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Abstract

Several models of probabilistic systems comprise both probabilistic and nondeter-
ministic choice. In such models, the resolution of nondeterministic choices is mediated
by the concept of policies (sometimes called adversaries). A policy is a criterion for
choosing among nondeterministic alternatives on the basis of the past sequence of
states of the system. By fixing the resolution of nondeterministic choice, a policy re-
duces the system to an ordinary stochastic system, thus making it possible to reason
about the probability of events of interest.

A partial information policy is a policy that can observe only a portion of the
system state, and that must base its choices on finite sequences of such partial ob-
servations. We argue that in order to obtain accurate estimates of the worst-case
performance of a probabilistic system, it would often be desirable to consider partial-
information policies. However, we show that even when considering memoryless
partial-information policies, the problem of deciding whether the system can stay
forever with positive probability in a given subset of states becomes NP-complete.
As a consequence, many verification problems that can be solved in polynomial time
under perfect-information policies, such as the model-checking of pCTL or the com-
putation of the worst-case long-run average outcome of tasks, become NP-hard under
memoryless partial-information policies. On the positive side, we show that the worst-
case long-run average outcome of tasks under under memoryless partial-information
policies can be computed by solving a nonlinear programming problem, opening the
way to the use of numerical approximation algorithms.

1 Introduction

In several models of probabilistic systems, probabilistic and nondeterministic choice co-
exist. While probabilistic choice provides a statistical characterization of the system be-
havior, nondeterminism is used to model concurrency [Var85, PZ86, SL94], and lack of
knowledge of transition probabilities [Seg95, dA97] and transition rates [dA98b]. In such
a model, the probability of events depends on the way the nondeterministic choices are
resolved during the behavior of the system. To assign a probability to the events, it is
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customary to use the notion of policy [Bel57], closely related to the schedulers of [Var85]
and the adversaries of [SL94]. Whenever the choice among nondeterministic alternatives
arises, a policy dictates the probability of choosing each alternative, possibly as a function
of the past sequence of states visited by the system. Hence, once the policy is specified,
the nondeterminism present in the system is resolved, and the system is thus reduced
to a purely probabilistic system. In the statement of verification problems, nondeter-
minism is usually assigned a demonic role: a property is considered to hold iff it holds
under any possible resolution of nondeterministic choice, or equivalently, under any policy.
Perfect-information and partial-information policies correspond to demons with different
observation powers. A perfect-information policy is a policy that can observe the complete
description of the system state, and that can select among the nondeterministic alterna-
tives on the basis of the finite sequence of states traversed by the system. In contrast, a
partial-information policy can only observe part of the system state, and it must select
among the alternatives on the basis of finite sequences of such incomplete observations.

To understand why partial-information policies can lead to more accurate estimates of
the worst-case system performance, consider the following example. Consider a telecom-
munication network that routes phone calls between nodes, and consider two users u1

and u2, attached to two nodes of the network. When user u1 tries to call user u2, he
is either connected to user u2, or he receives a busy signal, indicating that there are no
connections available to route the call. We intend to model the system in order to study
the long-run average fraction of successful calls. To simplify the example, we assume that
we have enough statistical information about the network to model the number of con-
nections available between any pair of nodes as a purely probabilistic process, without
any nondeterminism. On the other hand, we do not have precise information on when
our particular user u1 wishes to call u2, so that we model the choice to place a call as
a nondeterministic choice. From the point of u1, a state s of the system consists of four
components s = (s[c], s[u1], s[r], s[n]), where:

• s[c] is a portion of the state visible to everyone (e.g., the current time of the day);

• s[u1] ∈ {idle, trying , connected} describes the state of u1;

• s[n] ∈ {0, . . . , N} is the number of available connections for calls between u1 and u2;
if s[n] = 0, then no call from u1 to u2 can take place.

• s[t] is a portion of the state visible only to the network (e.g., the state of other
communication links and routing tables).

If s[u1] = idle, there is a nondeterministic choice between staying at idle (i.e., not placing
a call), or going to trying (i.e., dialing the number and waiting for the connection to be
established). If s[u1] = trying and s[n] > 0, then the connection is established, and u1

proceeds to connected ; if s[u1] = trying and s[n] = 0, user u1 gets a busy signal, and
returns to idle. If s[u1] = connected , user u1 can either remain in this state, or hang up
and proceed to idle. In Section 3 we present the formal model of a system similar to the
one described above.

If we model the communication system as indicated above, and study the system
under perfect-information policies, we obtain that in the worst case the long-run fraction
of successful calls of is 0 — independently of how many free connections there are on
average between u1 and u2! In fact, at states where s[u1] = idle the choice of whether



to stay at idle or try to place a call (going to connected) is nondeterministic. In such a
state, a perfect-information policy can look at the value of s[n] before deciding whether
to place a call. Hence, a worst-case perfect-information policy will place a call only from
states where s[n] = 0, i.e., where all the connections between u1 and u2 are busy. While
the value 0 is indeed a lower bound for the long-run average fraction of successful calls
from u1 to u2, this answer takes an unrealistic, and overly pessimistic, view of the system.
In fact, the use of nondeterminism to model the decision of u1 to place a call is intended
to model an unknown dependency between the frequency with which u1 places calls, and
global information such as the time of the day. It is unrealistic to assume that u1 can
base its decision to place a call on the number of free connections, since such information
would not be available to u1 in a real telecommunication system. In order to obtain a more
realistic worst-case analysis, we need to consider partial-information policies, which can
base their decision of whether to place a call on the state of u1 and on global information
in s[c], but not on information that is internal to the network, such as the number of free
connections between u1 and u2.

The telecommunication example also suggests why the need for partial-information
policies is more felt in the analysis of probabilistic systems than in the analysis of purely
nondeterministic ones. In a purely nondeterministic system, we are generally interested
in the possibility of events, rather than in their frequency. Hence, all finite sequence of
events, however rare they might be, are taken into account for establishing a property.
In purely nondeterministic systems, the concept of fairness is normally used instead of
partial information to guard against an infinite number of unfortunate coincidences, such
as trying to place a call always only when no connection is free. In the above example,
we can rule out such behaviors by adding a fairness condition to the system, requiring
that the choice between placing a call and staying in idle should be (strongly) fair at
all states. Even though fairness and partial information are not equivalent, fairness is
preferred because it is amenable to simpler verification methods. However, fairness is not
a substitute for partial information in the study of the frequency of events. For example,
the above fairness condition on placing calls does not ensure that the frequency of placing
calls is not influenced by the number of free connections. In fact, even with this fairness
condition, the worst-case long-run average fraction of calls that are successful is arbitrarily
close to 0: the fairness condition is still satisfied if a fraction of the calls smaller than 1,
but arbitrarily close to 1, is placed from states where no connection is free. We note that
fairness in probabilistic systems can be used as a surrogate for partial information when
the specification languages cannot refer to the frequency of events, as is the case for the
logic pCTL [BK98, dA99].

Our model for systems with both probabilistic and nondeterministic choice is that
of Markov decision processes [Bel57, Der70], which are closely related to several models
proposed in the literature [Var85, PZ86, SL94]. We consider the confinement problem,
consisting in deciding whether there is a policy in a given class of policies that enables us
to stay forever in a specified subset of states with probability greater than 0. While the
confinement problem is solvable in polynomial-time for general policies, from [Rei84] we
have that the confinement problem is EXPTIME-complete for partial-information policies.
We show that the confinement problem is NP-complete even if we restrict our attention to
memoryless and limit-memoryless partial-information policies. Limit-memoryless partial-
information are policies whose state-action frequencies converges to that of a memoryless
partial-information policy. These results imply that the model-checking problem for pCTL



specifications, and the problem of computing the worst-case long-run average outcome of
tasks [dA98a], which can be solved in polynomial time under perfect-information policies,
are EXPTIME-hard under partial-information policies, and NP-hard under memoryless
and limit-memoryless partial-information policies. On the positive side, we show that
the worst-case long-run average outcome of tasks under memoryless and limit-memoryless
partial-information policies can be computed by solving a nonlinear optimization problem.

The paper is organized as follows. In Section 2 we describe Markov decision processes
and partial-information policies, and we define the confinement problem. In Section 3
we present the machinery for defining the long-run average outcome of tasks, and we
describe a simple telecommunication example that helps to motivate the consideration of
partial-information policies. In Section 4 we present lower-bound results on the complexity
of pCTL model checking and computation of long-run average outcomes under partial
information. Section 5 presents the optimization problem that enables the computation
of the worst-case long-run average outcome of tasks under memoryless partial-information
policies, and Section 6 contains some concluding comments.

2 Markov Decision Processes and Partial-Information Poli-
cies

Our model for probabilistic systems is a Markov decision process (MDP). An MDP is a
generalization of a Markov chain in which a set of possible actions is associated with each
state. To each state-action pair corresponds a probability distribution on the states, which
is used to select the successor state [Der70]. Markov decision processes are closely related
to the probabilistic automata of [Rab63], the concurrent Markov chains of [Var85], and
the simple probabilistic automata of [SL94, Seg95]. Given a countable set C we denote by
D(C) the set of probability distributions over C, i.e. the set of functions f : C 7→ [0, 1] such
that

∑
x∈C f(x) = 1. An MDP P = (S,Acts, A, p) consists of the following components:

• A set S of states.

• A set Acts of actions.

• A function A : S 7→ 2Acts , which associates with each s ∈ S a finite set A(s) ⊆ Acts
of actions available at s.

• A function p : S × Acts 7→ D(S), which associates with each s, t ∈ S and a ∈ A(s)
the probability p(s, a)(t) of a transition from s to t when action a is selected.

We measure the complexity of the algorithms as a function of the size of the MDP P,
defines as

∑
s∈S |A(s)|. A path of an MDP is an infinite sequence s0, a0, s1, a1, . . . of

alternating states and actions, such that si ∈ S, ai ∈ A(si) and p(si, ai)(si+1) > 0 for all
i ≥ 0. For i ≥ 0, the sequence is constructed by iterating a two-phase selection process.
First, an action ai ∈ A(si) is selected nondeterministically; second, the successor state si+1

is chosen according to the probability distribution p(si, a). Given a path s0, a0, s1, a1, . . .
and k ≥ 0, we denote by Xk, Yk its generic k-th state sk and its generic k-th action ak,
respectively. For n ≥ 0, we call a finite portion s0, a0, s1, . . . , sn of path a finite path prefix.

Let S+ be the set of non-empty finite sequences of states. A (perfect-information)
policy π is a mapping π : S+ 7→ D(Acts), which associates with each sequence of states



s̄ : s0, s1, . . . , sn ∈ S+ and each a ∈ A(sn) the probability π(s̄)(a) of choosing a after
following the sequence of states s̄. We require that π(s̄)(a) > 0 implies a ∈ A(sn):
a policy can choose only among the actions that are available at the state where the
choice is made. According to this definition, policies are randomized, differently from the
schedulers of [Var85, PZ86], which are deterministic. We indicate with Π the set of all
policies. We say that a policy π is memoryless if π(s̄, s) = π(t̄, s) for all s̄, t̄ ∈ S∗ and all
s ∈ S.

To define partial-information policies, we define partial-information relations. A partial-
information relation for an MDP P = (S,Acts, A, p) is an equivalence relation ∼ ⊆ S × S
such that for all s ∼ t, we have A(s) = A(t). If two states are related by ∼, then the
states cannot be distinguished by a partial-information policy. The condition on ∼ en-
sures that if two states cannot be distinguished by the policy, then the policy can choose
among the same actions at the two states. Given two sequences of states s̄ : s0, . . . , sn
and t̄ : t0, . . . , tm, with m,n ≥ 0, we write s̄ ∼ t̄ iff m = n and si ∼ ti for all 1 ≤ i ≤ n.
Given an MDP P and a partial-information relation ∼ for P, we say that a policy π is
partial-information iff π(s̄) = π(t̄) for all s̄, t̄ ∈ S+ such that s̄ ∼ t̄. If the relation ∼ has
been fixed, we denote by PIPol the set of partial-information policies with respect to ∼.

Once a policy π has been selected, the Markov decision process is reduced to a purely
probabilistic process, and it becomes possible to define the probabilities of events. In
particular, the probability of following a finite path prefix s0, a0, s1, a1, . . . , sn under policy
π ∈ Π is given by

Prπs0(X0 = s0 ∧ Y0 = a0 ∧ · · · ∧Xn = sn) =
n−1∏
i=0

p(si, ai)(si+1) π(s0, . . . , si)(ai) .

To extend this probability measure to subsets of infinite paths, for every state s ∈ S we
denote by Θs the set of (infinite) paths having s as initial state. Given two paths (or path
prefixes) θ1 and θ2, we denote by θ1 � θ2 the fact that θ1 is a prefix of θ2. Following the
classical definition of [KSK66], we let Bs ⊆ 2Θs be the σ-algebra of measurable subsets of
Θs, defined as the smallest algebra that contains all the cylinder sets {θ ∈ Θs | σ � θ}, for
σ that ranges over all finite path prefixes, and that is closed under complementation and
countable unions (and hence also countable intersections). The elements of Bs are called
events, and they are the measurable sets of paths to which we will associate a probability.
For A ∈

⋃
s∈S Bs, we write Prπs (A) to denote the probability of event A∩Bs starting from

the initial state s ∈ S under policy π, and we write Eπs {f} to denote the expectation of
the random function f : Θs 7→ IR from initial state s under policy π.

The Confinement Problem

Given an MDP P = (S,Acts, A, p), a subset U ⊆ S, a state s ∈ S, and a class of policies
C, the confinement problem consists in determining whether there is a policy π ∈ C such
that

Prπs

(
∀k ≥ 0 . Xk ∈ U

)
> 0 . (1)

It is known that for C = Π the confinement problem can be solved in polynomial-time
with efficient graph algorithms. We shall study the complexity of this problem for partial-
information policies. We note that the confinement problem is at the heart of several
algorithms for the model-checking of pCTL* specifications [CY95, BdA95, BK98]; hence,



the complexity of the confinement problem directly affects the complexities of these model-
checking problems.

3 Long-Run Average Outcome

The long-run average properties considered in [dA98a, dA98b] refer to the average outcome
of a task, which is repeated infinitely often during the behavior of the system. During a
task, a certain amount of outcome is accrued, indicating for instance the time required
to complete the task, or the successful or unsuccessful completion of the task. In our
telecommunication example, a task consists in trying to place a call; the outcome accrued
is 1 if the call succeeds, and 0 if no connection is available. The long-run average outcome
of this task is equal to the long-run average fraction of successful calls. Given an MDP
P = (S,Acts, A, p), we specify tasks and outcomes using two labelings r and w. The
labeling w : S ×Acts 7→ {0, 1} associates with each s ∈ S and each a ∈ A(s) the value 1 if
taking action a at s signals the completion of a task, and value 0 otherwise. The labeling
r : S × Acts 7→ IR associates an outcome to each state-action pair. We say that a policy
π is proper from s ∈ S such that

lim
n→∞

Eηs

{n−1∑
k=0

w(Xk, Yk)
}

=∞ ,

indicating that the system performs an infinite expected number of experiments from s.
We denote by PropPol(s) ⊆ Π the set of proper policies from s. Given s ∈ S and a proper
policy π ∈ PropPol(s), we define the long-run average outcome vπs of π from s by

vπs = lim inf
n→∞

Eηs

{∑n−1
k=0 r(Xk, Yk)

}
Eηs

{∑n−1
k=0 w(Xk, Yk)

} .

Given a class of policies C, let PropS (C) = {s ∈ S | PropPol(s)∩C 6= ∅} be the set of states
with at least one proper policy belonging to the class. The minimum long-run average
outcome problem consists in computing

v−C = min
s∈PropS(C)

{
inf

π∈C∩PropPol(s)
vπs

}
,

assuming that PropS (C) 6= ∅. If C = Π, this problem can be solved in polynomial time by
a reduction to linear programming [dA97, dA98a].

A Simple Telecommunication Example

The following example presents a discrete-time model of a telecommunication system
similar to the one discussed in the introduction. The example illustrates the use of
nondeterminism for the representation of approximate knowledge of transition probabil-
ities. Consider a telecommunication network, in which there is a total number n > 0
of connections available, and there is a distinguished user u1 that tries intermittently
to place calls. We model this system by the MDP P = (S,Acts, A, p), where S =
{idle, trying , connected} × {0, . . . , n} × {0, 1}. In a state 〈x, k, i〉 ∈ S, x is the state of
the user u1, k is the number of busy connections, and i specifies whether it is u1’s turn



(i = 0), or the network’s turn (i = 1) of updating the state. The actions are Acts = {a, b},
and we have A(s) = {a, b} for every s ∈ S.

The number of free connections performs a random walk between 0 and n. From state
〈x, k, 1〉, under either action a or b, we update the state as follows:

• If 2 ≤ k < n, then we go with probability 1/2 to 〈x, k − 1, 0〉 and with probability
1/2 to 〈x, k + 1, 0〉.

• If k = 1 and x 6= connected , then we go with probability 1/2 to 〈x, k−1, 0〉 and with
probability 1/2 to 〈x, k + 1, 0〉.

• If k = 1 and x = connected , then we go to 〈x, k + 1, 0〉.

• If k = 0, then we go to 〈x, k + 1, 0〉.

• If k = n, then we go to 〈x, k − 1, 0〉.

From state 〈idle, k, 0〉, if the action a is chosen we proceed to state 〈idle, k, 1〉; if action b
is chosen, we proceed to state 〈trying , k, 0〉. From state 〈trying , k, 0〉, under both actions
a and b we proceed to state 〈connected , k + 1, 1〉 if k < n, and to state 〈idle, k, 1〉 if
k = n. Finally, from state 〈connected , k, 0〉 under both actions a and b we proceed to state
〈idle, k − 1, 1〉: for simplicity, we consider only unit-duration phone calls.

To measure the long-run average fraction of successful calls, we define the labels r
and w as follows. We let w(〈trying , k, 0〉, ξ) = 1 for all 0 ≤ k ≤ n and all ξ ∈ {a, b},
so that w counts the number of attempted calls. We let r(〈trying , n, 0〉, ξ) = 0 and
r(〈trying , k, 0〉, ξ) = 1 for all 0 ≤ k < n and all ξ ∈ {a, b}, so that r counts the number
of successful calls. It is easy to check that vsπ is equal to the fraction of successful calls
from the initial state s under policy π. The worst-case value of this fraction under perfect-
information policies is v−Π = 0. This worst-case value arises when the user u1 chooses
action b whenever there are no free connections, and action a otherwise. This is clearly an
unrealistic worst-case value. A better estimate can be obtained by introducing a partial-
information relation ∼ defined by 〈i, k1, j〉 ∼ 〈i, k2, j〉 for all i ∈ {idle, trying , connected},
all 0 ≤ k1, k2 ≤ n, and all j = 0, 1. This partial-information relation prevents the user
u1 from selecting actions a and b on the basis of the number of free connections. The
worst-case fraction of successful calls under partial-information policies v−PIPol provides a
more realistic estimate of the performance of the system.

We note that introducing a partial-visibility relation is equivalent to assuming that
there are no factors external to the model that can influence the policies differently at
states related by the partial-visibility relation. While u1 most likely cannot base his
decision of calling on the number of free connections, there might be external factors
that make it more likely for u1 to call when more connections are busy. For example, in
countries where soccer is popular, more people place telephone calls during the mid-game
intervals than during the game proper. If such external factors are not accounted for, then
the worst-case long-run fraction of successful calls computed under partial-information
policies is an optimistic estimate of the true worst-case long-run average fraction. Hence,
adding partial-information restrictions to the policies should be done on the basis of a
careful examination of the model.

In alternative to using partial information, we can increase the accuracy of the worst-
case estimates of the fraction of successful calls by reducing the role of nondeterminism and



providing more probabilistic information about the user’s behavior. Specifically, suppose
that we know that the probability that the user will place a call when idle is between
0.1 and 0.2. To represent this range, we modify the above model as follows. From state
〈idle, k, 1〉 action a (resp. b) leads to 〈idle, k, 1〉 with probability 0.9 (resp. 0.8), and to
〈trying , k, 0〉 with probability 0.1 (resp. 0.2). In this model, v−Π may provide a realistic value
for the fraction of successful calls, and the resolution of the remaining nondeterminism
under perfect information can account for correlations of events not described by the
model, such as the above-mentioned soccer-game phenomenon.

4 Complexity of Partial-Information Confinement

In this section, we present the complexity results for the confinement problem under
partial-information policies. By reasoning as in [Rei84], it can be shown that the con-
finement problem is EXPTIME complete for partial-information policies. Moreover, we
show that the confinement problem is NP-complete for memoryless and limit-memoryless
partial-information policies.

4.1 General Partial-Information Policies

The following theorem states our result for general partial-information policies.

Theorem 1 The confinement problem is EXPTIME-complete for the class of partial-
information policies.

Proof. The fact that the problem is in EXPTIME follows from the subset construction
of [Rei84]. The lower bound follows by reasoning as in [Rei84] for “blindfold games”,
repeating infinitely many times the simulation of the nondeterministic Turing machine.

Corollary 1 The problems of pCTL model checking and of the computation of the min-
imum long-run average outcome are EXPTIME-hard for incomplete-information policies.

Proof. The result about pCTL model checking follows directly from Theorem 1 by
considering a property of the form 2U , where by abuse of notation we denote by U both
a subset of states, and a predicate defining such subset. The result about the minimum
long-run average outcome follows from Theorem 1 by considering an MDP in which the
set U , once left, cannot be re-entered, together with a function w identically equal to 1,
and a function r defined by r(s, a) = 1 if s ∈ U and r(s, a) = 0 if s 6∈ U , for all states s
and actions a.

4.2 Memoryless and Limit-Memoryless Partial-Information Policies

A memoryless partial-information policy is a policy that is both memoryless and partial
information. We denote by ΠMP the class of memoryless partial-information policies. To
define limit-memoryless partial-information policies, for all s ∈ S and a ∈ A(s) we denote
by

Nn
s,a =

n−1∑
k=0

δ(Xk = s ∧ Yk = a)



the random variable indicating the number of times that the state-action pair s, a appears
in the first n steps of a path. A frequency-stable policy is a policy π such that the limit

xπt (s, a) = lim
n→∞

1

n
Eπt {Nn

s,a} (2)

exists for all t, s ∈ S and a ∈ A(s). The quantity xπt (s, a) is the frequency of state-action
pair s, a from the initial state t under policy π. A policy π is limit-memoryless partial
information if it is frequency stable, and if for all states s, t, u ∈ S with t ∼ u, one of the
following condition holds:

1. either xπs (t, a) = 0 for all a ∈ A(t);

2. or xπs (u, a) = 0 for all a ∈ A(u);

3. or, for all a ∈ A(t),

xπs (t, a)∑
b∈A(t) x

π
s (t, b)

=
xπs (u, a)∑

b∈A(u) x
π
s (u, b)

. (3)

Together, these conditions state that each action is chosen with the same relative fre-
quency at s and at t, unless one of s or t has 0 frequencies for all the actions. We denote
by ΠLMP the class of limit-memoryless partial-information policies. We note that a mem-
oryless partial-information policy is also a limit-memoryless partial-information policy.
Intuitively, a limit-memoryless partial-information policy is a policy that can initially be-
have in an arbitrary way, but that on the long run gives rise to state-action frequencies
that correspond to those of a memoryless partial-information policy.

Theorem 2 The confinement problem for the classes of memoryless and limit-memoryless
policies is NP-complete.

Proof. To see that the problems are in NP, note that it suffices to guess a deterministic
memoryless partial-information policy, and check that it satisfies (1). The proof of NP-
hardness is by a reduction from the SAT problem. Consider an instance of SAT problem
defined over a finite set Y = {y1, . . . , yk} of variables. Let L = Y ∪ {ȳ | y ∈ Y } be the
set of literals, and let c1, . . . , cn ⊆ L be the clauses composing the problem. The SAT
problem consists in checking whether the propositional formula

∧n
i=1

∨
l∈ci l is satisfiable.

From this instance of SAT problem, we construct an MDP P = (S,Acts, A, p) and a partial
information relation ∼ as follows. The state space is

S = {s0, s1} ∪ {1, . . . , k + 1} × {1, . . . , n} × {0, 1} .

We let U = S \ {s0}, and we take s1 as the initial state. A state of the form 〈m, i, j〉
refers to the occurrence of variable ym in clause ci (where yk+1 is a dummy variable). The
component j of the state keeps track of whether clause ci has already been satisfies by the
variable assignment (j = 1) or not (j = 0). The set of actions is Acts = {a, b}. We have
A(〈m, i, j〉) = {a, b} for all 1 ≤ m ≤ k+ 1, all 1 ≤ i ≤ n, and all j = 0, 1. Choosing action
a (resp. b) at state 〈m, i, j〉 corresponds to choosing the truth value true (resp. false) for
ym in clause ci. We let A(s0) = A(s1) = {a}. The transitions are as follows. We let



p(s0, a)(s0) = 1, so that s0 is absorbing, and we let p(s1, a)(〈1, i, 0〉) = 1/n, for 1 ≤ i ≤ n.
For all 1 ≤ i ≤ n and ξ ∈ {a, b}, we let

p(〈k + 1, i, 1〉, ξ)(s1) = 1 p(〈k + 1, i, 0〉, ξ)(s0) = 1

so that if the clause i has been satisfied, we go back to s1, and we proceed to s0 otherwise.
For 1 ≤ m ≤ k, 1 ≤ i ≤ n, and j = 0, 1, the transitions from the other states are defined
as follows:

• From 〈m, i, 1〉, both a and b lead deterministically to 〈m+ 1, i, 1〉.

• From 〈m, i, 0〉, we have three cases:

– If ym ∈ ci, then a leads deterministically to 〈m+ 1, i, 1〉 and b to 〈m+ 1, i, 0〉.
– If ȳm ∈ ci, then a leads deterministically to 〈m+ 1, i, 0〉 and b to 〈m+ 1, i, 1〉.
– If ym 6∈ ci and ȳm 6∈ ci, then both a and b lead deterministically to 〈m+ 1, i, 0〉.

Finally, the partial information relation is defined by 〈m, i1, j1〉 ∼ 〈m, i2, j2〉 for all 1 ≤
m ≤ k + 1, all 1 ≤ i1, i2 ≤ n, and all j1, j2 ∈ {0, 1}. The states s0 and s1 are equivalent
only to themselves.

The idea of the construction is as follows. From s1, the process proceeds uniformly at
random to a state of the form 〈1, i, 0〉, for 1 ≤ i ≤ n. The following k choices between
actions a and b correspond to the choice of a truth assignment for variables y1, . . . , yk.
If the truth assignment satisfies the clause ci, the process goes to 〈k + 1, i, 1〉; otherwise,
it goes to 〈k + 1, i, 0〉. From 〈k + 1, i, 1〉, the process goes back to s1, and it selects
randomly another clause to test. From 〈k + 1, i, 0〉, which indicates that clause ci has not
been satisfies, we go to s0 6∈ U , which indicates failure. Since the policy does not know
which one of the clauses c1, . . . , cn is being tested, the only way for the policy to stay
in U forever with probability greater than 0 is to select a truth assignment that satisfies
simultaneously all the clauses. In the other direction, from a truth assignment that satisfies
all clauses we can immediately derive a memoryless partial-information policy that never
leaves U . Hence, the confinement problem has an affirmative answer iff the SAT instance
is satisfiable. We note that this proof also shows the NP-completeness of the confinement
problem for general partial-information policies.

Corollary 2 The problems of pCTL model checking and of the computation of the
minimum long-run average outcome are NP-hard for memoryless or limit-memoryless
incomplete-information policies.

The proof of this corollary is similar to the proof of Corollary 1.

5 Verification under Memoryless Partial-Information
Policies

In this section, we show how the minimum long-run average outcome under memoryless
or limit-memoryless partial-information policies corresponds to the solution of a nonlinear
optimization problem. Even though solving this problem is NP-hard, as shown in the



previous section, we can use techniques for the approximate solution of nonlinear opti-
mization problems to obtain upper bounds for the minimum long-run average outcome.
These upper bounds can be used in the analysis of the performance of the system. An
overview of techniques for the solution of nonlinear optimization problems can be found
in [Ber95a].

Restricting the attention to memoryless or limit-memoryless partial-information poli-
cies, rather than considering general ones, is often not a drawback. In fact, it is possible
to model as part of the state of the system any information about the past history of
the system that can influence the resolution of nondeterminism. Additionally, the goal
of partial information is to limit the power of the demonic resolution of nondeterminism;
often, the further limitation of lack of memory is quite natural in a performance-evaluation
setting. In particular, if nondeterminism is used to model unknown values for transition
probabilities, rather than concurrency, then it is appropriate to resolve nondeterminism in
a memoryless fashion. Finally, we recall that under perfect information, there are always
worst-case policies for pCTL and long-run average outcome specifications that are mem-
oryless. Hence, the consideration of memoryless policies to compute the worst case under
partial information is a fairly natural extension.

Consider an MDP P = (S,Acts, A, p), together with two labelings w : S × Acts 7→
{0, 1} and r : S × Acts 7→ IR. Assume also that PropS (Π) 6= ∅ and PropS (ΠLMP ) 6= ∅.
The minimum long-run average outcome under perfect-information policies v−Π can be
computed by solving the following linear-programming problem [Ber95b, dA98a].

LP Problem P1. Set of variables: {λ} ∪ {hs | s ∈ S}.
Maximize λ subject to:

hs ≤ r(s, a)− λw(s, a) +
∑
t∈S

p(s, a)(t)ht for all s ∈ S and a ∈ A(s)

To compute v−ΠLMP
and v−ΠMP

, we take the dual of the above linear-programming problem,
and we add a (nonlinear) constraint encoding (3). The resulting nonlinear-programming
problem is given below.

Optimization Problem P2. Set of variables: {xs,a | s ∈ S ∧ a ∈ A(s)}.

Minimize
∑
s∈S

∑
a∈A(s)

xs,aR(s, a) subject to:

xs,a ≥ 0 for all s ∈ S and a ∈ A(s) (4)∑
s∈S

∑
a∈A(s)

xs,ap(s, a)(t) =
∑
b∈A(t)

xt,b for all t ∈ S (5)

∑
s∈S

∑
a∈A(s)

xs,aw(s, a) = 1 (6)

xs,a
∑
b∈A(t)

xt,b = xt,a
∑

b∈A(s)

xs,b for all s, t ∈ S with s ∼ t and all a ∈ A(s). (7)



The meaning of this optimization problem is as follows. For all s ∈ S and a ∈ A(s),
the variables xs,a are proportional to the state-action frequencies defined in Section 4.2.
Equation (4) simply states that all variables are positive. Equation (5) is a flow constraint,
requiring that for every state, the frequency of entering the state is equal to the frequency
of leaving it. Equation (6) is a normalization constraint, that renormalizes the state-
action frequencies so that the (adjusted) frequency of completing a task is 1. Equation (7)
encodes directly the constraint (3). The goal of the optimization problem is to minimize
the outcome received per unit of frequency. Because of (6), this is equivalent to minimizing
the outcome per task. The following theorem states that the above optimization problem
computes the desired quantity.

Theorem 3 The solution of the nonlinear programming problem P2 is equal to the mini-
mum long-run average outcome under memoryless or limit-memoryless partial-information
policies.

6 Conclusions

In this paper, we argued that the accurate estimation of worst-case performance properties
of systems that include probabilistic and nondeterministic choice requires the consideration
of partial-information policies. On the other hand, we showed that even for memoryless
partial-information policies, the problem of computing the worst-case long-run average
outcome is NP-hard. We then presented a non-linear optimization problem whose solution
enables the computation of performance indices of a system under partial-information
policies.

These results point to some future directions for the modeling and analysis of long-run
average properties of probabilistic systems (such as performance). One direction consists
in using nondeterminism in the model sparingly, remembering that it will be resolved
under perfect information, and relying on a manual inspection of the worst-case scenarios
to determine their plausibility. A second direction of research consists in identifying a
concept that captures some of the relevant features of partial-information policies, while
leading to polynomial-time verification algorithms. A third direction consists in studying
the system under memoryless or limit-memoryless partial-information policies, and in
devising algorithms that, while NP-complete in the worst case, exhibit good average-case
complexity for typical system models.
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