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Abstract

A Markov decision process is a generalization of a Markov chain in which both prob-
abilistic and nondeterministic choice coexist. Given a Markov decision process with
costs associated with the transitions and a set of target states, the stochastic shortest
path problem consists in computing the minimum expected cost of a control strategy
that guarantees to reach the target. In this paper, we consider the classes of stochas-
tic shortest path problems in which the costs are all non-negative, or all non-positive.
Previously, these two classes of problems could be solved only under the assumption
that the policies that minimize or maximize the expected cost also lead to the target
with probability 1. This assumption does not necessarily hold for Markov decision
processes that arise as model for distributed probabilistic systems. We present effi-
cient methods for solving these two classes of problems without relying on additional
assumptions. The methods are based on algorithms to transform the original problems
into problems that satisfy the required assumptions. The methods lead to the efficient
solution of two basic problems in the analysis of the reliability and performance of
partially-specified systems: the computation of the minimum (or maximum) proba-
bility of reaching a target set, and the computation of the minimum (or maximum)
expected time to reach the set.

1 Introduction

Markov decision processes are generalizations of Markov chains in which probabilistic
choice coexists with nondeterministic choice [Bel57]. Several models of distributed proba-
bilistic systems are based either on Markov decision processes [BdA95, KB98] or on closely
related formalisms, such as the concurrent Markov chains of [Var85], the probabilistic
automata of [SL94, WSS94], and the timed probabilistic automata of [Seg95]. Several
models based on process algebras are also closely related to Markov decision processes
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[LS89, JL91, WSS94]. In these proposals, probability enables the modeling of phenom-
ena related to reliability and performance, while nondeterminism has been used to model
concurrency [Var85, PZ86, Seg95], inputs [Seg95], imprecise knowledge of the transition
probabilities [dA97, dA98], and in general any behavior for which probabilistic information
is not known.

A Markov decision process (MDP) consists of a set of states; with each state is as-
sociated a set of possible actions. At every state, the choice of the next action is non-
deterministic; once chosen, the action determines the transition probability distribution
for the successor state. In order to quantify the probabilistic properties of an MDP, the
concept of policy is introduced [Der70], related to the schedulers of [Var85, PZ86] and to
the adversaries of [SL94, Seg95]. A policy is a criterion for selecting the actions during
a behavior of the system; once the policy is fixed, the MDP is reduced to a conventional
stochastic process. A simple way to introduce time in these models is to associate with
each pair consisting of state and of a related action the time (or the expected time) spent
at the state when the action is selected [Han94, Seg95, dA98]. One of the basic questions
we can ask about the timing behavior of such a system is the expected time needed to
reach a given set of target states from a specified starting state. Being able to answer
this question opens the way to the automated verification of systems properties such as
expected time to failure, expected task completion time, and several others. Since the sys-
tem model includes nondeterminism, the answer to this expected time question consists
not in a single value, but rather in a range of values comprised between a minimum and a
maximum, depending on whether the policy in use hastens or delays the reaching of the
target. This paper is concerned with the question of how to compute these minimum and
maximum values.

The problem of computing the maximum and minimum reachability times can be
reduced to the stochastic shortest path (SSP) problem [EZ62, Der70]. In the statement
of the SSP problem, with each state-action pair is associated a real-valued cost; the SSP
problem consists in computing the minimum expected cost incurred to reach a set of
target states. Hence, to compute the minimum (resp. maximum) reachability time, it
suffices to equate the cost to the time (resp. to the time multiplied by −1) and to solve
the resulting SSP problem. However, previous solutions to the SSP problem rely on
assumptions that do not necessarily hold for the SSP problems obtained by the above
reduction. In particular, previous solutions require that the target set can be reached
with probability 1 from every state, and that either (a) every policy that does not lead
to the target with probability 1 yields infinite expected total cost, or (b) the policies that
minimize or maximize the expected total cost also lead to the target with probability 1
[BT91, Ber95]. Under either one of these assumptions, the goal of reaching the target can
be disregarded in the solution of the optimization problem, and the SSP problem can be
solved by determining the policy that minimizes the total cost. If the starting and target
states are part of a formal specification, or if the time associated with state-action pairs
can be 0, as in [Han94, Seg95, dA97, dA98], these assumptions do not hold in general,
and new solution methods are required.

The aim of this paper is to present methods for solving the SSP problem that rely on
the assumptions that the costs are all non-negative, or all non-positive. We call the SSP
problems that satisfy these assumptions the non-negative and non-positive SSP problems.
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Solving these SSP problems suffices for solving the original problem about the maximum
and minimum reachability times. Furthermore, we show that the proposed solution meth-
ods can be applied to the efficient computation of the maximum and minimum probability
of reaching a target set of states.

The minimum expected cost to reach a set of target states is well defined only if
the target can be reached with probability 1. The first step in the solution of the SSP
problem consists thus in computing the set of states from which the target set can be
reached with probability 1. This problem can be solved in polynomial time by a reduction
to linear programming [Der70]. In this paper we present a more efficient algorithm, that
solves the problem in time quadratic in the size of the MDP, and that does not require
numerical computation. The algorithm, originating from [dA97], is related to an algorithm
for solving two-person reachability games presented in [dAHK98].

Once we have determined the states from which the target set cannot be reached with
probability 1, we present two methods for solving the SSP problem on the remaining states.
First, we show that non-negative and non-positive SSP problems can be solved using
linear programming over the extended field IR ∪ {±∞}. Second, we present translation
algorithms that transform non-negative and non-positive SSP problems into SSP problems
that satisfy the assumptions previously considered in the literature [BT91, Ber95]. This
enables the use of several well-known techniques for the solution of non-negative and non-
positive SSP problems, such as value iteration methods, and methods based on learning
and sample path analysis (see [BT91, Ber95] again). The translation algorithms have
strongly-polynomial time complexity in the size of the MDP being translated. As the
algorithms never increase and often reduce the size of the MDPs, they also perform a
beneficial pre-conditioning prior to the application of numerical solution methods.

Finally, we apply the algorithms presented in this paper to the computation of the
minimum and maximum probability of reaching a set of target states. The computation
of the minimum reachability probability is useful for determining lower bounds for the
probability of reaching desirable system configurations, or of accomplishing tasks from
given starting points. The computation of the maximum reachability probability is one
of the basic problems in probabilistic verification: aside from being of interest in its own
right, it is at the basis of the algorithms for the determination of the maximum and
minimum probability with which a linear-time temporal logic formula holds over an MDP
[CY90, CY95, BdA95]. While the maximum reachability probability can be computed
with the algorithms of [CY90], the proposed approach minimizes the size of the numerical
problem to be solved.

2 Preliminaries

A Markov decision process (MDP) is a generalization of a Markov chain in which nonde-
terministic choice coexists with probabilistic one. Markov decision processes are closely re-
lated to the probabilistic automata of [Rab63], to the concurrent Markov chains of [Var85],
and to the simple probabilistic automata of [SL94, Seg95]. To present their definition, given
a countable set C we denote by D(C) the set of probability distributions over C, i.e. the
set of functions f : C 7→ [0, 1] such that

∑
x∈C f(x) = 1. Given a distribution f ∈ D(C),

we indicate by Support(f) = {x ∈ C | f(x) > 0}.
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An MDP M = (S,Acts , A, p) consists of the following components:

• a finite set S of states;

• a finite set Acts of actions;

• a function A : S 7→ 2Acts that associates with each s ∈ S a finite set A(s) ⊆ Acts of
actions available at s;

• a function p : S × Acts 7→ D(S) that associates with each s, t ∈ S and a ∈ A(s) the
probability p(s, a)(t) of a transition from s to t when action a is selected.

A path of the MDP M is an infinite sequence ω : s0, a0, s1, a1, . . . of alternating states and
actions, such that si ∈ S, ai ∈ A(si) and p(si, ai)(si+1) > 0 for all i ≥ 0. For i ≥ 0, the
sequence is constructed by iterating a two-phase selection process. First, an action ai ∈
A(si) is selected nondeterministically; second, the successor state si+1 is chosen according
to the probability distribution p(si, a). Given a path ω : s0, a0, s1, a1, . . . and k ≥ 0, we
denote by Xk(ω), Yk(ω) its k-th state sk and its k-th action ak, respectively. Given a state
s ∈ S and an action a ∈ A(s) for s, we also denote by dest(s, a) = {t ∈ S | p(s, a)(t) > 0}
the set of possible successors of s when a is selected.

To be able to talk about the probability of system behaviors, we need to specify the
criteria with which the actions are chosen. To this end, we use the concept of policy [Der70],
closely related to the adversaries of [SL94, Seg95] and to the schedulers of [Var85, PZ86].
A policy η is a mapping η : S+ 7→ D(Acts), which associates with each finite sequence of
states s0, s1, . . . , sn ∈ S+ and each a ∈ A(sn) the probability η(s0, . . . , sn)(a) of choosing
a after following the sequence of states s0, . . . , sn. We require that η(s0, . . . , sn)(a) > 0
implies a ∈ A(sn): a policy can choose only among the actions that are available at the
state where the choice is made. We indicate with Pol the set of all policies. We say
that a policy η is memoryless if η(s0, . . . , sn)(a) = η(sn)(a) for all sequences of states
s0, . . . , sn ∈ S+ and all a ∈ A(s).

For every state s ∈ S, we denote by Ωs the set of paths having s as initial state, and we
let Bs ⊆ 2Ωs be the σ-algebra of measurable subsets of Ωs, following the classical definition
of [KSK66]. Under policy η the probability of following a finite path prefix s0a0s1a1 · · · sn

is
∏n−1

i=0 p(si, ai)(si+1) η(s0 · · · si)(ai). These probabilities for prefixes give rise to a unique
probability measure on Bs. We write Prη

s(A) to denote the probability of event A in Ωs

under policy η, and Eη
s{f} to denote the expectation of the random function f from state

s under policy η.

2.1 The stochastic shortest path problem

An instance Π = (S,Acts , A, p,R, c, g) of the stochastic shortest path problem consists of
an MDP (S,Acts , A, p), together with the additional components R, c and g:

• R ⊆ S is the the set of destination states;

• c : S × Acts 7→ IR is the running cost function, that associates with each state
s ∈ S \ R and each action a ∈ A(s) the cost c(s, a);
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• g : R 7→ IR is the terminal cost function, that associates to each s ∈ R its terminal
cost g(s).

We say that an instance of the SSP problem is non-negative (resp. non-positive) if c(s, a) ≥
0 (resp. c(s, a) ≤ 0) for all s ∈ S and a ∈ A(s); note that the sign of g is not relevant for
this definition.

The SSP problem consists in determining the minimum cost of reaching R when fol-
lowing a policy that reaches R with probability 1, provided such a policy exists. Precisely,
let TR(ω) = min{k | Xk(ω) ∈ R} be the position of first visit of a path in R. For all s ∈ S

we denote by Prp(s) = {η ∈ Pol | Prη
s(TR < ∞) = 1} the set of policies that lead from s

to R with probability 1; these policies are the proper policies for s. Given a state s ∈ S,
the cost vη

s of a policy η is defined by

vη
s = Eη

s

{
g(XTR

) +
TR−1∑

k=0

c(Xk, Yk)

}
. (1)

A policy η is optimal if vη
s = v∗s for all s ∈ S \ R. With this notation, the SSP problem

consists in:

1. determining the set Q = {s ∈ S \ R | Prp(s) 6= ∅} of states having at least one
proper policy;

2. computing the minimum cost v∗s = infη∈Prp(s) vη
s of a proper policy at all s ∈ Q.

Usually, the SSP problem is considered to consist only in the second question, and the
existence of at least one proper policy for each state is stated as an assumption. However,
when the SSP problem is used to compute the minimum or maximum reachability times
between an initial state and a set of target states that are part of a reliability of perfor-
mance specification, we cannot assume that the target set can be reached from the initial
state with probability 1. Hence, in Section 2.3 we present an algorithm to solve also this
first question. In addition, we will characterize the optimal policies for non-negative and
non-positive SSP problems.

SSP problem and reachability time. In a timed probabilistic system, the timing
behavior of an MDP (S,Acts , A, p) is specified by means of a function time : S × Acts 7→
IR+ that associates with each s ∈ S and a ∈ A(s) the expected amount of time time(s, a)
spent at state s when action a is selected [dA98]. Given a set R of target states, to compute
the minimum (resp. maximum) expected time to reach R it suffices to solve an SSP
problem having cost functions defined by c(s, a) = time(s, a) (resp. c(s, a) = −time(s, a))
and g(s) = 0, for all s ∈ S and a ∈ A(a). The minimum (resp. maximum) expected time
to reach R from s ∈ S \ R is then given by v∗s (resp. −v∗s).

2.2 End components

The algorithms that we present to solve the classes of SSP problems rely on the notion
of end component [dA97]. End components are the analogous concept in Markov decision
processes of the closed recurrent classes of Markov chains [KSK66]: they represent the
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set of states and actions that can be repeated infinitely often along a path with non-zero
probability. Related sets of states have been used for solving optimization problems on
MDPs [CY95]. Given an MDP M = (S,Acts , A, p), a sub-MDP is a pair (C,D), where
C ⊆ S is a subset of states and D : S 7→ Acts is a function that associates to each s ∈ S

a subset D(s) ⊆ A(s) of actions. A sub-MDP (C,D) is an end component if the following
conditions hold:

• Closure: for all s ∈ C, a ∈ D(s), and t ∈ S, if p(s, a)(t) > 0 then t ∈ C.

• Connectivity: Let E = {(s, t) ∈ C × C
∣∣∣ ∃a ∈ D(s) . p(s, a)(t) > 0}; then, the graph

(C,E) is strongly connected.

We say that an end component (C,D) is contained in a sub-MDP (C ′,D′) if

{(s, a) | s ∈ C ∧ a ∈ D(s)} ⊆ {(s, a) | s ∈ C ′ ∧ a ∈ D′(s)} .

We say that an end component (C,D) is maximal in a sub-MDP (C ′,D′) if there is no
other end component (C ′′,D′′) contained in (C ′,D′) that properly contains (C,D). We
denote by Mec(C ′,D′) the set of maximal end components of (C ′,D′). It is not difficult to
see that, given a sub-MDP (C,D), the set Mec(C,D) can be computed in time polynomial
in |C|+

∑
s∈C |D(s)| using simple graph algorithms; an algorithm to do so is given in [dA97,

§3]. Given a path ω, denote by InfS (ω) = {s ∈ S |
∞
∃ k .Xk(ω) = s} the set of states visited

infinitely often by ω, where
∞
∃ is a shorthand for “there are infinitely many distinct”. Also,

define InfA(ω) : S 7→ 2Acts by {a ∈ A(s) |
∞
∃ k . Xk(ω) = s ∧ Yk(ω) = a} for all s ∈ S. The

following theorem summarizes the basic property of end components [dA97].

Theorem 1 For all s ∈ S and all η ∈ Pol, we have

Prηs

(
(InfS (ω), InfA(ω))is an end component

)
= 1 .

2.3 Computing the set of states having proper policies

As a first step in the solution of the SSP problem, we must compute the set

Reach(R) =
{
s ∈ S | ∃η ∈ Pol . Prη

s(TR < ∞) = 1
}

consisting of the states having at least one proper policy. This problem can be solved by
reducing it to several well-known dynamic programming problems, such as the maximum
average reward problem [Der70] or the maximum reachability probability problem [CY90].
However, these reductions yield algorithms that are based on linear programming, and
their time complexity is only weakly polynomial, i.e. it depends on the size of the bit strings
encoding the probability values in the input description of the problem. We present here
an algorithm that solves the problem in time quadratic in the size of the MDP, and that
does not require any numerical computation. The algorithm is originally from [dA97], and
is related to an algorithm for solving reachability problems in two-person games presented
in [dAHK98]. The algorithm is also reminiscent of an algorithm independently proposed
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in [Var95]. To present the algorithm, given two subsets X,Y ⊆ S of states we define the
predicate APre(Y,X) so that for all s ∈ S,

s |= APre(X,Y ) iff ∃a ∈ A(s) .
(
dest(s, a) ⊆ Y ∧ dest(s, a) ∩ X 6= ∅

)
.

Given a subset R of target states, we compute Reach(R) by the following µ-calculus
expression:

Reach(R) = νY . µX . (APre(Y,X) ∨ R) , (2)

where we have used the slightly improper notation of denoting by R a predicate that holds
exactly for the states in R. The algorithm (2) can be understood as follows. Denoting by
Yk the value of the set Y computed at iteration k ≥ 0, we have initially Y0 = S. At the
end of the first iteration, we have Y1 = S \ C0, where C0 is the subset of states of S that
cannot reach R. At the end of the second iteration, we have Y2 = Y1 \C1, where C1 is the
set of states that cannot reach R without risking to enter C0. In general, at the end of
iteration k > 0, we have Sk = Sk−1 \ Ck−1, where Ck−1 consists of the states that cannot
reach R without risking to enter

⋃k−2
i=0 Ci. Given an MDP M = (S,A, p), define its graph

size |M| by

|M| =
∑

s∈S

∑
a∈A(s)

∣∣∣Support (p(s, a))
∣∣∣ .

The following theorem summarizes the results about this algorithm.

Theorem 2 Given an MDP M = (S,A, p) and a set R ⊆ S of target states, relation
(2) correctly computes Reach(R) in time quadratic in |M|.

Once the set Reach(R) has been computed, we can replace the original SSP problem
(S,Acts , A, p, R, c, g) with a new problem (Q,Acts , A′, p′, R, c′, g′), where Q = Reach(R),
where p′, c′, g′ are the restrictions of p, c, g to Q, and where for all s ∈ Q we let
A′(s) = {a ∈ A(s) | dest(s, a) ⊆ Q}. To avoid a change of notation, in the following we
denote an instance of the SSP problem again by (S, Acts , A, p, R, c, g), but we assume
that Reach(R) = S. This is equivalent to assuming that the above reduction has been
made already.

3 Solving Non-Negative SSP Problems

The class of SSP problems that is most closely related to the non-negative class, and for
which solution methods have been presented in the literature, is discussed in [BT91, Ber95].
There, it is shown that the SSP problem can be solved under the additional assumption
that, for all s ∈ S, there is a proper policy that minimizes the total cost (1). An example
of SSP problem in which this assumption does not hold is depicted in Figure 1. Clearly,
the policy that minimizes (1) is the policy η1 that always chooses action a at s3; this
policy leads to the expected cost vη1

s1
= 1. However, this policy is not proper, and it is

easy to see that for every proper policy η it is vη
s1

= 3.
To understand why the iterative approaches such as value iteration cannot be applied

immediately to this problem, let n = |S \R|, and denote with v = [vs]s∈S\R ∈ IRn a vector
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b

0

0

a

s4

1

Figure 1: An instance of SSP problem. The target set is R = {s4}, and the terminal cost is
g(s4) = 0. States are represented as nodes of a graph, and actions as edges. We have indicated
only the actions a and b corresponding to state s3, where A(s3) = {a, b}. In this example, all
actions (including a and b) are deterministic, i.e. they lead to only one destination state. The
actions are labeled with their cost c. The two actions having cost 0 have been indicated with
dashed lines. A larger instance of SSP problem is presented in Figure 3.

of real numbers indexed by the states of S \R. Define the Bellman operator L : IRn 7→ IRn

on the space of v by

[L(v)]s = min
a∈A(s)

[
c(s, a) +

∑

t∈S\U

p(s, a)(t) vt +
∑

t∈R

p(s, a)(t) g(t)

]
s ∈ S \ R , (3)

where [L(v)]s denotes the s-components of vector L(v). Given an initial vector v
0, the

value iteration method computes the sequence of vectors v
0,v1,v2, . . . by v

k+1 = L(vk),
for k ≥ 0, and returns as answer limk→∞ v

k, provided the limit exists. The initial vector
v

0 represents an initial (often arbitrary) estimate for the minimum expected reachability
cost; each iteration of the Bellman operator L is aimed at improving the estimate. Clearly,
the answer returned by the value iteration procedure is a fixpoint of L. However, in non-
negative SSP problems the Bellman operator L may admit more than one fixpoint: for
example, in the SSP problem of Figure 1, for x ≥ 0 all vectors

v(x) = [v1, v2, v3] = [3, 2, 2] − x[1, 1, 1] (4)

satisfy v = L(v). If L admits more than one fixpoint, the sequence v
0,v1,v2, . . . can

converge to any one of them, depending on the value of the initial estimate v
0. In the

example of Figure 1, starting from the initial vector [0, 0, 0], the value iteration method
converges to the fixpoint [1, 0, 0]. However, we will prove that the solution of the SSP
problem corresponds to the largest fixpoint, which in this case is [3, 2, 2]. The fact that
the Bellman operator does not necessarily admit a unique fixpoint in non-negative SSP
problems not only prevents a direct application of value iteration methods, but also blocks
the line of analysis of [BT91] for the solution based on linear programming.

We present two approaches to the solution of non-negative SSP problems. The first
approach is based on the observation that the difficulties in solving non-negative SSP
problems stem from the presence in the SSP problem of end components consisting of
state-action pairs having 0 cost. If we remove these components, we obtain an equivalent
problem whose Bellman operator has a unique fixpoint; the problem can then be solved
using any of several methods that have been developed for SSP problems, including linear
programming and value iteration. This approach has two advantages. First, it enables
to exploit in the solution of the SSP problem many numerical techniques that have been
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devised to handle large-sized problems. Second, the algorithm that removes the end
components often achieves a reduction of the size of the problem.

The second approach consists in reducing the SSP problem directly to linear program-
ming: since the solution of the linear programming problem corresponds to the greatest
fixpoint of the Bellman operator, as we will show, it also corresponds to the solution of
the SSP problem. The correctness proof of this second approach relies on an analysis of
the first approach.

3.1 Eliminating 0-cost end components

A 0-cost end component is an end component (C,D) such that c(s, a) = 0 for all s ∈ C

and all a ∈ D(s). As we will show (see Theorem 3), the lack of uniqueness of the fixpoint is
due to the presence of 0-cost end components in the MDP. In a 0-cost component (C,D),
by selecting at each s ∈ C the actions in D(s) uniformly at random, we can go from any
state of C to any other state of C with probability 1 while incurring cost 0. Hence, the
states of a 0-cost end component are equivalent from the point of view of the minimum
cost to the target. The following algorithm exploits this fact to eliminate the 0-cost end
components of an MDP by replacing them with single states. The algorithm opens the
way to the use of iterative methods based on the Bellman operator for the solution of the
non-negative SSP problem.

Algorithm 1 (eliminating 0-cost end components)

Input: SSP problem Π = (S,Acts , A, p,R, c, g).

Output: SSP problem Π̂ = ElimEC (Π) = (Ŝ,Acts , Â, p̂, R, ĉ, ĝ).

Method: For each s ∈ S \ R, let D(s) = {a ∈ A(s) | c(s, a) = 0}, and let {(B1,D1), . . . ,
(Bn,Dn)} = Mec(S \ R,D) be the set of 0-cost maximal end components that lie
outside R. Define Ŝ = S ∪ {ŝ1, . . . , ŝn} \

⋃n
i=1 Bi, where ŝ1, . . . , ŝn are new states.

The action sets associated with the states are defined by:

s ∈ S \
⋃n

i=1 Bi : Â(s) = {〈s, a〉 | a ∈ A(s)}

1 ≤ i ≤ n : Â(ŝi) =
{
〈s, a〉

∣∣∣ s ∈ Bi ∧ a ∈ A(s) \ Di(s)
}

.

For s ∈ Ŝ, t ∈ S \
⋃n

i=1 Bi and 〈u, a〉 ∈ Â(s), the transition probabilities are defined
by p̂(s, 〈u, a〉)(t) = p(u, a)(t) and p̂(s, 〈u, a〉)(ŝi) =

∑
t∈Bi

p(u, a)(t). For s ∈ Ŝ and

〈u, a〉 ∈ Â(s) we let ĉ(s, 〈u, a〉) = c(u, a); for s ∈ R we let ĝ(s) = g(s).

The algorithm replaces each 0-cost end component (Bi,Di) with a single new state ŝi,
for 1 ≤ i ≤ n. The actions associated with ŝi consist in all the pairs 〈t, a〉 such that
s ∈ Ci and a ∈ A(s) is an action not belonging to the end component. Intuitively,
taking action 〈s, a〉 at ŝi corresponds to taking action a from s, possibly leaving Ci. The
transition probabilities and costs of the corresponding actions are unchanged, except that
the probability of a transition to ŝi is equal to the probability of a transition into Ci in
the original system, for 1 ≤ i ≤ n. The result of applying Algorithm 1 to the instance
of SSP depicted in Figure 1 is illustrated in Figure 2. The (maximal) end component
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Figure 2: Result of applying Algorithm 1 to the instance of SSP problem depicted in Figure 2.
The new state ŝ1 introduced by the algorithm is drawn as a filled circle.
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Figure 3: An instance of SSP problem (left), and the result of applying Algorithm 1 to it (right).
Here, not all actions are deterministic, and we depict actions that can lead to more than one
destination by “bundles” of edges. To simplify the diagrams, we have indicated only the transition
probabilities corresponding to action r, and we have omitted all costs. The actions that have cost 0
have been represented by dashed edges. The target set is R = {s9}. The new states ŝ1 and ŝ2 that
have been introduced to replace the zero-cost end components are indicated by filled circles.

formed by states s2, s3 together with the 0-cost actions has been replaced by the single
state ŝ1. Figure 3 depicts another example of application of Algorithm 1. The algorithm
computes the 0-cost end components (B1,D1), (B2,D2), where the first end component is
given by B1 = {s3, s4, s7} and D1(s3) = {d}, D1(s4) = {k}, D1(s7) = {j}, and the second
one by B2 = {s5, s6} and D2(s5) = {f}, D2(s6) = {g}. The algorithm replaces these end
components with the two new states ŝ1 and ŝ2. This example illustrates the potential
reduction of the state-space of the system.

Once the 0-cost end components have been eliminated, the next lemma shows that the
reduced problem satisfies the following two assumptions:

SSP-1 For all s ∈ S, we have Prp(s) 6= ∅.

SSP-2 For all s ∈ S and η 6∈ Prp(s), we have vη
s = ∞.

Lemma 1 Consider an instance Π of non-negative SSP problem such that there is at
least one proper policy for each state, and let Π̂ = ElimEC (Π). Then, Π̂ satisfies assump-
tions SSP-1 and SSP-2.
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Proof. By hypothesis (or more accurately, by the algorithm presented in Section 2.3), Π̂
satisfies SSP-1. By Theorem 1, the set of states and actions that are repeated infinitely
often along a path is an end component. Hence, if all 0-cost end components have been
eliminated, with probability 1 a path that does not reach R has infinite cost, showing that
Π̂ satisfies SSP-2.

The class of SSP problems that satisfies assumptions SSP-1 and SSP-2 has been studied
in depth in the literature. In particular, it is known that the Bellman operator admits
a unique fixpoint for this class of problems, and that there exist optimal policies that
are memoryless [BT91]. Moreover, such problems can be solved using value-iteration and
policy-iteration methods, which converge to the solution [BT91]. Other refined iterative
methods for the solutions of this class of problems are presented in [BT96]. As hinted by
Lemma 1, the uniqueness of the fixpoint of the Bellman operator is related to the presence
of 0-cost end components.

Theorem 3 Given a non-negative instance (S,Acts , A, p,R, c, g) of SSP problem, the
Bellman operator L admits a unique fixpoint iff there is no 0-cost end component (C,D)
with C ⊆ S \ R.

Proof. In one direction, assume that a non-negative instance of SSP problem does not
contain any 0-cost end component. Reasoning as for Lemma 1, we have that assumption
SSP-2 holds. If assumption SSP-1 also holds, then the uniqueness of the fixpoint follows
from [BT91]. If assumption SSP-1 does not hold, then assumption SSP-2 ensures that the
fixpoint of the Bellman operator diverges to +∞ on the states where there is no proper
policy. This, together with the analysis of [BT91] for the states where there are proper
policies, ensures again the uniqueness of the fixpoint. Conversely, if there is a 0-cost end
component in a non-negative SSP problem, then we can obtain multiple fixpoints of the
Bellman operator by selecting one such end component, and by setting the value of the
fixpoint there to any negative value, as done in (4).

The following theorem relates the solutions of the SSP problems Π and Π̂, and it
enables the (trivial) derivation of a solution for Π from a solution for Π̂.

Theorem 4 Consider an instance Π of non-negative SSP such that there is at least one
proper policy for each state, and let Π̂ = ElimEC (Π). Let also B1, . . . , Bn be the 0-cost end
components that are replaced by states ŝ1, . . . , ŝn. Denoting by v

∗ (resp. v̂
∗) the solution

of the SSP problems on Π (resp. Π̂), we have v∗s = v̂∗s for s ∈ S \
⋃n

i=1 Bi, and v∗s = v̂∗ŝi

for s ∈ Bi, 1 ≤ i ≤ n.

Even though it might appear intuitively plausible that eliminating the 0-cost end compo-
nents should not modify the solution of the SSP problem, the proof of the above theorem
is somewhat involved; it can be found in [dA97]. The same analysis also leads to the
following result.

Corollary 1 Non-negative SSP problems admit memoryless optimal policies.
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3.2 Linear programming

The second approach is given by the following theorem.

Theorem 5 Consider an instance Π of non-negative SSP such that there is at least
one proper policy for each state. Then, the solution v

∗ of the SSP problem is the largest
fixpoint of operator L defined in (3). Moreover, the following linear programming problem
has v

∗ as unique solution:

Maximize
∑

s∈S\R

vs subject to vs ≤ c(s, a) +
∑

t∈S\R

p(s, a)(t) vt +
∑

t∈R

p(s, a)(t) g(t)

for all s ∈ S \ R and a ∈ A(s).

Proof. The theorem is proved by showing first that every fixpoint of the Bellman operator
(3) is no greater (componentwise) than the solution of the SSP problem. Next, we use the
relationship between Π and Π̂ = ElimEC (Π) to show that one of the fixpoints is equal to
the solution of the SSP problem; this implies that the solution of the SSP problem is the
largest fixpoint. Finally, it can be shown that the linear programming problem converges
to the largest fixpoint, and thus to the solution of the SSP problem. The details can be
found in [dA97].

4 Solving Non-Positive SSP Problems

Consider an instance Π = (S,Acts , A, p,R, c, g) of non-positive SSP problem, and assume
that S = Reach(R), i.e. that for every state there is a proper policy. Unlike in the non-
negative case, it is possible that v∗s = −∞ for some s ∈ S \ R, and the first step towards
the solution of non-negative SSP problems consists in determining the set of states from
which the minimum cost diverges to −∞. This can be done with the following algorithm.

Algorithm 2

Input: A non-positive SSP problem Π = (S,Acts , A, p,Rc, g), with Reach(R) = S.

Output: The subset Diverge(Π) = {s | v∗s = −∞}.

Method: Let L :=
{
(C,D) ∈ Mec(S \ R,A)

∣∣∣ ∃s ∈ C . ∃a ∈ D(s) . c(s, a) < 0
}

be the set of end components outside R that have at least one strictly negative
state-action pair, and let C =

⋃
(C,D)∈L C be the union of their states.

Let C∞ = µX .
(
¬R ∧ (APre(S,X) ∨ C)

)
be the set of states that can reach C

without entering R.

Return: C∞.

Theorem 6 For an instance Π of non-positive SSP such that S = Reach(R), we have
that v∗s = −∞ iff s ∈ Diverge(Π).
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Proof. From a state s ∈ Diverge(Π), we can reach with positive probability an end com-
ponent in L. Once there, we can stay in the end component arbitrarily long, accumulating
an arbitrarily large amount of negative cost, before proceeding to the target. Hence, we
have v∗s = −∞. The details can be found in [dA97]. The proof of the converse, i.e., that
if s 6∈ Diverge(Π) then v∗s > −∞, will be given in Section 4.1.

Once the set Diverge(Π) has been computed, it remains to compute v∗s for s ∈ S \ (R∪
Diverge(Π)). To this end, we first reduce the SSP problem by eliminating the states in
Diverge(Π). We define a new instance of SSP Π̃ = Converge(Π) = (S̃,Acts , Ã, p̃, R, c̃, g̃),
where S̃ = S \Diverge(Π), where p̃, c̃, g̃ are the restrictions of p, c, g to S̃, and where for
all s ∈ S̃ we let Ã(s) = A(s). The reduced non-positive SSP problem can then be solved
in three ways: by eliminating the 0-cost end components, by linear programming, and by
value iteration.

4.1 Eliminating 0-cost components

The first method for solving the reduced problem consists in eliminating the 0-cost end
components using Algorithm 1 to compute Π̂ = ElimEC (Π̃). The following theorem
asserts that Π̂ satisfies conditions SSP-1 and SSP-2: hence, the SSP instance Π̂ can be
solved with the methods presented in [BT91, BT96, Ber95].

Theorem 7 The non-positive SSP instance Π̂ = ElimEC (Π̃) satisfies conditions SSP-1
and SSP-2. Moreover, let B1, . . . , Bn be the 0-cost end components that are replaced by
states ŝ1, . . . , ŝn. Denoting by ṽ

∗ (resp. v̂
∗) the solution of the SSP problems on Π̃ (resp.

Π̂), we have ṽ∗s = v̂∗s for s ∈ S̃ \
⋃n

i=1 Bi, and ṽ∗s = v̂∗ŝi
for s ∈ Bi, 1 ≤ i ≤ n.

Proof. Since the costs are non-positive, the cost from a state never diverges to +∞.
Hence, by Theorem 1, a non-positive instance satisfies condition SSP-2 iff there are no
end components entirely outside of the target R. To see that this condition holds for
Π̂, note that the end components containing some negative cost have been eliminated
by Algorithm 2, while those consisting entirely of 0-cost state-action pairs have been
eliminated by Algorithm 1. The second part of the result is proved in an analogous way
to Theorem 4, and the proof can be found in [dA97].

Theorem 7 also leads to the second part of Theorem 6. If s 6∈ Diverge(Π), then s ∈ S̃.
The fact that assumptions SSP 1 and SSP 2 hold for Π̂, together with the results of [BT91],
ensures then that v∗s > −∞.

Theorem 8 An instance of non-negative SSP problem Π admits memoryless optimal
(proper) policies iff Diverge(Π) = ∅. In any case, there is always a (possibly non memo-
ryless) optimal proper policy.

Proof. To see that if Diverge(Π) 6= ∅, then there are no memoryless optimal policies,
refer to Algorithm 2. Since under a memoryless policy the MDP behaves like a Markov
chain, under a memoryless proper policy each path stays for a finite expected amount of
time in the end components in L before reaching R, so that vη

s > −∞ for all s ∈ S \ R.
On the other hand, there is a (non-memoryless) policy such that, once we reach an end
component in L, we stay for infinite expected time in the end component (accumulating
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an infinite expected cost) before reaching the target with probability 1. The proof that if
Diverge(Π) = ∅ there are memoryless optimal policies can be found in [dA97].

4.2 Linear programming

Reasoning as in the proof of Theorem 5, it is possible to show that the solution of the
SSP problem corresponds to the largest fixpoint of the Bellman operator. The solution
can thus be computed by linear programming.

Theorem 9 Consider an instance Π of non-positive SSP problem such that Π = Converge(Π),
and such that there is at least one proper policy for each state. Then, the solution v

∗ of
the SSP problem is the largest fixpoint of operator L of (3). Moreover, the following linear
programming problem has v

∗ as unique solution:

Maximize
∑

s∈S\R

vs subject to vs ≤ c(s, a) +
∑

t∈S\R

p(s, a)(t) vt +
∑

t∈R

p(s, a)(t) g(t)

for all s ∈ S \ R and all a ∈ A(s).

4.3 Value iteration

The third way to solve the reduced problem is by value iteration. Convergence to the
solution of the SSP problem can be ensured simply by using an initial estimate v

0 that is
identically 0.

Theorem 10 Consider an instance Π of non-positive SSP such that Π = Converge(Π),
and such that there is at least one proper policy for each state. Then, the solution of the
SSP problem is given by limk→∞ Lk(0), where 0 is the vector all whose entries are 0.

Proof. The theorem follows from the fact that, in a non-positive SSP problem, all fixpoints
of the Bellman operator are componentwise smaller or equal to 0. Since the solution
computed by Theorem 10 is the largest such fixpoint, by Theorem 9 it is also the solution
of the SSP problem.

5 Maximum and Minimum Reachability Probabilities

An instance Λ = (S,Acts , A, p, T ) of the maximum or minimum reachability problems
consists of an MDP Π = (S,Acts , A, p) together with a destination set T . The maximum
and minimum reachability probability problems consists in determining, for all s ∈ S, the
values

u+
s = sup

η∈Pol

Prηs(∃k . Xk ∈ T ) u−
s = inf

η∈Pol
Prη

s(∃k . Xk ∈ T ) .

Let Z ⊆ S be the subset of states that cannot reach T (so that u+
s = 0 for s ∈ Z). From

[CY90], we know that the maximum reachability probability can be solved using a linear
programming problem on the set of variables {us | s ∈ S \ (T ∪ Z)}. Here, we show how
our results on the SSP problem can be used to improve the efficiency of that solution, as
well as to solve the minimum reachability probability problem.
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Maximum reachability probability. To reduce the maximum reachability probability
problem to the SSP problem, we construct from the instance Λ an SSP instance Π =
Ssp+(Λ) = (S,Acts , A, p,R, c, g), where R := Reach(T )∪Z, the cost c is identically 0, and
the terminal cost is defined by g(s) = −1 for s ∈ Reach(T ), and g(s) = 0 for s ∈ Z. Note
that Λ is both a non-negative and a non-positive instance of SSP problem. The following
theorem relates the two problems.

Theorem 11 If Π = Ssp+(Λ), then u+
s = −v∗s for all s ∈ S \ R, where u+

s is computed
on Λ and v∗s on Π.

Proof. Since every state of S \R can reach R, we have that Reach(R) = S, so that every
state of S has a proper policy. From a memoryless optimal policy ηs for the SSP problem,
we can construct a policy ηr that coincides with ηs on S \R such that −vηs

s = uηr

s , yielding
−v∗s ≤ u+

s for all s ∈ S \T . In the other direction, consider a memoryless policy ηr optimal
for reachability (we know from [dA97] that such a policy exists). We have uηr

s = −vηr

s for
all s ∈ S \ T . Moreover, ηr is proper, since every state of S \ R can reach T with positive
probability. This yields the reverse inequality −v∗s ≥ u+

s for all s ∈ S \ R, and hence the
result.

Note that we have used algorithm (2) to reduce the size of the set of states on which the
maximum reachability probability must be determined, from S \(T ∪Z) to S \(Reach(T )∪
Z). Theorem 11 opens the way to the application of Algorithm 1 for the solution of
maximum reachability probability problems. Since the running cost c is identically 0,
the algorithm eliminates all end components of the MDP that lie completely outside of
Reach(T ) ∪ Z, achieving a further potential reduction in the size of the problem.

Minimum Reachability Probability. Let {(C1,D1), . . . , (Cn,Dn)} = Mec(S \ T,A)
be the set of maximal end components lying outside T , and let C =

⋃n
i=1 Ci be the union

of their states. Clearly, from Z∪C the minimum probability of reaching T is 0. Moreover,
the MDP does not have any end component completely contained in S \ (T ∪ Z ∪ C).
From the instance Λ = (S,Acts , A, p, T ) we construct an SSP instance Π = Ssp−(Λ) =
(S,Acts , A, p,R, c, g), where R := T ∪ Z ∪ C, the cost c is identically 0, and the terminal
cost is defined by g(s) = 0 for s ∈ Z ∪ C, and g(s) = 1 for s ∈ T . The following theorem
relates the two problems, and it enables the computation of the minimum probability of
reaching the target.

Theorem 12 If Π = Ssp−(Λ), then u−
s = v∗s for all s ∈ S, where u−

s is computed on Λ
and v∗s is computed on Π.

Proof. The proof of the theorem follows from the fact that all policies of Π are proper,
and from the observation that from a policy ηs of Π, we can easily obtain a policy ηr for
Λ such that uηr

s = vηs

s for all s ∈ S, and vice versa.

In this case, Algorithm 1 cannot be used to reduce the size of the problem, since there
are no end components in S \R. The reduction has been effected in a more direct way by
adding the set C to the set of target states of the SSP problem.
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Optimal policies. The maximum and minimum reachability problems admit memory-
less optimal policies. This result is proved in [dA97].
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