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SUPPLEMENTARY MATERIAL

This document presents additional results that provide a
comprehensive analysis across the whole set of datasets, tasks,
and models of the four research questions we addressed in our
work.

We include, for completeness, a rich collection of figures
and tables that provide visual representations and qualitative
measurements to further support our main findings.

A. Dataset characterization
LIBRISPEECH [16] corpus is a collection of audio record-

ings sourced from audio books belonging to the LibriVox
initiative. It encompasses a corpus of 1000 hours of speech
sampled at a rate of 16 kHz. For our experiments, we used
the “clean-100” version, which comprises 100 hours of clean
audio samples. The test set is characterized by 2620 samples
recorded by 40 different speakers. The evaluation metric for
the ASR task is the Word Error Rate (WER).

FLUENT SPEECH COMMANDS (FSC) [20] is a dataset
widely employed for the Intent Classification (IC) task. The
test set of FSC consists of 3793 audio samples mapped to
31 unique intents and has been recorded by ten speakers.
Each audio sample corresponds to three slots: action, object,
and location. The combination of the aforementioned slots
determines the intent of each audio sample. The IC task is
evaluated using intent accuracy as the metric.

SLURP [21] dataset is a collection of audio recordings
designed for audio Intent Classification. It consists of audio
samples recorded with close- and far-range microphones, with
varying background noise levels and audio quality. The test
set consists of 13078 utterances recorded by 142 different
speakers, mapped to 70 unique intents. The audio recordings
are labeled with their corresponding intent, given by the
combination of action and scenario. The evaluation metric for
the IC task is intent accuracy.

INTERACTIVE EMOTIONAL DYADIC MOTION CAPTURE
(IEMOCAP) [22] is a widely used benchmark dataset for
emotion recognition (ER) tasks in human-computer interaction
research. The dataset consists of audiovisual recordings of nat-
uralistic interactions between two actors engaged in scripted
scenarios, resulting in over 12 hours of data. Ten actors were
instructed to portray a range of emotional states, resulting
in a diverse set of emotions. The dataset is labeled with
discrete emotion labels (i.e., happiness, anger, sadness, frus-
tration, and neutral state) and continuous arousal annotations
(i.e., activation, valence, and dominance). These two labels
offer complementary insights into the emotional expressions
identified in the corpus. The public dataset is divided into five
sessions (i.e., splits) that are generally evaluated separately
using a 5-fold cross-validation approach. However, for the
current study, we consider the compound of the test sets
more appropriate, both to facilitate a more comprehensive
model evaluation of the models and to augment the size of
the evaluation set. Following standard procedure [29], we
excluded the imbalanced emotion categories to ensure that
the remaining four classes (neutral, happy, sad, angry) have a
similar number of data points. As a result, our dataset consists

Fig. 10: RQ1. Top-15 Global Shapley values of WER diver-
gence; LIBRISPEECH dataset, wav2vec 2.0 base model. Terms
with positive contributions are associated with a WER higher
than the WER on the entire dataset.

of 4990 samples. The metric for the ER task is accuracy, which
is commonly adopted for benchmarking ER tasks and the
IEMOCAP dataset. Accuracy could not be the best evaluation
option for imbalanced datasets. Other options, such as the
Unweighted Average Recall (UAR), can be explored. Still, as
our approach is metric agnostic, we can apply it to explore
subgroups’ performance for a generic performance measure,
and we would obtain close insights when switching the metric.

B. RQ1. How can we automatically identify and describe the
most problematic subgroups for a given combination of SLU
model, dataset, and task?

We summarize the impact of each item on the WER diver-
gence using the global Shapley values, reported in Figure 10.
Terms with positive contributions are associated with a WER
higher than the WER on the entire dataset. Negative terms are
associated with lower WER than average. Utterances with low
speaking rates and many pauses are associated with a WER
lower than the average. In contrast, low numbers of words
and high speaking rates are associated with increased WER.
Gender is an essential factor affecting model performance,
with males having a lower WER than females. These findings
underscore the significance of considering the speaking rate,
pauses, and gender when designing and evaluating speech
recognition models.

Figures 11(a) and 11(b) show the global Shapley Value of
accuracy divergence for SLURP and IEMOCAP respectively.
The action equal to quirk is the term that mostly globally
affects SLURP performance. The ‘field’ also highly impacts
the results. Utterances in the far-field are associated with lower
than average performance, while close-field utterances with
higher ones.

For IEMOCAP, we observe a high influence of the dataset-
dependent metadata. Utterances with high valence, happiness
as an emotion label, and low dominance are associated with
lower performance than the average. In contrast, their oppo-
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Dataset Model Negative � Positive �
Baseline Our Baseline Our

FSC

w2v2-b -7.88 -31.22 6.32 8.28
w2v2-l -7.5 -18.38 6.83 6.83
hub-b -0.98 -9.07 1.58 1.58
hub-l -2.04 -11.97 1.50 1.50

SLURP

w2v2-b -19.50 -19.50 7.56 8.26
w2v2-l -17.41 -17.41 8.11 8.85
hub-b -20.49 -21.20 7.61 7.98
hub-l -11.54 -11.98 6.27 7.36

IEMO

w2v2-b -10.62 -29.92 10.95 23.86
w2v2-l -9.16 -29.74 6.03 23.67
hub-b -13.83 -42.18 9.62 31.09
hub-l -9.99 -32.36 10.62 22.79

LIBRISPEECH

w2v2-b 3.04 11.24 -1.37 -2.79
w2v2-l 2.39 8.74 -0.64 -2.05
hub-b 3.09 9.90 -0.98 -2.83
hub-l 2.50 7.30 -0.65 -1.68

TABLE IX: RQ1. Maximum negative and positive divergence
(�) for the baseline and our approach. Best results are
highlighted in bold. Our approach is always superior or on
par with the baseline. Note that for FSC, the maximum
positive divergence is always similar, if not identical, since
both approaches retrieve the subgroup(s) for which the model
achieves 100% accuracy.

sites (high valence, sad as emotion label, and high dominance)
are associated with higher performance.

Comparison with baselines Table IX compares our approach
with one-level subgroup identification. Our approach consis-
tently demonstrates superior or comparable performance when
compared to the baseline. This highlights the effectiveness and
strength of our approach in addressing the research problem at
hand and further support the validity of our proposed method
in subgroup identification tasks.

C. RQ2. What is the effect of the model size on subgroup
performance? Does The large the better hold true?

Table X provides detailed information about the subgroups
that exhibit the most significant performance improvements
and decreases when scaling up the HuBERT model size.
These subgroups represent specific characteristics or condi-
tions within the datasets where scaling up the model has a
notable impact.

Figure 12 presents the distribution of the cross-model per-
formance gap for all the considered datasets. This figure visu-
alizes the performance gap between different size versions of
HuBERT, showcasing the differences in performance achieved
by scaling it up. By examining the distribution, one can gain
insights into the overall impact and effectiveness of scaling up
the model across the datasets.
FSC. Both HuBERT base and large exhibit similar perfor-
mance on this dataset, achieving accuracies of 98.42% and
98.50%, respectively. However, when scaling up the model, we
observed an improvement in performance for 51.33% of the
examined subgroups, while 32.97% experienced a decrease.
The initial section of Table X highlights the subgroups with

the most significant increase (by 9.84%) and decrease (by
�10.64%) in performance.
SLURP. Regarding HuBERT, for 81.78% of the explored
subgroup, performance increases from base to large. Their
overall accuracy is 87.70% and 89.25%, respectively. The
subgroups with the most significant increase in performance
(12.70%) and the largest decrease (�3.60%) are shown in the
second block of Table X.
IEMOCAP. When scaling HuBERT, overall performance
rises from 67.44% to 74.99%. The improvement is also at
the subgroup level. For almost all the explored subgroups
(93.95%), performance improves from base to large, con-
firming the expected behavior when scaling up the size. The
highest increase is by 27.92%. Still, for some subgroups, we
observe a performance decrease. The highest decrease is by
�6.43%, where accuracy drops from 76.43% to 70.00%.
LIBRISPEECH. The HuBERT base version achieves an overall
WER score of 6.56%, while the large a much lower (thus,
better) 3.50%. Most importantly, HuBERT large behaves bet-
ter than base on 100% of the explored subgroups. Hence,
HuBERT large shows better performance both overall and at
the subgroup level. The highest improvement is �6.16% for
the subgroup {“gender=female, speaking rate=high, trimmed
speaking rate=high, trimmed duration=low”}. While we ob-
serve a significant improvement for this subgroup, the large
model still underperforms overall performance, revealing that
this subgroup is still more difficultly modeled.

Summary of findings. Our findings demonstrate that scaling
up the HuBERT model yields benefits for the majority of
the analyzed subgroups across different datasets. However,
the extent of improvement varies. In some cases, such as
LIBRISPEECH, the improvement is observed for all explored
subgroups, while in others, such as IEMOCAP and SLURP,
it is significant for a high percentage of subgroups (93.95%
and 81.78%, respectively). Conversely, in the FSC dataset,
the improvement is less pronounced, impacting only 51.33%
of the subgroups.

D. RQ3. Is the performance bias on specific subgroups inde-
pendent of the model architecture?

Table XI outlines the subgroups with the highest perfor-
mance improvement and the highest decrease when changing
the models’ architecture from wav2vec 2.0 to HuBERT large.

Figure 13 provides a visual representation of the distribu-
tion of the cross-model performance gap when changing the
architecture from wav2vec 2.0 to HuBERT large. It illustrates
the differences in performance achieved by transitioning from
one model to another for each of the explored datasets.
FSC. In general, HuBERT large demonstrates superior perfor-
mance compared to wav2vec 2.0 large, 98.50% vs. 93.17%,
respectively. When considering specific subgroups, transition-
ing from wav2vec 2.0 to HuBERT leads to performance
improvements in 91.84% of the subgroups, while only 5.18%
experience a decrease. The largest increase (by 24.43%) and
decrease (by �7.80%) in performance are documented in the
initial block of Table XI. For the FSC dataset, gender is the
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(a) SLURP dataset. (b) IEMOCAP dataset.

Fig. 11: RQ2. Gap contribution when scaling up HuBERT, considering SLURP and IEMOCAP datasets.

Dataset Subgroups Sup gapf fhub-b fhub-l t

FSC " {“age=22-40, gender=male, num words=medium, tot silence=high”} 0.03 9.84 89.34 99.18 3.17

# {speaking rate=low, trimmed speaking rate=low, tot silence=low, trimmed duration=low} 0.04 -10.64 97.16 86.52 3.21

SLURP " {“field=far, scenario=general”} 0.03 12.69 66.50 79.19 4.04

# {“scenario=qa, duration=high”} 0.03 -3.60 89.45 85.85 1.57

IEMO
" {“label=sad, activation=high”} 0.03 27.92 51.30 79.22 5.35

# {gender=female, activation=medium, trimmed speaking rate=high, label=neutral} 0.03 -6.43 76.43 70.00 1.21

LS " {gender=female, speaking rate=high, trimmed speaking rate=high, trimmed duration=low} 0.04 -6.16 16.26 10.10 2.04

TABLE X: RQ2. Gap for performance measure f when scaling up the HuBERT size from base (90 million parameters) to
large (300 million parameters). (") denotes the highest performance improvement, (#) indicates the largest decrease. The t
column indicates the Welch’s t-test value.

(a) FSC. Performance increases for
51.33% of the explored subgroups
and decreases for 32.97% of them.

(b) SLURP. Performance increases
for 81.78% of the explored sub-
groups and decreases for 15.79% of
them.

(c) IEMOCAP. Performance in-
creases for 95.89% of the explored
subgroups and decreases for 2.52%
of them.

(d) LIBRISPEECH. Performance in-
creases for 100% of the explored
subgroups.

Fig. 12: RQ2. Gap contribution when scaling up HuBERT, considering different datasets.

most influential factor in the global Shapley values of accuracy
gap from wav2vec 2.0 to HuBERT large (Fig. 14), with males
benefiting more than females. An interesting observation can
be made regarding the influence of silence on performance.
Utterances with a high number of silences tend to result in
superior performance compared to the average, while utter-
ances with a low number of silences tend to yield lower
performance. Additionally, the action “activate” consistently
exhibits a positive influence, with higher accuracy than the
average, while the action “deactivate” shows the opposite

pattern, indicating lower performance.

SLURP. Changing from wav2vec 2.0 to HuBERT proves to
be advantageous at the overall level (85.59% vs. 89.25%) but
also for the majority of the analyzed subgroups (97.43%).
Detailed information can be found in the second portion of
Table XI, where the most significant improvement reaches
13.30%, while the largest decrease is a mere �1.78% for a
subgroup in which both models still perform above the average
performance.

IEMOCAP. When transitioning from wav2vec 2.0 to Hu-
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Dataset Subgroups Sup gapf fw2v2-l fhub-l t

FSC " {“action=increase, gender=male, speaking rate=high”} 0.03 24.43 74.81 99.24 6.15

# {“speaking rate=low, trimmed speaking rate=low, tot silence=low, trimmed duration=low”} 0.03 -7.80 94.33 86.52 2.18

SLURP " {“action=remove, num words=low”} 0.03 13.30 82.90 96.20 6.40

# {“action=query, language=other, speaking rate=medium, trimmed speaking rate=medium”} 0.03 -1.78 92.13 90.35 0.87

IEMO " {“label=sad, activation=high”} 0.03 16.23 62.99 79.22 3.17

# {“gender=male, label=neutral, speaking rate=medium, valence=medium”} 0.04 -7.22 78.89 71.67 3.77

LS " {“speaking rate=high, trimmed speaking rate=high, tot duration=low, tot silence=low, trimmed duration=low”} 0.05 -2.38 12.53 10.14 0.78

# {“trimmed speaking rate=high, tot duration=low, tot silence=medium, trimmed duration=low”} 0.03 1.77 7.58 9.35 0.64

TABLE XI: RQ3. Gap for performance measure f when changing the models’ architecture from wav2vec 2.0 to HuBERT
large. (") denotes the highest performance improvement, (#) indicates the largest decrease. The t column indicates the Welch’s
t-test value.

(a) FSC. Performance increases for
91.84% of the explored subgroups
and decreases for 5.18% of them.

(b) SLURP. Performance increases
for 97.43% of the explored sub-
groups and decreases for 1.51% of
them.

(c) IEMOCAP. Performance in-
creases for 89.13% of the explored
subgroups and decreases for 8.60%
of them.

(d) LIBRISPEECH. Performance in-
creases for 79.20% of the explored
subgroups and decreases for 20.59%
of them.

Fig. 13: RQ3. Gap distribution when changing wav2vec 2.0 to HuBERT large.

Fig. 14: Global Shapley values of accuracy gap. FSC dataset,
wav2vec 2.0 to HuBERT large model.

BERT large, performance improves for 89.13% of the ex-
amined subgroups, while 8.60% experience a decrease. We
recall that wav2vec 2.0 large attained an overall accuracy
of 71.18%, whereas HuBERT achieved a higher accuracy of
74.99%. Referencing the third section of Table XI, we observe
the largest increase in performance (by 16.23%) and the largest
decrease (by �7.22%).
LIBRISPEECH. On this dataset, wav2vec 2.0 and HuBERT
exhibit similar performance, with WER of 3.82% and 3.50%,
respectively. However, when shifting from wav2vec 2.0 to
HuBERT large, we observe performance improvements in

79.20% of the analyzed subgroups, while 20.59% undergo
a decrease. Notably, the maximum increase (�2.88%) and
decrease (1.77%) in performance, highlighted in the final
section of Table XI, are relatively comparable.

Summary of findings. In contrast to our findings when
transitioning from wav2vec base to HuBERT base, where
different datasets exhibited varying effects on subgroups (with
positive benefits for FSC and SLURP, but negative impacts
on most subgroups in IEMOCAP and LIBRISPEECH), the
transition from one large version to the other generally leads
to performance improvements for most subgroups across all
considered datasets. The percentage of subgroups benefiting
from the architecture change ranges from a minimum of
79.20% for LIBRISPEECH to a maximum of 97.43% for
SLURP. These results indicate a more consistent positive
impact on performance when upgrading from one large model
version to another across the analyzed datasets.

E. RQ4. Are multilingual SLU models more sensitive to sub-
group performance bias than monolingual ones?

Figure 15 reports the top-15 items with the highest Global
Shapley value (in absolute terms) of the accuracy gap from
wav2vec 2.0 large mono-lingual to XLSR-53. The action
“activate” has the most significant global impact on the
performance of FSC. Additionally, the number of words
in the utterances has a substantial influence on the results.
Utterances with a higher word count tend to yield lower-than-
average performance, while those with a moderate number
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Fig. 15: RQ4. Global Shapley values of accuracy gap for
wav2vec 2.0 large mono-lingual to XLSR-53, top-15. FSC.

of words result in higher performance. Moreover, gender
plays a prominent role, with utterances from female speakers
being associated with lower performance compared to the
average, while utterances from male speakers exhibit higher
performance.
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