In proceedings of STACS’97,
LNCS, Springer-Verlag, February-March 1997.

Temporal Logics for the Specification
of Performance and Reliability*

Luca de Alfaro

Department of Computer Science
Stanford University

Abstract. In this paper we present a methodology for the verification
of performance and reliability properties of discrete real-time systems.
The methodology relies on a temporal logic that can express bounds on
the probability of events and on the average time between them. The
semantics of the logics is defined with respect to timed systems that
exhibit both probabilistic and nondeterministic behavior. We present
model-checking algorithms for the algorithmic verification of the specifi-
cations, and we discuss their complexity.

1 Introduction

Probabilistic temporal logics have been used for the formal study of correctness
and reliability properties of both untimed systems and real-time systems. In this
paper, we extend the range of its applications to include performance properties
of real-time systems. By introducing an operator that expresses bounds on the
average time between events, we propose a unified methodology for the specifi-
cation and verification of performance, reliability and correctness properties of
discrete-time probabilistic systems. The methodology is based on a probabilistic
model for the systems, on a specification language derived from temporal logic,
and on model-checking algorithms for the verification of system specifications.

We model probabilistic real-time systems as Markov decision processes with
finite state space [9, 19]. To each state of the Markov decision process is associ-
ated a set of actions that can be chosen nondeterministically; the successor of the
state is then determined according to the probability distribution arising from
the action chosen. Thus, this model can describe both the nondeterministic and
the probabilistic components of the system behavior. To each choice of action
corresponds a cost, which is interpreted as the amount of time elapsed during
the action. In our model, the cost of an action must be either 0 (immediate
actions) or 1 (unitary time steps). This system model is closely related to the
models proposed in [12, 22, 3].

The specification of system properties is based on the logics pTL and pTL*,
and on the use of wnstrumentation clocks to measure the length of intervals
of time. The logics pTL and pTL* are obtained by adding the probabilistic
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operators D and P to the branching-time temporal logics CTL and CTL*. The
operator D, introduced in this paper, is used to express bounds on the average
time between events. The operator P, already present in the probabilistic logics
pCTL and pCTL* [13, 23, 2, 5, 17], is used to express bounds on the probability
of system behaviors. The instrumentation clocks, related to the clocks used in
timed automata [1], are reset depending on the transitions taken by the system,
and their values can be used in the logic to reason about the timing behavior of
the system.

To verify whether a system satisfies a specification written in pTL or pTL¥*,
we present model-checking algorithms based on the properties of stable subsets
of states. A subset of states is stable if there is a choice of nondeterministic
actions such that every system behavior that enters the subset will not leave
it. The characterization of the properties of stable sets is one of the contribu-
tions of this paper, and it leads to uniform algorithms that reduce the model
checking problem to the solution of optimization problems on Markov decision
processes. The algorithm for the operator P combines the ideas presented in [5]
with automata-theoretic constructions, achieving the optimal complexity bound
of the earlier algorithm of [6] while exhibiting a relatively simple structure. As
discussed in [9, 8, 4], the optimization problems can then be solved by reducing
them to linear programming problems. For the logic pTL*, this approach yields
model-checking algorithms with time-complexity doubly exponential in the size
of the specification, and polynomial in the size of the state space and in the
number of bits used to encode the probabilities.

We conclude the paper by discussing an extension of pTL and pTL* that
increases the expressive power of the logics by allowing the operator D to refer
to arbitrary past formulas.

2 Timed Probabilistic Nondeterministic Systems

A timed probabilistic nondeterministic system (TPNS) is a Markov decision pro-
cess in which the cost of the actions is either 0 or 1 [9].

Definition1 (TPNS). A TPNS T = (P, S, Acts, k,p, ¢, 8;) consists of the
following components.

1. A set P of propositional symbols.

2. A finite state space S. Every state s € S assigns truth value s[z] to every
symbol x € P.

3. A finite set of actions Acts.

4. A function k&, which associates with each s € S the non-empty set x(s) C Acts
of actions that can be taken at state s.

5. A probability distribution p, that for all s, € S and a € &(s) gives the
probability p(t | s,a) of a transition from s to ¢ under action a. For all s € S
and a € k(s), we require ), o p(t|s,a) = 1.

6. a function ¢ that associates with each s € S and a € &(s) the cost (equal to
the elapsed time) ¢(s, a) € {0, 1} of performing a at s.

7. an initial state s;, € S. O



Given a state s € S, the successor of s is chosen in two steps: first, an action
a € £(s) is selected nondeterministically; second, a successor state ¢ € S is chosen
according to the probability distribution p(t | s, ). This process, iterated, gives
rise to the behaviors of a TPNS.

Definition2 (behaviors of TPNS). A behavior of a TPNS II is an infinite
sequence w : Sgags1a - - - such that s; € S| a; € k(s;) and p(siy1 | s;,a;) > 0 for
all # > 0. Given a behavior w : spagsia - - -, we denote by w; the state s;, by wf
the action a;, and by wy; the behavior s;a;s;11a;41 - O

Policies and probability of behaviors. For every state s € S, we denote by
§2, the set of behaviors starting from s, and we let B, C 2% be the o-algebra of
measurable subsets of §2;, following the classical definition of [14]. To be able to
talk about the probability of system behaviors, we would like to associate to each
A € B; its probability measure p(A). However, this measure is not well-defined,
since the probability that a behavior w € B belongs to A may depend on the
criterion by which the actions are chosen.

To represent these choice criteria, we use the concept of policy [9, 19]. A policy
n is a set of conditional probabilities @, (a | spags: - - sn), where a € k(sp). A
policy dictates the probabilities with which the actions are chosen: according
to policy 7, after the finite prefix spags; ---s, starting at the root s = sy of
{2, action a € k(s,) is chosen with probability @, (a | soags: - - -s,). Thus, the
probability of a direct transition to ¢ € S after sg - - - s, is given by

Pri(t | soaosy -« sn) = Z p(t]sn,a)Qy(a ] soagst---sp) .
a€R(sy)

These transition probabilities give rise to a unique probability measure 7 on
Bs;. We write Pr?(A) to denote the probability of event A in §2; under policy
n and probability measure u?, and we adopt the usual conventions to denote
conditional probabilities and expectations.

Non-Zeno systems. We say that a TPNS IT = (P,S, Acts, k,p, ¢, Sin) 18
non-Zeno if a behavior from s;, follows with probability 1 infinitely many
time steps, under any policy. Formally, we require that for any policy 75,
Pri (Z?io c(wy,wf) = oo) = 1. In general, we are only interested in non-Zeno
systems, and the proof of the above property should precede the proof of any
other system specification. We will present algorithms to check whether a TPNS

1s non-Zeno.

Modeling a real-time system with TPNS. While TPNS provide a gen-
eral model for real-time probabilistic systems, they model systems at a fairly
low level. The report [7] introduces stochastic real-time systems (SRTS), which
provide a more usable modeling language, and it describes how to translate
SRTS into TPNS. Translation of stochastic process calculi into models related
to TPNS have also been presented in [12]. Since the main focus of this paper are
the specification language and the model-checking algorithms, we have omitted
the description of these higher-level languages.



3 Specification Language: pTL and pTL*

The specification of performance and reliability properties of TPNS is based
on the use of instrumentation clocks to measure the length of intervals of time,
and on the probabilistic temporal logics pTL and pTL*, that extend pCTL and
pCTL* by introducing an operator D to express bounds on the average time
between events [13, 2, 5].

3.1 Instrumentation Clocks

An nstrumentation clock & is defined by a propositional formula &, over P U
P!, where P’ = {2’ | * € P}. The formula &; specifies a transition relation
{(s,8") € S? | (s,5') |E &}, where (s,s') interprets @ € P as s[z] and z’ € P’
as s'[2]. When a transition from s to s’ under action a € k(s) occurs, clock ¢ is
incremented by ¢(s,a) if (s,s') ¥ &, and is reset if (s,s’) = & . Thus, clock &
measures the time elapsed since the last state transition that satisfies &, .

In previous approaches, the specification of timing properties of probabilistic
systems relied on temporal operators augmented by time bounds [13, 12, 3]. The
instrumentation clocks, derived from the clocks used in timed automata [1], and
clocked transition systems [15], lead to a simpler definition of the logic and to a
more compact presentation of the model-checking algorithms.

3.2 Syntax of pTL and pTL*

We distinguish two classes of pTL and pTL* formulas: the class Stat of state
formulas (whose truth value is evaluated on the states), and the class Seq of
sequence formulas (whose truth value is evaluated on infinite sequences of states).
Given a set P of predicate symbols and a set C of instrumentation clocks, the
classes Stat and Seq for pTL* are defined inductively as follows.

State formulas:

pEP = pé€E Stat EeC = &E>kE=ke Stat (1)

@, € Stat = ¢ AN, ¢ € Stat ¢ € Seq = A¢,E¢ € Stat (2)

¢ € Seq = Prwpo € Stat ¢ € Stat = Dyqq¢ € Stat . (3)
Sequence formulas:

¢ € Stat = ¢ € Seq @, Y € Seq = oA, € Seq (4)

¢ € Seq = 0o, OP € Seq ¢, Y € Seq = dUY € Seq . (5)

In the above definition, e stands for one of {<, <, >, >}, k € IN, b € [0,1]
and d > 0. The temporal operators O, <, U, and the path quantifiers A, E are
taken from CTL* [10], the probabilistic operator P is taken from pCTL* [2, 5],
and the operator D originates here. As usual, the other propositional connectives
are defined in terms of =, A. The logic pTL is a restricted version of pTL*; its
definition is obtained by replacing the clauses (4), (5) with the single clause

¢, Y € Stat = 0O¢, &GP, dU Y € Seq . (6)



3.3 Semantics

Given a TPNS 17 and a set C' of instrumentation clocks, the semantics of a
formula ¢ of pTL or pTL* with respect to I7 and C is defined in two steps.
First, we construct an nstrumented TPNS Hg, whose states keep track of the

value of the clocks; second, we define the satisfaction of ¢ on Hg.

Instrumenting the TPNS. Given a TPNS IT = (P, S, Acts, k,p, ¢, sin) and a
set C = {&1,...,&} of instrumentation clocks over S, we construct an instru-
mented TPNS Hg, whose states keep track of the value of the clocks. Note that
if M¢ is the largest constant with which the clock & € C'is compared to in ¢, we
need to keep track of the value of ¢ only up to M¢ + 1, since no inequality of ¢
changes truth value when the value of { increases beyond M 4 1. In light of this

observation, we define the TPNS Hg = (P, S*, Acts, k*, p*, c*, s7,,) as follows.

1. 8* = S x ngc{O,...,Mg + 1}. A state (s,e1,...,6,) € S* assigns value
(s,c1,...,cn)[z] = s[z] to x € P and (s,c1,...,¢n)[&] = ¢ to & € C.

2. For (s,c1,...,¢cq) € S*, &"(s,¢1,...,6n) = &(s).

3. For (s,c1,...,¢n),(8,¢),...,ch) € S* and a € k*(s,c1,...,¢p),
p*((s’,c’l,...,c;l) | (s,cl,...,cn),a) is equal to p(s’ | s, a) if for all & € C:

C{:{O if (s,s") E &,
! max{c(s,a) + ¢;, Mg, + 1} otherwise;

and is equal to 0 otherwise.
4. For (s,e1,...,¢,) € S* and a € k(s), ¢* ((s,cl, . ..,cn),a) = c(s, a).
5. 8%, = (8in,0,...,0).

Semantics over the instrumented TPNS. The truth value of pTL and
pTL* formulas is then defined with respect to the instrumented TPNS Hg =
(P*, S, Acts, k*,p*, c*, sf,). For ¢ € Stat, ¢ € Seq, we indicate with s | ¢,
w = 1 their satisfaction on s € S*, w € Uses* £2, respectively. The base cases
(1) and the cases for logical connectives are immediate.

Temporal operators. The truth value of w = ¢ for a behavior w and ¢ € Seq is
defined in the usual way (see for example [18]).

Path and probabilistic quantifiers. The semantics of the path and probabilistic
quantifiers is defined as in pCTL and pCTL* [5]: for ¢ € Seq, 0 < b < 1 and
s € S*,

sEA) iff Ywel, w9 sEE¢ iff wefs.wkEo (7)
s EPupd iff Yy .Pri(w = ¢)b. (8)

The intuitive meaning of (8) is that P.¢ holds at s € S if a behavior has
probability 0 b of satisfying ¢, regardless of the policy.

Average-time operator. Given a behavior w : sgagsia; --- and ¢ € Stat, let
T, ¢ = min{i | w; = ¢} be the first position at which ¢ holds along w, with



T, = 00 if Vi.w; [ ¢. The first-passage cost from s to T under policy 5 is then
defined by
Tu’(b_l
C'STJ7 = Es,n{ E c(wi,wf)} ,
i=0
where E; ,{-} denotes as usual the expectation with respect to the measure u7.
For s € S* and d > 0 we define

s = Dpa¢ iff Vn.CT ad. (9)

The intuitive meaning of (9) is that Dyqq¢ holds at s € S if the TPNS reaches
a ¢-state in average time < d, regardless of the policy. Note that this definition
relies on the fact that the TPNS in non-Zeno: otherwise, the behaviors on which
time never advances would affect the value of the first-passage cost.

Definition3. Given a TPNS I7, a set C of instrumentation clocks and a spec-
ification ¢ € Stat, let Hg be the instrumented TPNS, and let s}, be its initial
state. We say that IT instrumented with C satisfies ¢, written I |=¢ ¢, iff

st E ¢ O

4 Model Checking

In this section, we present algorithms to decide whether an instrumented TPNS
Hg is non-Zeno, and whether it satisfies a specification ¢ written in pTL or
pTL*. Since the logics pTL and pTL* are obtained by adding the operators P
and D to CTL and CTL*, we need to examine only the cases corresponding
to these additional operators. The algorithms we introduce are based on the
properties of certain subsets of states of a TPNS, called stable sets.

4.1 Stable Sets

Intuitively, a subset of the state space of a TPNS is stable if there is a policy such
that all behaviors that enter the subset will never leave it [5]. Let Supp(s,a) =
{t € S| p(t]s,a) > 0}. Stable sets are defined as follows.

Definition4 (stable sets). Consider a TPNS IT = (P, S, Acts, &, p, ¢, sin) and
a subset B C S. We say that B is stable if, for all s € B, there is a € k(s) such
that Supp(s, a) C B. If B is stable, we define the relation

pB = {(s,t) € Bx B ‘ Ja € k(s) . (t € Supp(s, a) A Supp(s,a) C B)} .

Intuitively, if (s,t) € pp, then there is an action a € x(s) that leads from s to
t with non-zero probability while leading outside of B with probability 0. If the
graph (B, pp) is strongly connected, B is said to be a strongly connected stable
set (SCSS). Given a subset C' C S, we say that B is a mazimal stable set in
C' (resp. a maximal SCSS in C) if B is stable (resp. a SCSS) and if there is no
other B’ C C such that B’ is stable (resp. a SCSS) and B C B'. O



An equivalent definition of SCSS is provided by the following remark, that
we state without proof.

Remark (SCSS and closed recurrent classes). A set B of states is an SCSS
ioff there 1s a Markovian policy 1 such that B s a closed recurrent class of the
Markov chain arising from 1.

The following lemmas summarize the relevant properties of stable sets and

SCSS.

Lemma5. The following assertions hold.

1. Let B be a stable set. Then, there is a policy such that any behavior that
enters B will stay in B forever with probability 1.

2. Let B be an SCSS. Then, there is a policy such that any behavior that enters
B with probability 1 will stay in B forever and will visit all states of B
infinitely often.

Given an infinite behavior w, we denote by inft(w) the set of states that
appear infinitely often along w. The next lemma states that this set is stable
with probability 1, under any policy.

Lemma6. For all s € S and all policies n, Prl(inft(w) is an SCSS) = 1.

Proof. Assume, towards the contradiction, that Pr?(inft(w) is an SCSS) < 1.
Then, there is a subset B C S which is not at SCSS, and such that Pr? (inft(w) =
B) > 0. Define pp = {(¢,#') | Ja € &(t) . (' € Supp(t,a) A Supp(t,a) C B)},
as for SCSS. Since B is not an SCSS, there are 1,713 € B such that there is no
path from ¢, to ¢ in (B, pg). Define 28 = {w € 0, | inft(w) = B}, and let

q:min{Zp(t' | ¢, a) |t€ BAa € k(t) ASupp(t,a) € B} )
t'gB
The lack of a path from t; to ¢3 in (B, pp) implies that at most a fraction 1 — ¢
of the behaviors that pass from ¢; can then reach ¢; without leaving B. Since
every behavior w € 2P contains infinitely many disjoint subsequences from #;
to t5, we have that Pr?(w € £28) < (1 — ¢)* for all k > 0. As ¢ > 0, this implies
Prl(inft(w) = B) = 0, leading to the required contradiction. O

The following corollary states that if a behavior is eventually confined in a
set C, with probability 1 it is confined in the union of the SCSS maximal in C.

Corollary 7. Consider any subset C' of states of a TPNS. Let Dy, ..., D, be
the SCSS that are mazimal in C, and let D = U?:l D;. For any s € S and any
policy n, Pr!(inft(w) C C Ainft(w) € D) = 0.

Proof. Assume, towards the contradiction, that Pr!(infi(w) C C A inft(w) €
D) > 0. Then, by Lemma 6 there is an SCSS B C C such that B ¢ D and
Pr? (inft(w) = B) > 0. This contradicts the fact that D is the union of all SCSS
maximal in C. O



Define the size |IT| of a TPNS IT = (P, S, Acts, k,p, ¢, $in) to be the length
of its encoding, where we assume that p and ¢ are represented by listing, for all
s,t € S and a € k(s), the values of p(t | s,a) and ¢(s, a) as fixed-precision binary
numbers. Given a subset C' C S, the following algorithm computes the maximal
stable set B C C and the maximal SCSS in C' in time polynomial in |IT].

Algorithm 8 (stable sets and SCSS).

Input: TPNS [T = (P, S, Acts, k,p, ¢, Sin) , and a subset C' C S.

Output: The stable set B maximal in €, and the listEy, ..., E, of SCSS
maximal in C'.

Procedure: Define the functional A : 2° + 25 by A(D) = {s € D | Ja €
k(s) . Supp(s,a) C D}. Then B = limy_0, A*(C) = A%(C), and the com-
putation of the limit requires at most |C| iterations, since the functional is
monotonic. The SCSS FEy, ..., E, can be computed by computing the max-
imal strongly connected components of the graph (B, pp). O

4.2 Checking Non-Zenoness
To check whether a TPNS is non-Zeno, we introduce Zeno stable sets.

Definition9 (Zeno stable sets). Given a TPNS II¢ = (P, S, Acts, &, p, c,
Sin), a Zeno stable set (ZSS) is a stable subset B C S such that for every s € B,
there is an action a € k(s) with Supp(s,a) C B and ¢(s,a) = 0. A Zeno stable
set is mazimal if it 1s not the proper subset of any other Zeno stable set. a

Note that since the union of two ZSS is still a ZSS, every TPNS has a single
(possibly empty) maximal ZSS. The maximal ZSS can be computed in time
polynomial in the size of the TPNS by the following algorithm.

Algorithm 10 (computation of maximal ZSS).

Input: A TPNS (P, S, sin, &, p,¢).

Output: The maximal ZSS B of the TPNS.

Procedure: Define the functional A : 2% + 25 by A(D) = {s €D | Jda €
H(S).(Supp(s, a) C DAc(s,a) = 0)} Then B = A% (S), and the computation
requires at most |S| iterations. O

The following theorem states that to check that the TPNS Hg is non-Zeno it
suffices to check that there are no reachable ZSS, which by the above results can
be done in time polynomial in |Hg|

Theorem 11 (checking non-Zenoness). A TPNS is non-Zeno iff it does not
contain any non-empty 7SS reachable in (S, ps) from the initial state.

Proof. If there i1s a ZSS reachable from the initial state, it is easy to
see that there is also a policy under which the system is non-Zeno. In
the other direction, assume that the TPNS does not contain any ZSS
reachable from the initial state, and consider any policy 5. By Lemma 6,
Pr? (inft(w) is a SCSS and not a ZSS) = 1. From this it can be shown that ev-
ery path must take with probability 1 infinitely many actions with cost bounded
away from 0, leading to the desired conclusion. O



4.3 Model Checking of pTL* Formulas

The model checking algorithms we present share the same basic structure of those
proposed in [11] for CTL and CTL*. Given a TPNS Hg and a formula ¢ € Stat,
the algorithms recursively evaluate the truth values of the state subformulas of ¢
at all states s € S, following the recursive definitions (1)—(3), until the truth value
of ¢ itself can be computed at all s € S. For brevity, we will present algorithms
only the logic pTL*, since pTIL. model checking can be done by combining the
results of [5] with the methods presented for the D operator.

Model Checking for the Operator P

From definition (8), to compute whether s |= P,p3 for a state s and a formula
Y € Seq it suffices to consider the minimum and maximum probabilities with
which a computation from s satisfies 1. Even though these probabilities can be
computed using the algorithm presented in [6], we will follow here a different
approach. The algorithm we present relies on the properties of stable sets, and
shares the insights of the one presented in [5]. However, by relying on the deter-
minization of w-automata instead of on canonical forms for temporal formulas,
the algorithm achieves the optimal complexity bound of the one presented in [6]
while exhibiting a relatively simple structure. This algorithm has been recently
extended by [17] to logics with fairness assumptions on the policies.

The algorithm. By the results of [6, 5] there are optimal policies p~ and n*
that minimize and maximize, respectively, the probability Pr!(w k= ). From
(8), to compute whether s |= Pogptp it suffices to compute either the minimum
probability Pr] (w | ¢) = Pr?7 (w |= ) or the maximum one Prf(w |= o) =
Pr’f(w E 1), depending on the direction of the inequality <. Since Pr; (w |
Y) =1 —Prf(w | —%), it suffices to give an algorithm for the computation of
Prt (w = ).

Let aq, ..., a, € Stat be the maximal state subformulas of 1, 1.e. the state
subformulas of 1 that are not proper subformulas of any other state subformula
of ¢. Define ¥’ = ¢[r1/a1] ...[rn/an] to be the result of replacing each «; with a
new propositional symbol r;. The formula 1’ is therefore a linear-time temporal
formula constructed from rq, ..., r, using the temporal operators O, &, U . As
the truth values of «ay, ..., a, have already been computed at all states, we
define the label [(1) of t € S by l(t) = {r; | 1 <i<nAt|E a;}.

It is known from automata theory that ¢’ can be translated into a deter-
ministic Rabin automaton DRy = (Q, gin, X, 7, U) with state space @, initial
state ¢, € @, alphabet X = 2{7v7»} transition relation v : Q x ¥ — @Q,
and acceptance condition U [24, 20, 21]. The acceptance condition is a list
U= {(Hy,L1),...,(Hm, Lm)} of pairs of subsets of @. An infinite sequence
o : bobiby - - of symbols of X' is accepted by DRy if it induces a sequence
We : qoq1qz - - - of states of @ s.t. qo = qin, ¥(¢i, b)) = ¢i41 for all # > 0 and, for
some 1 < j < m, it is inft(w,) C H; and inftlw,) N L; # 0.

Given Hg = (P, S, Acts,k,p, ¢, sin), DRy = (@, ¢in, X,v,U) and s € S we
construct the product TPNS IT' = (P,S', Acts, k', p', ¢/, s},,), where:



1. 8" =5 x @, where (¢, ¢)[p] = t[p] for all (t,q) € S’ and p € P.
. For (t,q) € S’ k'(t,q) = k(2).

3. Foreacht € S and a € £(t), the probability p'((¢', ¢') | (¢, q), a) of a transition
to (t',¢") € S is equal to p(t' | ¢,a) if v(q,L(t')) = ¢', and is equal to 0
otherwise.

4. For (t,q) € S" and a € k(t), ¢((t,q),a) = c(t, a).

5. S;'n = (577(%“’1(8)))'

Each pair (H;, L;), 1 < i < m, induces a related pair (H}, L}) defined by H] =
S x H;, Lt =S x L;. For each pair (H/,L}), 1 <i < m, we let BY), . ..,B,(LZI) be
the SCSS maximal in H] and having non-empty intersection with L, and we let

[\]

T=U;, U?;l B](»i). By the previous results, the set T' can be computed in time
polynomial in |IT’|. The following theorem states that to compute Pr}(w = ¢)
it suffices to compute the maximum probability of reaching T' from s}, in IT’.
As discussed in [9, 6], maximum reachability probabilities can be computed by
solving a linear programming problem in time polynomial in |IT’].

Theorem 12. Pr}(w = ¢) = sup, Prl, (3k .wy € T).

Proof. Let Ry,r = 3k .w; € T. By construction of II', it is Prf(y) =
sup,, Pr’, (w = ¢'). We can write

Prl, (wEY') = Pr!, (Ror AwEY)+Pr], (tRur Aw EY). (10)

A behavior w € §2;; that satisfies ¢’ must, for some 1 < i < m, (a) be even-
tually confined to ﬁ{, (b) visit infinitely often L. From (a), by Corollary 7,
with probability 1 the behavior is eventually confined to the union of the SCSS
in H/. From (b), the behavior can be eventually confined only to the SCSS in
H] that have non-empty intersection with Lf, that is, to Bg“, R B,(Lil). Since
U?;l B](»i) C T, a behavior that satisfies v’ will enter T with probability 1,
so that the second term on the right side of (10) is 0, and (10) reduces to
Prz,m (wEY) = szfm(Rw,T Aw [ ¢'). Taking sup, of both sides and using

Lemma 5, we have
supPr?, (w4') = supPr!, (Rur Aw ') = supPr!, (Rur),
" in 0 in " in
and the result follows. a

Model Checking for the Operator D

Given 9 € Stat and b > 0, consider the problem of computing the truth value
of Dyt at state s € S of a TPNS Hg. We assume that Hg is non-Zeno, and
that the truth value of i has already been computed at all states of S. Let
T ={s € S| s = ¢} be the set of states satisfying 9. From (9), to decide
whether s |= Dyt we need to compute inf, CSTW sup,, C'STJ?. This corresponds to
the computation of the minimum and maximum first-passage costs of a Markov
decision process. As discussed in [9, 8, 4], these costs can be computed by solving

linear-programming problems, which require time polynomial in |H$|
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Complexity of Model Checking

Combining the results of the previous sections with the results of [6, 5], we get
the following theorem.

Theorem 13. Given a TPNS I, the following assertions hold:

1. Checking whether II is non-Zeno can be done in polynomial time in |II|.

2. Model checking a pTL formula ¢ with set of instrumentation clocks C has
time-complezity linear in |¢| and polynomial in |II| and ngc(Mﬁ +1).

3. Model checking a pTL* formula ¢ with set of instrumentation clocks C
has time-complezity doubly exponential in |¢|, and polynomial in |II| and

[leec (Me +1).
5 Extending the D Operator to Past Formulas

To conclude, we discuss an extension of the logics pTL and pTL* that increases
the expressive power of the logics by allowing the formula ¢ in Dyp¢ to be a
past temporal formula, instead of a state formula. A past temporal formula is
a formula constructed from state formulas in Stat using the temporal operators
8, ¢ and § [18].2

The semantics of this extension can be defined as follows. Given a behavior
w and a past formula ¢, let T, y = min{¢ | wo - - w; =i ¢}, where wo -+ w; =i ¢
indicates that ¢ holds at the last position ¢ of the finite sequence of states
wg - - -w;. The truth value of D¢ can be defined as in (9).

This extended version of the D operator can be model checked by combin-
ing the techniques of [5] with the algorithms presented in the previous section.
Specifically, given a TPNS Hg and a subformula Dy of ¢, it is possible to
construct a TPNS Hg’qﬁ in which the states keep track of the truth values of
the past subformulas of ¢ (3 itself included). The truth value of Dyt can be
computed by applying the algorithms of Section 4.3 to the TPNS Hg"j’. Since
the complexity of the model checking is dominated by the doubly-exponential
dependency arising from the operator P, the bounds expressed by Theorem 13
apply also to this extended version of the logic.

Acknowledgments. We wish to thank Andrea Bianco for many inspiring dis-
cussions and suggestions.
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