In proceedings of STACS’97,
LNCS, Springer-Verlag, February-March 1997.

Hybrid Diagrams: A Deductive-Algorithmic
Approach to Hybrid System Verification*

Luca de Alfaro Arjun Kapur Zohar Manna

Department of Computer Science
Stanford University

Abstract. We present a methodology for the verification of temporal
properties of hybrid systems. The methodology is based on the deductive
transformation of hybrid diagrams, which represent the system and its
properties, and which can be algorithmically checked against the spec-
ification. This check either gives a positive answer to the verification
problem, or provides guidance for the further transformation of the dia-
grams. The resulting methodology is complete for quantifier-free linear-
time temporal logic.

1 Introduction

Specification and verification methodologies for hybrid systems range from algo-
rithmic methods for the verification of linear-time temporal logic properties [2, 1],
to deductive approaches for proving linear-time temporal logic properties [11, 7]
and interval-based and duration properties [5, 3]. In this paper we present an
approach that combines deductive and algorithmic methods into a methodology
that is complete (relative to first-order reasoning) for proving linear-time tem-
poral logic properties of hybrid systems, provided no temporal operator appears
in the scope of a quantifier. The advantages of the proposed methodology over
the rule-based approach of [11, 6] include the visual representation of the proof
process, the provision of proof guidance, and the ability to prove specifications
expressed by temporal formulas not in canonical form [10].

Hybrid diagrams are related to the fairness diagrams of [4] and to the hy-
brid automata of [2, 1]. They consist of a graph whose vertices are labeled by
assertions and whose edges are labeled by transition relations; associated with
each diagram are fairness constraints, that encode acceptance conditions similar
to those of w-automata. The diagrams represent the system behavior and the
safety and progress properties that have been proved about it: the vertex and
edge labels represent the safety properties, the fairness constraints represent the
progress properties. Hybrid diagrams are sufficiently expressive to encode phase
transition systems (PTSs) [9, 6], which will be the system model adopted in this
paper.

The construction of the proof of a temporal specification begins by represent-
ing the system as a one-vertex diagram, whose single edge encodes the possible

* The research was supported in part by the National Science Foundation under grant
CCR-9527927, by the Defense Advanced Research Projects Agency under contract
NAG2-892, by ARO under grant DAAH04-95-1-0317, and by ARO under the MURI
grant DAAHO04-96-1-0341.

state transitions of the system. This initial diagram can be transformed using a
set of rules that preserve the inclusion of system behaviors, producing a chain
of diagram transformations. The aim of this process is to obtain a diagram that
can be shown to satisfy the specification by purely algorithmic means.

After any number of transformations, an algorithmic procedure can applied
to the last diagram, to either establish that the final diagram (and, by behavior
inclusion, the original PTS) satisfies the specification, or it returns a set of can-
didate counterezample paths (CCP) in the diagram. The CCPs provide guidance
for the extension of the chain of transformations, following the insights of [13].
Additionally, the CCPs can be used to guide the search for counterexamples, by
directing the simulation of the original system along the CCPs.

There are four rules to transform diagrams. The simulation rule modifies
the graph structure of the diagram, enabling the study of safety properties [4].
The justice and compassion rules prove progress properties of the diagrams, and
represent them as additional fairness constraints. The pruning rule eliminates
portions of the diagram that are never traversed by any computation along which
time diverges. These rules generate first-order verification conditions that must
be proved to justify the transformation. The justice and compassion rules are
one of the main contributions of this paper, and are at the basis of the complete-
ness results of the methodology. By relying on ranking and delay functions to
measure progress towards given goals, the rules enable the proof of justice and
compassion properties of the systems; these properties are then represented as
fairness constraints which are added to the diagrams.

2 Phase Transition Systems

The hybrid system model we adopt in this paper is that of phase transition
systems (PTS) [9, 6]. A PTS is a transition system that allows continuous state
changes over time periods of positive duration, as well as discrete state changes
in zero time. A PTS & = (V, 0, T, I, .A) consists of the following components.

1. A set V of typed state variables, partitioned into the set V4 of discrete vari-
ables, the set V. of clock variables, and the set V}, of hybrid variables. Clock
variables have type IR (i.e. the set of non-negative real numbers) and hy-
brid variables have type IR. We distinguish a special clock variable T' € V.,
representing a master clock that measures the amount of time elapsed dur-
ing the system behavior. The state space S consists of all type-consistent
interpretations of the variables in V; we denote by s[z] the value at state
s € S of variable z € V.

2. An assertion 6 over V, which defines the set {s € S| s |= 6} of initial states.

3. A finite set 7 of transition assertions over V, V' representing the discrete
state changes. Each assertion m € T represents the transition relation {(s,?) |
(s,t) = 7}, where (s,1) interprets z € V as s[z] and 2’ € V' as t[z]. For all
m € T, we require that the implication # — 7' = T" holds.

4. A time-progress assertion II over V, used to specify a restriction on the
progress of time (see [6] for a discussion of its use).

5. A finite set A of activities representing the continuous state changes. Each
activity a € A consists of an enabling assertion C, over V; and of an evo-
lution function F, : S x IR +— S. At every s € S there must be exactly one

a € A such that s |5 C,. If at time ¢ the system is at a state s = Cy, at time
t + A the system will be at state F,(s, A). For every a € A, the function F,
must satisfy the equations

Vo € Vg . Fu(s,t)[z] = s[z] Fo(s,0) =s
Vo € Ve . Fo(s, t)[z] = s[z] +¢ Fa(s,t) = Fa(Fa(s, t'),t — 1)
for every s |= C,,t > 0 and 0 < ¢/ < t. The function F, is represented by the

set of terms {F7}yey over VU {A}, where the term F7 gives the temporal
evolution of the value of x as a function of the elapsed time A.

To define the set of computations of a PTS, we introduce the assertions
{ticks[A]}aca, where each tick,[A] is an assertion over V UV’ and over the
parameter A, whose domain is the set IRT of non-negative real numbers. Asser-
tion tick,[A] describes a state change of the system due to activity @ when an
amount of time A > 0 elapses, and is given by:

Can(\ (&' = FIAD)AVE. (0<t < A— IT[FZ[t)/2],.,) -
z€eY

In the above formula, IT[F?[t]/z].cv denotes the result of simultaneously re-
placing for all # € V each occurrence of z in II with FZ[t]. The form of the
assertion tick,[A] insures that the progress constraint I7 holds at every moment
of a time-step, except possibly for the final one. As discussed in [6], if IT is used
only to encode upper bounds on the transition waiting times, assertion tick,[A]
can be rewritten without quantifiers.

Definition1 (PTS computations). A computation of a PTS § =
(V,0, 7,1, A) is an infinite sequence o : sg, s1, S2, ... of states of S that sat-
isfies the following conditions.
1. Initiality: so = 0.
2. Consecution: for each i > 0, either there is a transition 7 € 7 such that
(si,sit+1) |E @, or there is an activity a € A such that (s;,s;41) | 3A >
0. ticky,[A].
3. Time progress: for each t € IR there is ¢ € IN such that s;(7) > ¢.
We denote by L£(S) the set of computations of a PTS S. |

A Room-Heater Example

As our running example throughout the paper, we consider a variant of the tem-
perature control system presented in [2]. The system, which we call RH, consists
of a room with a window and a heater. The window, controlled by some inde-
pendent agent, may be opened or closed at will. The heater turns on when the
temperature i1s below the threshold temperature of 68°F and turns off when the
temperature is above the threshold temperature of 72°F. To prevent mechanical
stress, the heater has an embedded clock that prevents it from changing state
within 60 seconds of the last change. Initially, the room temperature is below
60°F and the environment temperature (i.e. the temperature outside the room)
is 60°F. For simplicity, we assume that the temperature of the environment re-
mains constant at 60°F. Our phase transition system & = (V,6,7T,1I,A), is
defined as follows.

. Va = {H,W}, where H denotes the state of the heater and ranges over

domain {On, Off }, and W denotes the state of the window and ranges over
domain {Open, Closed}. V. = {T,y}, where T is the global clock, and y
measures the time elapsed since the last switching On/Off of the heater.
Vi = {z}, where z is the temperature of the room.

LO0:H=0ff N W="Closed AN <60 AN y=0AT=0.
. T ={n,m, s}, where 7; : E; A p; for i € {1,2,3}, and

Ei1:H=0ff AN <68 A y>60 pr:H =0n ANy =0
Es:H=0n AN z>72 N y>60 poH = 0Off A y =0
Ej5 : true ps W =-W

where = Open = Closed and —Closed = Open. Variables not mentioned in pq,
p2, and ps, respectively, are left unchanged by the transitions.

. II = =~Ey A =E5. This insures that 7 and 7 are taken as soon as they

become enabled.

. A =1{a1,as,as,as}, where FaT, =TH+A, FY = y+A, forevery i € {1,2,3,4},

and Cy; and Fy, are defined as follows:

Cay : H= Off AN W = Closed FT =60 + e~ 2/195 (2 — 60)
Cay : H= Off A W = Open FZ =60+ e~2/7(z — 60)

Cay : H= On A W = Closed FZ =75+ e 4/105(z — 75)
Ca, : H=0n N W = Open FZ =70+ e 4/7(z —170).

The properties we wish to prove about RH state that the room temperature

eventually reaches the range from 65°F to 75°F, and that once the temperature
is in this range, it will remain in this range forever.

3

Hybrid Diagrams

To study the temporal behavior of a PTS, we introduce hybrid diagrams, derived
from the fairness diagrams of [4]. A hybrid diagram (diagram, for short) A =

v,
1.

V,p,0,7,J,C) consists of the following components.
A set V of typed state variables that includes the master clock T

2. A set V of vertices.
3.

A labeling p that assigns to each vertex v € V' an assertion p(v) over V. A
location of a diagram is a pair (v,s) : v € V,s = p(v) composed of a vertex
and of a corresponding state, and represents an instantaneous configuration
of the diagram.

. A labeling # that assigns to each vertex v € V an initial assertion (v) over

V. This labeling defines the set of initial locations {(v,s) |v € V,s £ 0(v)}.
For all v € V, we require that #(v) — (p(v) AT = 0).

. A labeling 7 that assigns to each edge (u,v) € V x V a transition assertion

T(u,v) over VUV’ and A. For u,v € V, assertion 7(u,v) represents the
possible state changes of the system when going from vertex u to vertex v
by a time-step of duration A € IRY. We require that the assertion T(u,v) =
T' =T+ A holds for all u,v € V.

. A set J of justice constraints, and a set C of compassion constraints. The

elements of J and C are pairs (R,G): RC V,G C V2.

Init
T Ty, T,
Fig. 1. Hybrid Diagram Ag.

Given an assertion ¢ over V, we denote by ¢’ the formula obtained by replacing
each free x* € V by z’ € V’. Using this notation, we require that a diagram
satisfies the requirement p(u) A 7(u,v) = p/'(v), for all u,v € V.

The justice and compassion constraints, collectively called fairness con-
straints, represent fairness properties that have been proved about the system.
For a constraint (R, G), the set R C V specifies a request region; the request is
gratified when a transition from a vertex u to a vertex v is taken, with (u,v) € G.
A just constraint indicates that a request that is performed without interrup-
tions will eventually lead to gratification; a compassionate constraint indicates
that a request performed infinitely often will be gratified infinitely often [11, 4].

Definition2 (diagram computations). A run of a diagram is an infinite se-
quence of locations (vg, sq), (v1,$1), (v2,s2), ..., satisfying the following condi-
tions.

1. Initiality: so |= 0(vo).

2. Consecution: for all ¢ > 0, (s;,si41) FE 3A . 7(vi, vig1).

3. Time progress: for each t € IR there is ¢ € IN such that s;(7) > ¢.

4. Justice: for each constraint (R,G) € J, if there is & € IN such that v; € R

for all i > k, then there is j > k such that (vj,v;41) € G.
. Compassion: for each constraint (R,G) € C, if v; € R for infinitely many

i € IN, then there are infinitely many j € IN such that (v;,vj41) € G.

If ¢ : (vo,s0),(v1,81), (v2,82),... is a run of A, the sequence of states
Sg, 81, Sa2, . . . is a computation of A. We denote by Runs(A) and L£(A) the sets of
runs and computations of A, respectively. a

Every PTS can be represented by a one-vertex diagram, as the following
construction shows.

Construction3. Given a PTS § = (V,0,7,1I, A), we define the diagram
hd(S) = (V,V,p,0,7,7,C) by V = {uvo}, p(ve) = true, ¢'(vo) = 0, T = 0,
C=10,and

(o,u0) = (\/ (rAa=0) v (\/ tick[a]) . ©
acA

TeT

Theorem4. For a PTS S, L(S) = L(hd(S)).

Example 5. In Figure 1, we present the initial diagram Ay = hd(RH) corre-
sponding to system RH. The transitions 71, 72, and 73 are as in RH (with the
added conjunct A = 0), and transitions 74, 75, 76, and 77 are tickq, [A], tick,y,[A4],
tick,, [A], and tick,,[A], respectively. The single node ug is marked Init as a re-
minder that its initial label #(ug) is equal to the initial condition of the PTS. O

Hybrid diagrams vs. hybrid automata. Hybrid diagrams are related to
hybrid automata, a formalism widely adopted for the modeling of hybrid systems
and for the study of their temporal properties [2, 1]. While sharing a similar
labeled-graph structure, the two formalisms differ in some respects.

In a hybrid automaton, the dynamical behavior of the system and the discrete
state-transitions are described by different components: the first by differential
equations labeling the vertices, the second by transition relations labeling the
edges. A hybrid diagram describes both types of evolution using the edge labels:
the assertions labeling the vertices represent instead inductive invariants. More-
over, hybrid automata use vertex labels to limit the amount of time for which
the system can stay continuously at a vertex. In a hybrid diagram, this role is
carried out by the edge labels, which can limit the duration A of a time-step.

These differences are motivated by the purposes hybrid automata and hybrid
diagrams serve. Hybrid automata were proposed as a formal model of hybrid
systems, to which various formal verification methods could be applied. Hybrid
diagrams, on the other hand, are meant to provide a deductive representation of
a hybrid system and of the safety and progress properties that have been proved
about it, and are suited to the application of the diagram transformation rules
that will be presented next.

4 Diagram Transformation Rules

The temporal properties of a PTS are studied by means of transformation rules
[4]. There are four rules: the simulation rule, used to study safety properties; the
justice and compassion rules, used to study progress properties; and the prun-
ing rule, used to prune portions of a diagram that are never traversed by runs
along which time diverges. If a diagram A can be transformed into a diagram
B by one of these rules, we write A = B, and we indicate by = the reflex-
ive transitive closure of =. The rules preserve language containment: A = B
implies £L(A) C L(B). Given a PTS S, the rules are used to construct a chain
of transformations hd(S) = Ag = A1 = -+ = A,. At any time, it is possible
to check algorithmically whether the last diagram of the chain comply with the
specification. This test, discussed in the next section, provides a sufficient con-
dition for the diagram to satisfy the specification, and returns either a positive
answer to the verification problem, or guidance for the extension of the chain of
transformations.

4.1 Simulation Rule

The simulation rule, derived from [4], enables the transformation of a diagram
into a new one, such that the second diagram is capable of simulating the first
one. A simulation relation between two diagrams A; and As is induced by a
function p : Vj — 22 from the vertices of A; to those of As.

Rule6 (simulation). Let Ay = (V,Vi,p1,01,71,71,C1), Az = (V, Va, pa, b,
T2, Ja2, C2) be two diagrams sharing the same variables. If there is a function
p:Vi— 2"2 that satisfies the conditions below, then A; = As.

1. For all u € V1, 01 (u) = \/UEH(U) B2 (v).

Fig. 2. Hybrid Diagram A;, where ¢, : z < 75—7-e79/1% and @y 1z > 60+12-e¥/70,
FEdges labeled with false are not shown.

2. For all u,u’ € V1 and v € pu(u),
(p1(0) A pa0) A 73 (5,0)) = Vg 720,)

3. For each (Rg,G3) € Jo (resp. € C3) there is (Ry,G1) € J1 (resp. € C1) such
that:
(a) for all uw € V4, if p(u) N Ry # B then u € Ry;
(b) for all (u,u’) € Gy and v € p(u),

(p1(u) A pa(v) Ai(u,w) = Ve nm2(v,0)
where H(u',v) = {v' | v € p(v') A (v,v") € Ga}. O

Theorem 7 (soundness of Rule 6). If Ay = A by Rule 6, then L(A;) C
L(As).

Example 8. By applying the simulation rule to the diagram Ay of Figure 1,
we obtain the diagram A; presented in Figure 2. The application of the rule is
based on the function p defined by p(ug) = {vo, v1, v2, v3}. In Figure 2, vg is the
only vertex satisfying the initial condition specified by 8. O

4.2 Progress Rules

The justice and compassion rules add new constraints to the justice or com-
passion sets of a diagram, respectively. Since the rules must preserve language
containment, it is possible to add a constraint only if all runs of the diagram
already obey it, implying that the constraint represents a progress property of
the runs of the diagram. To prove that all runs obey the constraint, the rules
rely on ranking and delay functions to measure progress towards its gratifica-
tion. The delay functions are similar to the mappings of [8]; our results indicate
that to achieve completeness they need to be used in conjunction with ranking
functions.

Definition9 (ranking and delay functions). Recall that well-founded do-
main is a set D together with a relation >, such that there is no infinite de-
scending chain dy > dy > ds > - -+ of elements in D.

Given adiagram A = (V,V,p,0, 7, J,C), let loc(A) = {(v,s) € VxS |s Ep(v)}
denote the set of locations of A. A ranking function ¢ : loc(A) — D for a diagram
A is a function mapping locations of A into elements of a well-founded domain
D. A delay function 7y : loc(A) — IR' is a function mapping locations of A into
non-negative real numbers. The ranking and delay functions §, 4 are represented
by the families {(u)}uev, {7(¢)}uev of terms on V. O

To add a constraint (R, G), the justice rule relies on ranking and delay func-
tions 4, v. While in R, § cannot increase unless an edge in G is taken, and =
gives an upper bound to the amount of time before either an edge in G is taken
or R is left.

Rule 10 (justice). Consider a diagram A = (V,V, p, 0,1, J,C) and a constraint
(R,G): R C V,G C V2. Assume that there are ranking and delay functions d,
v such that, for all u,v € R with (u,v) ¢ G, the assertion

) Ar(ur) = 3> 8(0) v (3(u) = 8(0) A() >+ (2) + 4)
holds. Then, A = A’, where A" = (V,V,p, 0,7, U{(R, G)},C). O

The rule to add compassion constraints is more involved, and requires the
use of a family of assertions {¢(v)}yev, used to represent a set of locations
{(v,s) € loc(A) | s = ¢(v)} that plays the same role of R in leading to the goal.

Rule1l (compassion). Given a diagram A = (V,V,p,0,7,J,C) and a con-
straint (R,G) : R C V,G C V?, assume that there are

1. a family of assertions {¢(v)}yev over V, such that ¢(v) = true for all v € R;
2. a ranking function ¢ and a delay function +,

such that, for every u,v € V with (u,v) € G, the assertions
p(u) A7(u,v) — §(u) > (v)
o) B Ar(us) > 5(u) > §(2) V ~d'(0) V 5(u) > +/(1) + A
p(u) A=p(u) A T(u,v) — &(u) > 8 (v) V =’ (v)
hold. Then, A = A’ where A’ = (V,V,p,0,7,T,CU{(R,G)}). O

Theorem 12 (soundness of Rules 10 and 11). If a constraint (R,G) is
added to a diagram A using Rules 10 or 11, obtaining diagram A’, then
Runs(A) = Runs(A’), and therefore L(A) = L(A').

Example 13. To show that the temperature eventually reaches the desired
range, we apply Rule 10 to the diagram A; of Figure 2, adding the justice
constraint ({vg,v1}, {(v1,v2)}); we denote by Az the resulting diagram. This
constraint shows that a run of A; cannot stay forever in vy or vy, and must
eventually proceed to ve. The rule uses a ranking function defined by d(vg) = 1,
d(v1) = d(v2) = d(vs) = 0, and a delay function given by v(vg) = 60 — v,
y(v1) = if ® <60 then 1754+ 105In((75—z)/49) else 150+ 701In((70—z)/10),
and y(v2) = y(vs) = 0. O

4.3 Pruning Rule

The pruning rule prunes from a diagram a subset of vertices that, because of the
presence of a justice constraint, cannot appear in any run of the system.

Rule14 (pruning). Let Ay = (V,V1,p1,61,71,71,C1) be a diagram, and let
U; C Vi be a subset of its vertices such that the following two conditions hold:
1. there is (R1,G1) € J1 such that Uy C Ry, (U x Vi) NGy = 0;

2. for allu € Uy and v € Vi = Uy, 71 (u,v) = false.
Then, Ay = Ag, where Ay = (V, Vs, pa, 02, 72, J2,P2) is obtained as follows:

1. Vg = V1 - Ul;

2. pa, 5, T are obtained by restricting the domain of py, 81, and 7 to Vs, Vs,
and Vo x V3, respectively;

3. for each constraint (R, G) € J1 (resp. € C1), we insert the constraint
(RN Ve, GN (Va x V3)) into Jo (resp. into C3). m|

This rule can be used in conjunction with Rule 10 to prune from the diagram
vertices reached only by invalid runs along which time does not diverge. The
soundness of the rule follows from the observation that, if the conditions of the
rule are satisfied, no run of the diagram can contain vertices in U. In fact, if a
run entered U, it would not be able to leave it, and by staying forever in U 1t
would violate at least one justice constraint of the diagram.

4.4 Completeness Results

Given a diagram A = (V,V,p, 0,7, J,C), we say that A is deterministic if 0(v) A
f(w) < false and 7(u,v) A 7(u,w) < false for all u,v,w € V with v # w. The
following theorem holds.

Theorem 15. If the set of computations of a PTS S is a subset of the set of
computations of a deterministic diagram A, we can construct a chain of diagram

transformations hd(S) = A using Rules 6, 10, 11, and 14.

This completeness result is relative to first-order reasoning, and is proved by
giving the construction of the chain of transformations hd(S) = A under the
assumption £(S) C L(A). The proof, which uses ideas from [10, 4], has been
omitted due to space constraints.

5 Proving Temporal Properties

In this section we present an algorithm to check whether a diagram satisfies
a specification written in the linear-time temporal logic T'L,. The formulas of
T L, are obtained by combining first-order logic formulas by means of the fu-
ture temporal operators O (next), O (always), & (eventually), & (until), and
the corresponding past ones ©, 8, & and § [11]. Given a diagram A and a
formula ¢ € TLy, the algorithm provides either a positive answer to A | ¢, or
information about the region of the diagram that can contain a counterexample
to ¢. This information can be used as guidance for the extension of the chain
of transformations. The first step of the algorithm consists in constructing a
Streett automaton N-4 that accepts all the computations that do not satisfy ¢.
The automaton is a first-order version of a classical Streett automaton [12].

Definition16 (Streett automaton). A (first-order) Streett automaton N
consists of the components (V, (V| F), p, @, B), where V, p are as in hybrid dia-
grams; (V, E) is a directed graph with set of vertices V and set of edges E C V?;
@ C V is the set of nitial vertices, and B, called the acceptance list, is a set
of pairs (P,R) : PR C V. A run ¢ of N is an infinite sequence of locations
(vo, so), (v1, s1), (va, s2), ... such that vy € Q, and:

1. for all ¢ > 0, s; = p(v;) and (vi, vi41) € E;

2. for each pair (P, R) € B, either v; € R for infinitely many ¢ € IN, or there is

k € IN such that v; € P for all i > k.

If o : (vo,s0), (v1, 1), (va, s2), ...isarun of N, the sequence of states sg, s1, s2, . . .
is a computation of N. The set of runs (resp. computations) of a Streett automa-
ton N is denoted by Runs(N) (resp. L(N)). O

To show that no behavior of A satisfies —¢, the algorithm constructs the
graph product A ®@ N.4 and checks that no infinite path in it corresponds to a
computation of both A and N.4. The construction of the graph product relies
on a terminating proof procedure F for the first-order language used in the
specification and in the labels of the diagram. The procedure - should be able
to prove a subset of the valid sentences that includes all substitution instances
of propositional tautologies. Given a first-order formula v, we write - ¢, / ¢
depending on whether F terminates with or without a proof of v, respectively.

Construction17 (graph product). Given diagram A = (V,U, pa, 0,7, J,C)
and Streett automaton N-4 = (V, (V, E), pn, @, B), the graph product AQN-4 =
(W, Z, H) consists of a graph (W, H) and of a set of initial vertices 7 C W, and
is defined by:

- W={(u,0) €U XV [F(pa ()/\pNgv))};
p

Z={(u,v) EW |veQ and F-(0(u)Apn(v)};
. H= {(ul,vl uz,vz))EW‘Hvl,v)EEand

V= (r(ur, ua) Apn(v1) Apiy(v2))). O

C»Jl\J

To show that there is no infinite path in the product that corresponds to a
computation of both A and N.4, we check that every infinite path in (W, H)
starting from Z violates either a constraint of A or a pair in the acceptance list
of N.,4. To this end, consider a strongly connected subgraph (SCS) X C W of
the graph (W, H). We say that X is admissible if the following conditions hold:

1. for all (R,G) € J (resp. € €), if X C Rx V (resp. if X N (R x V) #
), then there are (u1,v1),(uz,vs) € X such that (u1,us) € G and
((u1,v1), (u2,v2)) € H;

2. for all (P,R) € B, if X € (U x P) then X N (U x R) # 0.

The following theorem states that if there are no reachable admissible SCSs in
the products, then A = ¢. This check can be done in time polynomial in ||
using efficient graph algorithms.

Theorem 18 (diagram checking). Given a diagram A and a specification ¢ €
TLs, let AQN~y = (W, Z, H). If all SCSs of (W, H) that are reachable in (W, H)
from Z are not admissible, then A |= ¢.

10

The following theorem states that the verification methodology presented in this
paper is complete.

Theorem 19 (completeness for T'L;). Given a PTS S and a specification

é € TLs, if S |E & then there is a chain of transformations hd(S) = A such that
A = ¢ can be proved using Theorem 18.

Obtaining Guidance

The presence of admissible and reachable SCSs in the product graph can be used
to guide the further analysis of the system, following the insights of [13]. Given
an admissible and reachable SCS X of (W, Z, H) = A® N-4, let X, C W be the
set of vertices that can appear along a path from Z to X in (W, H). Consider
the projections Y = {u | (u,v) € X}, Y, ={u| (u,v) € X, } of X and X, onto
the diagram A: we say that Y, and Y constitute a candidate counterexample path
(CCP) in A. The CCPs correspond to regions of the diagram that can contain
counterexamples: if a run o € Runs(A) violates ¢, there must be a CCP Y,, Y
such that o first follows Y, until it reaches Y, and then remains in Y forever
while visiting all vertices of Y infinitely often.

The information provided by the CCPs can be used either to guide the search
for a counterexample, or to extend the chain of transformations to show that no
counterexample is contained in the CCPs.

Search for counterexample. Given a CCP Y,, Y, it may be possible to prove
that there is a behavior shared by the diagram A and the original PTS S that
follows Y, and then remains in Y forever, visiting all vertices of Y infinitely
often. The existence of such a behavior would establish S [~ ¢.

Alternatively, the CCPs can be used to guide the simulation of the behavior
of § by simulating § along the CCPs.

Search for proof. The CCPs provide guidance for the extension of the chain
of transformations. The aim of the additional transformations is to show that,
for every CCP Y,, Y:

— either there is no path in Y, from 7 to Y
— or, after following Y, a computation cannot remain in Y forever and visit
all the vertices of Y infinitely often.

To show that there is no path in Y, from Z to Y, it is possible to use the
simulation rule to strengthen the assertions of the edges and vertices along Y,
until the path is interrupted by labeling some edge or vertex with false. To show
that a computation cannot stay in Y forever and visit all vertices of Y infinitely
often, the simulation rule can be used to strengthen the labels of vertices and
split vertices into new vertices, thus analyzing in more detail the structure of the
SCS Y and possibly splitting it into several SCSs. The justice and compassion
rules can be used to show that the system cannot stay forever in Y, or infinitely
often in some subsets of Y.

Example 20. Using the algorithm presented in this section, it is possible to
check that diagram A; of Figure 2 satisfies the specification (65 < z < 75) —
0(65 < z < 75).

11

On the other hand, if we check A; against the specification &(65 < z <

75) we obtain two CCPs, corresponding to the SCS {wg}, {v1}. To prove the
specification, we must thus show that either vg and v; are not reachable (which
evidently is not possible), or that a run cannot be forever confined to vy or

v1. This is shown by adding the justice constraint ({wg,v1}, {(v1,v2)}) as in
Example 13. The diagram-checking algorithm shows that the resulting diagram
As satisfies (65 < z < 75). O
Acknowledgments. We thank Todd Neller and Henny Sipma for many useful
comments.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theor. Comp. Sci., 138(1):3-34, 1995.

2. R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho. Hybrid automata: An algo-
rithmic approach to the specification and analysis of hybrid systems. In Work-
shop on Hybrid Systems, volume 736 of Lect. Notes in Comp. Sci., pages 209-229.
Springer-Verlag, 1993.

3. 7. Chaochen, A.P. Ravn, and M.R. Hansen. An extended duration calculus for
hybrid real-time systems. In Hybrid Systems, volume 736 of Lect. Notes in Comp.
Sci., pages 36-59. Springer-Verlag, 1993.

4. L. de Alfaro and Z. Manna. Temporal verification by diagram transformations.
In Computer Aided Verification, volume 1102 of Lect. Notes in Comp. Sci., pages
288-299. Springer-Verlag, 1996.

5. A. Kapur, T.A. Henzinger, Z. Manna, and A. Pnueli. Proving safety properties of
hybrid systems. In FTRTFT’94, volume 863 of Lect. Notes in Comp. Sci., pages
431-454. Springer-Verlag, 1994.

6. Y. Kesten, Z. Manna, and A. Pnueli. Verifying clocked transition systems. In Hy-
brid Systems 11, volume 1066 of Lect. Notes in Comp. Sci., pages 13—40. Springer-
Verlag, 1996.

7. L. Lamport. Hybrid systems in TLA+. In Hybrid Systems, volume 736 of Lect.
Notes in Comp. Sci., pages 77-102. Springer-Verlag, 1993.

8. N.A. Lynch and H. Attiya. Using mappings to prove timing properties. Distributed
Computing, 6:121-139, 1992.

9. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Proc. of
the REX Workshop “Real-Time: Theory in Practice”, volume 600 of Lect. Notes
in Comp. Sci., pages 447-484. Springer-Verlag, 1992.

10. Z. Manna and A. Pnueli. Completing the temporal picture. Theor. Comp. Sci.,
83(1):97-130, 1991.

11. Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 30:609-678,
1993.

12. S. Safra. On the complexity of w-automata. In Proc. 29th IEEE Symp. Found. of
Comp. Sci., 1988.

13. H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. In Computer

Aided Verification, volume 1102, pages 208-219. Springer-Verlag, 1996.

12

