Automating Modular Verification*

Rajeev Alur! Luca de Alfaro> Thomas A. Henzinger®* Freddy Y.C. Mang?

! Department of Computer and Information Science, University of Pennsylvania, and Bell Laboratories,
Lucent Technologies. Email: alur@cis.upenn.edu
% Department of Electrical Engineering and Computer Sciences, University of California at Berkeley.
Email: {dealfaro,fmang}@eecs.berkeley.edu
3 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, and

Max-Planck Institute for Computer Science, Saarbriicken. Email: tahQeecs.berkeley.edu

Abstract

Modular techniques for automatic verification attempt to overcome the state-explosion
problem by exploiting the modular structure naturally present in many system designs.
Unlike other tasks in the verification of finite-state systems, current modular techniques
rely heavily on user guidance. In particular, the user is typically required to construct
module abstractions that are neither too detailed as to render insufficient benefits in
state exploration, nor too coarse as to invalidate the desired system properties. In this
paper, we construct abstract modules automatically, using reachability and controlla-
bility information about the concrete modules. This allows us to leverage automatic
verification techniques by applying them in layers: first we compute on the state spaces
of system components, then we use the results for constructing abstractions, and finally
we compute on the abstract state space of the system. Our experimental results indicate
that if reachability and controllability information is used in the construction of abstrac-
tions, the resulting abstract modules are often significantly smaller than the concrete
modules and can drastically reduce the space and time requirements for verification.

1 Introduction

The single largest obstacle to the use of automatic methods in system verification is the
state-explosion problem, which is the exponential increase in the number of system states
caused by a linear increase in the number of system components or variables. Modular
verification techniques attempt to overcome the state-explosion problem by exploiting the
modular structure naturally present in most system designs. The basic idea is to analyze
each module of the system separately, perhaps together with an environment that represents
a simplified model of the rest of the system; the results obtained for the individual modules

*An abbreviated version of this paper is to appear in Proceedings of CONCUR 99: Concurrency Theory.
This research was supported in part by the NSF CAREER award CCR-9734115, by the NSF CAREER
award CCR-9501708, by the DARPA (NASA Ames) grant NAG2-1214, by the DARPA (Wright-Patterson
AFB) grant F33615-98-C-3614, by the ARO MURI grant DA AH-04-96-1-0341, and by the Gigascale Silicon
Research Center.

are then combined into a single result about the compound system. Unlike other tasks in
the verification of finite-state systems, which have been largely automated, current modular
verification techniques still rely heavily on user guidance. Aside from deciding how to break
up a system into modules, the user also has to specify the environment in which to study
each module, which is usually a difficult task. In this paper, we present an approach to
modular verification that is almost entirely automatic, leaving to the user only the task of
specifying which variables of a module should be relevant to the other modules.

For each concrete module, we erase some variables to construct an abstract module,
which has a smaller state space; the abstract module is then used to replace the concrete
module in the verification process. If this approach is pursued naively, typically one of
two things happens. Either one abstracts only variables that do not influence the prop-
erty to be verified, which is certainly prudent but more often than not leads to insufficient
savings, or one abstracts variables that do influence the desired property, in which case
the abstract module may violate the property even though the concrete module does not.
We take the second route, but use additional information about the concrete module in
order to construct more useful abstractions than could be achieved by simply erasing vari-
ables. In the most basic variation of our method, we use reachability information about the
concrete module when erasing variables to construct an abstraction. In a more advanced
variation, we also use controllability information about the concrete module with respect
to the desired property. In all cases, the additional information we use can be obtained
fully automatically by looking only at individual modules and the property to be verified
—there is no need to involve the compound system. Our experimental results indicate that
the use of reachability and controllability information can lead to dramatic improvements
in verification: the resulting module abstractions are often much smaller than the concrete
modules yet still preserve the desired property.

Our model of computation is that of transition systems defined over finite sets of state
variables. We describe systems as the parallel composition of one or more modules. A
module P = (Vp,Ip,Tp) consists of a set Vp of variables, partitioned into input and
output variables, an initial predicate Ip over Vp defining the initial states of P, and a
transition predicate Tp over Vp UV}, defining the possible state transitions of P in terms
of their source states (over Vp) and destination states (over Vp = {z' | z € Vp}). We
consider systems consisting of non-blocking modules, in which every state has a successor,
regardless of the inputs to the module. The semantics of parallel composition is conjunction:
P||Q = VpUVq,Ip Nlg,Tp NTg). For the sake of simplicity, in this paper we focus on
Moore modules, for which the outputs during a transition depend only on the source state of
the transition. Our approach can be adapted with only minor modifications to Mealy-type
modules, such as the Reactive Modules of [AH96]. We consider the verification of invariance
properties. An invariance property for the module P is specified by an invariant predicate
@ over Vp. The module P satisfies the invariant predicate ¢, written P |= O, if P never
leaves the set of states defined by .

Consider a system P | @Q consisting of two modules P and @, and a desired invari-
ant predicate ¢ for P||Q. To check if P||Q E O¢ without constructing the global
state space of P|| @, we can remove a subset Wp C Vp of the variables of P and a
subset Wgo C Vg of the variables of (). Formally, the abstract module (3Wp.P) =
(Vp\Wp,IWp . Ip, IWpIW}, . Tp) is constructed by existentially quantifying the removed

variables in the initial and transition predicates; we say that (3 Wp.P) is obtained by erasing
from P the variables in Wp. Then we can attempt to use the following standard inference

rule:
(FWp.P) [(3Wq.Q) E Op
PQEOp

This rule is sound, because every reachable state of the concrete system P || Q corresponds
to a reachable state of the abstract system (3Wp.P) || (3W.Q). The efficiency advantage
of the rule stems from the fact that the premise involves fewer variables than the conclusion,
reducing the size of the state space to be explored. However, the premise may fail even
though the conclusion holds, because there may be many reachable states of the abstract
system that do not correspond to reachable states of the concrete system. In fact, it is often
impossible to choose suitable, reasonable large sets Wp and Wy, because modular designs
aggregate naturally within each module only closely interdependent variables. By erasing
such dependencies between variables, the number of transitions of the abstract system grows
quickly to the point of violating all but trivial invariants. Our goal is to confine this growth
in abstract transitions by utilizing additional information about the component modules P
and Q.

More precisely, a state s of P can be written as a pair s = (s, Sy), Where s, is a state
over the set Vp\Wp of variables, and s,, is a state over the set Wp of erased variables.
The abstract module (3Wp.P) contains a transition from source state s, to destination
state s, iff the concrete module P contains a transition from (sg, sy) to (s}, s},) for some sy,
and s!,. As a first improvement, we can include a transition from s, to s/, in the abstract
module only if, for some s, and s/, there is a transition from (s,, sy) to (s}, s,) in the
concrete module and the state (sq, sy) is reachable in the concrete module. This is because
it is certainly not useful to include abstract transitions that have no reachable concrete
counterparts. To this end, we compute a predicate Rp over Vp that defines the reachable
states of P. The predicate Rp can be computed using standard state-space exploration
(symbolic or enumerative). Our experiments based on symbolic methods indicate that this
computation is efficient, since the module P is considered in isolation. From the predicate
Rp we construct the module (P& Rp) = (Vp,Ip,Tp A Rp), which is like P, except that
it allows only transitions from reachable states. After erasing the variables in Wp, we
obtain the abstract module (3Wp.(P & Rp)). In a similar way, we compute the reachability
predicate Rg for () and construct the abstract module (3Wg.(Q & Rg)). To complete the
verification process, we then use the following rule:

(1)

(FWp.(P& Rp)) | 3Wo.(Q& Rq)) E Oy
PllQE Dy

Since the systems P || Q and (P& Rp) || (Q & Rg) have the same reachable states, rule (2)
is sound. As we shall see, unlike the simplistic rule (1), the improved rule (2) can often be
successfully applied even when the sets Wp and Wy include variables that contribute to
ensure the invariant ¢. Yet the savings in checking the premise of rule (2) are just as great
as those for checking the premise of the earlier rule (1), because the same sets of variables
are erased. In other words, (3Wp.(P & Rp)) || (3Wq-(Q & Rg)) is a more accurate but no
more detailed abstraction of P | @ than is (3Wp.P) | (3Wg.Q). In our experiments we

(2)

shall obtain dramatic results by applying rule (2) with the simple heuristics of erasing those
variables that are not involved in the communication between P and (). While reachability
information is often used in algorithmic verification, the novelty of rule (2) consists in the
use of such information for the modular construction of abstractions.

The effectiveness of a rule such as (1) or (2) is directly related to the number of variables
that can be erased in a successful application of the rule. Rule (2) improves on rule (1)
by using reachability information about the individual modules in the construction of the
abstractions, which usually permits the erasure of more variables. It is possible to further
improve on the rule (2) by using, in addition to reachability information, also information
about the controllability of the individual modules with respect to the specification Oe.
This improvement is based on the following observation. The predicate Rp used in (2)
defines the reachable states of P when P is in a completely general environment. However,
the module P may exhibit anomalous behaviors in a completely general environment; in
particular, more states may be reachable under a completely general environment than un-
der the specific environment provided by). Of course, we do not want to compute the
reachable states of P when P is composed with Q): doing so would require the exploration
of the state space of the global system P ||), which is exactly what our modular verification
rules try to avoid. To study the module P under a suitable confining environment, while
still avoiding the exploration of the global state space, we consider the module P in the
most general environment E that ensures the invariant ; that is, E is the least restrictive
module such that P || E = O¢. In practice, we need not construct E explicitly, but compute
only the predicate Dp that defines the set of reachable states of P || E. Since E is more
restrictive than the completely general environment, the predicate Dp is stronger than Rp,
and the implication Dp — Rp holds. The algorithm for computing Dp follows from the
standard game-theoretic algorithm for computing the set of states of the module P that
are controllable with respect to the invariant ¢; it can be implemented symbolically or enu-
meratively, with a time complexity that is linear in the size of the state space of P [Bee80).
This leads to the following modular verification rule:

(Ip AN1g) = (Dp A Dq)

P (3Wq.(Q& Dq)) = 0Dp

QI 3Wp.(P& Dp)) E 0ODq
PlQEDOyp

where Wp C Vp and Wy C Vg. The soundness of this rule depends on an inductive
argument, and it will be proved in detail in the paper. Essentially, the first premise ensures
that the modules P and @ are initially in states satisfying Dp A Dg. The second premise
shows that, as long as (does not leave the set defined by D¢, the module P will not leave
the set defined by Dp; the third premise is symmetrical. As the implications Dp — ¢
and Dg — ¢ hold, the three premises lead to the conclusion. The rule is in fact closely
related to inductive forms of assume-guarantee reasoning [Sta85, AL95, AH96, McM97].
The use of the stronger predicates Dp and Dg in the second and third premises of the
rule (3) potentially enables the erasure of more variables compared to the earlier rule (2).
However, in rule (3) this erasure can take place only on one side of the parallel composition
operator or, in the case of multi-module systems, for all modules but one.

(3)

While automatic approaches to the construction of abstractions for model checking have
been proposed, for example, in [Kur94, Dam96, GS97, CC99], these approaches do not ex-
ploit reachability and controllability information in a modular fashion. In particular, instead
of the standard principle “first abstract, then model check the abstraction,” our approach
follows the more refined principle “first model check the components, then use this informa-
tion to abstract, then model check the compound abstraction.” In this way, our modular ver-
ification rules are doubly geared towards automatic verification methods: state-space explo-
ration is used both to compute the reachability and controllability predicates, and to check
all temporal premises (those which contain the = operator). It is worth pointing out that
nontemporal premises would result in rules that are considerably less powerful. For example,
suppressing variable erasures, the temporal premise (P & Rp) || (Q & Rg) |= O of rule (2)
is weaker than the two nontemporal premises Ip AIg — ¢ and p ARpATp ARQ AT — ¢’
would be (here, ¢’ results from ¢ by replacing all variables with their primed versions).
Similarly, the second premise of rule (3) is weaker than the two nontemporal premises
IpANIg — Do ADp and Dp ATp A Dg ATy — D, would be. It is easy to find examples
where our temporal premises apply, but their nontemporal counterparts do not.

The outline of the paper is as follows. After introducing preliminary definitions in
Section 2, we develop the technical details of the proposed modular verification rules in
Section 3. The verification rules have been implemented on top of the MOCHA model
checker [AHM 98], using BDD-based fixpoint algorithms for the computation of the reach-
ability and controllability predicates. In Section 4 we discuss the implementation of the
verification rules, and we describe the script language we devised in order to be able to
experiment efficiently with various modular verification techniques. In Section 5 we present
experimental results for three examples: a demarcation protocol used to maintain the con-
sistency between distributed databases [BGM92], a token-ring arbiter, and a sliding-window
protocol for data communication [Hol91]. We conclude the paper with some insights gath-
ered in the course of the experimentation with the proposed verification rules.

2 Modules

Given a set V of typed variables with finite domain, a state s over V is an assignment for
V that assigns to each z € V a value s[z]. We also denote by V' = {z' | z € V} the set
obtained by priming each variable in V. Given a predicate H over V, we denote by H’
the predicate obtained by replacing in H every z € V with 2/ € V'. Given a set A and
an element z, we often write A\z for A\{z}, when this generates no confusion. A module
P = (Cp,Ep,Ip,Tp) consists of the following components:

1. A (finite) set Cp of controlled variables, each with finite domain, consisting of the
variables whose values can be accessed and modified by P.

2. A (finite) set Ep of external variables, each with finite domain, consisting of the
variables whose values can be accessed, but not modified, by P.

3. A transition predicate Tp over Cp U Ep U Ch.

4. An initial predicate Ip over Cp.

We denote by Vp = Cp U Ep the set of variables mentioned by the module. Given a state
s over Vp, we write s = Ip if Ip is satisfied under the variable interpretation specified by
s. Given two states s,s’ over Vp, we write (s,s') = Tp if predicate Tp is satisfied by the
interpretation that assigns to £ € Vp the value s[z], and to z’ € V}p the value s'[z]. A
module P is non-blocking if the predicate Ip is satisfiable, i.e., if the module has at least
one initial state, and if the assertion YVp.3Cp .Tp holds, so that every state has a successor.
A trace of module P is a finite sequence of states sg, s1, S2,. .. s, € States(Vp), where n > 0
and (sk, sk+1) = Tp for all 0 < k < n; the trace is initial if so = Ip. Two modules P and
Q are composable if Cp NCg = 0; in this case, their parallel composition P || Q is defined as:

P(|Q = (CrUCq,(Er UEQ\(CrUCQ), Tp N, Tr ATg) -
Given a module P and a predicate H over Vp, we denote by

(P& H) = (cp,gp,fp AH,Tp /\H)

the module like P, except that only transitions from states that satisfy H are allowed.
Given a module P and a set W of variables, we let

@AW.P) = (cp\w, Ep\W,IW . Ip,IW, W' . Tp)

be the module obtained by erasing the variables W in P. Note that the module (P & H) can
be blocking even if module P is non-blocking. On the other hand, the parallel composition of
non-blocking modules is non-blocking, and a module obtained from a non-blocking module
by erasing variables is also non-blocking.

A state of a module P is reachable if it appears in some initial trace of P. We denote by
Reach(P) the predicate defining the reachable states of P; this predicate can be compute
using standard state-space exploration techniques [CES83]. Given a module P and a predi-
cate ¢, the relation P |= O¢p holds iff the implication Reach(P) — ¢ is valid. In this paper,
we present modular techniques for verifying whether the relation P || --- || P, = O¢ holds,
where Pi, P,, ..., P, are composable modules, for n > 0, and where ¢ is defined over the
set of variables |Ji; Vp,. This verification problem is known as the invariant verification
problem, and it is one of the most basic problems in formal verification.

3 Modular Rules for Invariant Verification

In this section, we present three modular rules for the verification of invariants; the rules
are presented in order of increasing sophistication, and of increasing ability of successfully
erasing variables. The first rule is a standard rule based on the construction of abstract
modules:

GAWLP) | --- [| GWh-P) E Op
Py - || Py = Og

(4)

The second rule is derived from the above rule, by using in the construction of the abstract
modules also information about the reachable states of the concrete modules. The third
rule constructs the abstract modules using both reachability and controllability information
about the concrete modules.

3.1 Reachability-based abstractions

In order to improve the ability of rule (4) to successfully erase variables, we construct the
abstract modules using reachability information about the concrete modules. Hence, we
formulate the following modular verification rule:

(IW1.(P1 & Reach(Py))) || --- || (3Wh. (P, & Reach(P,))) = Op
P 1P o

()

This rule is sound. The rule is also complete, since whenever the conclusion holds, the
premise also does, with the choice Wy = --- = W,, =). Our experiments indicated that
rule (5) is often surprisingly effective in enabling the successful erasure of variables, leading
to dramatic savings in the space and time requirements of verification. We illustrate this
with an example.

Example 1 This example is a simplified version of the token-ring example presented
in Section 5. Consider a system composed of two modules P and) that circulate a
token through a 4-phase handshake protocol. The module P has controlled variables
Cp = {grant|, acky,z1,y1,c1} and external variables Ep = {grant,, acks}. All variables
are boolean, except for ¢; that has domain {0,1,2,3}. The module @ is defined similarly,
except that the subscripts 1 and 2 are exchanged. Intuitively, grant, and ack; form the
handshake that passes a token from) to P. Once the token arrives into P, it is stored first
in z1, then in y;. The handshake variables grant; and acks are used to pass the token back
to Q. The variable ¢; is an auxiliary variable that records the number of tokens in P. The
initial condition of P is Ip : ~ack; A =grant; A z1 A =yi A (¢1 = 0); the initial condition of
Q is Ig : ~acky A —granty A —z9 A —y2 A (c2 = 0), so that the token is initially in z;. We
present the transition predicate of P in guarded-commands notation, with the convention
that the values of the variables not mentioned in the assignments are not modified, and that
the command to be executed is chosen nondeterministically among those whose guards are
true:

granty A —acky A —xq ack! :=T; 2} :=7T; ¢} :=(c1 +1) mod 4

[

[—granty A ack: ack} :=F

| z1A-m Ty =F; Yy =T
[—grant; A —acks A y1 grant} :==T; y§ :==F; ¢} == (c1 — 1) mod 4
[

[

grant, A acko grant| :==F

ter bl

T

The transition predicate of) is identical, except that the subscripts 1 and 2 are exchanged.
The invariant is ¢ : [(c1 + ¢2) mod 4 < 2], and states that there is at most one token. To
verify that P || @ = Oy, we can apply rule (5) with sets of erased variables Wp = {z1,91}
and Wg = {z2,y2}. Hence, we are able to erase all the variables that are not used for
communication, and that do not appear in the invariant. The intuition is that, once the
value of ¢; is known, the predicate

Reach(P) : (01 =0A-z1 A —|y1) Vv (cl =1A (11 # yl)) Vv (01 =2Az1 A :vg)

provides sufficient information about the possible values of the erased variables 1 and ¥
to enable an accurate computation of the successor states. In contrast, rule (4) does not
enable the erasure of any variables. 1

3.2 Controllability and reachability-based abstractions

Consider an instance P, || --- || P, = O¢p of the invariant verification problem, for n > 1.
As mentioned in the introduction, the predicate Reach(F;) defines the reachable states
of module P; when the module P; is in a completely arbitrary environment, for 1 < ¢ < n.
However, a module may have many more reachable states when composed with a completely
arbitrary environment, than when composed with the other modules of the system. To
obtain more precise predicates, we consider the states of P; that are reachable under the
most general environment under which P; satisfies the specification Oy, for 1 <1 <mn. The
idea is that, if the system has been properly designed, then the actual environment of F; is
a special case of this most general environment.

An environment for a module P is a non-blocking module E composable with P. Given
a module P and a predicate ¢, we denote by Envs(P) the set of all environments of P, and
we let Envs,(P) = {E € Envs(P) | P || E = Oy} the set of environments of P under which
the specification Oy holds. We define

CR(P,p) = Ve Envs., (p) 3(Ve\Vp) . Reach(P || E)

with the convention that CR(P,p) = F if Envs,(P) = (. The predicate CR(P,) defines
the set of states of P that can be reached when P is composed with an environment under
which Oy holds. Denote by V,, the variables occurring in ¢. The following proposition gives
some additional properties of the predicate CR(P,).

Proposition 1 Given a non-blocking module P and a predicate @, the following assertions
hold.

1. There is an environment E € Envs,(P) with Vg = Vp UV, such that
CR(P,¢) = 3(V,\Vp) - Reach(P | E).

2. The implications CR(P,) — 3(V,\Vp) . ¢ and CR(P,) — Reach(P) hold.

Regarding the second assertion, note that in the introduction we implicitly assumed V,, C
Vp, for 1 < 1 < n for the sake of simplicity, while here we are only assuming the weaker
Vy C Ui=1 Vp,- We can then formulate the verification rule:

NiciIp, — Nizi CR(B;, @)
Pl (lljeqs,nni GW;-(P; & CR(P;,9)))) EOCR(P,@) 1<i<n
Pl [Py = O

(6)

In the second premise of this rule, for 1 < ¢ < n, we cannot erase variables of P;. In
fact, the predicate CR(P;, @) on the right hand side of |= involves most of the variables in
F;, preventing their erasure. In the experiments described in Section 5, the systems were

composed of two modules, and rule (5) performed better than rule (6), since in rule (5) the
variables could be erased in both the composing modules. In systems composed of many
modules, it is conceivable that the advantage derived from using the stronger predicates
of rule (6) in all modules but one, thus possibly erasing more variables, outweighs the
disadvantage of not being able to erase variables in one of the modules.

Proposition 2 Rule (6) is sound. If Py, ..., P, are non-blocking, rule (6) is also com-
plete: if the conclusion holds, then the premises also hold for Wy = --- =W,, = (.

Proof. It suffices to consider the case Wi = --- = W,, = (). To show that the rule is sound,
we assume that its premises hold, and we prove by induction on k > 0 that, if sg, s1,..., sk
is an initial trace of Py || -+ || P,, then s; = CR(Pj,) forall0 < i<k and 1< j <n.
The base case follows from the first premise of (6). For the induction step, assume that
the assertion holds for &, and consider the assertion for k + 1 for any j, with 1 < 5 < n.
The trace sg, 51, .., Sk, Sk+1 is an initial trace of P; || (||l€{1,___,n}\j (Pj & CR(P;, 90))) Hence,
we have that s;y1 = CR(Pj,), completing the induction step. From V, C |Ji»; Vp, and
from Proposition 1, part 2, we have that the implication (Aj-; CR(P;,¢)) — ¢ holds.
This implication, together with the conclusion of the induction proof, leads to the desired
result. The completeness of the rule follows by noticing that if Py || --- || P, = Oy, then by
definition of CR(-,¢) we have Py || --- || P, = O(CR(P1, o) A--- A CR(Py,¢)). &

To compute the predicate CR(P,) given P and ¢, we proceed in two steps. First, we
compute the predicate Ctr(P,) defining the set of states from which P is controllable
with respect to the safety property Op. The predicate Ctr(P,) can be computed with a
standard controllability algorithm [TW68, Bee80, RW87].

Algorithm 1
Input: Module P and predicate .
Output: Predicate Ctr(P,) over Vp.

Initialization: Let 7 = V,\Vp and Uy = 3F . .

Repeat: For k > 0, let Ug1 = U A Ep UF') .VCh . (Tp — (U,é A).
Until: Ulc+1 = Ulc-

Return: Uj.

The algorithm computes a sequence Uy, Uy, Us,... of increasingly strong predicates. For
k > 0, predicate U defines the states from which it is possible to control P to satisfy
predicate ¢ for at least k + 1 steps; note that the implication Uy — 3F . ¢ holds for k£ > 0.
At each iteration & > 0, the algorithm lets Ugy; define the set of states from which the
environment can choose the next value for the external variables, so that for all choice of
the controlled variables, the successor states of the transitions satisfy Ug. The following
algorithm computes the predicate CR(P,), using the previous algorithm as a subroutine.

Algorithm 2
Input: Module P and predicate .
Output: Predicate CR(P, ¢) over Vp.

Initialization: Let F = V,\Vp, and Vy = Ip AIF .VCp . (Ip = (Ctr(P,) A 90))
Repeat: For k > 0, let

Vi1 =ViV3Vp . [Vk ATe AAF ¥Cp . (T — (Cir'(P,0) A)] -

Until: Vi = V.
Return: V.

For each k > 0, the predicate V; over Vp defines the set of states of P that can be reached
in k or less steps when P is composed with an environment E such that P || E = O¢. To
understand how this predicate is computed, note that the predicate VCp.(Ip — (Ctr(P, p)A
¢)) defines the set of initial valuations for the variables in £p U F that are safe for the
environment: if one such valuation is chosen by the environment, the system will start in a
controllable state that satisfies ¢, regardless of the valuation for the controlled variables in
Cp chosen by the module P. The iteration step follows a similar idea. If V}, defines the set
of current states, then the formula K; : 3Vp.(Vy ATp) over Cp defines the valuations for the
controlled variables that can be chosen by P for the following state. The environment must
choose a valuation for the variables in £, UF' that ensures that, regardless of the valuation
for C» chosen by the module, the successor state satisfies Ctr'(P,) A ¢. If Vi, defines the
set of current states, the set of such valuations for £, U F’ is defined by the formula

Ko :3Vp . NCh. ((V,c ATp) — (Ctr' (P,) A (p)).

It is then easy to see that the iteration step of Algorithm 2 can be written simply as
Viy1 = K1 AJF' . Ko, so that K constrains the next valuation of the controlled variables,
and 3F' . K, constrains the next valuation of the external variables. Algorithms 1 and 2
can be implemented enumeratively or symbolically, and they have running time linear in
|States(Vp UV,)|. In the next example, we see how rule (6) can enable the erasure of
variables that could not be erased with rule (5).

Example 2 Consider the verification problem Pj || P, = Og, where the invariant is
¢ : 721 A —z2. The modules have variables Cp, = {z;, 4,2} and Ep, = {z24, 224}, for
1 <7 < 2; all the variables are boolean. Module P; has initial predicate Ip, : ~z1 A—yi A—z1,
and has transition predicate Tp, : [z} = 22) A [(mz1 A —z2) = (Y] = y1)] A [~y — (2] = 21))-
Module P; is defined in a symmetrical fashion. Informally, module P; behaves as follows.
Initially, all variables are false. At each step, the new value for z; is the old value of z,.
If 21 V x5 holds, then y; can change value; otherwise, it retains its previous value. If y; is
true, then z; can change value; otherwise, it retains its previous value. It is easy to check
that P, | P» = Ogp holds.

Consider module P;. The states where z1 =T or zo =T are obviously not controllable.
The states where y; = T are also not controllable, since from these states module P; can
reach a state where z; = T regardless of the values of the external variables xzo and zo.
Likewise, the states where £1 =T or £9=T are not controllable, since from these states the

10

module can reach a state where y; =T regardless of the values of the external variables. The
only controllable (and reachable) state of P; is thus defined by the predicate CR(P,) :
-1 A —y1 A -z A —zg A —z9. Predicate CR(Pa,) is defined in a symmetrical fashion. The
reachability predicates are given simply by Reach(P;) : T and Reach(Ps) : T.

Rule (6) can be applied by taking Wi = Ws = {y1,y2}. In fact, the composite module
Py || (3Wa.(P2 & CR(P2,p))) admits only the initial traces consisting of repetitions of the
state [z = F,y; = F,21 = F,z9 = F,29 = F|. This shows that the first premise holds;
the case for the second premise is symmetrical. On the other hand, no variable can be
successfully erased using rule (5). In fact, if we erase variable y5, then the right hand
side exhibits the initial trace sg,si, where sy : [z; = F,y1 = F,21 = F,z9 = F,29 = F|
and s1 : [z1 =F,y1 =F,21 =F,z9 =F,z9 = T|. This trace is possible because the state
to : [x1 = F,21 = F,z9 = F,y2 = T,22 = F| over Vp, is reachable, and hence it satisfies
Reach(P,), and agrees with sy on the shared variables. The trace is then a consequence of
the transition from ¢y to ¢1 : [x1 =F, 21 =F,29=F,y2 =T, 2o =T| in P». A similar argument
shows that it is not possible to erase the variable 5. R

4 Implementation of the Verification Rules

We have implemented the algorithms described in this paper in the verification tool MOCHA
[AHM98]. MOCHA is an interactive verification environment and it enables, among other
things, the verification of invariants using both enumerative and symbolic techniques; for
the latter, it relies on the BDD package and image computation engine provided by VIS
[BHSV96], which we used in our implementation.

One important technique we use in the implementation of the rules is that, instead
of computing the abstract modules explicitly, we compute them implicitly. The idea is as
follows: suppose we are computing the reachable states of (3Wp.P) || (3Wg.Q). A straight-
forward algorithm would be to first compute the two abstract modules, and then compute
the reachable states of their composition. This is very inefficient in terms of the usage
of space. Transition relations are usually presented as a list of conjuncts rather than as
a single, larger conjunct. The explicit computation of the abstract modules would imply
conjoining all the transition relations and building a monolithic one: if represented as a
BDD, such a monolithic conjunct would often be prohibitively large. Instead, we quantify
away the erased variables of the abstract modules only when necessary, as for example in the
computation of the reachable states. For instance, we use the following symbolic algorithm
to compute the reachable states of the parallel composition of two abstract modules:

Algorithm 3
Input: Modules P and @, and variables Wp C Vp\Cg and Wg C Vg \Cp.
Output: Reach((IWp.P) | (IWg.Q)).

Initialization: Let Uy = IWp U Wg) . (Ip A Ig).

Repeat For & > 0, let Ullc—f—l = Ul,c vV3IVpu Vo U W}p U Wé‘?) (U ANTp A TQ).
Until Uk+1 = Uk.

Return: Uj.

11

In the body of the loop, we rely on the early quantification algorithm in VIS to keep
the intermediate BDDs small. With this scheme, a monolithic transition relation is never
built. In particular, our implementation represents abstract modules as pairs consisting of
a concrete module and of a list of variables that have been erased from it; such pairs are
called extended modules.

In order to experiment with the verification rules proposed in this paper, we implemented
a simple script language, called s1, built on top of MOCHA and based on the Tcl/Tk APL
The algorithms and methodologies described in this paper provide the theoretical basis of
the commands provided by s1. The verification rules proposed in this paper can be imple-
mented as sl scripts, and the language s1 provides invaluable flexibility for experimenting
with alternative forms of the rules. An example of script is the following, which verifies the
correctness of the demarcation protocol using rule (5) (the demarcation protocol is described
in Section 5.1).

read_module demarc.rm

sl_em P Q Spec

sl_reach phi em_Spec s

sl_reach rp em_P s

sl_restrict Prest rp em_P

sl_erase Pabs Prest P/xw P/xr P/reql P/grantl P/req2 \
P/grant2 P/xlupdl P/x1lupd2 P/busy

sl_reach rq em_Q s

sl_restrict Qrest rq em_Q

sl_erase Qabs Qrest Q/xw Q/xr Q/reql Q/grantl Q/req2 \

Q/grant2 Q/xlupdl Q/xlupd2 Q/busy
sl_compose Rabs Pabs Qabs
sl_checkinv Rabs phi s

The command read module parses the file demarc.rm, containing the declarations of the
modules P and Q, composing the protocol, and Spec, whose reachable states constitute
the invariant. The command sl_em P Q Spec builds the extended modules em P, em_Q,
and em_Spec from P, Q, and Spec; of course, these extended modules have empty sets of
erased variables. The command sl _reach phi em Spec s computes the predicate phi =
Reach(em_Spec). The parameter s of this and other commands means “silent”, i.e., no
diagnostic information is printed. The rest of the script checks that em P ||em_Q = Ophi
using rule (5). First, the commands s1_reach and sl _restrict are used to compute rp =
Reach(em _P) and Prest = (em P & rp). Then, the command s1_erase erases a specified list
of variables from Prest, producing the extended module Pabs. As discussed earlier, the
command sl_erase performs no actual computation, but simply adds the specified variables
to the list of erased variables. The extended module Qabs is constructed in an analogous
fashion. Finally, the command s1_compose composes Pabs and Qabs into a single extended
module Rabs, which is checked against the specification Ophi by command s1_checkinv.

Apart from these commands, we also have implemented commands including
sl wcontr and sl_contrreach, which together compute the predicate CR(P,¢) given a
module P and a predicate ¢.

12

5 Experimental Results

To demonstrate the effectiveness of the proposed approach to modular verification, we
compare the time and memory requirements of global state-space exploration with those
of rule (5) and rule (6). We do not compare our approach with other modular verification
approaches, since these approaches involve user intervention for the construction of the
environments. By manually constructing the environments or the abstractions it is possible
to improve on our results.

We consider three examples: a demarcation protocol used in distributed databases, a
token-ring arbiter, and a sliding-window protocol for data communication. All experiments
have been run on a 233 MHz Pentium® II PC with 128MB memory running Linux. We
report the memory usage by giving the maximum number of BDD nodes used in any fixpoint
computation or predicate; this is essentially the maximum number of BDD nodes used at
any single time during verification. We also report the total CPU time; this time does
not include swap activity (swap activity was in any case very limited for all examples
reported). The automatic variable reordering heuristics of MOCHA were enabled during the
experiments. We remark that differences in time or memory usage of up to a factor of 2 are
not significant, since they can easily be produced by a variation in the automatic choice of
variable ordering.

5.1 Demarcation protocol

The demarcation protocol is a distributed protocol aimed at maintaining numerical con-
straints between data residing in distributed copies of a database, while minimizing the
communication requirements [BGM92]. We consider an instance of the protocol that en-
sures that two databases, residing at sites 1 and 2, never sell more than the maximum
available number of seats m aboard a plane. The variables z1 and zo indicate the number
of seats that have been sold at sites 1 and 2. Each site can both sell seats, and receive seats
returned due to cancellations. In order to minimize the communication between two sites,
each site 7 = 1,2 maintains a variable z/; indicating the maximum number of seats it can
sell autonomously. If a site wishes to sell more seats than this limit allows, the site can
send a request to the other site for more seats. Depending on the number of unsold seats,
the other site has the option of rejecting the request, or of granting it in part or in full.

We model each site i = 1,2 by a module P;; the specification is O[(z1 < zl1) A (z2 <
zla) A (zly + zly < m)]. Each of P, and P, controls 20 variables, of which 8 are used
for communication with the other module or appear in the invariant, and 12 are internal.
Rule (5) enable the erasure of 9 of these 12 variables in each of P, and P»; all of these
variables are in the cone of influence of the specification. The table below compares the
time and space requirements of global state space exploration with those of rules (5) and (6),
for various values of m. To check the robustness of rule (5) against changes in the system
model, we also wrote an alternative, somewhat more complex model for the demarcation
protocol. For m = 4, the verification of the alternative model required 136156 BDD nodes
and 2009 seconds with the global approach, and 18720 BDD nodes and 211 seconds with
rule (5).

13

Global Rule (5) Rule (6)

m || BDD nodes | seconds || BDD nodes | seconds || BDD nodes | seconds
4 20881 97 2847 25 8695 75
6 64345 439 3338 40 20953 218
8 179364 1671 8367 81 43915 517

10 633102 8707 10475 112 65410 1878

12 space-out — 15923 174 93295 1980

14 space-out — 22205 300 145676 3913

5.2 Token ring arbiter

The second example is a synchronous token-ring arbiter. It involves a ring of m stations,
around which a single token is passed unidirectionally through four-phase handshake pro-
tocols. The invariant states that there is at most one token present in the stations. A
straightforward invariant would involve nearly all the variables in the system, and be rather
tedious to write. Hence, we introduce observer modules that observe the number of tokens
in the system. To enable the decomposition of the ring into two modules P; and P» rep-
resenting the half-rings, we introduce two such observers, one for each half. We were able
to erase all the variables used for the internal communications and state of the half-rings,
even though these variables clearly belong to the cone of influence of the invariant. Each
half ring controls 1+ 5m/2 variables; of these, all but 4 could be erased. Below we compare
the performance of global state-space exploration and of rules (5) and (6).

Global Rule (5) Rule (6)
m || BDD nodes | seconds || BDD nodes | seconds || BDD nodes | seconds
16 657 8 979 7 608 8
20 466 10 1619 9 308 12
24 1138 22 1297 26 473 20
28 1300 39 3486 24 519 29
32 1187 110 3190 143 772 143
36 1323 611 8230 242 1346 195

5.3 Sliding window protocol

Our last example is a classical sliding windows protocol from [Hol91], whose encoding is
taken from the MOCHA distribution. The protocol uses send and receive windows of size
m, and it is composed of a sender module and a receiver module. Our invariant states
essentially that the windows are not over-run by the protocols. In both the sender and the
receiver, roughly half of the variables not used for communication with the other module can
be erased when applying our modular approach. The comparison between the performance
of global state-space exploration and rules (5) and (6) is presented below.

14

Global Rule (5) Rule (6)

m || BDD nodes | seconds || BDD nodes | seconds || BDD nodes | seconds
3 8992 35 776 12 2443 33
4 11831 99 1723 41 3740 42
5 36359 1911 3843 84 8503 105
6 94684 4994 7048 156 18316 500
7 95667 2630 8282 513 22289 771
8 space-out — 26611 1582 47605 6245

5.4 Discussion

The experimental results indicate that the proposed approach leads to a considerable re-
duction in the time and space requirements for the verification process.

In the examples we considered, we identified which variables could be erased in the
application of rule (5) by a simple trial-and-error process. We can automate this process by
providing, for each module P, a list {z1,...,z;} C Cp of variables of P that are not part of
the specification, and that are not accessed by other modules. We list first the variables that
are more likely to be successfully erased: those that are more “internal” to the module, and
that interact with fewer other variables. We then apply rule (5) successively with the sets
of erased variables {z1,...,zx}, {z1,...,2k_1}, {Z1,...,Tx_2}, - .., until the rule succeeds.
This process is efficient in practice. In fact, the more variables are erased, the smaller is the
state space of the abstract modules: hence if too many variables are erased, the rule will
fail in a fraction of the time required for a successful proof.

In the three examples considered, the stronger reachability predicates used to construct
the abstract modules in rule (6) did not enable the erasure of any additional variable. In the
demarcation protocol and in the sliding window protocol examples, the ability of rule (5)
to erase variables on both sides of the parallel composition operator led to superior results
compared with rule (6). In the token ring arbiter example, module P; has many more
reachable states in a completely general environment than in an environment compatible
with the specification, for ¢ = 1,2. Hence, the predicates Reach(P;) are much weaker (and
take more time and space to compute) than the predicates CR(F;, ¢), for i = 1,2. For this
reason, rule (6) performs better than rule (5) in this example.

If the premise of rule (5) does not hold, we can construct automatically a trace over
the variables in Uj—;(Vp,\Wi;), leading to a state that does not satisfy ¢. This trace is
a trace over a partial set of system variables, and it does not necessarily correspond to a
counterexample to the conclusion. If the first premise of rule (6) does not hold, then using
facts about controllability we can reconstruct automatically a counterexample trace over
the complete set of system variables. On the other hand, if the second premise of rule (6)
does not hold for some 1 < 4 < n, then we obtain a trace over a partial set of system
variables that leads to a state ¢; where the predicate CR(P;,) does not hold. From t;,
using facts about controllability we can again construct a trace over the complete set of
system variables that leads to a state where ¢ does not hold. When confronted with a trace
over a partial set of variables, we have taken the naive approach of selectively un-erasing
some variables in the premises, until either the premises became valid, or the design error
could be identified.

15

References

[AHY96]

[AHM*98]

[AL95]

[Bee80)]

[BGM92]

R. Alur and T.A. Henzinger. Reactive modules. In Proc. 11th IEEE Symp.
Logic in Comp. Sci., 1996.

R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and
S. Tasiran. Mocha: modularity in model checking. In Computer Aided Ver-
ification, LNCS 1427, pages 521-525. Springer-Verlag, 1998.

Martin Abadi and Leslie Lamport. Conjoining specifications. ACM Trans. Prog.
Lang. Sys., 17(3):507-534, 1995.

C. Beeri. On the membership problem for functional and multivalued dependen-
cies in relational databases. ACM Transactions on Database Systems, 5:241-259,
1980.

D. Barbara and H. Garcia-Molina. The demarcation protocol: a technique for
maintaining linear arithmetic constraints in distributed database systems. In
EDBT’92: 3rd International Conference on Extending Database Technology,
LNCS 580, pages 373-388. Springer-Verlag, 1992.

[BHSV'96] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,

[CC99]

[CES83]

[Dam96]

[GS97]

[Hol91]

[HQRTYS8]

[Kur94]

S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan,
S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS: A system for verification
and synthesis. In Computer Aided Verification, LNCS 1102, pages 428-432.
Springer-Verlag, 1996.

P. Cousot and R. Cousot. Refining model checking by abstract interpretation
Automated Software Engineering Journal, 6(1):69-95, 1999.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic. In Proc. 10th ACM Symp. Princ.
of Prog. Lang., 1983.

D. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Technical University of Eindhoven, 1996.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Computer Aided Verification, LNCS. Springer-Verlag, 1997.

G.J. Holzman. Design and Validation of Computer Protocols. Prentice Hall,
1991.

T.A. Henzinger, S. Qadeer, S.K. Rajamani, and S. Tasiran. An assume-
guarantee rule for checking simulation. In Proceedings of the Second Inter-
national Conference on Formal Methods in Computer-Aided Design (FMCAD
1998), LNCS 1522, pages 421-432. Springer-Verlag, 1998.

R.P. Kurshan. Computer-aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, 1994.

16

[McM97]

[RW87]

[Sta85]

[TW68]

K.L. McMillan. A compositional rule for hardware design refinement. In Com-
puter Aided Verification, LNCS 1254, pages 24-35. Springer-Verlag, 1997.

P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-
event processes. SIAM Journal of Control and Optimization, 25:206-230, 1987.

E.W. Stark. A proof technique for rely/guarantee properties. In Proc. of 5th
Conference on Foundations of Software Technology and Theoretical Computer
Science, LNCS 206, pages 369-391. Springer-Verlag, 1985.

J.W. Thatcher and J.B. Wright. Generalized finite-automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2:57-81, 1968.

17

