gap for
wav2vec 2.0 large mono-lingual to XLSR-128, top-15. FSC.

values to a gap in performance when altering the pre-training
objective. Figure 9 summarizes the top 15 items with the
highest impact on the performance gap when changing the pre-
training objective from mono-lingual to multi-lingual XLSR-
128. The significant role of gender in determining the perfor-
mance of the models is highlighted, with “gender = female”
exerting a negative impact on the performance. In contrast,
“gender=male” exhibits a positive influence on the perfor-
mance gap. Moreover, a high speaking rate, a high silence,
and specific actions (such as “activate”) and objects (such as
“music”) have a positive impact when going from the mono-
lingual model to XLSR-128. The findings thus underscore the
importance of gender, speaking rate, and speech duration in
designing and optimizing speech recognition models.

Summary of findings. Our study demonstrates that switching
from the mono-lingual model to the XLSR-53 model for FSC
does not provide any benefits in terms of performance, either
at the overall or subgroup levels. Conversely, employing the
XLSR-128 model has several advantages, as it outperforms
the mono-lingual version overall and at the subgroup level.
These findings highlight the need for thoroughly evaluating
each model for the specific task and dataset at hand.

C. Final remarks

Our approach enables the analysis of model performance,
and the comparison of models, at the subgroup level. Its
adoption yields a series of practical insights. (i) By under-
standing which subgroups benefit or are disadvantaged by the
adoption of a specific model, practitioners can determine if
they can trust the model. (ii) Our approach facilitates model
debugging by identifying subgroups affected by below-average
performance. (iii) Practitioners can then actively work to
improve the model. (iv) Finally, our approach aids practitioners
in comparing models, allowing them to choose models based
on subgroup-level performance criteria.

V. CONCLUSIONS

This study introduces a novel approach to evaluate spoken
language understanding (SLU) system performance at the sub-
group level, employing model bias analysis. Our methodology

automates the detection of significant performance disparities
in subgroups, facilitating error analysis and model comparison.
The approach is applicable across various speech tasks, mod-
els, and metrics, making it widely generalizable. Through a
comprehensive analysis of diverse datasets, tasks, and models,
we demonstrate its effectiveness. The subgroup-level analysis
provides a more nuanced assessment of model performance,
allowing for identifying subgroups that benefit most from
system improvements. Overall, this study advances the un-
derstanding of SLU system performance at the subgroup level
and provides a valuable tool for developing more inclusive
and effective speech technologies. In future work, we envision
adapting the proposed methodology to model improvement.
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[36] S. Cumani, N. Brümmer, L. Burget, P. Laface, O. Plchot, and V. Vasi-
lakakis, “Pairwise discriminative speaker verification in the i-vector
space,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 21, no. 6, pp. 1217–1227, 2013.
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