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Given a set C of states of a TPNS, Algorithm 8 of [1] correctly computes the
maximal stable set B C C. However, the computation of the set L of maximal
SCSS in a given set C' of states is incorrect: it is necessary to iterate the step of
computing the maximal strongly connected components of the graph (B, pp). A
revised algorithm for this latter problem is presented below. No other results of
the paper are affected by this error.

Algorithm1. (computation of maximal SCSS)

Input: A set C' C S of states.

Output: The set L of maximal SCSSs in C.

Define: Given a set D C S of states, let SCC(D) be the set of strongly con-
nected components of the graph (D, pp) (thus, SCC(D) is a set of subsets
of D).

Initialization: I := {C}.

Repeat: L :=|Jg., SCC(B);

Until: L is not changed by the above iteration. O

The correctness of the revised algorithm can be stated and proved as follows.

Theorem 2 (correctness of Algorithm 1). Algorithm 1 correctly computes
the set of mazimal SCSSs of a given set of states.

Proof. Let C'C S be the set given as input to the algorithm.

First, note that if the algorithm stops with output L, then every B € L is
an SCSS subset of C. To see this, note that when the algorithm terminates we
have SCC(B) = {B} for every B € L, since L is not changed by the iteration.
Thus, (B, pp) is strongly connected, which means that B is an SCSS.

Next, consider an arbitrary SCSS D C C. By induction on the number of
iterations of the algorithm, we prove that the following invariant holds:



For all B € L, it is either (i) D C B or (1) DN B = §; furthermore, (i)
holds for at least one B € L.

The invariant trivially holds before the first iteration, when L = {C'}. For the
induction step, assume that the invariant holds before an iteration, and consider
how each B € L is modified by the iteration. There are two cases.

1.

2.

If D C B, then (D, pp) is asubgraph of (B, pg), and since (D, pp) is strongly
connected there will be exactly one B’ € SCC(B) such that D C B’. The
conclusion follows form the observation that the sets in SCC(B) are mutually
disjoint.

If DN B =0, then for all B € SCC(B) it is DN B’ = .

Finally, to prove that upon termination L is the set of maximal SCSSs in C, we
reason as follows.

1.

Let D be a maximal SCSS of C'. By the above argument there must be B € L
such that D C B, and B must be an SCSS in C, as shown earlier. By the
maximality of D in C| we conclude D = B, so that D € L.

. Conversely, consider upon termination of the algorithm a set B € L; again, B

is an SCSS. To see that B 1s maximal in C', assume towards the contradiction
that there is another SCSS D C C with B C D. Then, the SCSS D would
not satisfy the inductive invariant proved earlier, since it is neither D C B
nor DN B ={. O
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