
Formal Veri�cation of Performance and Reliability of

Real-Time Systems�

Luca de Alfaro

Department of Computer Science

Stanford University

Abstract

In this paper we propose a methodology for the speci�cation and veri�cation of

performance and reliability properties of real-time systems within the framework of

temporal logic. The methodology is based on the system model of stochastic real-time

systems (SRTSs), and on branching-time temporal logics that are extensions of the

probabilistic logics pCTL and pCTL*. SRTSs are discrete-time transition systems that

can model both probabilistic and nondeterministic behavior. The speci�cation lan-

guage extends the branching-time logics pCTL and pCTL* by introducing an operator

to express bounds on the average time between events. We present model-checking

algorithms for the algorithmic veri�cation of system speci�cations, and we discuss their

complexity.

�This research was supported in part by the National Science Foundation under grant CCR-92-23226, the

Advanced Research Projects Agency under NASA grant NAG2-892, the United States Air Force O�ce of

Scienti�c Research under grant F49620-93-1-0139, and the Department of the Army under grant DAAH04-

95-1-0317.

1

1 Introduction

Temporal logic has proved to be a valuable tool for the formal analysis of systems, and has

been applied to the speci�cation and veri�cation of a wide range of system properties, from

safety and response of reactive systems to reliability of probabilistic systems. In this paper,

we extend the range of its application to include the study of performance properties of real-

time systems, and we propose a uni�ed methodology for the speci�cation and veri�cation

of both performance and reliability properties of these systems within the framework of

temporal logic. The methodology we introduce relies upon a probabilistic model of the

system, a speci�cation language based on temporal logic, and model-checking algorithms

for the veri�cation of system speci�cations.

The system model we propose is that of Stochastic Real-Time Systems (SRTSs). Similar

to the models of [HJ89, Han94, Seg95], SRTSs can describe the probabilistic and nonde-

terministic components of the system behavior. The probabilistic characterization provides

information about the transition probabilities and the discrete-time delay distributions of

the transitions; nondeterminism can be used to model systems with incomplete probabilis-

tic characterizations, and enables us to consider reactive modules as components of SRTSs.

Unlike other system models, based on automata or augmented Markov chains [HJ89, Seg95],

SRTSs consist of a collection of transitions de�ned over a state space, together with mech-

anisms for choosing and scheduling transitions for execution. This approach, derived from

[MP93], leads to compact representations of concurrent probabilistic systems.

The speci�cation of system properties is based on the logics pTL and pTL*, and on the

use of instrumentation clocks to measure the length of intervals of time. The logics pTL and

pTL*, extensions of pCTL and pCTL* [HJ89, ASB+95, BdA95], are obtained by adding

the probabilistic operators P and D to the branching-time temporal logics CTL and CTL*.

The operator P is used to express bounds on the probability of system behaviors, and the

operator D is used to express bounds on the average time between events. For example,

the formula A2[P�a(� .)] speci�es that whenever a transition satisfying � is taken, the

ensuing system behavior satis�es with probability at least a [HJ89, ASB+95]. Similarly,

the formula A2[D<b(� .
)] speci�es that whenever a transition satisfying � is taken, the

average time needed to reach a state satisfying
 is less than b. The instrumentation clocks,

related to the clocks used in timed automata [AD91], are stopped or reset depending on the

transitions taken by the system, and their value can be used in the logic to reason about

the timing behavior of the system.

We present model-checking algorithms that enable us to verify whether an SRTS sat-

is�es a property written in pTL or pTL*. For model checking the P operator, we give

an alternative algorithm to the one presented in [CY90], based on the automata-theoretic

constructions of [Saf88] and on the properties of stable sets of states. These sets are related

to the closed classes of Markov chains, and are a unifying concept for all our model-checking

algorithms. By using the properties of stable sets, we reduce model checking for the D oper-

ator to the computation of minimum and maximum �rst-passage costs in Markov decision

processes [Der70], and we give criteria for the convergence of these costs in our setting.

We show that model checking of full pTL and pTL* is a hard problem, equivalent to

the problem of computing the minimum expected total cost of a Markov decision process,

which is not known to be solvable in polynomial time in the size of the system. On the

other hand, we show that model checking of the restricted logics pTL< and pTL�<, in

2

which the D operator is restricted to its upper-bound forms D<b and D�b, has polynomial

time-complexity in the size of the probabilistic description of the state space.

Related Work

The �rst applications of temporal logic to probabilistic systems studied which temporal

logic properties are satis�ed with probability 1 by systems modeled either as �nite Markov

chains [LS82, Pnu83, HS84, PZ93] or as augmented Markov models exhibiting both non-

deterministic and probabilistic behavior [Var85, PZ86, CY88, PZ93, CY95]. This approach

has been extended to real-time systems in [ACD92], where the speci�cation is represented

by a timed automaton.

Subsequently, [HJ89, HJ94] considered a restricted class of real-time systems, in which

the amount of time elapsed is equated to the number of transitions taken by the Markov

chain, and introduced the probabilistic logic pCTL. The speci�cations are written in the

logic pCTL, which extends CTL by introducing the P operator and adding subscripts to

the temporal operators to denote time intervals, similarly to metric temporal logic [Koy90].

The model-checking algorithms they present are derived from results from the theory of

Markov chains.

The logic pCTL*, the corresponding extension of CTL*, has been studied in [ASB+95],

which proposes model-checking algorithms for Markov chains derived from ideas in [CY88].

The work of [ASB+95] also considers generalized Markov processes, representing families

of Markov chains, and shows that the model-checking problem for pCTL* formulas on

generalized Markov processes is decidable using results from the theory of real closed �elds.

However, no e�cient computational method is given for this latter problem.

The work of [Han94] constitutes the �rst study of probabilistic properties of general real-

time systems within the framework of temporal logic. The systems are modeled by process

algebra terms that are translated into real-time extensions of the concurrent Markov chains

of [Var85], and the speci�cations are expressed in pCTL. This work also discusses properties

related to the average behavior of real-time systems, and presents algorithms to compute

some quantities of interest. However, no logic is proposed for the speci�cation of these

properties, and the algorithms can be applied only if the systems can be transformed to

eliminate nondeterminism.

The work of [BdA95] studies the logics pCTL and pCTL* for systems exhibiting both

probabilistic and nondeterministic behavior, and proposes model-checking algorithms based

on canonical forms for linear-time temporal formulas which, unlike those of [Han94], have

polynomial time-complexity in the size of the description of the system. Algorithms for

pCTL and pCTL* model checking based on automata theory can be derived from [CY90].

In the study of [Seg95], real-time systems are modeled by timed probabilistic automata,

and the veri�cation is based on the notions of probabilistic simulation and bisimulation. The

study also provides a broad overview of work on probabilistic systems done in the context of

process algebras. The relationship between these notions of simulation and temporal logics

related to pCTL is examined in [SL94].

3

2 Stochastic Real-Time Systems

The system model we use, Stochastic Real-Time Systems, is derived from the transition

systems of [MP93] and the probabilistic real-time systems of [ACD92].

De�nition 1 (SRTS) A Stochastic Real-Time System (SRTS) is a quadruple A =

(V; S; sin;T) consisting of the following components.

1. A set V of state variables, where each variable has its own type.

2. A �nite state space S: each state s 2 S is a type-consistent value assignment of all

the variables in V. For every x 2 V, we denote by s(x) the value of x at state s.

3. An initial state sin 2 S.

4. A set T of transitions. Each transition � 2 T is a partial function � : S 7! S with

domain Dom (�). If s 2 Dom(�), we say that � is enabled at s. Each transition � 2 T

has an associated weight w� 2 IR+[f?g, where IR+ is the set of positive real numbers

and ? is a value used to denote an unspeci�ed weight. Weights are used to choose the

transition to be taken, and unspeci�ed weights are used to model nondeterministic

choices.

The set T is partitioned into the sets Ti of immediate transitions and Td of delayed

transitions. Immediate transitions can be taken as soon as they are enabled; delayed

transitions must wait for an amount of time speci�ed by their waiting-time distribu-

tions.

We distinguish three types of delayed transitions, depending on whether the proba-

bility distribution of waiting times is unknown, is geometrical or has �nite support.

Accordingly, we partition Td into the sets Tu, Tg, Tf . To each � 2 Tg we associate the

instantaneous probability q� with which � is taken when enabled; to each � 2 Tf we

associate a maximum delay u� and a waiting-time distribution f� : IN 7! [0; 1] such

that f� (0) = 0, f� (n) = 0 for n > u� , and
Pu�
i=1 f� (i) = 1.

A computation of an SRTS consists of an alternation of delayed phases, in which delayed

transitions are taken, and immediate phases, in which immediate transitions are taken. The

model of time we choose is that of discrete time, and a time step is composed of a delayed

phase and of the following immediate phase. Time does not advance within the phases, and

is advanced by one unit at the end of the immediate phase that concludes a time step.

Each delayed transition is taken at most once during a time step. At the beginning of

each delayed phase, a subset Ts � Td of delayed transitions is scheduled for execution. The

set Ts is chosen so that every delayed transition is scheduled with the probability dictated

by its waiting-time distribution and by the amount of time for which it has been enabled.

During the delayed phase, the transitions in Ts are chosen for execution, taken, and

removed from Ts. The choice is made according to the weights fw�g�2Ts . Transitions

� 2 Ts with w� = ? are chosen nondeterministically; transitions with w� 6= ? are taken

with probability proportional to w� . Once taken, the transition is removed from Ts, along

with all the transitions that have become disabled as a consequence. This process continues

until Ts is empty, at which point the delayed phase is concluded. Thus, if two scheduled

transitions are independent, they are both taken (and the order in which they are taken

depends on their weights); if the transitions are dependent (i.e. if they can disable each

other), the weights determine which ones are taken.

4

During the immediate phase, the immediate transition to be taken is again chosen among

the enabled ones according to the transition weights. Every immediate transition can be

taken any number of times during an immediate phase, and the phase itself continues as long

as there are immediate transitions enabled. When no enabled immediate transition is left,

the immediate phase is concluded, the time is advanced by one unit, and the computation

of the SRTS continues with the following delayed phase.

The �rst phase of the execution of an SRTS is an immediate phase: this enables the use

of immediate transitions to set up the initial conditions of the system before the �rst time

step.

The two-phase execution semantics of SRTSs can be used to model systems consisting of

a physical system controlled by a software module. The physical system can be modeled by

delayed transitions, and the software module by immediate ones. At each time step, certain

system transitions occur, after which the controlling software computes the next control

output. This model is appropriate whenever the reaction time of the control software is

negligible compared to the time unit used in the description of the physical system. The

scheduling and choice mechanisms for the transitions also enable us to compose SRTSs in

parallel by taking the union of their sets of transitions, simplifying the task of modeling

complex concurrent systems.

To give a formal de�nition of the semantics of an SRTS, we provide a translation from

SRTSs to Probabilistic Nondeterministic Systems.

2.1 Probabilistic Nondeterministic Systems

A Probabilistic Nondeterministic System (PNS) is a Markov decision process without the

costs associated to the actions [Der70, Put94], and generalizes a Markov chain by introducing

nondeterminism in the system model.

De�nition 2 (PNS) A PNS is a quadruple � = (V; S; sin; �; p), where:

1. V is the set of state variables.

2. S is the state space of the system. The value of x 2 V at s 2 S is denoted by s(x).

3. sin 2 S is the initial state.

4. � is a function that associates with each s 2 S the set �(s) = fa1; : : : ; aksg of actions

that can be taken at state s.

5. p is a function that associates with each s; t 2 S and a 2 �(s) the probability p(t j s; a)

of a transition from s to t under action a. For all s 2 S and a 2 �(s), we requireP
t2S p(t j s; a) = 1. We let Supp(s; a) = ft 2 S j p(t j s; a) > 0g.

In a computation of a PNS, the successor of a state s 2 S is chosen in two steps:

�rst, an action a 2 �(s) is selected nondeterministically; second, a successor state t 2 S

is chosen according to the probability distribution p(t j s; a). A Markov chain is thus

a PNS s.t. j�(s)j = 1 for all s 2 S. We de�ne a reachability relation � � S � S by

� = f(s; t) j 9a 2 �(s) : p(t j s; a) > 0g. Then, we associate with each state s 2 S the set

s = fs0s1s2 � � � j s = s0 ^ 8n 2 IN : �(sn; sn+1)g

of behaviors from s. Given a behavior ! 2
s, we denote by !i the i-th state of !, with

!0 = s, and we denote by !�i the behavior !i!i+1!i+2 � � �. For each s 2 S, we let Bs � 2
s

5

be the �-algebra of measurable subsets of
s, following the classical de�nition of [KSK66].

To be able to talk about the probability of system behaviors, we would like to associate to

each � 2 Bs its probability measure �(�). However, this measure is not well-de�ned, since

the probability that a behavior ! 2 Bs belongs to � may depend on the criterion by which

the actions are chosen.

To represent these choice criteria, we use the concept of policy [Der70, Put94] (see

also [Var85, PZ86, Han94, BdA95]). A policy � is a set of conditional probabilities

Q�(a j s0s1 � � � sn), where a 2 �(sn).
1 A policy dictates the probabilities with which the

actions are chosen: according to policy �, after the �nite pre�x s0 � � � sn starting at the root

s = s0 of
s, action a 2 �(sn) is chosen with probability Q�(a j s0s1 � � � sn). Thus, the

probability of a direct transition to t 2 S after s0 � � � sn is given by

Pr�(t j s0 � � � sn) =
X

a2�(sn)

p(t j s; a)Q�(a j s0s1 � � � sn) :

These transition probabilities give rise to a unique probability measure �s;� on Bs. We

write Prs;�(A) to denote the probability of event A in
s under policy � and probability

measure �s;�, and we adopt the usual conventions to denote conditional probabilities and

expectations [KSK66].

A policy is Markovian if Q�(a j s0s1 � � � sn) = Q�(a j sn) for all s0; s1; : : : ; sn 2 S and all

a 2 �(sn). A policy � is deterministic if it is Markovian, and if for all s 2 S there is exactly

one action a 2 �(s) for which Q�(a j s) = 1. Given a Markovian policy �, the PNS under �

gives rise to a Markov chain with transition probabilities pst =
P
a2�(s) p(t j s; a)Q�(a j s),

for all s; t 2 S.

2.2 Translation of SRTS into PNS

The semantics of an SRTS A = (V; S; sin;T) is de�ned by translating A into a PNS �A =

(V̂ ; Ŝ; ŝin; �; p), and by taking the set of computations of the SRTS A to be
 ^sin . The

translation consists of several steps.

State space. The �rst step consists in extending the set of variables V of the SRTS A to

V̂ = V [fd; eg [fc� j � 2 Tfg, where:

1. d is an integer variable that has value 1 at the beginning of each delayed phase (when

the delayed transitions have to be scheduled), and value 0 otherwise;

2. e is a variable having 2Td as the set of possible values: the value ŝ(e) � Td represents

the set of scheduled transitions at ŝ.

3. For each � 2 Tf , c� is a clock that counts the amount of time for which � has been

enabled; its possible values are f0; : : : ; u�g.

The state space Ŝ consists of all the possible value assignments to the variables in V̂. The

initial state ŝin is s.t. ŝin(c�) = 0 for all � 2 Tf , ŝin(x) = sin(x) for all x 2 V, and ŝin(d) = 0,

ŝin(e) = ; (i.e. execution starts at the beginning of an immediate phase).

1A more general de�nition of policy enables the choice of the next action to depend also on the sequence of

previous actions [Put94]. This level of generality is unnecessary for the present work, in which the behavior

of the system is considered to be fully described by the sequence of system states.

6

Extending the transitions. The next step consists in extending each transition � 2

T : S 7! S to a transition �̂ : Ŝ 7! Ŝ. Let ŝ, ŝ0 be two states of Ŝ, and let s, s0 be their

restrictions to the variables in V. Then �̂(ŝ) = ŝ0 i� all of the following conditions hold:

1. �(s) = s0;

2. if � 2 Td then � 2 ŝ(e), and if � 2 Ti then ŝ(e) = ;;

3. ŝ0(d) = 0;

4. ŝ0(e) = f� 0 2 ŝ(e) j s0 2 Dom(� 0) ^ s0 6= � 0(s)g;

5. for all � 0 2 Tf , if s
0 2 Dom(� 0) ^ s0 6= � 0(s) then ŝ0(c� 0) = ŝ(c� 0), else ŝ

0(c� 0) = 0.

We let bT = f�̂ j � 2 T g. By Condition 2, a delayed transition can be taken only when it is

scheduled, and an immediate transition can be taken only when no delayed transitions are

scheduled (i.e. during an immediate phase). Condition 4 deschedules all transitions that

are taken or disabled as a result of taking �̂ ; Condition 5 resets the clocks of the transitions

with �nite support waiting-times distributions that have been descheduled.

Constructing the action sets. Finally, we construct �(ŝ) for each ŝ 2 Ŝ.

Scheduling the delayed transitions. If ŝ(d) = 1, we are at the beginning of a delayed phase,

and we must schedule for execution a subset of the set Td of delayed transitions. Let s be

the restriction of ŝ to the variables in V, and let Tn = Tg [Tf be the set of transitions with

known delay distributions. A transition � 2 Tn should be scheduled with a probability r�
given by:

� 2 Tg : r� =

(
q� if s 2 Dom(�),

0 otherwise;
� 2 Tf : r� =

f� (ŝ(c�))Pu�
i=ŝ(c�)

f� (i)
: (1)

The scheduling of the transitions takes place in two steps. First, a subset T � Tu of

transitions with unknown delay distributions is chosen nondeterministically; then, a subset

T 0 � Tn is chosen according to the probabilities given in (1). The transitions in T [T 0

are then scheduled. Accordingly, �(ŝ) = faT j T � Tug, where each action aT schedules

a subset T � Tu. Scheduling a set of transitions T [T 0 leads from ŝ to the single state

ŝ0 =
(ŝ; T; T 0) such that

ŝ0(d) = 0 ŝ0(e) = T [T 0 8x 2 V 0 � fd; eg : ŝ0(x) = ŝ(x) :

The probability distribution corresponding to action aT is given by

p(ŝ0 j ŝ; aT) =

8<
:
� Y
�2T 0

r�

�� Y
�2Tn�T 0

(1� r�)
�

if ŝ0 =
(ŝ; T; T 0) for T 0 � Tn;

0 otherwise.

Choosing from bT the transition to be taken. If ŝ(d) = 0 and the set T = f�̂ 2 bT j ŝ 2

Dom(�̂)g of transitions enabled at ŝ is non-empty, let U = f�̂ 2 T j w�̂ = ?g be the

enabled transitions having unde�ned weight, and let D = T � U . The system makes a

nondeterministic choice, choosing either a single transition from U , or the set D as a whole,

to cause the next state transition. If a single transition �̂ 2 U is chosen, the successor of ŝ

is �̂(ŝ); if the set D is chosen, the transitions in D are combined according to their weights,

7

yielding a probability distribution for the successor of ŝ. The set �(ŝ) will thus consist of

one action a�̂ for each �̂ 2 U and, if D 6= ;, of one additional action aD.

For each �̂ 2 U , we let p(ŝ0 j ŝ; a�̂) = ID�̂(ŝ)(ŝ
0), where IDx(y) is the distribution having

value 1 if x = y and 0 otherwise. If the state transition is caused by transitions in D, we

must combine the probabilities of the transitions that cause the same state change. Each

transition �̂ 2 D is taken with probability w�̂=
P
�̂2D w�̂ . Denoting with D(ŝ; ŝ0) = f�̂ 2

D j ŝ0 = �̂(ŝ)g the subset of transitions in D that lead from ŝ to ŝ0, we let

p(ŝ0 j ŝ; aD) =

P
�̂2D(ŝ;ŝ0)w�̂P
�̂2D w�̂

:

Advancing the clocks. If ŝ(d) = 0 and no transition �̂ 2 bT is enabled at ŝ, the system is at

the end of an immediate phase, and the clocks of the enabled transitions in Tf are advanced.

We let �(ŝ) = faclkg, where p(ŝ
0 j ŝ; aclk) = ID

t̂0
(ŝ0), where t̂0 is the unique state in Ŝ such

that

1. t̂0(d) = 1;

2. t̂0(e) = ;;

3. for all � 2 Tf , if s 2 Dom(�) then t̂0(c�) = maxfŝ(c�) + 1; u�g, else t̂
0(c�) = 0;

4. for all x 2 V, t̂0(x) = ŝ(x).

Condition 1 signals the beginning of a new delayed phase once the clocks have been ad-

vanced. Condition 3 advances the clocks of the enabled transitions in Tf . The max in

Condition 3 serves no purpose if �A is constructed in such a way as to include only the

states reachable from ŝin: if no �̂ is enabled at a reachable ŝ, it is ŝ(c�) < u� .

It is easy to modify the above translation so that states not reachable from ŝin are not

included in Ŝ. In the following, we assume that the state space Ŝ of �A contains only

reachable states.

3 Speci�cation

The speci�cation of SRTS properties is based on the use of instrumentation clocks and on

temporal logics derived from pCTL and pCTL* [HJ89, ASB+95, BdA95].

3.1 Instrumentation Clocks and Instrumented PNS

An instrumentation clock � over a state space S is a pair (�� ; �s), where �� � S2 is a

transition relation dictating when the clock is reset, and �s � S is a set of states on which

the clock is advanced alongside the other system clocks. Thus, � measures the amount of

time spent by the system in �s since the last �� -transition.

Given an SRTS A = (V; S; sin; T) and a set C of instrumentation clocks over S, we

construct an instrumented PNS �A;C , whose states keep track of the value of the clocks. The

construction starts from the PNS �A = (V̂; Ŝ; ŝin; �; p), from which we construct �A;C =

(V�; S�; s�in; �
�; p�) as follows.

1. V� = V̂ [C, where each � 2 C is an integer variable, so that S� = S � INjCj.

8

2. s�in(x) = ŝin(x) for x 2 V̂, and s
�
in(�) = 0 for � 2 C.

3. For any state s� 2 V�, let ŝ, s be its restrictions to the variables in V̂ , V respectively.

We let ��(s�) = �(ŝ), and for a 2 ��(s�), p�(t� j s�; a) = p(t̂ j ŝ; a) if the following

conditions are satis�ed for all � 2 C:

t�(d) = 1 : if t 2 �s then t
�(�) = s�(�) + 1 else t�(�) = s�(�) (2)

t�(d) = 0 : if (s; t) 2 �� then t
�(�) = 0 else t�(�) = s�(�). (3)

If one of (2), (3) is not satis�ed, p�(t� j s�; a) = 0.

Note that if C 6= ;, the state space of �A;C is in�nite.

3.2 Probabilistic Temporal Logic

Syntax. The system speci�cations are written in the logic pTL and pTL*. We distinguish

three classes of pTL and pTL* formulas: the class Stat of state formulas (whose truth value

is evaluated on the states), the class Trans of transition formulas (expressing relationships

between states) and the class Seq of sequence formulas (whose truth value is evaluated on

in�nite sequences of states). To de�ne these classes, we �rst de�ne the set BaStat of basic

state formulas. Given an SRTS A = (V; S; sin;T) and a set C of instrumentation clocks,

the set BaStat contains:

1. all formulas built using propositional connectives, interpreted function and predicate

symbols on the set V of variables;

2. all formulas of the form � > b, � = b, where � 2 C and b is an integer constant.

The class Trans contains all formulas built using propositional connectives, interpreted

function and predicate symbols on the set V [V 0 of variables, where V 0 denotes the set

obtained by priming each variable of V. For pTL*, the classes Stat and Seq are de�ned

inductively.

State formulas:

� 2 BaStat =) �; :� 2 Stat � 2 Trans; 2 Seq =) P./b(� .) 2 Stat (4)

�; 2 Stat =) � ^ 2 Stat � 2 Trans; 2 Stat =) D./b0(� .) 2 Stat (5)

� 2 Seq =) A�; E� 2 Stat : (6)

Sequence formulas:

� 2 Stat =) �; :�; 2�; 3� 2 Seq �; 2 Seq =) � ^ ; � U 2 Seq : (7)

In the above de�nition, ./ stands for one of f<;�;�; >g, b 2 [0; 1] and b0 � 0. The

logic pTL is a restricted version of pTL*, and its de�nition can be obtained by replacing

the clauses (7) with the single clause

�; 2 Stat =) 2�; 3�; � U 2 Seq : (8)

9

Semantics. The truth value of pTL and pTL* formulas is de�ned with respect to the

instrumented PNS �A;C = (V�; S�; s�in; �
�; p�). For � 2 Stat, 2 Trans,
 2 Seq, we

indicate with s j= �, (s; s0) j= , ! j=
 their satisfaction on s 2 S�, (s; s0) 2 S� � S�,

! 2
S
s2S�
s.

For a basic state formula � and s 2 S�, s j= � i� � is true in the interpretation in which

every x 2 V is assigned the value s(x). For � 2 Trans and s; s0 2 S�, (s; s0) j= � i� � is true

in the interpretation that assigns to x 2 V the value s(x), and to x0 2 V 0 the value s0(x).

The semantics of the logical connectives, temporal operators and path quanti�ers is de�ned

in the usual way.

Given � 2 Trans and s 2 S, let As;� = fs0 2 S j ��(s; s0) ^ (s; s0) j= �g be the set of

states reachable from s by a �-transition. The truth value of s j= P./b(� .) is de�ned by

s j= P./a(� .) i� As;� = ; or 8� : Prs;�
�
!�1 j=

��� ! 2
s ^ !1 2 As;�

�
./ b : (9)

The intuitive meaning of this de�nition is that P./b(�.) holds at s 2 S if, after taking the

transition �, a behavior has probability ./ b of satisfying , regardless of the policy guiding

the nondeterministic behavior of the system.

Given s 2 S and 2 Stat, we de�ne T!; = minfi j !i j= g to be the �rst position

at which holds along !, with T!; = 1 if 8i : !i 6j= . Let H!; =
PT!;

i=1 !i(d) be the

number of time steps along ! before T!; . The truth value of s j= D./b0(�.) is de�ned by:

s j= D./b(� .) i� As;� = ; or 8� : Es;�
n
H!�1;

��� ! 2
s ^ !1 2 As;�

o
./ b0 (10)

where Es;�f�g denotes as usual the expectation with respect to the measure �s;�. The

intuitive meaning of this de�nition is that D./b0(� .) holds at s 2 S if, after transition

�, the PNS reaches a -state in average time ./ b0, regardless of the policy guiding the

nondeterministic behavior of the system.

To see that the semantics is well de�ned, it is possible to show by induction on the

structure of formulas that the events mentioned in the above de�nitions are measurable,

and that T!; is a random time and that H!; is a random variable.

De�nition 3 We say that an instrumented PNS �A;C having initial state s�in satis�es

� 2 Stat, written �A;C j= �, if s�in j= �. We say that an SRTS A with instrumentation

clocks C satis�es �, written A;C j= �, if �A;C j= �.

3.3 Invariance Theorems and Non-Zeno Systems

In the above de�nition of �A;C j= �, while �A;C must contain all the clocks mentioned

by �, it can also contain additional instrumentation clocks. Our �rst invariance theorem

states that the presence in �A;C of instrumentation clocks not mentioned by � does not

in
uence the satisfaction of �. Given a formula � of pTL or pTL*, let clocks(�) be the set

of instrumentation clocks mentioned in �.

Theorem 1 For any SRTS A, � 2 Stat, set C of clocks s.t. clocks(�) � C and clock

� 62 C, �A;C j= � i� �A;C[f�g j= �.

Since we are interested in working with the smallest possible PNS, we will assume that for

�A;C it is C = clocks(�), i.e. that �A;C contains only the instrumentation clocks mentioned

10

m State of A1 l state of A2

0 idle 0 waiting for item

1 item in production 1 item received

2 item ready to send 2 ack sent, item being consumed

3 waiting for acknowledge 3 item consumed

Table 1: States of A1 and A2 as encoded by the variables l and m.

in �. In general, the PNS �A;C has an in�nite state space, and it is not possible to verify

directly whether �A;C j= � using conventional model-checking algorithms. However, we can

construct a reduced PNS �
�

A;C
such that �A;C j= � i� �

�

A;C
j= �. The key observation is

that ifM� is the largest constant with which � is compared to in �, we need to keep track of

the value of � only up toM�+1, since no inequality of � changes truth value when the value

of � increases beyond M� +1. The PNS �
�

A;C
is constructed from �A, C and fM� j � 2 Cg

by using the construction of Section 3.1, substituting condition (2) with, for all � 2 C:

t�(d) = 1 : if t 2 �s then t
�(�) = 1 +max(s�(�);M�) else t

�(�) = s�(�). (11)

Note that �
�

A;C
has a �nite state space. Our second invariance theorem states that A;C j= �

can be computed using �
�

A;C
instead of �A;C .

Theorem 2 �A;C j= � i� �
�

A;C
j= �.

Non-Zeno systems. We say that a PNS �A = (V; S; sin; �; p) corresponding to an SRTS

A is non-Zeno if a behavior from sin has probability 1 of going through in�nitely many time

steps, under any policy. Formally, we require that Prsin;�(
P1
i=0 !i(d) = 1 j ! 2
sin) = 1

for any policy �. In general, we are only interested in non-Zeno systems, and therefore the

proof of the above property should precede the proof of any other system speci�cation. We

will present algorithms to check whether a PNS is non-Zeno.

4 A Speci�cation Example

Consider a producer-consumer system composed of two processes A1 and A2 communicat-

ing over a channel. The system structure is depicted in Figure 1. The states of A1 and A2

are represented by the variables l and m, respectively, as detailed in Table 1. The commu-

nication channel is composed of two send bu�ers s1, s2 and two receive bu�ers r1 and r2
(see Figure 1). The variables corresponding to the bu�ers have value 0 when the bu�er is

empty, and 1 when it contains a message. The initial state sin of the system corresponds

to l = m = 0 and s1 = s2 = r1 = r2 = 0. The transitions of the system are summarized in

Table 2. For brevity, we do not specify the probability distributions of the waiting times of

the delayed transitions.

We add an instrumentation clock � having �s de�ned by the formula true, and �� de�ned

by the formula s1 = 0 ^ s01 = 1, so that � measures the amount of time elapsed since an

item has been placed in the send bu�er of A1. Then, the property: \If A1 sends an item,

11

buffers buffers

sr

r2s1

1

lm

A1 2A

2

Figure 1: A producer-consumer system, consisting of a producer A1 and a consumer A2 connected

by a bidirectional communication channel. The channel consists of two send bu�ers and two receive

bu�ers. Inside each system component we indicate the variable used to represent the state of the

component. The lines represent interaction between the components: the solid lines represent local

interactions, the wavy lines represent communication over the channel.

Transitions of A1:

Name Type Domain Transition Formula

�on 2 Tu � Td l = 0 l0 = 1

�produce 2 Tf � Td l = 1 l0 = 2

�senditem 2 Ti l = 2 ^ s1 = 0 l0 = 3 ^ s01 = 1

�getack 2 Ti l = 3 ^ r1 = 1 l0 = 0 ^ r01 = 0

Transitions of A2:

Name Type Domain Transition Formula

�getitem 2 Ti m = 0 ^ r2 = 1 m0 = 1 ^ r02 = 0

�giveack 2 Ti m = 1 ^ s2 = 0 m0 = 2 ^ s02 = 1

�consume 2 Tf � Td m = 2 m0 = 3

�reset 2 Ti m = 3 m0 = 0

Channel Transitions:

Name Type Domain Transition Formula

�1to2 2 Tg � Td s1 = 1 ^ r2 = 0 s01 = 0 ^ r02 = 1

�2to1 2 Tg � Td s2 = 1 ^ r1 = 0 s02 = 0 ^ r01 = 1

Table 2: Transitions of the producer-consumer system. Each transition is speci�ed by a formula

that de�nes its domain, and by a transition formula that describes the state change due to the

transition. In the transition formula, primed variables refer to the values of the state variables after

the transition; for brevity, variables whose value is not changed by the transition are not mentioned.

12

A1 receives an acknowledge after an average delay less than 7 time units" is expressed by

the pTL formula

A2
h
D�7

�
(s1 = 0 ^ s01 = 1) . m = 0

�i
: (12)

The property: \If A1 sends an item, then with probability at least 0.6 A2 �nishes the

processing within 8 time units" is expressed by the pTL* formula:

A2
h
P�0:6

�
(s1 = 0^ s01 = 1) . s1 = 1F r2 = 1F m = 1F m = 2F (m = 3^ � � 8)

�i
; (13)

where we have used the abbreviation F for the non-skipping until:

� F := � ^ (� U)

which, like U , associates to the right.

The motivation for transition formulas. Previous probabilistic logics, such as pCTL

and pCTL* of [HJ89, ASB+95], do not include transition formulas in their semantics, and

apply the operator P directly to a path formula. When reasoning about behavior proba-

bilities, it is essential to specify precisely the initial conditions from which the behaviors

originate. Often, these initial conditions correspond to transitions of the system; for exam-

ple, in the above system the interesting starting conditions coincide with the sending of a

message. Our syntax can easily encode these conditions, without requiring the introduction

of auxiliary variables indicating when a transition has just been taken.

Moreover, our syntax can express properties that cannot be expressed in pCTL or

pCTL*. To see this, consider a system having a state s0 with three possible successors

s1, s2, s3. Assume that the state formulas �0, : : : , �3 characterize these states, so that

 : �0 ^ (�01 _ �
0
2) 2 Trans characterizes the transition from s0 to fs1; s2g. It is easy to see

that the property P./a(
 .), for 2 Seq, cannot be expressed directly in pCTL*.

5 Model Checking

We now present algorithms to decide whether a PNS �
�

A;C
= (V; S; sin; �; p) with �nite state

space S is non-Zeno, and whether it satis�es a speci�cation � written in pTL or pTL*.

The model checking algorithms share the same basic structure of those proposed in

[ES84, EL85] for CTL and CTL*. Given a formula � 2 Stat, they recursively evaluate the

truth values of the state subformulas 2 Stat of � at all states s 2 S, starting from the

basic state formulas of � and following the recursive de�nitions (4){(6) of state formulas,

until the truth value of � itself can be computed at all s 2 S. Since the logics pTL and

pTL* are obtained by adding the P and D operators to CTL and CTL*, we need to examine

only the cases corresponding to these additional operators. For brevity, we will consider

only the logic pTL*, since pTL model checking can be done by combining the results of

[BdA95] with the methods presented below for the D operator.

We begin with a discussion of the properties of certain subsets of states of a PNS, called

stable sets. The properties of these sets will be instrumental in the development of the

model-checking algorithms.

13

5.1 Stable Sets

Intuitively, a subset of the state space of a PNS is stable if there is a policy such that all

behaviors that enter the subset will never leave it [BdA95]. The de�nition is as follows.

De�nition 4 (stable sets) Given a PNS � = (V; S; sin; �; p), a subset B � S is stable if,

for all s 2 B, there is a 2 �(s) such that p(t j s; a) > 0 implies t 2 B. If B is stable, we

de�ne

�B =
n
(s; t) 2 B �B j 9a 2 �(s) :

�
p(t j s; a) > 0 ^ Supp(s; a) � B

�o
:

Thus, relation �B holds between s; t 2 B if there is an action a 2 �(s) that leads to t with

positive probability, and that leads outside of B with probability 0. If the graph (B; �B) is

strongly connected, B is said to be a strongly connected stable set (SCSS). An SCSS B is

maximal in C � S if B � C and if there is no other SCSS B0 � C such that B � B0.

An equivalent de�nition of SCSSs is provided by the following remark, that we state

without proof (for the de�nition of recurrent classes, see [KSK66]).

Remark (SCSSs and closed recurrent classes) A set B of states is an SCSS i� there

is a Markovian policy � such that B is a closed recurrent class of the Markov chain arising

from �.

The following lemmas summarize the relevant properties of stable sets and SCSSs.

Lemma 1 The following assertions hold.

1. Let B be a stable set. Then, there is a Markovian policy de�ned on B such that any

behavior that enters B will stay in B forever with probability 1.

2. Let B be an SCSS. Then, there is a Markovian policy de�ned on B such that any

behavior that enters B with probability 1 will stay in B forever and will visit all states

of B in�nitely often.

Proof. We prove the second assertion, since the �rst one can be proved similarly. Let �

be the Markovian policy de�ned on B that chooses at state s 2 B each action in fa 2 �(s) j

Supp(s; a) � Bg with uniform probability. If a behavior after entering B follows policy �,

it will never leave B. Moreover, B under policy � forms a closed ergodic Markov chain, and

from classical results on Markov chains it follows that it will visit every state in B in�nitely

often with probability 1.

Given an in�nite behavior !, we denote by inft(!) the set of states that appears in�nitely

often along !. The next lemma states that this set is stable with probability 1, under any

policy.

Lemma 2 For all states s and for all policies �, �s;�
�
f! 2
s j inft(!) is stableg

�
= 1.

Proof. Assume towards the contradiction that �s;�

�
f! 2
s j inft(!) is stableg

�
< 1.

Then, there is a non-stable set B such that the set
Bs = f! 2
s j inft(!) = Bg has positive

measure under �. Since B is not stable, there is a state t 2 B such that Supp(t; a) 6� B

for all a 2 �(t). Let b = maxa2�(t)
P
t02B p(t

0 j t; a) be the maximum probability of staying

14

in B after visiting t; notice that b < 1. Since all behaviors in
Bs visits t in�nitely often

staying in B, we have �s;�(

B
s) � bk for all k > 0, which leads to the desired contradiction

�s;�(

B
s) = 0.

We say that a behavior ! is eventually con�ned to a subset C of the state space if

inft(!) � C.

Corollary 1 Let S be the �nite state space of a PNS, and let C � S be any subset of

states. For any state s, the following assertions hold.

1. Let B be the maximal stable subset of C. Under any policy �, the probability that a

behavior from s is eventually con�ned to C �B is 0.

2. Let D1, : : : , Dn be the SCSSs that are maximal in C, and let D =
S
n
i=1Di.

Under any policy �, the probability that a behavior from s is eventually con�ned to

C �D is 0.

Proof. We prove the �rst assertion, since the second one is an easy consequence of the

�rst. Assume, towards the contradiction, that the probability that a behavior is eventually

con�ned to C �B is greater than 0. Then, there is a set D � C �B such that

�s;�
�
f! 2
s j inft(!) = Dg

�
> 0 :

By Lemma 2, D must be stable. Thus, also B [D is stable, contradicting the maximality

of B.

De�ne the size j�j of a PNS � = (V; S; sin; �; p) to be the length of its encoding, in which

we assume that the next-state distributions are represented by lists of rational numbers,

each represented as the ratio between two integers. Given a subset C � S, the following

algorithm computes the maximal stable set B � C and the maximal SCSSs in C in time

polynomial in j�j.

Algorithm 1 (stable sets and SCSSs)

Input: PNS � = (V; S; sin; �; p) , and a subset C � S.

Output: The stable set B maximal in C, and the listE1, : : : , En of SCSSs maximal in C.

Procedure: De�ne the functional � : 2S 7! 2S by

�(D) =
n
s 2 D

��� 9a 2 �(s) : Supp(s; a) � D
o
:

Then B = limk!1�k(C) = �1(C), and the computation of the limit requires at most

jCj iterations, since the functional is monotonic. The SCSSs E1, : : : , En maximal in

C can be computed by computing the maximal strongly connected components of the

graph (B; �B).

5.2 Model Checking for the Operator P

Given s 2 S, � 2 Trans, 2 Seq, b 2 [0; 1], we present an algorithm to decide whether

s j= P./b(� .) holds. As usual, we assume that the truth value of the state subformulas

of has already been computed at all states. Let As;� = fs0 2 S j �(s; s0) ^ (s; s0) j= �g

15

be the set of states reachable from s via a �-transition; by de�nition (9), if As;� = ; then

s j= P./b(� .) holds. If As;� 6= ;, let

��s (� .) = inf
�

Prs;�
�
!�1 j=

��� ! 2
s ^ !1 2 As;�

�

= inf
�

P
t2As;�

Prt;�(! j= j ! 2
t) Pr�(t j s)P
t2As;�

Pr�(t j s)

= inf
�

P
t2As;�

P
a2�(s)Q�(a j s) p(t j s; a) Prt;�(! j= j ! 2
t)P

t2As;�

P
a2�(s)Q�(a j s) p(t j s; a)

= inf
�

P
a2�(s)Q�(a j s)

P
t2As;�

p(t j s; a) Prt;�(! j= j ! 2
t)P
a2�(s)Q�(a j s)

P
t2As;�

p(t j s; a)

= min
a2�(s)

P
t2As;�

p(t j s; a) inf� Prt;�(! j= j ! 2
t)P
t2As;�

p(t j s; a)
: (14)

A similar relation holds for �+s (� .) = inf� Prs;�(!�1 j= j ! 2
s ^ !1 2 As;�). Thus, to

compute ��s (� .) and �
+
s (� .) it su�ces to compute

Pr�t = inf
�

Prt;�(! j= j ! 2
t) Pr+t = sup
�

Prt;�(! j= j ! 2
t) (15)

for all t 2 As;�. These quantities represent the minimum and maximum probability that

a behavior from t satis�es . By the results of [CY90, BdA95] there are policies �� and

�+ that realize respectively the minimum and maximum values for Pr�t and Pr+t , so

that we can substitute min and max to inf and sup in (14) and (15). The truth value of

s j= P./a(� .) can then be computed from ��s (� .) and �
+
s (� .) by de�nition (9).

The minimum and maximum probabilities Pr�t and Pr+t can be computed in time

polynomial in j�
�

A;C
j and doubly exponential in j j using an algorithm presented in [CY90].

Below, we present an alternative algorithm, derived from the above properties of stable sets,

and from results on the determinization of !-automata [Saf88]. The running time of the

proposed algorithm is again polynomial in j�
�

A;C
j and doubly exponential in j j: in fact, it

is shown in [CY90] that this is the lower bound for the time-complexity of the problem.

Computation of minimum and maximum probabilities. Let t0 be a designated state

in S, and let be a sequence formula. Since Pr�t0 = 1 � Pr+t0 : , it su�ces to provide

an algorithm to compute Pr+t0 . Let �1, : : : , �n 2 Stat be the maximal state subformulas

of , i.e. the state subformulas of that are not proper subformulas of any other state

subformula of . De�ne 0 = [r1=�1] : : : [rn=�n] to be the result of replacing each �i with

a new propositional symbol ri: the formula
0 is therefore a linear-time temporal formula

constructed from r1, : : : , rn using the temporal operators 2, 3, U . As the truth value of

�1, : : : , �n has already been computed at all states, we can de�ne the label l(s) of s 2 S

by l(s) = fri j 1 � i � n ^ s j= �ig.

It is known from automata theory that 0 can be translated into a deterministic Rabin

automaton DR 0 = (Q; qin;�; �; U) with state space Q, initial state qin 2 Q, alphabet

� = 2fr1;:::;rng, transition relation � : Q�� 7! Q, and acceptance condition U [VW86, Saf88].

16

The acceptance condition is a list U = f(H1; L1); : : : ; (Hm; Lm)g of pairs of subsets of Q.

An in�nite sequence � : b0b1b2 � � � of symbols of � is accepted by DR 0 if it induces a

sequence !� : q0q1q2 � � � of states of Q s.t. q0 = qin, �(qi; bi) = qi+1 for all i � 0 and, for

some 1 � j � m, it is inft(!�) � Hj and inft(!�) \ Lj 6= ;.

From �
�

A;C
= (V; S; sin; �; p) and DR 0 = (Q; qin;�; �; U) we construct the product PNS

�0 = (V 0; S0; s0in; �
0; p0), where:

1. V 0 = V [f�g, where � is a new variable with domain Q;

2. S0 = S �Q, where (s; q) 2 S0 is s.t. (s; q)(�) = q and (s; q)(x) = s(x) for x 2 V;

3. s0in = (t0; �(qin; l(t0)));

4. for (s; q) 2 S0, it is �0(s; q) = �(s).

For each action a 2 �(s), the probability p0((s0; q0) j (s; q); a) of a transition to (s0; q0) 2

S0 is equal to p(s0 j s; a) if �0(q; l(s0)) = q0, and is equal to 0 otherwise.

Each pair (Hi; Li), 1 � i � m induces a related pair (H 0
i; L

0
i), de�ned by H 0

i = S � Hi,

L0i = S � Li. For each pair (H 0
i; L

0
i), 1 � i � m, we let B

(i)
1 ; : : : ; B

(i)
ni be the SCSS maximal

in H 0
i and having non-empty intersection with L0i, and we let T =

Sm
i=1

Sni
j=1B

(i)
j . By the

results of the previous section, the set T can be computed in time polynomial in j�0j.

Let R!;T denote the event 9k : !k 2 T , i.e. the event of ! reaching T . The following

theorem states that to compute Pr+t0 � it su�ces to compute the maximum probability of

reaching T from s0in in �0. Maximum reachability probabilities can be computed by solving

a linear programming problem, using the methods of [Der70, CY90, Put94].

Theorem 3 Pr+t0 = sup� Prs0in;�(R!;T j ! 2
s0
in
).

Proof. By construction of �0, it is Pr+t0() = sup� Prs0in;�(! j= 0 j ! 2
s0
in
). We can

write

Prs0
in
;�(! j= 0 j ! 2
s0

in
) = Prs0

in
;�

�
R!;T ^ ! j= 0

��� ! 2
s0
in

�
+ Prs0

in
;�

�
:R!;T ^ ! j= 0

��� ! 2
s0
in

�
: (16)

A behavior ! 2
s0
in
that satis�es 0 must, for some 1 � i � m, (a) be eventually con�ned to

H 0
i, (b) visit in�nitely often L0i. From (a), by Corollary 1, with probability 1 the behavior

is eventually con�ned to
Ski
j=1D

(i)
j , where D

(i)
1 , : : : , D

(i)
ki

are the SCSSs maximal in H 0
i.

From (b), the behavior can be eventually con�ned only to the SCSSs that have non-empty

intersection with L0i, that is, to B
(i)
1 , : : : , B

(i)
ni . Since

Sni
j=1B

(i)
j � T , a behavior that satis�es

 0 will enter T with probability 1, and the second term on the right side of (16) is 0. Thus,

(16) reduces to

Prs0
in
;�(! j= 0 j ! 2
s0

in
) = Prs0

in
;�

�
R!;T ^ ! j= 0

��� ! 2
s0
in

�
:

Taking sup� of both sides and using Lemma 1, we have

sup
�

Prs0
in
;�(! j= 0 j ! 2
s0

in
) = sup

�

Prs0
in
;�

�
R!;T ^ ! j= 0

��� ! 2
s0
in

�

= sup
�

Prs0
in
;�(R!;T j ! 2
s0

in
) ;

and the result follows.

17

5.3 Checking Non-Zenoness

To check whether the PNS �
�

A;C
= (V; S; sin; �; p) is non-Zeno, we convert �

�

A;C
into

a Markov decision process (MDP) �mdp = (V; S; sin; �; p; c) by associating to each pair

f(s; a)gs2S;a2�(s) a cost c(s; a) [Der70, Put94]. Intuitively, the cost of a pair (s; a) corre-

sponds to the amount of time elapsed during the action: all actions that advance the clocks

have cost 1, while all others have cost 0. More precisely, for all s 2 S and a 2 �(s),

c(s; a) =

�
1 if s(d) = 0 ^ 9t 2 S : (p(t j s; a) = 1 ^ t(d) = 1);

0 otherwise.

To check for non-Zenoness, we introduce the notion of zero-cost stable sets.

De�nition 5 (zero-cost stable sets) Given an MDP �mdp = (V; S; sin; �; p; c), a zero-

cost stable set (ZCSS) is a stable subset B � S such that for every s 2 B, there is an action

a 2 �(s) with c(s; a) = 0 and Supp(s; a) � B. A zero-cost stable set is maximal if it is not

the proper subset of any other zero-cost stable set.

Note that since the union of two ZCSSs is still a ZCSS, every MDP has a single (possibly

empty) maximal ZCSS. The following algorithms computes this set in time polynomial in

the size of the MDP.

Algorithm 2 (computation of maximal zero-cost stable set)

Input: An MDP (V; S; sin; �; p; c).

Output: The maximal ZCSS B of the MDP.

Procedure: De�ne the functional � : 2S 7! 2S by

�(D) =
n
s 2 D

��� 9a 2 �(s) : c(s; a) = 0 ^ Supp(s; a) � D
o
:

Then B = �1(S), and the computation requires at most jSj iterations.

The following theorem shows that to check that the PNS �
�

A;C
is non-Zeno it su�ces to

check that there are no reachable ZCSSs, which by the above results can be done in time

polynomial in j�
�

A;C
j.

Theorem 4 (checking non-Zenoness) A PNS is non-Zeno i� the corresponding MDP

does not contain any non-empty ZCSS reachable from the initial state.

Proof. Assume that an MDP contains a ZCSS reachable from the initial state. Then there

is a policy such that with positive probability a behavior from the initial state is eventually

con�ned to the ZCSS, and once con�ned, it never takes an action with positive cost. Thus,

if an MDP contains a reachable ZCSS, the corresponding PNS is not non-Zeno.

On the other hand, assume that the MDP does not contain any ZCSS reachable from

the initial state. Let B1; : : : ; Bn be the stable sets of the MDP, and let
isin = f! 2
sin j

inft(!) = Big, for 1 � i � n. By Lemma 2, for any policy � it is �sin;�(
S
n
i=1

i
sin
) = 1, so

we need to consider only the behaviors in
isin for some 1 � i � n.

If �sin;�(

i
sin
) > 0, with probability 1 a behavior ! 2
isin executes only �nitely many

pairs (s; a) such that Supp(s; a) 6� Bi. Since Bi is not zero-cost, ! must with probability

1 execute in�nitely often pairs (s; a) having c(s; a) > 0. As these pairs correspond to time

steps of the system, the system is non-Zeno.

18

5.4 Model Checking for the Operator D

Given � 2 Trans, 2 Stat and b � 0, we now consider the problem of computing the truth

value of D./b(� .) at state s 2 S of a PNS �
�

A;C
. We assume that �

�

A;C
is non-Zeno, and

that the truth value of has already been evaluated at all states s 2 S. We let As;� be as

before, and we let B = fs 2 As;� j s 6j= g be the set of : -states reachable from s via a

�-transition. Remembering de�nition (10), if As;� 6= ; we can follow a reasoning similar to

(14) and write

inf
�
Es;�

n
H!�1;

��� ! 2
s ^ !1 2 As;

o
= min

a2�(s)

X
t2B

p(t j s; a) inf
�
Et;�fH!; j ! 2
tg

X
t2As;�

p(t j s; a)
(17)

sup
�

Es;�
n
H!�1;

��� ! 2
s ^ !1 2 As;

o
= max

a2�(s)

X
t2B

p(t j s; a) sup
�

Et;�fH!; j ! 2
tg

X
t2As;�

p(t j s; a)
:(18)

Let T = fs 2 S j s j= g be the set of states satisfying , and let W!;i be a random variable

that indicates the cost at position i of behavior !: that is, W!;i = c(s; a) if !i = s and

action a 2 �(s) has been selected by the policy. For t 62 T , the �rst-passage cost CT�;t is then

de�ned as

CTt;� = Et;�
nT!; X
i=0

W!;i j ! 2
t
o
:

As a consequence of our choice of costs for the actions, we have CTt;� = Et;�fH!; j ! 2
tg,

and since �
�

A;C
is non-Zeno,

CT�;t <1 i� Prt;�(R!;T j ! 2
t) = 1 :

The model-checking problem is thus reduced to the computation of inf� C
T
t;� and sup� C

T
t;�

for all t 2 B. We examine the two cases separately.

5.4.1 Minimization of First-Passage Cost

Classical results on Markov decision processes insure the existence of a policy �� that

minimizes the �rst-passage cost CT�;t; the minimum cost CT
��;t

can be determined using the

value-iteration methods reviewed in [Put94]. Thus, it is possible to substitute inf with min

in (17), and the value of CT
��;t

at all t 2 B can be used to compute the truth value of

s j= D>b(� .) and s j= D�b(� .). Unfortunately, computing the minimum cost CT
��;t

is computationally expensive. The following theorem states that it is exactly as di�cult as

computing the minimum expected total cost of a general �nite positive model of Markov

decision problem. This latter problem cannot be solved using linear-programming methods,

and is not known to be solvable in polynomial time in j�mdpj [Put94].

Theorem 5 The following two problems are polynomially equivalent, i.e. are inter-

reducible by polynomial transformations:

19

1. Given a PNS �
�

A;C
corresponding to an SRTS A, a subset T of states and a single

state sin 62 T , compute CT
��;sin

on the corresponding Markov decision process.

2. Given a Markov decision process with �nite state space and non-negative costs, and

given a state sin, compute the minimum expected total cost from sin.

Proof. The reduction from Problem 1 to Problem 2 is straightforward. The reduction

from Problem 2 to Problem 1 proceeds as follows.

Let �mdp = (V; S; sin; �; p; c) be the MDP. First, note that if �mdp does not contain non-

empty ZCSSs, the minimum expected total cost from any state is in�nite under any policy.

This can be shown by a reasoning analogous to the one used in the proof of Theorem 4. We

can check whether �mdp contains non-empty ZCSSs in time polynomial in j�mdpj; if it does

not contain them, we can construct in constant time a non-Zeno SRTS in which the set T

is not reachable from the initial state. Otherwise, let C be the maximal ZCSS of �mdp.

If sin 2 C, we know that the minimum expected cost from sin is 0, and again it is easy

to construct in constant time an appropriate SRTS. Otherwise, we replace C with a single

new state sC , updating the transition probabilities by p(sC j s; a) =
P
t2C p(t j s; a). We set

�(sC) = faCg and p(sC j sC ; aC) = 1, where aC is a new action, and we take T = fsCg. We

can assume without loss of generality that c(s; a) = 0 _ c(s; a) � 1 for all s 2 S; a 2 �(s):

otherwise, we can enforce this condition by multiplying all costs by the reciprocal of the

least non-zero cost, obtaining an equivalent problem.

Let Act = f(s; a) j s 2 S ^ a 2 �(s)g. We construct an SRTS (V 0; S0; s0in;T) as follows.

1. S0 = S [Act � f0; 1g.

2. V 0 = fxg, where x is an integer variable whose value is used to enumerate the states

in S0.

3. s0in = sin.

4. Ti = f�
(1)
s;a g(s;a)2Act [f�

(2)
s;a;tg(s;a)2Act ;t2S .

5. Tg = f�
(3)
s;a g(s;a)2Act .

Every transition �
(1)
s;a 2 Ti corresponds to the choice of action a 2 �(s) at state s. It is

enabled on the state s 2 S � S0, and �
(1)
s;a (s) = ((s; a); 0). Every �

(1)
s;a 2 Ti has weight ?, so

that actions can be selected nondeterministically.

For all (s; a) 2 Act , if c(s; a) = 0 then transition �
(3)
s;a can never be taken. Otherwise,

�
(3)
s;a is enabled on state ((s; a); 0), and �

(3)
s;a ((s; a); 0) = ((s; a); 1). We set q

�
(3)
s;a

= 1=c(s; a),

so that before �
(3)
s;a is taken a time on average c(s; a) elapses.

Finally, the transitions f�
(2)
s;a;tg(s;a)2Act ;t2S are used to simulate the e�ect of the actions

on the state of the MDP. For all (s; a) 2 Act , transition �s;a;t is enabled on ((s; a); 0) if

c(s; a) = 0, and is enabled on ((s; a); 1) if c(s; a) � 1. For t 2 S, transition �
(2)
s;a;t leads to

state t, and has weight p(t j s; a).

Since every action of the MDP is simulated in the SRTS by a transition that is scheduled

in an average time equal to the cost of the action, it can be proved that the minimum

expected total cost for the MDP is equal to the minimum expected time for the SRTS from

sin to T .

20

5.4.2 Maximization of First-Passage Cost

Since we assume that the PNS is non-Zeno, if there is a policy � such that Prt;�(R!;T j

! 2
t) < 1, then sup� C
T
�;t = 1. Otherwise sup� C

T
�;t < 1, and there is a policy �+ that

maximizes the �rst-passage cost CT�;t. The maximum cost CT
�+;t

<1 can be computed by

solving a linear programming problem in time polynomial in the size of the MDP using

the methods of [Der70, Put94]. To determine whether the maximum �rst-passage cost

converges, we can use the following corollary.

Corollary 2 Let U be the largest stable subset of S � T . Then there is a path from t to

U in (S; �) i� there is a policy � such that Prt;�(R!;T j ! 2
t) < 1.

Proof. By Lemma 1, if there is a path from t to U in (S; �), there is a policy under which

a behavior from t has positive probability of being eventually con�ned to U , thus never

reaching T .

Conversely, by Corollary 1, under any policy the probability that a behavior reaches

T [U is 1. Thus, under any policy, if a behavior has probability less than 1 of reaching T ,

it must have probability greater than 0 of reaching U , implying that U is reachable from t

in the graph (S; �).

5.5 Complexity of pTL* Model Checking

Let pTL�< be the logic obtained from pTL* by allowing only the versions D<b and D�b of

the operator D./b. The following theorem combines the results of [CY90] with the previous

analysis of pTL* model checking and checking for non-Zenoness.

Theorem 6 The following assertions hold:

1. Checking whether a PNS �
�

A;C
is non-Zeno has time complexity polynomial in j�

�

A;C
j.

2. Model checking of a pTL�< formula � over a PNS �
�

A;C
has time-complexity polynomial

in j�
�

A;C
j and doubly exponential in j�j.

On the other hand, the size of �
�

A;C
depends exponentially on the number of delayed

transitions and instrumentation clocks of A, C and �. This exponential dependency is

typical of most model-checking approaches to the formal veri�cation of real-time systems.

6 Extending the D Operator to Past Formulas

The D operator of pTL and pTL* enables us to express bounds on the average time needed,

after a transition, to reach a given set of system states. Thus, it is somewhat less general

than the P operator, which can refer to the probability of a general sequence formula. For

instance, in the producer-consumer example of Section 4 the speci�cation \If A1 sends an

item, A2 �nishes the processing in an average time no greater than 8 time units" cannot be

expressed in pTL*, in contrast with (13). In fact, the formula

A2
h
D�8

�
(s1 = 0 ^ s01 = 1) . m = 3

�i

21

encodes the (di�erent) speci�cation \If A1 sends an item, A2 �nishes processing some item

in an average time no greater than 8 time units". Without using sequence formulas it is

not possible to distinguish between the cases in which m = 3 as a result of processing the

item that has been sent, or the previous one.

To overcome this limitation we generalize the de�nition of the D operator, allowing the

formula in D./b(� .) to be a past temporal formula, instead of a state formula. A past

temporal formula is a formula constructed from state formulas in Stat using the temporal

operators 2{ , 3{ and S [MP91]2

The semantics of this extension can be de�ned as follows. Given a behavior ! and a past

formula , let T!; = minfi j !0 � � �!i j=i g, where !0 � � �!i j=i indicates that formula

 holds at the last position i of the �nite sequence !0 � � �!i. Then, H!; =
PT!;

i=1 !i(d) is

the time that elapses along ! before is satis�ed, and the truth value of D./b(� .) can

be again de�ned as in (10).

Using this extended version of pTL*, we can encode the above speci�cation with the

formula

A2
h
D�8

�
(s1 = 0 ^ s01 = 1) . m = 3 G m = 2 G m = 1 G r2 = 1 G s1 = 1

�i
;

where we have used the abbreviation G for the non-skipping since:

� G := � ^ (� S)

which associates to the right. The past formula insures that item whose processing is

�nished at m = 3 is the same that is sent by the transition on the left of ..

This extended version of the D operator can be model checked by combining the tech-

niques of [BdA95] with the algorithms presented in the previous section. Speci�cally, given

a PNS �

A;C
it is possible to construct a PNS �

;

A;C
in which the states keep track of the

truth values of the past subformulas of (itself included) [BdA95]. The truth value of

D./b(� .) can then be computed by applying the algorithms of the previous section to

the PNS �

;

A;C
. Letting pTL

�p
< be the logic obtained from pTL�< by adopting the version of

D generalized to past formulas, we can state the following result about the complexity of

pTL
�p
< model checking.

Theorem 7 (pTL
�p
< model checking) j�

;

A;C
j = O(2j j j�

A;C
j). Therefore, model check-

ing of a pTL
�p
< formula � over a PNS �

�

A;C
has time-complexity polynomial in j�

�

A;C
j and

doubly exponential in j�j.

Thus, the complexity of the model-checking problem is not changed by the extension,

as it is dominated by the doubly-exponential dependency arising from the operator P.

7 Conclusions

In this work we have presented the system model of SRTSs, which provide a synthetic rep-

resentation of probabilistic real-time systems, and we have extended the probabilistic logics

of [HJ89, Han94, ASB+95, BdA95] by adding an operator D that speci�es the average time

2The use of past temporal operators in branching-time logics has been discussed in depth in [KP95].

22

between events. We have then presented model-checking algorithms for this extended logic,

based on results from automata theory and relatively simple concepts about probabilistic

systems. With these extensions and algorithms, temporal logic can be applied to the study

of the performance and reliability of real-time systems.

On the other hand, no e�cient algorithm has been given for model checking the lower-

bound version of the D operator, for which in fact we have presented relative hardness

results. Further research is needed to investigate methods to deal with this complexity, as

well as to study optimizations and average-case behavior for the algorithms presented in

this paper. Further research is also needed to determine if the methods developed in this

paper, based on a discrete model of time, can be adapted to a continuous-time model.

Acknowledgements. We wish to thank Andrea Bianco for many inspiring discussions

and suggestions. We also thank Arjun Kapur, Henny Sipma and Tom�as Uribe for several

helpful comments.

References

[ACD92] R. Alur, C. Courcoubetis, and D. Dill. Verifying automata speci�cations of

probabilistic real-time systems. In Real Time: Theory in Practice, volume 600

of Lect. Notes in Comp. Sci., pages 28{44. Springer-Verlag, 1992.

[AD91] R. Alur and D. Dill. The theory of timed automata. In Real-Time: Theory in

Practice, volume 600 of Lect. Notes in Comp. Sci., pages 45{73. Springer-Verlag,

1991.

[ASB+95] A. Aziz, V. Singhal, F. Balarin, R.K. Brayton, and A.L. Sangiovanni-Vincentelli.

It usually works: The temporal logic of stochastic systems. In Computer Aided

Veri�cation, volume 939 of Lect. Notes in Comp. Sci. Springer-Verlag, 1995.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic

systems. In Found. of Software Tech. and Theor. Comp. Sci., volume 1026 of

Lect. Notes in Comp. Sci., pages 499{513. Springer-Verlag, 1995.

[CY88] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of �nite-state

probabilistic programs. In Proc. 29th IEEE Symp. Found. of Comp. Sci., 1988.

[CY90] C. Courcoubetis and M. Yannakakis. Markov decision processes and regular

events. In ICALP'90, volume 443 of Lect. Notes in Comp. Sci., pages 336{349.

Springer-Verlag, 1990.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic veri�cation.

J. ACM, 42(4):857{907, July 1995.

[Der70] C. Derman. Finite State Markovian Decision Processes. Acedemic Press, 1970.

[EL85] E.A. Emerson and C.L. Lei. Modalities for model checking: Branching time

strikes back. In Proc. 12th ACM Symp. Princ. of Prog. Lang., pages 84{96,

1985.

[ES84] E.A. Emerson and A.P. Sistla. Deciding branching time logic. In Proc. 16th

ACM Symp. Theory of Comp., pages 14{24, 1984.

[Han94] H. Hansson. Time and Probability in Formal Design of Distributed Systems.

Elsevier, 1994.

23

[HJ89] H. Hansson and B. Jonsson. A framework for reasoning about time and reliability.

In Proc. of Real Time Systems Symposium, pages 102{111. IEEE, 1989.

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.

Formal Aspects of Computing, 6(5):512{535, 1994.

[HS84] S. Hart and M. Sharir. Probabilistic temporal logic for �nite and boundedmodels.

In Proc. 16th ACM Symp. Theory of Comp., pages 1{13, 1984.

[Koy90] R. Koymans. Specifying real-time properties with metric temporal logic. Real-

time Systems, 2(4):255{299, 1990.

[KP95] O. Kupferman and A. Pnueli. Once and for all. In Proc. 10th IEEE Symp. Logic

in Comp. Sci., pages 25{35, 1995.

[KSK66] J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains. D.

Van Nostrand Company, 1966.

[LS82] D. Lehman and S. Shelah. Reasoning with time and chance. Information and

Control, 53(3):165{198, 1982.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Sys-

tems: Speci�cation. Springer-Verlag, New York, 1991.

[MP93] Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 30:609{678,

1993.

[Pnu83] A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proc.

15th ACM Symp. Theory of Comp., pages 278{290, 1983.

[Put94] M.L. Puterman. Markov Decision Processes. John Wiley and Sons, 1994.

[PZ86] A. Pnueli and L. Zuck. Probabilistic veri�cation by tableaux. In Proc. First

IEEE Symp. Logic in Comp. Sci., pages 322{331, 1986.

[PZ93] A. Pnueli and L.D. Zuck. Probabilistic veri�cation. Information and Computa-

tion, 103:1{29, 1993.

[Saf88] S. Safra. On the complexity of !-automata. In Proc. 29th IEEE Symp. Found.

of Comp. Sci., 1988.

[Seg95] R. Segala. Modeling and Veri�cation of Randomized Distributed Real-Time Sys-

tems. PhD thesis, MIT, June 1995. Technical Report MIT/LCS/TR-676.

[SL94] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.

In CONCUR '94: Concurrency Theory, volume 836, pages 481{496. Springer-

Verlag, 1994.

[Var85] M.Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state sys-

tems. In Proc. 26th IEEE Symp. Found. of Comp. Sci., pages 327{338, 1985.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram veri�cation. In Proc. First IEEE Symp. Logic in Comp. Sci., pages 332{344,

1986.

24

