
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

INTERVAL-BASED ABSTRACTION REFINEMENT

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Pritam Roy

December 2009

The Dissertation of Pritam Roy
is approved:

Professor Luca de Alfaro, Chair

Professor Natarajan Shankar

Professor Cormac Flanagan

Tyrus Miller
Vice Provost and Dean of Graduate Studies

UMI Number: 3394690

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3394690
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright © by

Pritam Roy

2009

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Dedication ix

Acknowledgments x

1 Introduction 1
1.1 Component Based Design 1
1.2 Solution of Games 3
1.3 Research Contribution 6
1.4 Related Works 9
1.5 Organization of the Thesis 16

1 Background 17

2 Background 18
2.1 Preliminary Definitions 18
2.2 Game Models 19
2.3 Objectives 20
2.4 Strategies 20
2.5 Controllable Predecessor Operators 21
2.6 Optimal Values in Markov Decision Processes 22

II Applications of Games 24

3 Interface Theories in Component Based Design and TICC 25
3.1 Tool 27
3.2 Using TICC 29

i i i

4 Online Testing with Learning 30
4.1 Introduction 30
4.2 Testing Theory 32
4.3 Online Testing Algorithm 39
4.4 Experiments 44
4.5 Related Work 47
4.6 Open Problems 47

III Qualitative Abstraction 49

5 Game-Based Three Valued Abstraction 50
5.1 Introduction 50
5.2 Definitions 53
5.3 Reachability and Safety Games 54
5.4 Symbolic Implementation 62
5.5 Conclusion 67

6 Interface Synthesis 72
6.1 Introduction 72
6.2 Algorithm 76
6.3 Translation from C to Guard-Update Rules 82
6.4 Results 83
6.5 Application of Interfaces 85
6.6 Conclusions 87

IV Probabilistic Abstraction 90

7 Magnifying Lens Abstraction 91
7.1 Introduction 91
7.2 Magnifying-Lens Abstraction 97
7.3 Experimental Results 102
7.4 Conclusions 106

8 Symbolic Magnifying Lens Abstraction 108
8.1 Introduction 108
8.2 Symbolic MLA 113
8.3 The Case Studies and Results 117
8.4 Conclusion 122

9 Conclusions 125
9.1 Summary 125
9.2 Future Directions 127

Bibliography 129

iv

List of Figures

4.1 Model Program of the Recycling Robot example 36

5.1 Three-Valued Abstraction Refinement in Reachability Game 57
5.2 Safety game, with objective uT for T = {1,2,3, 4} 61

6.1 Stack Example 76
6.2 Run of the algorithm Explore on IntStack Example, (a) The initial abstraction

(b) The local abstraction inside function (c) The final global abstraction 79
6.3 Interfaces 84
6.4 Results 85

7.1 Initial, and final refined abstraction, for the problem of motion planning in a
24 x 24 minefield. The circles denote the mines 95

7.2 Comparison between MLA and Vallter for n x n mine-fields with m mines, for
£abs = 10~2 and efloat = 10~4. Mine densities (m/n2) are (a) 1/64, (b) 1/512,
and (c) 1/512. All times are in seconds. #Abs is the number of abstraction steps
(number of loops 3-15 of MLA), and D = max r 6 s (u + (r) — u~(r)) 103

7.3 Comparison between MLA and Vallter for n x n mine-fields with m mines, for
sabs = 10_ 1 and Sfloat = 10~2. Mine densities (m/n2) are (a) 1/64, (b) 1/512,
and (c) 1/512. All times are in seconds 104

7.4 Comparison between MLA and Vallter for BRP. N denotes number of chunks
and MAX denotes the maximum number of retransmissions. All times are in
seconds 105

8.1 Experimental results: Symbolic MLA, compared to PRISM 118
8.2 Effect of splitting strategy ('cons', 'inter' denote consecutive and interleaving

respectively) and initial splitting index (Secretary: c=300, MAXTIME=400) . . 119

v

List of Tables

2.1 Parameters to be used in the call to ValIter(T, / , g) in order to compute reach­
ability and safety properties. The table also indicates whether the computation
converges from above, or from below 23

4.1 Execution of the online algorithm on the Robot model without grouping 45
4.2 Execution of the online algorithm on the Robot model with state grouping and

action grouping 46

VI

Abstract

Interval-based Abstraction Refinement

by

Pritam Roy

The prevailing trend in software and system engineering is towards component-based design.

In this approach, a number of small design units called components compose a complex de­

sign. Components are typically open systems that have inputs provided by other components

and provide inputs to other components. Designers face a number of design issues to build

a complex design from these components. A designed system, expected to perform a set of

tasks following its specification, may not behave properly due to the following reasons. Firstly,

one or more components may contain bugs and behave in an undesirable fashion. Secondly,

components make assumptions on their environment, and expect that the actual environment

will meet these assumptions. A number of bug-free components may not work together if their

input assumptions are violated. Hence, verification of a complex design can be reduced to the

verification of the components and communication among them.

The interaction between components in a design can be modeled via games, and a large

body of literature on design and verification shows how games can be used to analyze component

compatibility and system correctness. However, while games provide an appropriate, mathemat­

ical model for interaction, solving the games is often impractical with current algorithms, due

to the large state-space of games representing realistic components, together with the inherent

complexity of game-solving techniques. In this thesis, we propose algorithms for the efficient

analysis of games with large state spaces.

We present two novel algorithm families in the thesis: (1) Game-based Three Valued

Abstraction (GTVA) for two-player games/transition systems, and (2) Magnifying Lens Ab­

straction (MLA) for Markov Decision Processes (MDPs). GTVA evaluates the property on the

abstract game in three-valued fashion (yes, no, maybe) and refines the abstraction by adding

more details to the maybe abstract states. However, other approaches construct abstract models;

thus verification becomes extremely expensive. We explain how to achieve efficient enumerative

and symbolic implementations of the algorithm. MLA partitions the state-space of MDP into

regions and then computes upper and lower bounds on the regions, rather than on the concrete

states. MLA iterates over the regions to evaluate these limits and considers the concrete states of

each region in turn, as if one were moving a magnifying lens across the abstraction and viewing

the concrete states corresponding to the current region. The algorithm refines the regions in an

adaptive fashion, splitting regions where we need more details, until the difference between the

bounds is smaller than a user-given accuracy. We also provide a symbolic version of algorithm

MLA (SMLA).

We have implemented the proposed algorithms, and we have applied them to real-

life applications, including planning, protocol verification, and interface synthesis for software

libraries. The symbolic three-valued algorithms for reachability, safety, compatibility, and refine­

ment properties have been implemented in the tool TICC; case-studies illustrate the accuracy

and efficiency benefits of the GTVA algorithms over other approaches. We have implemented

the symbolic version of MLA in the tool PRISM. The experimental results demonstrate that

MLA can provide accurate answers, with savings in the memory requirements. These algorithms

promise to make the analysis of realistic component-based designs possible by pushing the limits

of the size of games that can be solved.

To my mother and father,

ix

Acknowledgment s

I am extremely lucky to get the guidance of Luca de Alfaro in this long journey. Luca has

motivated me to raise the level of my work - both in research and development. I hope I can

continue to research following his illustrious footsteps. Moreover, I would like to thank my

lab-mates in Design and Verification Lab (DVLAB) at University of California Santa Cruz. I

am truly fortunate to have social as well as academic interactions with the lab-mates. I want to

thank my mentors Margus Veanes, Chao Wang and Natarajan Shankar for making my summers

extremely busy and productive. Some parts of the thesis are results of those summer efforts

and further collaborations. I also thank my co-authors David Parker and Gethin Norman for

the first implementation of symbolic MLA algorithm into the tool PRISM. I want to thank the

dissertation committee members Cormac Flanagan, Natarajan Shankar and Luca de Alfaro for

their patience and valuable inputs on the dissertation. My friends have always encouraged me

and stood by my side during the hard times. I should also thank my wife Debashri for patiently

listening to me when everything else went wrong. Last but not the least, I love to thank my

dad, mother, brother and sister to be what I am today.

x

Chapter 1

Introduction

1.1 Component Based Design

The prevailing t rend in software and system engineering is towards component-based

design. In this approach, a number of small design-units called components compose a complex

design. Hence the verification of a complex design can be reduced to the verification of its

components and the interactions among them. By design, components should work as parts of

larger systems. However, components assume constraints over their environment, and the actual

environment should meet these constraints. A component is typically an open system which has

inputs provided by others components and which provides inputs to other components.

1.1.1 Design Issues

The designers face a number of design issues to build a complex design. A designed

system, expected to perform a set of tasks following its specification, may not work due to the

following reasons.

1

Design Bugs in Components : One or more components may contain bugs (design flaws)

and behave in an undesirable manner. The bugs in the design cost enormous amount of loss in

terms of money, time, and other valuable resources. Hence It is imperative to verify the system-

design with respect to its specification by either by static analyses, such as model-checking, or

dynamic analyses, such as testing.

Incompatibilty of Components : Since components make assumptions on "their environ­

ment, a set of bug-free components may not work together when output of one component

violates another component's input assumptions. Hence it is necessary to compute the com­

patibility and refinement of the components. Verification of a complex design is equivalent to

verification of the components and communication among them.

1.1.2 Games as System Models

The interaction between components in a design can be modeled via games, and a large

body of literature on design and verification shows how games can be used to analyze component

compatibility and system correctness. Game-based models can be used to address both aspects

of the problem. For example, the interface theories reason about the communication, refinement,

and composition of the components using game-based models. On the other hand, game models

of the open systems provide elegant formal semantics to these components. Hence the solution

of a complex-design verification problem can be reduced to efficient solution of games.

1.1.3 Classification of Games

Games are typically classified with respect to the number of players, and each has

different behavior and applications. For example, the internal structure of some software and

hardware systems determines the behavior of those systems. Transition systems (1-player games)

2

can model this class of systems. A transition system has applications in verification of hardware

and software systems. Similarly, two-player games model reactive systems. The internal struc­

ture and inputs from the environment determine the behavior of reactive systems. Two-player

game models have applications in supervisory control [90], sequential hardware synthesis and

program synthesis [28, 22, 87], modular verification [5, 8, 46], receptiveness checking [6, 55],

interface compatibility checking [42], and schedulability analysis [2]. Systems with probabilistic

and non-deterministic behavior can be modeled as Markov Decision Processes (MDPs). MDPs,

also known as 1.5 player games, are widely used in probabilistic verification, planning, optimal

control, network analysis, and performance analysis.

1.2 Solution of Games

Winning Objectives : A set of specification properties formally define the desirable behavior

of the given system. In the game semantics, the specification properties are also known as

winning objectives. Besides the number of players, the winning objectives can also determine

the class of the games. Games with qualitative objectives such as reachability, and safety have

been widely studied in literature. A reachability objective specifies that the behavior of a system

should eventually reach a set of target states. A safety objective specifies that the behavior of

the system should never leave a safe subset of states.

Model Checking : Games provide an appropriate, mathematical model for interaction. A

game model M with winning objective <j) can be solved using model checking algorithms. The

result of model checking is Boolean for the qualitative systems and a real value « 6 { 0 , 1 } for the

probabilistic systems. The game models can be represented as graphs where the nodes and edges

represent state-space and the transition-relation of the system. The model-checking algorithms

3

can be reduced to graph traversal problems. For example, the model-checking algorithm of

a transition system with reachability objective OT can be reduced to a breadth-first-search

starting from the goal set T.

State-space Explosion : Solving the games is often impractical with current algorithms.

The main reasons are (1) the large state-space of games representing realistic components, and

(2) inherent complexity of game-solving techniques. One challenge for model checking and

other algorithmic methods is the state-space explosion problems. The algorithms tend to take

more time and space when the system becomes more complex. The capacities of the formal

verification and testing tools have not scaled up with the design complexity. So the researchers

face increasingly stiff challenges to verify the system-design within limited resources (time and

space). Although techniques like symbolic representations, symmetry reduction and partial

reduction work well; but these methods have their limitations.

Qualitative Abstraction : The main method used to handle the state-space explosion prob­

lems to the solution of games is abstraction-refinement Abstraction is a technique for reduction

of a system with large state-spaces (concrete model) to a system with small state-spaces (ab­

stract model) by removing information which is not relevant to the property one would want

to verify. The model checking of an abstract model takes less time and space for property

verification. However, the result of the model checking over abstract model may not be accu­

rate due to the coarse nature of the abstraction; hence the abstract model needs refinement by

splitting some abstract states. This iterative framework (known as the abstraction-refinement

framework) continues "model-check and refinement" steps until the one gets a precise result.

In recent times, there has been much research based on this abstraction-refinement framework.

Henzinger et. al. [62] have applied counter-example guided abstraction refinement (CEGAR)

4

[9, 13, 31] approach. These algorithms have one-sided errors. Shoham et.al. [96, 98] applied 3

valued abstraction refinement approach for verification. These algorithms construct abstract-

models using hyper-transitions [98]; thus the construction of abstract-model and verification

become extremely expensive. Unfortunately, these game algorithms either contain one-sided

errors or expensive computations of abstract models.

Quantitative Abstraction: The successful application of abstraction techniques in non-

probabilistic systems has spurred research into probabilistic systems [32, 67, 81, 70]. The

abstraction construction in probabilistic systems is a harder problem due to the presence of

probabilities. Like non-probabilistic abstraction algorithms, most of the techniques build ab­

stract models with respect to state transitions in the concrete model (full abstraction methods).

Most quantitative abstraction techniques are approximate; they apply either simulation or ab­

stract interpretation. Like their qualitative counterpart, these algorithms also contains one-sided

errors and/or expensive construction of abstract models.

Interval-based Abstraction Refinement : My dissertation presents a novel framework on

interval-based abstraction-refinement. This framework covers a class of abstraction refinement

algorithms and this set of algorithms (1) do not involve costly abstract model computation, (2) do

not contain one-sided errors. We present two interval-based abstraction refinement algorithms:

Three Valued Abstraction (TVA) and Magnifying Lens Abstraction (MLA). We have applied

these scalable algorithms into several real-life applications like planning, protocol verification,

interface synthesis for software libraries. Our thesis is that the

verification problem of a complex design can be reduced to the verification of the
components and communication among them, and can be solved using game-based
models, and the proposed abstraction-refinement algorithms make the analysis of
realistic component-based designs possible by pushing the limits of the size of games
that can be solved

5

The remainder of the chapter provides the contributions, related works, and an overview of the

organization of the thesis.

1.3 Research Contribution

The research contribution can be divided into two main parts - (1) Application of

game-based models, (2) interval-based abstraction refinement frame work and applications.

1.3.1 Application of Game Models

Interface Compatibility Checking of Components: In component-based design, it is cru­

cial to know whether interfaces of two components are compatible, and whether a new component

can replace an existing component in an integrated system (refinement). Interface automata

are light-weight representations of the behavior of components of the design. We have designed

an extension of interface automata called Sociable Interface [39]. Interface theory provides a

game-theoretic way of solving the compatibility and refinement problems. We developed sym­

bolic algorithms for compatibility, and refinement properties of interfaces. We implemented the

algorithms in the tool TICC[1] where user can specify and verify different properties of a design.

Software Testing: Software testing is another practical application of game models. In the

literature, the researchers often view software testing as a game that the tester plays against an

implementation under test (IUT) [3, 18]. The tester does not know the implementation; instead

it knows the model behavior of the IUT. Since both the model and IUT (more precisely a wrapper

around the IUT) are examples of open systems, they behave as interface automata [35, 42] and

interface theories evaluate the compatibility of these two interfaces. Online testing (also called

on-the-fly testing) is a testing procedure that merges test generation and test execution into

a single process. Online testing can be modeled as a MDP where the tester has a goal and

6

the other player (the IUT) is unaware that it is playing and makes random choices following

a probability distribution [18]. In online testing, the compatibility checking of IUT with the

model is a necessary step. If the goal of the tester is to reach a set of states, then the work [18]

solves the problem using value-iteration algorithms. If the goal of the tester is to maximize the

coverage for a number of test-runs and number of steps per run, then the work [107] solves the

problem using reinforcement learning techniques [101]. The large state-space of these problems

has prompted state-grouping abstraction [107, 23].

1.3.2 Interval-based Abstract ion Refinement Framework

My dissertation presents a new framework on interval-based abstraction-refinement.

This framework covers a class of abstraction refinement algorithms that

1. Partition the state-space into a set of abstract states (known as regions),

2. Model-check the partitioned state-space and return an interval [i>-,-i;+] for each region,

3. Refine adaptively a set of regions where the interval is wider than user-given constant eabs.

These algorithms (1) do not contain one-sided errors, and (2) do not involve costly model-

construction algorithms. We present two novel algorithm families in the thesis: (1) Game-based

Three Valued Abstraction (GTVA) for two-player games/transition systems, and (2) Magnifying

Lens Abstraction (MLA) for Markov Decision Processes (MDPs).

Game-based Three-Valued Abstraction (GTVA): We developed a novel symbolic ab­

straction algorithm [51] for the solution of transition systems and two-player games with reacha­

bility, or safety goals. GTVA evaluates the property on the abstract game in three-valued fashion

(yes, no, maybe). If the computation fails to yield a certain yes/no result to the validity of the

property on the initial states, our algorithm refines the abstraction by splitting uncertain ab-

7

stract states. Most three-valued approaches construct abstract models using hyper-transitions;

thus the abstract model construction and verification become very expensive. Our approach

does not build the abstract model explicitly; rather abstract predecessor operators (based on

the abstraction function) work on the Binary Decision Diagram (BDD) based symbolic repre­

sentation of the concrete game structure. We have implemented these three-valued abstraction

algorithms in the tool TICC.

Magnifying Lens Abstraction: GTVA algorithms [51] motivated us to investigate a similar

set of techniques for the probabilistic counterpart. We have developed a novel abstraction

technique which allows the analysis of reachability and safety properties of MDPs with very

large state spaces. The technique, called magnifying-lens abstraction, (MLA) [50] copes with

the state-explosion problem by partitioning the state-space into regions and then computing

upper and lower bounds on the regions, rather than on the states. To compute these bounds,

MLA iterates over the regions, considering the concrete states of each region in turn, as if one

were sliding a magnifying lens across the abstraction which facilitates a closer view of the concrete

states. The algorithm adaptively refines the regions, using smaller regions where more detail is

needed, until the difference between upper and lower bounds is smaller than a specified accuracy.

The experimental results show that MLA can provide accurate answers, with savings in memory

requirements. We have prototyped a python implementation to show the space-savings of the

of MLA algorithm [50]. We provided a symbolic version of the MLA algorithm that combines

symbolic techniques with abstraction techniques to handle the space-explosion problem better.

We have implemented a symbolic version of the MLA algorithms (called SMLA [91]) in the

probabilistic model checking tool PRISM.

8

Interfaces for Libraries: Automatic construction of a model in the model based testing

(MBT) framework is a relatively new concept. Given a high-level specification of the library

behavior and error conditions, an interface (function call sequence) graph can assume the role of

a model for the implementation-under-test (IUT). The edges of the interface graph denote the

functions and the states denote the valuations of the global variables. Given a set of functions

from a library, we compute an interface graph to identify the safe (not leading the library to

error) calls in the library. We developed and implemented symbolic abstraction-refinement based

algorithms by summarizing every function in a purely modular approach. Related work by other

groups does not apply purely modular approach to create the interface graphs.

1.4 Related Works

In this section we discuss the related works and compare with my contributions.

1.4.1 Interface Theories and Tools

Previous interface models, such as interface automata [42, 44] and interface modules

[43, 25] were based on either actions, or variables, but not both. In sociable interfaces, however,

we want to have both: actions to model synchronization, and variables to encode the global and

local state of components. In this, sociable interfaces are closely related to the I/O Automata

Language (IOA) of [76].However, sociable interfaces diverge from I/O Automata in several ways.

Unlike I/O Automata, where every state must be receptive to every possible input event, socia­

ble interfaces allow states to forbid some input events. By not accepting certain inputs, sociable

interfaces express the assumption that the environment never generates these inputs: hence,

sociable interfaces (like other interface models) model both the output behavior, and the input

assumptions, of a component. This approach implies a notion of composition (based on synthe-

9

sizing the weakest environment assumptions that guarantee compatibility) which is not present

in the I/O Automata Model.

Variable-based interface formalisms In variable-based interface formalisms, such as the

formalisms of [43, 25], communication is mediated by input and output variables, and the

system evolves in synchronous steps. It is well known that synchronous, variable-based models

can also encode communication via actions [7]. However, this encoding prevents the modeling of

many-to-one and many-to-many communication. In fact, due to the synchronous nature of the

formalism, a variable can be modified at most by one module: if two modules modified it, there

would be no simple way to determine its updated value. As a consequence, we cannot write

modules that can accept inputs from multiple sources: every module must know precisely which

other modules can provide inputs to it, so that distinct communication actions can be used.

The advance knowledge of the modules involved in communication hampers module re-use.

Action-based interface formalisms Action-based interfaces, such as the models of [42, 44]

, enable a natural encoding of asynchronous communication. In previous proposal, however, two

interfaces could be composed only if they did not share output actions again ruling out many-

to-one communication. Furthermore, previous action-based formalisms lacked a notion of global

variables which are visible to all the modules of a system. Such global variables are a very pow­

erful and versatile modeling paradigm, providing a notion of global, shared state. Mimicking

global variables in purely action-based models is rather inconvenient: it requires encapsulat­

ing every global variable by a module, whose state corresponds to the value of the variable.

Read and write accesses to the variable must then be translated to appropriate sequences of

input and output actions, leading to cumbersome models. The asynchronous, action-based

interface theories of [42, 44] are implemented as part of the Ptolemy tool-set [73]. The tool

10

CHIC implements synchronous, variable-based interface theories closely modeled after[24]. rich

communication schemes, including exclusive, and many-to-many schemes, and differentiates the

modules of TICC from other modules with more restrictive communication primitives, such as

I/O Automata [76] and Reactive Modules [7].

1.4.2 Application of Game-based Algorithms in Software Testing

The basic idea of online testing has been introduced in the context of labeled transition

systems using IOCO theory [20, 102, 104] and implemented in the TorX tool [103]. TGV [68] is

another tool frequently used for online or on-the-ny test generation that uses ioco. loco theory

is a formal testing theory based on labeled transition systems with input actions and output

actions. Interface automata [36] are suitable for the game view [25] of online testing and provide

the foundation for the conformance relation that we use. Online testing with model programs in

the Spec-Explorer tool is discussed in [106]. The algorithm in [106] does not use learning, and

as far as we know learning algorithms have not been considered in the context of model based

testing. The relation between ioco and refinement of interface automata is briefly discussed

in [106]. Specifications given by a guarded command language are used also in [89]. In Black-

box testing, some work [84] has been done which uses supervised learning procedures. As far as

we know, no previous work has addressed online testing with learning in the context of Model

Based Testing. The main intuition behind our algorithm is similar to an anti-ant approach [75]

used for test case generation form UML diagrams. From the game point of view, the online

testing problem is a 1 ^-player game. It is known that 1 ̂ -player games are Markov Decision

Processes [26]. The view of finite explorations of model programs for offline test case generation

as negative total reward Markov decision problems with infinite horizon are studied in [19].

11

1.4.3 Qualitative Abstraction

Counterexample-guided abstraction refinement (CEGAR) [9, 13, 31], the most suc­

cessful abstraction technique, has been applied in both hardware [31] and software [13, 63]

verification. According to this technique, given a system abstraction, we check whether the ab­

straction satisfies the property. If the answer is affirmative, we are done. Otherwise, the check

yields an abstract counterexample, encoding a set of "suspect" system behaviors. The abstract

counterexample is then further analyzed, either yielding a concrete counterexample (a proof that

the property does not hold), or yielding a refined abstraction, in which that particular abstract

counterexample is no longer present. The process continues until either a concrete counterex­

ample is found, or until the property can be shown to hold (i.e., no abstract counterexamples

are left). The appeal of CEGAR lies in the fact that it is a fully automatic technique, and that

the abstraction is refined on-demand, in a property-driven fashion, adding just enough detail

as is necessary to perform the analysis. The CEGAR technique has been extended to games in

counterexample-guided control [62].

In its aim of reducing the number of may-states, our technique is related to the three-

valued abstraction refinement schemes proposed for CTL and transition systems in [97, 98]. We

avoid the explicit construction of the tree-valued transition relation of the abstraction, relying

instead on may and must versions of the controllable predecessor operators. Our approach

provides precision and efficiency benefits. In fact, to retain full precision, the must-transitions of

a three-valued model need to be represented as hyper-edges, rather than normal edges [98, 41, 99];

in turn, hyper-edges are computationally expensive both to derive and to represent. The may

and must predecessor operators we use provide the same precision as the hyper-edges, without

the associated computational penalty. For a similar reason, we show that our three-valued

abstraction refinement technique is superior to the CEGAR technique of [62], in the sense that

12

it can prove a given property with an abstraction that never needs to be finer, and that can

often be coarser. Again, the advantage is due to the fact that [62] represents player-1 moves in

the abstract model via must-edges, rather than must hyper-edges. A final benefit of avoiding

the explicit construction of the abstract model, relying instead on predecessor operators, is that

the resulting technique is simpler to present, and simpler to implement. On the other side, we

remark that the techniques of [62] extend easily to parity goals, whereas the refinement scheme

we propose can be extended, but only at the price of cumbersome bookkeeping.

1.4.4 M L A

For the most part, approaches to MDP abstraction in the literature have followed a

conventional route, which we call very broadly the full abstraction approach: an abstract model

is constructed, and then analyzed on the basis of an abstract transition structure, without

further reference to the concrete model. These fully abstract approaches generally rely on

clustering states that are similar not only in value, but also in transition structure: in this

way, every region of concrete states can be summarized via an abstract state with an associated

abstract transition structure. The abstract transition structure may, or may not, be similar to

the concrete one. For instance, [70] bases the abstract transition structure on games, rather

than MDPs: in this fashion, player 1 can represent the choice of action of the MDP, and

player 2 can represent the uncertainty about the concrete state corresponding to the abstract

state. This approach enables the computation of lower and upper bounds for properties of

interest, similarly to MLA. In a somewhat related spirit, but using entirely different technical

means, [58] proposes to abstract Markov chains into abstract Markov chains whose transitions

are labeled with intervals of probability, representing the uncertainty about the concrete state.

Clustering states based on the similarity in their transition probabilities has also been used in

[52], which proposes to find the coarsest refinement of an MDP where for each action, states

13

in the same region have the same probability of going to other regions. An approach for the

verification of probabilistic reachability properties via abstraction has been proposed in [32]. The

abstraction is built through successive refinements starting from a coarse partition based on the

property. Several other approaches also, in fact, rely on constructing MDP abstractions based on

simulation or abstract interpretation [67, 81, 80]; all of these approaches rely on clustering states

with similar transition structure, and representing these clusters of states, and their transition

structures, via compact abstract representations.

Compared with other approaches to MDP abstraction, MLA (and SMLA) has two

distinctive features:

1. it clusters states based on value, rather than based on the similarity in their transition

function;

2. it updates the valuation of abstract states by considering the concrete states associated

with the abstract states, rather than by considering an abstract model only.

The second of the above points underlines how MLA is a semi-abstract, rather than fully ab­

stract, approach to verification: the abstract computation still involves consideration of the

concrete states, even though this is done in a way that provides space savings.

The full-abstraction approach outlined above, and the partial value-based approach

followed by MLA, each have advantages. The full-abstraction result can handle unbounded, and

(depending on the specific approach) even infinite state spaces. In contrast, the space savings

afforded by MLA are limited to a square-root factor (a system of size n can be studied in 0(^/n)

space), due to the need to consider the concrete states corresponding to each abstract one.

Furthermore, the full-abstraction approaches typically need to construct the abstract model

only once; in contrast, MLA needs to refer to concrete states (albeit not all of them at once)

during the computation.

14

On the other hand, the ability of MLA to cluster states based on value only, disregarding

differences in their transition relation, can lead to compact abstractions for systems where full

abstraction provides no benefit. We will give below an example supporting this. Furthermore, in

MLA the abstraction is refined dynamically, depending on the required accuracy of the analysis;

there is no need to "guess" the right state partition in advance. In our experience, MLA is

particularly well-suited to problems where there is a notion of locality in the state space, so

that it makes sense to cluster states based on variable values — even though their transition

relations may not be similar. Many planning and control problems are of this type. MLA instead

is not as well-suited to problems where clustering states based on variable values is less effective.

Approaches based on predicate abstraction could lend the MLA approach more generality.

In MLA, as long as the value of the property of interest is similar in states in the

same interval, abstraction is possible and useful. Indeed, experimentally we noticed that SMLA

performs well in many problems with integer-valued state variables, where the properties vary

gradually with the value of the state variables. Problems in planning, inventory control, and

similar often belong to this category. On the other hand, when it is possible to use symme­

try or structural knowledge of an example, and aggregate states of similar transition relation,

approaches such as [32, 70, 71] yield superior results.

MLA is reminiscent to methods that represent value functions via ADDs or MTBDDs

[30, 11] with an approximation factor used to merge leaves. The similarity, however, is superficial:

MLA leads to far more precise results in the analysis; we discuss this in the conclusions, where

the appropriate notation will be available.

MLA is also loosely reminiscent of adaptive mesh refinement (AMR) methods used in

the solution of partial differential equations [14]. There are, however, two important differences

between MLA and AMR. In AMR, separate lower and upper bounds are not kept. AMR methods

perform computation at the finest mesh sizes only where needed. In MLA, due to the discrete

15

nature of MDPs, we have no way of computing over a "coarse mesh" only: to update valuations

over a region, we need to "magnify" the region to its individual states. Thus, MLA is forced to

consider the individual states over the whole system, and it summarizes and returns the results

in terms of lower and upper bounds, which are well-suited to answering verification questions.

1.5 Organization of the Thesis

I have organized the thesis into four main parts: Part I (Chapter 2) provides prelimi­

nary definitions and algorithms to understand the rest of the chapters. Part II (Chapters 3-4)

provides the application of game models in interface compatibility checking and online-testing

algorithms. Part III(Chapters 5-6) provides game-based three-valued abstraction-refinement

(GTVA) algorithms and applications. Part IV (Chapters 7-8) provides Magnifying Lens Abstrac­

tion (MLA) algorithms and their symbolic counterparts SMLA. Finally, Chapter 9 concludes

with the summary and future work.

16

Part I

Background

Chapter 2

Background

2.1 Preliminary Definitions

For a countable set S, a probability distribution on S is a function p : S i—> [0,1] such

that X^sgsP(s) = 1 > w e denote the set of probability distributions on S by D(S). A valuation

over a set 5 is a function u : S i—> K associating a real number v(s) with every s G S. For

valuations v, u over S, we define operators and inequalities in point-wise fashion: for instance,

we define v + u by (v + u)(s) = v(s) + u(s) for all s £ S, and we write v < u if t>(s) < u(s)

at all s 6 5. For i £ 1 , we denote by x the valuation with constant value x\ for T C S, we

indicate by [T] the valuation having value 1 in T and 0 elsewhere. For two valuations v, u on S,

we define \\v — u\\ = sup s e 5 |^(s) — u(s)\-

A partition of a set S is a set R C 2 s , such that |J{s|s G R} = S, and such that for

all r, r' G R, if r ^ r' then r fl r' = 0. We will define abstractions of the state space S simply

via partitions of S. For s G S and a partition R of 5, we denote by [s]^ the element r € R with

s £ r . We say that a partition R! is /mer than a partition i? if the elements of R can be written

as unions of the elements of R'.

18

2.2 Game Models

Def in i t ion 1 T w o P l a y e r G a m e s : A two-player game structure G = (S, A, S) consists of:

• A state space S.

• A turn function A : S —> {1,2}, associating with each state s E S the player A(s) whose

turn it is to play at the state. We write ~ 1 = 2, ~ 2 = 1, and we let Si = {s G S \ A(s) = 1}

andS2 = {s G S | A(s) = 2}.

• A transition function 5 : S t—> 2 s \ 0, associating with every state s £ S a non-empty set

S(s) C S of possible successors.

Def in i t ion 2 M a r k o v D e c i s i o n P r o c e s s e s (M D P s) : A Markov decision process (MDP)

M = (S,A,T,p) consists of the following components:

• A state space S.

• A finite set A of actions (moves),

• A move assignment T : S —> 2A \ 0.

• A probabilistic transition function p : S x A —> D(S).

At every state s S S, the controller can choose an action a G T(s) ; the MDP then proceeds to

the successor state t with probability p(s, a, t), for all t G S.

Transition systems (1-player games) are special cases of two-player games where S2 = 0 and for

all s G S, X(s) = 1. The game takes place over the s tate space S, and proceeds in an infinite

sequence of rounds. At every round, from the current state s G S, player A(s) G {1, 2} chooses

a successor state s' G S(s), and the game proceeds to s'. The infinite sequence of rounds gives

rise to a path ~s G S": precisely, a path of G is an infinite sequence s = SQ, SI, s2, • • • of states in

S such tha t for all k > 0, we have Sfc+i G <5(sfc). We denote by Q, the set of all paths.

19

2.3 Objectives

A game(G,$) consists of a game structure G together with an objective $ for a player.

An qualitative objective $ for a game structure G is a subset $ C Su of the sequences of states

of G. A quantitative objective is specified as a measurable function / : 0. —> K.

Given a subset T C S of states, the reachability objective OT = {so, s i i s2, • • • £ Su \

3fc > O.s/c £ T} consists of all paths that reach T; the safety objective uT = {so, s±, s2, • • • £

S^ j \/k > O.Sfc G T} consists of all paths that stay in T forever. Games with reachability or

safety objectives are called reachability and safety games, respectively.

2.4 Strategies

Strategy in Two-Player Games : A strategy for player i £ {1,2} in a game G = (S,X,5)

is a mapping 7Tj : S* x Si i—> 5 that associates with every nonempty finite sequence cr of states

ending in Si, representing the past history of the game, a successor state. We require that, for all

u g S " and all s £ Si, we have ^(crs) £ S(s). An initial state So £ S and two strategies ixi, TT2

for players 1 and 2 uniquely determine a sequence of states Outcome(sQ, ni,^) = so, si, $2, • • •>

where for k > 0 we have Sk+i = 7Ti(s0,..., s/c) if Sfc G Si, and Sfc+1 = 7r2(s0 , . . . , Sfe) if Sk £ S2.

Given an initial state so and a winning objective $ C 5 " for player i £ {1,2}, we say that

state s £ S is winning for player i if there is a player-i strategy 7Tj such that, for all player ~ i

strategies n^i, we have Owteome(s0,7r1,7T2) G $. We denote by (i)<3? C S1 the set of winning

states for player i for objective $ C S " . A result by [57], as well as the determinacy result of

[79], ensures that for all w-regular goals $ we have (1}$ = S ,\(2)->$, where ->$ = S\ $. Given

a set 8 C S oi initial states, and a property $ C S", we will present algorithms for deciding

whether 8 n (i)<E> ^ 0 or, equivalently, whether 0 C (i)$, for i G {1,2}.

20

Strategy in Markov Decision Processes : We model the choice of actions, on the part of

the controller, via a strategy (strategies are also variously called schedulers [94] or policies [54]).

A strategy is a mapping 7r : S+ i—> D(A): given a past history as G S+ for the MDP, a strategy

IT chooses each action a G T(s) with probability n(as)(a); we obviously require ir(as)(b) = 0 for

&\\beA\T(s).

2.5 Controllable Predecessor Operators

Two-player games with reachability, safety winning conditions are commonly solved

using controllable predecessor operators. We define the player-1 controllable predecessor operator

Cprej : 2s ^ 2s as follows, for all X C S and i G {1, 2}:

CpreipO = {s G Si | S(s) n X + 0} U {s € S„4 | <5(s) C X } . (2.1)

Intuitively, for i G {1, 2}, the set Cpre^X) consists of the states from which player i can force

the game to X in one step.

We will express our algorithms for solving games on the state-space S in /i-calculus

notation [57]. Consider a function 7 : 2 s 1—> 2 s , monotone when 2 s is considered as a lattice

with the usual subset ordering. We denote by fj,Z.j(Z) (resp. isZ.'y(Z)) the least (resp. greatest)

fix-point of 7, that is, the least (resp. greatest) set Z C S such that Z = j(Z). As is well known,

since 5 is finite, these fix-points can be computed via Picard iteration: fiZ.j(Z) = lirrin^oo 7n(0)

and VZ.'Y(Z) — limj^oo 7™(5). In the solution of parity games we will make use of nested fix-

point operators, which can be evaluated by nested Picard iteration [57].

21

Algorithm 1 ValIter(T, / , g,£float) Value iteration

1. v := [T]

2. repeat

3. v := v

4. for all s G S do v(s) := / ([T](s), J E , £ S P (S , a, s') • v(s') a G T(s)

5. until Hu-ull < efloat

6. return v

2.6 Optimal Values in Markov Decision Processes

These sets of paths Q, are measurable [105] in Markov Decision Processes, so that given

a strategy 7r G II, we can define the probabilities Pr^(OT), Pr^(DT) of following a path in

these sets from an initial state s £ S under strategy 7r. By choosing appropriate strategies,

the controller can maximize or minimize these probabilities. Thus, we consider the problem of

computing, at all s G 5, the quantities:

Vn
m

T
ax(s) = maxPr^(DT) V^x(s) = maxPr^(OT)

7rsn 7ren

V^ n (s) = minPr^(DT) V^ n (s) = minPr^OT) .
wGn 7ren

The fact that on the right-hand side we have max, min rather than sup, inf is a consequence

of the existence of optimal (and memoryless) strategies [54]. Thus, strategies can be both

history-dependent, and randomized. We denote by II the set of all strategies.

2.6.1 Implementation via Value Iteration

Reachability and safety probabilities on an MDP can be computed via a classical

value-iteration scheme [54, 15, 49]. The algorithm, depicted as Algorithm 1, is parameterized

22

Quantity
T/max

T/min

Quantity
T/max
VOT
T/min

f
min
min

/
max
max

9
max
min

9
max
min

convergence
from above
from above
convergence
from below
from below

Table 2.1: Parameters to be used in the call to ValIter(T, / , g) in order to compute reachability
and safety properties. The table also indicates whether the computation converges from above,
or from below.

by two operators f,g e {max, min}. The operator / specifies how to merge the valuation

of the current state with the expected next-state valuation; we use / = max for reachability

goals, and / = min for safety ones. The operator g specifies whether to select the action

that maximizes, or minimizes, the expected next-state valuation; we use g = max to compute

maximal probabilities, and g = min to compute minimal probabilities, The algorithm is also

parameterized by £float > 0: this is the threshold below which we consider value iteration to

have converged. The following facts are well-known (see, e.g., [54, 33, 34]). For all Sfloat > 0

and for all / , g € {min, max}, the call ValIter(T, / , g,£float) terminates. Moreover, consider any

g G {max, min} and any A € {D, O}, and let / = min if A = • , and / = max if A = O. Then,

for all S > 0, there is an Sfloat > 0 such that, at all s G S:

v(s)-S < VlT(s) < v(s)+5

where v = ValIter(T, / , g, Sfloat). We can replace statement 1 of Algorithm 1 with the following

initialization: if / = max then v := 0 else v :— 1.

23

Part II

Applications of Games

24

Chapter 3

Interface Theories in Component Based

Design and TICC

Open systems are systems whose behavior is jointly determined by their internal struc­

ture, and by the inputs that they receive from their environment. In previous work, it has been

argued that games constitute a natural model for open systems [35] We use games to repre­

sent the interaction between the behavior originating within a component, and the behavior

originating from the components environment. In particular, we model components as Input-

Output games: the moves of Input represent the behavior the component can accept from the

environment, while the moves of Output represent the behavior the component can generate.

Unlike component models based on transition systems, models based on games provide a notion

of compatibility [42, 44]. When two components P and Q are composed, we can check whether

the output behavior of P satisfies the input requirements of Q, and vice-versa. However, we

do not define P and Q to be compatible only if their input requirements are always satisfied.

Rather, we recognize that the output behavior of P and Q can still be influenced by their residual

interaction with the environment (unless the composition of P and Q is closed). Thus, we define

25

P and Q to be compatible if there is some environment under which their input assumptions

are mutually satisfied, and we associate with their composition P||Q the weakest (most general)

assumptions about the environment that guarantee mutual compatibility. In game-theoretic

terms, P and Q are compatible if, in their joint model, Input has a strategy to guarantee that all

outputs from P to Q can be accepted by Q, and vice-versa; the environment assumption of P| |Q

is simply the most general such Input strategy. These game-based component models have been

called interface theories, and two tools for interface theories predate Ticc. The asynchronous,

action-based interface theories of [42, 44] are implemented as part of the Ptolemy tool-set [73].

The tool Chic implements synchronous, variable-based interface theories closely modeled after

[24]. Our goal in developing Ticc was to provide an asynchronous model where components have

rich communication primitives that facilitate the modeling of software and distributed systems.

In Ticc, variables encode both the local state of the components (called modules) and the global

state of the system. Modules synchronize on shared actions, and the occurrence of actions can

cause variables to be updated. Each global variable can be updated by more than one module,

so that it is both read and write-shared; restrictions ensure that variable updates are free from

race-conditions. An action can appear in a module both as input and as output. If an action

a occurs in a module P as output, but not as input, then P can generate a, but not accept it

from other modules. If a occurs in P both as input and as output, then P can both generate a,

and accept it from other modules. This enables the encoding of rich communication schemes,

including exclusive, and many-to-many schemes, and differentiates the modules of Ticc from

other modules with more restrictive communication primitives, such as I/O Automata [76] and

Reactive Modules [7]. The theory behind Ticc has been presented in detail in [39]; here, we

describe the tool itself.

26

3.1 Tool

Ticc parses interfaces, called modules, encoded in a guarded-command language, and

builds symbolic representations for these interfaces tha t are used for compatibility checking

and composition. Ticc is writ ten in OCaml [74], and the symbolic algorithms rely on the

M D D / B D D Glue sand Cudd packages [100]. The code of Ticc is freely available and can be

downloaded from ht tp: / /dvlab.cse .ucsc.edu/dvlab/Ticc. This web site is an open Wiki tha t

also contains the documentation for the tool, and several additional examples. We illustrate

the modeling language of Ticc by means of a simple example: a fire detection system. The

system is composed of a control unit and several smoke detectors. When a detector senses

smoke (action smoke), it reports it by emitting the action fire. When the control unit receives

action fire from any of the detectors, it emits the action call fd , corresponding to a call to the

fire department. Additionally, an input disable disables both the control unit and the detectors,

so tha t the smoke sensors can be tested without triggering an alarm. We provide the code for

the control unit module (ControlUnit), for one of the (several) fire detectors (FireDetectorl) ,

as well as for a faulty detector tha t ignores the disable messages (Faulty FireDetector2): The

body of each module starts with the list of its local variables; Ticc supports Boolean and integral

range variables. The transitions are specified using guarded commands guard) command, where

guard and command are boolean expressions over the local and global variables; as usual, primed

variables refer to the values, after a transition is taken. For instance, the output transition fire

in module FireDetectorl can be taken only when s has value 1; the transit ion leads to a state

where s = 2.

module C o n t r o l U n i t :
va r s : [0 . . 3] / / 0 = w a i t i n g , l=a la rm r a i s e d , 2=fd c a l l e d , 3 = d i s a b l e d

i n p u t f i r e : { l o c a l : s = 0 | s = 1 ==> s := 1
e l s e s = 2 ==> }

27

http://dvlab.cse.ucsc.edu/dvlab/Ticc

input disable: { local: true ==> s := 3 }
output call_fd: { s = 1 ==> s = 2 }
endmodule

module FireDetectorl:
var s: [0..2] // 0=idle, l=smoke detected, 2=inactive

input smokel: { local: s = 0 I s = 1 ==> s := 1

else s = 2 ==> } // do nothing if inactive

output fire: { s = 1 ==> s = 2 }

input fire: { } // accepts (and ignores) fire inputs

input disable: { local: true ==> s := 2 }
endmodule

module Faulty_FireDetector2:
var s: [0..2] // 0=idle, l=smoke detected, 2=inactive

input smoke2: { local: s = 0 I s = 1 ==> s := 1
else s = 2 ==> } // do nothing if inactive

output fire: { s = 1 ==> s = 2 }

input f i r e : { } / / accepts (and ignores) f i r e inputs
/ / does not l i s t e n to d isable ac t ion

endmodule

When modules ControlUnit and FireDetectorl are composed, they synchronize on the

shared actions fire and disable. First, input transitions in a module synchronize with the cor­

responding output transitions in the other module. Thus, the output transition labeled with

fire in FireDetectorl synchronizes with the input transitions labeled with fire in ControlUnit.

Moreover, input transitions associated to a shared action in different modules also synchro­

nize. For instance, the input transitions associated with fire in FireDetectorl and ControlUnit

synchronize, so that the composition FireDetectorl ||ControlUnit can also accept fire as input,

and can therefore be composed with other fire detectors. The composition of ControlUnit and

Faulty FireDetector2 goes less smoothly. When the composition receives a disable action, the

control unit shuts down (s = 3), while the faulty detector remains in operation. When the

28

faulty detector senses smoke (input smoke2), it will emit fire: if the control unit has been dis­

abled by the disable action, this causes an incompatibility. Ticc diagnoses this incompatibility

by synthesizing the following input restrictions:

• A restriction preventing the input disable if the faulty detector is in state s = 1, that is,

it has detected smoke and is about to issue fire.

• A restriction preventing the input smoke2 when Control-Unit is at s = 3 (disabled).

Since the actions disable and smoke2 should be acceptable at any time, the new input re­

strictions for these actions are a strong indication that the composition Control-Unit || Faulty

Fire-Detector2 does not work properly.

3.2 Using TICC

Ticc is implemented as a set of functions that extends the capabilities of the OCaml

command-line. The incompatibility mentioned in the previous section is exposed by the following

series of OCaml commands:

open T icc ; ;
parse " f i r e - d e t e c t o r - d i s a b l e . s i " ; ;
l e t cont ro lun i t = mk_sym "ControlUnit"; ;
l e t wfire2 = mk_sym "Faulty_FireDetector2"; ;
p r i n t _ i n p u t _ r e s t r i c t i o n (compose cont ro luni t wfire2) " d i s a b l e " ; ;
p r i n t _ i n p u t _ r e s t r i c t i o n (compose cont ro luni t wfire2) "smoke2";;

The mk sym function builds a symbolic representation of a module, given the module name.

The last two lines print how the input actions have been restricted in the composition.

29

Chapter 4

Online Testing with Learning

4.1 Introduction

Many software systems are reactive. The behavior of a reactive system, especially

when distributed or multi-threaded, can be nondeterministic. For example, systems may produce

spontaneous outputs like asynchronous events. Factors such as thread scheduling are not entirely

under the control of the tester but may still affect the behavior observed. In these cases, a test

suite generated offline may be infeasible, since all of the observable behaviors would have to be

encoded a priori as a decision tree, and the size of such a decision tree can be very large.

Online testing (also called on-the-fly testing) can be more appropriate than offline

tests for reactive systems. The reason is that with online testing the tests may be dynamically

adapted at runtime, effectively pruning the search space to include only those behaviors actually

observed instead of all possible behaviors. The interaction between tester and implementation

under test (IUT) is seen as a game [4] where the tester chooses moves based on the observed

behavior of the implementation under test. Only the tester is assumed to have a goal; the other

player (the IUT) is unaware that it is playing. This kind of game is known in the literature as

30

a 1 ̂ -player game [26].

Online testing is a form of model-based testing (MBT), where the tester uses a specifi­

cation (or model) of the system's behavior to guide the testing and to detect the discrepancies

between the IUT and the model. It is an established technique, supported in tools like TorX [103]

and Spec Explorer [106]. We express the model as a set of guarded update rules that operate on

an abstract state. This formulation is called a model program. Both the IUT and the model are

viewed as interface automata [47] in order to establish a a formal conformance relation between

them.

We distinguish between moves of the tester and moves of the IUT. The actions available

to the tester are called controllable actions. The IUT's responses are observable actions. A

conformance failure occurs when the IUT rejects a controllable action produced by the model

or when the model rejects an observable action produced by the IUT.

A principal concern of online testing is the strategy used to choose test actions. A

poor strategy may fail to provoke behaviors of interest or may take an infeasible amount to time

to achieve good coverage. One can think of strategy in economic terms. The cost of testing

increases with the number of test runs and the number of steps per run. We want to minimize the

number of steps taken to achieve a given level of coverage for the possible behaviors. Exhaustive

coverage is often infeasible. Instead, we strive for the best coverage possible within fixed resource

constraints. The main challenge is to choose actions that minimize backtracking, since resetting

the IUT to its initial state can be an expensive operation.

A purely random strategy for selecting test actions can be wasteful in this regard, since

the tester may repeat actions that have already been tested or fail to systematically explore the

reachable model states. A random strategy cannot benefit from remembering actions chosen in

previous runs.

In this chapter we propose an algorithm for online testing, using the ideas from Rein-

Si

forcement Learning (RL) [101, 69]. RL techniques address some of the drawbacks of random

action selection. Our algorithm is related to the anti-ant algorithm introduced in [75], which

avoids the generation of redundant test cases from UML diagrams.

RL refers to a collection of techniques in which an agent makes moves (called actions)

with respect to the state of an environment. Actions are associated with rewards or costs in

each state. The agent's goal is to choose a sequence of actions to maximize expected reward or,

equivalently, to minimize expected cost.

The history needed to compute the strategy is encoded in a data structure called a

"Test-Trace Graph (TTG)". We compare several such strategies below. The results show that

a greedy strategy (Least-Cost) has a suboptimal solution. The probability of reaching a failure

state does not change with a purely randomized strategy (Random), though the probability

reduces monotonically in a randomized greedy strategy (RandomizedLeastCost). This is because

the probability in the latter case is negatively reinforced by the number of times a failure state

has been visited, whereas it remains same in the former case.

The contributions of this chapter are the following:

• We transform the online testing problem into a special case of reinforcement learning where

the frequencies of various abstract behaviors are recorded. This allows us to better choose

controllable actions.

. • We show with benchmarks that an RL-based approach can significantly outperform ran­

dom action selection.

4.2 Testing Theory

In model-based testing a tester uses a specification for two purposes. One is confor­

mance checking: to decide if the IUT behaves as expected or specified. The other is scenario

32

control: which actions should be taken in which order and pattern. Model-based testing is

currently a growing practice in industry. In many respects the second purpose is the main use of

models to drive tests and relates closely to test scenarios is traditional testing. However, with a

growing complexity and need for protocol level testing and interaction testing, the first purpose

is gaining importance.

Formally, model programs are mapped (unwound) to interface automata in order to

do conformance checking. The conformance relation that is used can be defined as a form of

alternating refinement. This form of testing is provided by the Spec Explorer tool, see e.g. [106].

4.2.1 Model Programs as Specifications

States are memories that are finite mappings from (memory) locations to a fixed uni­

verse of values. By an update rule we mean here a finite representation of a function that given

a memory (state) produces an updated memory (state). A update rule p may be parameterized

with respect to a sequence of formal input parameters x, denoted by p\x\. The instantiation

of p[x] with input values v of appropriate type, is denoted by p[v]. In general, an update rule

may be nondeterministic, in which case it may yield several states from a given state and given

inputs. Thus, an update rule p\x\,... ,xn] denotes a relation \p\ C States x Values71 x States.

When p is deterministic, we consider [p] as a function |p] : States x Values™ —> States and we

say that the invocation (or execution) of p[v] from state s yields the state |p](s,i;).

A guard ip is a state dependent formula that may contain free logic variables x =

Xi,..., xn, denoted by <p[x]; <p is closed if it contains no free variables. Given values v = v\ ..., vn

we write tp[v] for the replacement of x^ in tp by Vi for 1 < i < n. A closed formula (p has the

standard truth interpretation s J= ip in a state s. A guarded update rule is a pair (<p,p) containing

a guard ip[x] and an update rule p[x}\ intuitively (<p,p) limits the execution of p to those states

and arguments v where p[v] holds.

33

Definition 3 A model program P has the following components.

• A state space States.

• A value space Values.

• An initial state So £ States,

• A finite vocabulary E of action symbols partitioned into two disjoint sets

— Ec of controllable action symbols, and

— E° of observable action symbols.

• A reset action symbol Reset G Ec.

• A family (</>/,j>/)/6£ of guarded update rules.

— The arity of / is the number of input parameters of pf.

— The arity of Reset is 0 and [pfleset] (s) = So f°r all s \= f Reset-

P is deterministic if, for all action symbols / G E, p / is deterministic.

An n-ary action symbol has logically the term interpretation, i.e. two ground terms whose

function symbols are action symbols are equal if and only if the action symbols are identical and

their corresponding arguments are equal. An action has the form /(i>i, . . . ,vn) where / is an

n-ary action symbol and each Vi is a value that matches the required type of the corresponding

input parameter of pf. We say that an action f(v) is enabled is a state s if s \= <p(v). Notice

the two special cases regarding reset: one when reset is always disabled (ifReset = false), in

which case the definition of PReset is irrelevant, and the other one when reset is always enabled

{f Reset = true), in which case PReset must be able to reestablish the initial state from any other

program state.

34

We sometimes use action to mean an action symbol, when this is clear from the context

or when the action symbol is miliary in which case there is no distinction between the two.

6

4.2.2 Example: Recycling Robot

We show a model program of a collection of recycling robots written in C # in Figure 4.1.

A robot is a movable recycle-bin, it can either

1. move and search for a can if its power level (measured in percentage) is above the given

threshold 30%, or

2. remain stationary and wait for people to dispose of a can if its power level is below the

given threshold 50%.

A robot gets a reward by collecting cans. The reward is bigger when searching than while

waiting, but each search reduces the power level of the robot by 30%. A robot can be recharged

when it is not fully charged, i.e when the power level is less than 100%. New robots can be

started dynamically provided that the total number of robots does not exceed a limit (if such a

limit is given).

Actions In this example, the action symbols are Start, Search, Wait and Recharge, where the

first three symbols are classified as being controllable and the last one is classified as being

observable. All of the symbols are unary (i.e., they take one input). All actions have the form

f(i) where / is one of the four action symbols and i is a non-negative integer representing the

id of a robot. The reset action is in this example implicit, and is assumed to be enabled in all

states.

Sta tes The state signature has three state variables, a map Robot. Instances from object ids

(natural numbers) to robots (objects of type Robot), and two field value maps power and reward

35

class Robot : Enumeratedlnstance / / The base class keeps track of created robot instances

int power = 0;
int reward = 0;

>

class RobotModel
i

static int maxNoOfRobots = . . . ;

[Action]
s tat ic void Start(int robotld)
•C

Assume.IsTrue(Robot.Instances.Count < maxNoOfRobots kk
-i Robot.Instances.Count =~ robotld));

new Robot(robotld);
>

[Action]
static void Search(int robotld)

<
Assume.IsTrue(robotld £ Robot.Instances);
Robot robot = Robot.Instances[robotld];
Assume.IsTrue(robot.power > 30);

robot.power = robot.power - 30;
robot.reward = robot.reward + 2;

>
[Action]
static void Wait(int robotld)

{
Assume.IsTrue(robotld £ Robot.Instances);
Robot robot = Robot.Instances[robotld];
Assume . IsTrue (robot .power <= 50);

robot.reward = robot.reward + 1;
}

[ActionCKind = Observable)]
static void RechargeCint robotld)
i

Assume.IsTrue(robotld £ Robot.Instances);
Robot robot = Robot.Instances[robotld];
Assume . IsTrue (robot .power < 100);

}
robot.power = 100;

Figure 4.1: Model Program of the Recycling Robot example.

that map robots to their corresponding power and reward values. The initial state is the state

where all those maps are empty.

Guarded update rules For each of the four actions / the guarded update rule (<Pf,P/) is

denned by the corresponding static method / of the RobotModel class. Given a robot id i and

a state s, the guard ipf(i) is true in s, if all the Assume. IsTrue statements evaluate to true in

s. Execution of Pf[i] corresponds to the method invocation of f(i). For example, in the initial

state, say SQ, of the robot model, the single enabled action is Start (0). In the resulting state

36

|pstartl(sOiO) a new robot with id 0 has been created whose reward and power are 0.

4.2.3 Deterministic model programs as interface automata

We use the notion of interface automata [47, 36] following the exposition in [36]. The

view of a model program as an interface automaton is important for formalizing the conformance

relation. In this chapter, we use the terms "controllable" and "observable" here instead of the

terms "input" and "output" used in [36].

Definition 4 An interface automaton M has the following components:

• A set S of states.

• A nonempty subset 5 l m t of S called the initial states.

• Mutually disjoint sets of controllable actions Ac and observable actions A°.

• Enabling functions Fc and r ° from S to subsets of Ac and ^4°, respectively.

• A transition function 5 that maps a source state and an action enabled in the source state

to a target state.

In order to identify a component of an interface automaton M, we index that component by M,

unless M is clear from the context. Let P be a deterministic model program (States, Values, SQ, S,

EC ,S°, Reset, (ipf , p /) / 6 s) . P has the following straightforward denotation [P] as an interface

automaton:

37

5[p] = States

Ac
m={f(v)\feZc,vC Values}

A°m={f(v)\feJ:0,vC Values}

nPj(s) = {f(v)€AlPj\s^^f(v)}

^P](s) = {f(v)eA°lPi\3\=tp/(v)}

5lPj(s,f(v)) = lPfl(s,v) (for / G E, s e Stotes, s |= V/(f>))

Note that <5jpj is well-defined, since P is deterministic. In light of the above definition we

occasionally drop the distinction between P and the interface automaton [P] it denotes.

4.2.4 Implementing a Model Program as an Interface Automaton

A model program P exposes itself as an interface automaton through a stepper that

provides a particular "walk" through the interface automaton one transition at a time. A

stepper of P is implemented through the IStepper interface defined below. A stepper has an

implicit current state that is initially the initial state of P. In the current state s of a stepper, the

enabled actions are given by Tjpj(s). Doing a step in the current state s of the stepper according

to a given action a corresponds to setting the current state of the stepper to <5[pj(s,a). The

Reset action is handled separately and is not included in the set of currently enabled actions

EnabledControllables.

interface IStepper
{

Sequence<Action> EnabledControllables { get; }
Sequence<Action> EnabledObservables { get; >
void DoStepCAction action);

void ResetC);

38

bool ResetEnabled < get; }
}

For conformance testing, an implementation is also assumed to be an interface automa­

ton that is exposed through a stepper. If both the model and the IUT are interface automata

with a common action signature, we test the conformance of the two automata using the refine­

ment relation between interface automata as defined in [36].

4.3 Online Testing Algorithm

In this section we describe an algorithm that uses reinforcement learning to choose

controllable actions during conformance testing of an implementation / against a model (speci­

fication) M. Both M and I are assumed to be given as model programs that expose an IStepper

interface to the algorithm. In addition, the model exposes an interface that provides an abstract

value of the current state of the model and an abstract value of any action enabled in a given

state. It is convenient to view this interface as an extension IModelStepper of the IStepper

interface:

interface IModelStepper : IStepper
{

IComparable GetAbstractState(Action action);
IComparable GetAbstractAction(Action action);

}

The main motivation for these functions is to divide the state space and the action

space into equivalence classes that reflect "interesting" groups of states and actions for the

purposes of coverage.

Example 1 Consider the Robot model. We could define the abstract states and abstract actions

to be the concrete states and the concrete actions as follows. In other words, there is no grouping

of either states or actions in this case.

class RobotModel : IModelStepper
{

Sequence<Pair<int,int>> GetAbstractState(Action action)

39

{
return [Cr.power, r.reward) I r in Robot.Instances]

>
Action GetAbstractActionCAction action);
{

return action;
}

Example 2 A more interesting case is if we abstract away the id of the robot and project the

state to the state of the robot doing the action, or a default value if the robot has not been started

yet. This is reasonable because the robots do not interact with each other.

class RobotModel : IModelStepper
{

Pair<int,int> GetAbstractStateCAction action)
{

if (action.Name == "Start") return (-1, -1);
Robot r = Robot.Instances[action.Argument CO)];
return (r.power, r.reward);

>
string GetAbstractActionCAction action);
{

return action.Name;
}

We use pseudo code that is similar to the original implementation code written in C #

to describe the algorithm. We consider two controllable action selection strategies Let and Rlc

that are explained below, in addition to a memoryless purely randomized strategy Rnd.

enum Strategy {Rnd, Let, Rlc}

The algorithm uses also an "oracle" to ask advice about whether to observe an observ­

able action from the implementation, to call a controllable action, or to end a particular test

run, during a single step of the algorithm. The oracle makes a random choice between control­

ling an observing when an observable action is enabled in the implementation at the same time

as a controllable action is enabled in the model. If there are no observable actions enabled in

the implementation and no controllable actions enabled in the model then the only meaningful

advice the oracle can give is to end the current test run.

enum Advice {Control, Observe, End}

class Oracle
{

IStepper M;
IStepper I;

Advice AdviseC)
{

40

bool noCtlrs = M.EnabledControllables.IsEmpty;
bool noObs = I.EnabledObservables.IsEmpty;

if CnoCtlrs A noObs) return Advice.End;
if CnoCtlrs) return Advice.Observe;
if CnoObs) return Advice. Control;
return new Choose(Advice.Control, Advice.Observe);

}
}

4.3.1 Top level loop

The top level loop of the algorithm is described by the following pseudo code.

class OnlineTesting
{

IModelStepper M;
IStepper I;
int maxRun;
int maxStep;
Strategy h;
Oracle oracle;

bool ResetEnabled {get return M.ResetEnabled A I-ResetEnabled;}

void RunO
{

int run = 0;
while (run < maxRun)
{

RunTestCaseC) ; / / The core algorithm
if (^ResetEnabled) return; / / Cannot continue, must abort
Reset();
run += 1;

}
}

The inputs to the algorithm are a model program M that provides the IModelStepper

interface and is the specification, a model program I that provides the IStepper interface an is

the implementation under test, an upper bound maxRun on the total number of runs, an upper

bound maxStep on the total number of steps (state transitions) per one run, a strategy h, and

an oracle oracle as explained above.

4.3.2 The Core Algorithm

The algorithm keeps track of the weights of abstract transitions that have occurred

during the test runs. An abstract transition is a pair (s, a) where s is an abstract state and a is

an abstract action. The weight of an abstract transition is total number of times it has occurred

plus one, since the algorithm was started. The abstract state and action values are calculated

41

using the IModelStepper interface introduced above. This weight information is stored in a test

trace graph that is updated dynamically and is initially empty.

class TestTraceGraph
{

Map<AbstractTransition, int> F = 0; / / Frequencies of explored abstract t ransi t ions

IModelStepper M;

i n t WCAction a) / / Weights are positive

Abs t rac tS ta te s = M.GetAbstractState(a) ;
AbstractAction b = M.GetAbstractAction(a);
if C(s,b) e F) r e tu rn F [(s , b)] ; e l s e r e tu rn 1;

>
void Update(Action a, int w)
•c

AbstractState s = M.GetAbstractState(a);
AbstractAction b = M.GetAbstractAction(a);
F[(s,b)] = W(a) + w;

>
}

The next controllable action is chosen by the algorithm from a nonempty set of con­

trollable actions that are currently enabled, using the given strategy.

class TestTraceGraph
{

Action ChooseAction(Sequence<Action> acts, Strategy h)

switch (h)
i

case S t ra t egy .Le t :
Action a = acts.Head;
Pair<Set<Action>,int> l e t =

acts .Tai l .Reduce (Reducer , ({acts .Head},W(acts .Head))) ;
r e t u r n l e t . F i r s t . C h o o s e () ;

case S t ra t egy .Rlc :
Sequence<int> cos ts = [W(a) I a £ a c t s] ;
i n t prod = . . . ; / / Compute an approximate common multiple of cos ts
Sequence<int> occurs = [prod/x i x £ c o s t s] ;
Bag<Action> bg ~ -{{(actsCi], occurs [i]) I i < a c t s . Count}}-;
r e t u r n bg.ChooseO;

de fau l t :
return acts. Choose() ;

}
>
Pair<Set<Action>,int> Reducer(Action a, Pair<Set<Action>,int> let)
i

if (W(a) < let.Second) return ({a}, w) ;
else if (W(a) == let.Second) return (let.First U {a}, w);
else return let;

}
}

Let: Choose an action that has the "least cost". Here cost of an action a is measured as the

current weight of the abstract transition (s, 6), where s is the abstract state computed in

the current model state with respect to a, and b is the abstract action corresponding to

a, computed in the current model state. If several actions have the same least cost, one is

chosen randomly from among those.

42

Rlc: Choose an action with a likelihood that is inversely proportional to its current cost,

with cost having the same meaning as above. Intuitively this means that the least fre­

quent actions are the most favored ones. In other words, if the candidate actions are

{o-i)i<k for some k, having costs (c,),<fc, then the probability of selecting the action <Zj is

c~1/Y^j^ticJ1- T n e implementation uses a built-in bag construct to make such a choice.

Rnd: Make a random choice.

The algorithm runs one test case until, either a conformance failure occurs (in form of

a violation of the refinement relation between [M] and [ij), or until the given maximum number

of steps has been reached.

class OnlineTesting

TestTraceGraph ttg = new TestTraceGraph(M);

bool RunTestCaseQ
<

int step = 0;
while (step < maxStep)

<
Advice advice = oracle.Advise();

if (advice == Advice. Control)
<

Sequence<Action> cs = M.EnabledControllables;
Action c = ttg.ChooseActionCcs, h);
ttg.Update(c, 1); / / Increase the weight by 1
M.DoStep(c); / / Do the step in M

if (c g I.EnabledControllables)
I.DoStep(c); / / Do the corresponding step in I

else
return false; / / Conformance failure occurred

}
else if (advice == Advice.Observe)
{

Sequence<Action> os = I.EnabledObservables;
/ / This is an abstract view of the execution of the implementation, in reality
/ / the implementation performs the choice itself and notifies the test harness
Action o = os.ChooseO;
I.DoStep(o);
if (o £ M.EnabledObservables)
{

ttg.Update(o, 1); / / Increase the weight by 1
M.DoStep(o); / / Do the corresponding step in M

}
else

return false; / / Conformance failure occurred
#endregion

>
else

return true; / / No more steps can be performed
step += 1;

}
return true; / / The test case succeeds

}
>

43

The Let strategy is a greedy approach; it is very simple and relatively cheap to compute.

However, it favors actions that have been used less frequently, and thus may systematically avoid

long sequences of the same action, as is illustrated next.

Example 3 Consider a bounded stack of size n. The stack has two controllable actions, top

and push, enabled in every state. The greedy strategy will alternate between these two actions

until the stack is full. If we want to test the behavior of push when the stack is full, we need to

continue testing for at least 2n steps (so that push is executed n times).

In the given algorithm, the weight increase is always 1. This value can be made domain specific

and can vary depending both on the action and the current state, for example by extending the

IModelStepper interface with a function that provides the wait increase for the given action in

the current state and using that function instead of 1.

By using Rlc, the probability of selecting an action is inversely proportional to its

frequency. Thus, the more an action has been selected the less likely it is that it will be selected

again. So the potential problem shown in Example 3 is still there but ameliorated, since no

enabled action is excluded from the choice.

4.4 Experiments

We used the Robot model to conduct a few experiments with the algorithm in order to

evaluate and compare the different strategies. The main purpose was to see if the two proposed

strategies Let or Rlc are useful by providing better or at least as good coverage of the state space

as the purely random approach. Since we are interested in state and transition coverage only,

we ran the algorithm against a correct implementation. We ran the algorithm with a different

maximum number of robots, different abstraction functions introduced in the examples above,

and different limits on the total number of runs and the total number of steps per run. The

44

experiments are summarized in Tables 4.1 and 4.2. We ran each case independently 50 times,

the entries in the tables are shown on the form m±cr where m is the mean of the obtained results

and a is the standard deviation. The absolute running times are shown only for comparison,

the concrete machine was a 3GHz Pentium 4.

If states and actions are not grouped at all, by assuming the definitions given in Exam­

ple 1, the majority of abstract transitions will occur only a single time and the strategies perform

more or less as the random case, which is shown in Table 4.1. One can see that Let performs

marginally better than Rnd when the number of robots and the number of runs increases.

Table 4.1: Execution of the online algorithm on the Robot model without grouping.

Parameters

Robots

1

1

1

1

2

2

2

2

5

5

5

5

Runs

1

10

100

100

1

10

100

100

1

10

100

100

Steps

100

100

100

500

100

100

100

500

100

100

100

500

Let

#States

100 ± 0

420 ± 11

503 ± 3

2485 ± 5

100 ± 0

951 ± 8

7449 ± 83

44119 ±225

100 ± 0

972 ± 3

9368 ± 17

49364 ± 19

i(ms)

3

20

275

1303

3

24

286

1548

5

42

516

2794

Rlc

#States

100 ± 0

415 ± 8

503 ± 3

2485 ± 5

100 ± 0

941 ± 10

7085 ± 110

42437 ± 339

100 ± 0

971 ± 3

9328 ± 22

49330 ± 25

t(ms)

1

19

241

1292

1

22

284

1479

3

37

468

2541

Rnd

#States

100 ± 0

414 ± 9

502 ± 2

2485 ± 6

100 ± 0

938 ± 12

7055 ± 114

42364 ± 289

100 ± 0

969 ± 4

9322 ± 24

49320 ± 19

t(ms)

1

15

172

968

2

14

201

1040

1

18

297

1587

When the states and the actions are mapped to abstract values, as defined in Example 2,

then Let starts finding many more abstract states than Rnd as the number of robots grows. The

robot id is ignored by the abstraction and thus concrete transitions of different robots that differ

only by the id are mapped to the same abstract transition. Overall this will have the effect that

the Let approach will favor actions that transition to new abstract states. The same is true for

45

the Rlc case but the increase in coverage is smaller.

Table 4.2: Execution of the online algorithm on the Robot model with state grouping and action
grouping.

Parameters

Robots

1

1

1

1

2

2

2

2

5

5

5

5

5

10

10

10

10

Runs

1

10

100

100

1

10

100

100

1

10

100

100

100

10

100

100

1000

Steps

100

100

100

500

100

100

100

500

100

100

100

500

1000

100

100

1000

1000

Let

#States

100 ± 0

417 ± 9

502 ± 2

2486 ± 5

100 ± 0

419 ± 7

502 ± 3

2485 ± 5

100 ± 0

418 ± 10

503 ± 3

2484 ± 5

4949 ± 8

418 ± 9

502 ± 3

4951± 11

4985 ± 8

i(ms)

3

9

100

508

1

10

106

561

< 1

10

115

561

1200

10

103

1131

12521

Rlc

#States

100 ± 0

413 ± 8

503 ± 3

2486 ± 6

90 ± 3

284 ± 2 1

437 ± 12

1602 ± 33

66 ± 4

279 ± 30

472 ± 7

1696 ± 96

2467 ± 95

293 ± 25

473 ± 6

3541 ± 198

4352 ± 66

t(ms)

< 1

7

88

417

< 1

9

96

506

1

11

116

657

1388

12

137

1718

18043

R n d

#States

100 ± 0

416 ± 8

502 ± 2

2484 ± 6

93 ± 5

237 ± 8

293 ± 6

1324 ± 15

61 ± 2

117± 5

155 ± 7

582 ± 10

1088 ± 13

91 ± 6

128 ± 6

602 ± 10

654 ± 9

t(ms)

< 1

4

44

234

< 1

4

46

241

< 1

5

50

247

540

5

59

578

5953

The Robot case study is representative for models that deal with multiple agents at

the same time, which is a typical case in testing of multi-threaded software [106]. Often the

threads are mostly independent, an abstraction technique that can be used in this context is to

look at the part of the state that belongs to the agent doing the action. This is an instance of

so-called multiple state-grouping approach that is also used as an exploration technique for FSM

generation [23]. This is exactly what is done in Example 2. It seems that Let is a promising

heuristic for online testing of these kinds of models. One can note that, the coverage provided by

the random approach degrades almost by half as the number of robots is doubled (for example

from 5 to 10).

46

4.5 Related Work

The basic idea of online testing has been introduced in the context of labeled transition

systems using ioco theory [20, 102, 104] and implemented in the TorX tool [103]. TGV [68] is

another tool frequently used for online or on-the-fly test generation that uses ioco. Ioco theory

is a formal testing theory based on labeled transition systems with input actions and output

actions. Interface automata [36] are suitable for the game view [25] of online testing and provide

the foundation for the conformance relation that we use. Online testing with model programs in

the Spec-Explorer tool is discussed in in [106]. The algorithm in [106] does not use learning, and

as far as we know learning algorithms have not been considered in the context of model based

testing. The relation between ioco and refinement of interface automata is briefly discussed

in [106]. Specifications given by a guarded command language are used also in [89].

In Black-box testing, some work [84] has been done which uses supervised learning

procedures. As far as we know, no previous work has addressed online testing with learning in

the context of Model Based Testing. The main intuition behind our algorithm is similar to an

anti-ant approach [75] used for test case generation form UML diagrams. From the game point

of view, the online testing problem is a l|-player game. It is known that 1^-player games are

Markov Decision Processes [26]. The view of finite explorations of model programs for offline

test case generation as negative total reward Markov decision problems with infinite horizon are

studied in [19].

4.6 Open Problems

One of the interesting areas that is also practically very relevant is to gain better under­

stating of approaches for online testing that learn from mo del-cover age that uses abstractions.

The experiments reported in Section 4.4 exploited that idea to a certain extent by using state

47

and action abstraction through the IModelStepper interface, but the general technique and the­

ory need to be developed further. Such abstraction functions can either be user-provided [61, 23]

or automatically generated from program text similar to iterative refinement [89].

Currently we have an implementation of the presented algorithm using a modeling

library developed in C # . As a short-term goal, we are working on a more detailed report where

we are considering larger case studies.

The algorithm can also be adapted to run without a model, just as a semi-random

(stress) testing tool of implementations. In that case the history of used actions is kept solely

based on the test runs of the implementation. In this case, erroneous behaviors would for

example manifest themselves through unexpected exceptions thrown by the implementation,

rather than trough conformance violations.

48

Part III

Qualitative Abstraction

49

Chapter 5

Game-Based Three Valued Abstraction

5.1 Introduction

Games provide a computational model that is widely used in applications ranging from

controller design, to modular verification, to system design and analysis. The main obstacle to

the practical application of games to design and control problems lies in very large state space

of games modeling real-life problems. In system verification, one of the main methods for coping

with large-size problems is abstraction. An abstraction is a simplification of the original system

model. To be useful, an abstraction should contain sufficient detail to enable the derivation

of the desired system properties, while being succinct enough to allow for efficient analysis.

Finding an abstraction that is simultaneously informative and succinct is a difficult task, and

the most successful approaches rely on the automated construction, and gradual refinement,

of abstractions. Given a system and the property, a coarse initial abstraction is constructed:

this initial abstraction typically preserves only the information about the system that is most

immediately involved in the property, such as the values of the state variables mentioned in

the property. This initial abstraction is then gradually, and automatically, refined, until the

50

property can be proved or disproved, in the case of a verification problem, or until the property

can be analyzed to the desired level of accuracy, in case of a quantitative problem.

One of the most successful techniques for automated abstraction refinement is the tech­

nique of counterexample-guided refinement, or CEGAR [9, 31, 13]. According to this technique,

given a system abstraction, we check whether the abstraction satisfies the property. If the answer

is affirmative, we are done. Otherwise, the check yields an abstract counterexample, encoding

a set of "suspect" system behaviors. The abstract counterexample is then further analyzed,

either yielding a concrete counterexample (a proof that the property does not hold), or yielding

a refined abstraction, in which that particular abstract counterexample is no longer present.

The process continues until either a concrete counterexample is found, or until the property can

be shown to hold (i.e., no abstract counterexamples are left). The appeal of CEGAR lies in the

fact that it is a fully automatic technique, and that the abstraction is refined on-demand, in a

property-driven fashion, adding just enough detail as is necessary to perform the analysis. The

CEGAR technique has been extended to games in counterexample-guided control [62].

We propose here an alternative technique to CEGAR for refining game abstractions:

namely, we propose to use three-valued analysis [97, 98, 41] in order to guide abstraction re­

finement for games. The technique is suited to reachability games, where the goal is to reach a

set of target states, and to safety properties, where the goal is to stay always in a set of "safe"

states. The technique works as follows. Given a game abstraction, we analyze it in three-valued

fashion, computing the set of must-win states, which are known to satisfy the reachability or

safety property, and the set of never-win states, which are known not to satisfy the property; the

remaining states, for which the satisfaction is unknown, are called the may-win states. If this

three-valued analysis yields the desired information (for example, showing the existence of an

initial state with a given property), the analysis terminates. Otherwise, we refine the abstraction

in a way that reduces the number of may-win states. The abstraction refinement proceeds in a

51

property-dependent way. For reachability properties, we refine the abstraction at the may-must

border, splitting a may-win abstract state into two parts, one of which is known to satisfy the

property (and that will become a must-win state). For the dual case of safety properties, the

refinement occurs at the may-never border.

Our proposed three-valued abstraction refinement technique can be implemented in

fully symbolic fashion, and it can be applied to games with both finite and infinite state spaces.

The technique terminates whenever the game has a finite region algebra (a partition of the state

space) that is closed with respect to Boolean and controllable-predecessor operators [45]: this is

the case for many important classes of games, among which timed games [77, 40]. Furthermore,

we show that the technique never performs unnecessary refinements: the final abstraction is

never finer than a region algebra that suffices for proving the property.

In its aim of reducing the number of may-states, our technique is related to the three-

valued abstraction refinement schemes proposed for CTL and transition systems in [97, 98].

Differently from these approaches, however, we avoid the explicit construction of the tree-valued

transition relation of the abstraction, relying instead on may and must versions of the control­

lable predecessor operators. Our approach provides precision and efficiency benefits. In fact,

to retain full precision, the must-transitions of a three-valued model need to be represented as

hyper-edges, rather than normal edges [98, 41, 99]; in turn, hyper-edges are computationally

expensive both to derive and to represent. The may and must predecessor operators we use

provide the same precision as the hyper-edges, without the associated computational penalty.

For a similar reason, we show that our three-valued abstraction refinement technique is superior

to the CEGAR technique of [62], in the sense that it can prove a given property with an abstrac­

tion that never needs to be finer, and that can often be coarser. Again, the advantage is due to

the fact that [62] represents player-1 moves in the abstract model via must-edges, rather than

must hyper-edges. A final benefit of avoiding the explicit construction of the abstract model,

52

relying instead on predecessor operators, is that the resulting technique is simpler to present,

and simpler to implement. On the other side, we remark that the techniques of [62] extend

easily to parity goals, whereas the refinement scheme we propose can be extended, but only at

the price of cumbersome bookkeeping.

While we present the technique for games, the technique also yields a three-valued ab­

straction refinement scheme for the verification of safety and reachability properties of transition

systems.

5.2 Definitions

5.2.1 Game Abstractions

An abstraction V of a game structure G = (S, A, 5} consists of a set V C 22 \0 of

abstract states: each abstract state v € V is a non-empty subset v C S of concrete states. We

require [JV = S. For subsets T C S and U C V, we write:

Ul = [Jueuu TW = {v£V\vnTj:<il} T1™ = {veV\vCT} (5.1)

Thus, for a set U C V of abstract states, U[is the corresponding set of concrete states. For a

set T C S of concrete states, T | y and T]y are the set of abstract states that constitute over

and under-approximations of the concrete set T. The following result follows immediately from

the definitions (5.1).

Lemma 1 For all sets T C S, we have:

T]M Q T T m f (T T M } i Q T Q ^ m ^ _

We say that the abstraction V of a state-space S is precise for a set T C 5 o f states if

1 \v — l I v •

5 3

5.2.2 Abstract Controllable Predecessor Operators

In order to allow the solution of games on the abstract state space V, we introduce

abstract versions of Cpre.. As multiple concrete states may correspond to the same abstract

state, we cannot compute, on the abstract state space, a precise analogous of Cpre.. Thus, for

player i G {1,2}, we define two abstract operators: the may operator Cpre^ 'm : 2V i—> 2V, which

constitutes an over-approximation of Cprej, and the must operator Cpre^' : 2V i—> 2V, which

constitutes an under-approximation of Cpre; [41]. We let, for U C V and i G {1,2}:

Cpre]/'m(C/) = Cpre,((7|)T^ Cpre,v'M(tf) = Cpie^Ui)^. (5.2)

By the results of [41], we have the duality

Cpre^M([/) = V \ Cpre^f (V \ U). (5.3)

The fact that Cpre. 'm and Cpre. 'M are over and under-approximations of the concrete predeces­

sor operator is made precise by the following observation, which follows directly from Lemma 1:

for all U C V and i G {1,2}, we have

CWe('M{U)[C Cpre^C/j) C Cpre]/'m(C/)I . (5.4)

5.3 Reachability and Safety Games

We present our three-valued abstraction refinement technique by applying it first to

the simplest games: reachability and safety games. It is convenient to present the arguments

first for reachability games; the results for safety games are then obtained by duality.

5.3.1 Reachability Games

Our three-valued abstraction-refinement scheme for reachability proceeds as follows.

We assume we are given a game G = (S, X, S), together with an initial set 6 C S and a final set

54

T C S, and an abstraction V for G that is precise for 9 and T. The question to be decided is:

0 n (l) O T = 0?

The algorithm proceeds as follows. Using the may and must predecessor operators,

we compute respectively the set W™ of may-winning abstract states, and the set Wf4 of must-

winning abstract states. If W™ D 61™ = 0, then the algorithm answers the question No; if

Wf n 6]y ^ 0, then the algorithm answers the question Yes. Otherwise, the algorithm picks

an abstract state v such that

v G (Wf \ W^) n Cpie\,m(Wl*). (5.5)

Such a state lies at the border between W^1 and W™. The state v is split into two abstract

states v\ and V2, where:

Vl=vn Cpre^Wfl) v2 = v \ Cpve^Wfl).

As a consequence of (5.5), we have that V\,V2 j^ 0- The algorithm is given in detail as Algo­

rithm 2. We first state the partial correctness of the algorithm, postponing the analysis of its

termination to Section 5.3.4.

Lemma 2 After Step 3 of Algorithm 2, we have W^[C (l)OT C W^i-

Proof: The result follows from (5.4), and from the monotonicity of the /x-calculus

operators appearing in Steps 2 and 3 of Algorithm 2. I

Lemma 3 If Step 7 of Algorithm 2 is reached, there is at least one region v G (W™ \ W^1) n

Cpre\>m(W¥).

Proof: First, notice that since the algorithm did not terminate at Step 4 or Step 5, it

must be Wp n 0fv ^ 0 and Wf n 6]y = 0, which by the previous lemma implies W^ C W?.

55

Algorithm 2 3-valued Abstraction Refinement for Reachability Games
Input: A concrete game structure G = (S,\,S), a set of initial states 0 C S, a set of target

states T C S, and an abstraction V C 22 \0 that is precise for 9 and T.

Output: Yes if 6 n (l)OT / 0, and No otherwise.

1. while true do

2. W^ := Aty.(TTv U C p r e ^ F))

3. Wf1 := /xy.(TTv U Cpre] / 'm(y))

4. if Wf1 n 6>Tv = 0 then return No

5. else if Wf n 6»T̂ ^ 0 then return Yes

6. else

7. choose v € (Wf \ W\M) n Cpre1
/'m(W1

M)

8. let vi:=vC\ Cpre^Wj^J.) and v2 :=v\ v\

9. V:=(V\{v})U{v1,v2}

10. end if

11. end while

From the fact that W? is a least fix-point, we have W^ = fj,Y.(Wf U Cpre^'m(Y)). Thus, there

must be some v G W? \ Wf* with v £ Cpre]/'m(W1
M). I

Lemma 4 27ie sets i>i and v2 computed at Step 8 of Algorithm 2 are both non-empty.

Proof: Consider w e W 1
r a \ Wf4 with v £ Cpre]/'m(W1

M). For Vl = v n C p r e ^ W ^ l) ,

we have v\ ^ 0, for otherwise v\ g" Cpre1 'm(W1
M). Furthermore, we have V\ C v, for else we

would have v e Cpre1 ' (W^4), contradicting the fact that Wf4 is the fix-point computed at

Step 2. I

56

Theorem 1 (partial correctness) Algorithm 2 can be executed without errors. Moreover:

1. if the algorithm terminates with answer Yes, then 9 n (l)OT ^ 0;

2. if the algorithm terminates with answer No, then 9 n (1)<>T = 0.

Proof: The only statement that could result in an error in the execution of Algorithm 2

is the choice of v at Step 7; Lemma 3 ensures that the error never arises. The fact that if the

algorithm terminates, it returns a correct answer, is a consequence of Lemma 2. I

Figure 5.1: Three-Valued Abstraction Refinement in Reachability Game

Sufficient conditions for the termination of the algorithm are presented later, in Sec­

tion 5.3.4

Example. As an example, consider the game G illustrated in Figure 5.1. The state

space of the game is S = {1,2,3,4,5,6,7}, and the abstract state space is V = {va,Vb,vc,Vd}, as

indicated in the figure; the player-2 states are S2 = {2, 3,4}. We consider 9 = {1} and T = {7}.

After Steps 2 and 3 of Algorithm 2, we have W™ — {va,Vb,vc,Vd}, and WjM = {vc,Vd}-

Therefore, the algorithm can answer neither No in Steps 4, nor Yes in Step 5, and proceeds to

refine the abstraction. In Step 7, the only candidate for splitting is v = Vb, which is split into

Vi = Vb n Cprej(Wj^I) = {3}, and v2 = Vb \ v\ = {2,4}. It is easy to see that at the next

iteration of the analysis, v\ and va are added to Wf4, and the algorithm returns the answer Yes.

57

5.3.2 An Improved Algorithm for Reachability

Algorithm 2 can be improved by avoiding the full re-computation of the sets W^1

and W™ at each abstraction refinement. Once we obtain v\ and V2 as in Step 8, we can set

W :— W^1 U {vi}, and we can compute for the next iteration:

Wf := nY.(W U Cwe\M(Y))Wr := nY.{W U Cpre^Y))

The resulting algorithm is presented as Algorithm 3.

5.3.3 Safety Games

We next consider a safety game specified by a target T C S, together with an initial

condition 9 C S. Given an abstraction V that is precise for T and 9, the goal is to answer the

question of whether 9 n (l)nT = 0. As for reachability games, we begin by computing the set

W™ of may-winning states, and the set W^1 of must-winning states. Again, if W™r\01™ = 0, we

answer we answer Yes. In safety games, unlike in reachability games,

we cannot split abstract states at the may-must boundary. For reachability games, a may-state

can only win by reaching the goal T, which is contained in Wf4[: hence, we refine the may-

must border. In a safety game with objective DT, on the other hand, we have W™[C T, and a

state in W™1 can be winning even if it never reaches W\M j (which indeed can be empty if the

abstraction is too coarse). Thus, to solve safety games, we split abstract states at the may-losing

boundary, that is, at the boundary between W™ and its complement. This can be explained by

the fact that (l)nT = S\ (2)O^T: the objectives DT and O^T are dual. Therefore, we adopt

for DT the same refinement method we would adopt for O^T, and the may-must boundary for

(2)0- |T is the may-losing boundary for (l)oT. This yields Algorithm 4.

Theorem 2 (partial correctness) Algorithm 4 can be executed without errors. Moreover:

58

1. if the algorithm terminates with answer Yes, then 8 D (l)nT ^ 0;

2. if the algorithm terminates with answer No, then 6 D (1) D T = 0.

Proof : The theorem can be proved by noting that the goals OT and O^T are dual,

and by noting that from (5.3) we have:

vY.{T^ n C p r e ^ F)) = V \ fiY.«S \ T)^ U CWe\M(Y))

vY.{T]™ n Cpre^ m (y)) = V \ fiY.((S \ T)T£ U Cpref 'm(y)) .

Thus, the Algorithm 4 is the dual of Algorithm 2, and its correctness can be proved in analogous

fashion. I

We note that it is possible to obtain a more efficient version of Algorithm 4 by per­

forming a dual transformation to the one that yielded Algorithm 3. Precisely, before Step 1, we

let W := (T |v) ; the fix-points at Steps 2 and 3 are computed via W^ := z / K . f W n C p r e ^ F))

and W? := vY.{W C\ C p r e J ^ y)) ; and after Step 8 we set W := WJ" \ {vx}.

5.3.4 Termination

We present a condition that ensures termination of Algorithms 2 and 4 (and thus also

Algorithm 3). The condition states that, if there is a finite algebra of regions (sets of concrete

states) that is closed under Boolean operations and controllable predecessor operators, and that

is precise for the sets of initial and target states, then (i) Algorithms 2 and 4 terminate, and

(ii) the algorithms never produce abstract states that are finer than the regions of the algebra

(guaranteeing that the algorithms do not perform unnecessary work). Formally, a region algebra

for a game G = (S, A, S) is an abstraction U such that:

• U is closed under Boolean operations: for all u±,U2 € U, we have u\ U U2 £ U and

S\U!<=U.

59

• U is closed under controllable predecessor operators: for all u € U, we have Cpre1(u) £ U

and Cpre2('u) G U.

Theorem 3 (termination) Consider a game G with a finite region algebra U. Assume that

Algorithm 2 or 4 are called with arguments G, 9, T, with 9,T £ U, and with an initial abstraction

V C U. Then, the following assertions hold for both algorithms:

1. The algorithms, during their executions, produce abstract states that are all members of

the algebra U.

2. The algorithms terminate.

Proof : Let us prove the theorem for the reachability game. The proof for safety game

can be easily obtained by duality.

First, note that due to the closure properties of the region algebra U, the algorithm

computes entirely with regions in U: precisely, variables are only assigned regions of U. This

yields the first assertion of the theorem.

The termination of Algorithm 2 can be proved by the following argument. At each

refinement loop, the algorithm decreases the size of the uncertainty region W™ \ W^1, since the

set v\ computed in Step 8 will belong to W^1 in the following iteration. As the region algebra

U is finite, within a finite number of refinements the uncertainty region will be empty, and the

algorithm will return either Yes or No. I

Many games, including timed games, have the finite region algebras mentioned in the above

theorem [77, 45, 40].

60

Figure 5.2: Safety game, with objective aT for T = {1, 2, 3, 4}.

5.3.5 Comparison with Counterexample-Guided Control

It is instructive to compare our three-valued refinement approach with the counterexample-

guided control approach of [62]. In [62], an abstract game structure is constructed and analyzed.

The abstract game contains must transitions for player 1, and may transitions for player 2. Ev­

ery counterexample to the property (spoiling strategy for player 2) found in the abstract game

is analyzed in the concrete game. If the counterexample is real, the property is disproved; If the

counterexample is spurious, it is ruled out by refining the abstraction. The process continues

until either the property is disproved, or no abstract counterexamples is found, proving the

property.

The main advantage of our proposed three-valued approach over counterexample-

guided control is, somewhat paradoxically, that we do not explicitly construct the abstract

game. It was shown in [98, 41] that, for a game abstraction to be fully precise, the must tran­

sitions should be represented as hyper-edges (an expensive representation, space-wise). In the

counterexample-guided approach, instead, normal must edges are used: the abstract game rep­

resentation incurs a loss of precision, and more abstraction refinement steps may be needed than

with our proposed three-valued approach. This is best illustrated with an example.

Example. Consider the game structure depicted in Figure 5.2. The state space is

S = {1,2,3,4,5,6}, with Si = {1,2,3,4} and S2 = {5,6}; the initial states are 6 = {1,2}.

61

We consider the safety objective DT for T — {1,2,3,4}. We construct the abstraction V =

{va,Vb,vc} precise for 6 and T, as depicted. In the counterexample-guided control approach

of [62], hyper-must transitions are not considered in the construction of the abstract model,

and the transitions between va and Vb are lost: the only transitions from va and Vb lead to

vc. Therefore, there is a spurious abstract counterexample tree va —> vc; ruling it out requires

splitting va into its constituent states 1 and 2. Once this is done, there is another spurious

abstract counterexample 2 —> Vb —> vc; ruling it out requires splitting Vb in its constituent states.

In contrast, in our approach we have immediately W^4 = {va: Vb} and va,Vb € Cprej' ({va,Vb}),

so that no abstraction refinement is required. I

The above example illustrates the fact that the counterexample-guided control ap­

proach of [62] may require a finer abstraction than our three-valued refinement approach, to

prove a given property. On the other hand, it is easy to see that if an abstraction suffices to

prove a property in the counterexample-guided control approach, it also suffices in our three-

valued approach: the absence of abstract counterexamples translates directly in the fact that

the states of interest are must-winning.

5.4 Symbolic Implementation

We now present a concrete symbolic implementation of our abstraction scheme. We

chose a simple symbolic representation for two-player games; while the symbolic game represen­

tations encountered in real verification systems (see, e.g.,[38, 39]) are usually more complex, the

same principles apply.

62

5.4.1 Approximate Abstract ion Refinement Schemes

While the abstraction refinement scheme above is fairly general, it makes two assump­

tions that may not hold in a practical implementation:

• it assumes that we can compute Cpre^'m and Cpre^'M of (5.2) precisely;

• it assumes that, once we pick an abstract state v to split, we can split it into V\ and v-i

precisely, as outlined in Algorithms 2 and 4.

In fact, both assumptions can be related, yielding a more widely applicable abstraction refine­

ment algorithm for two-player games. We present the modified algorithm for the reachability

case only; the results can be easily extended to the dual case of safety objectives. Our start­

ing point consists in approximate versions Cpre i ' , Cprej' ~ : 2V >—> 2V of the operators

Cpref'm, Cpre^'M, for i e {1,2}. We require that, for all U C V and i e {1,2}, we have:

Cpi<%'m(U) C Cpref 'm +(t /) Cpre^ M - (C/)CCpr e i
y ' M (C/) . (5.6)

With these operators, we can phrase a new, approximate abstraction scheme for reachability,

given in Algorithm 5. The use of the approximate operators means that, in Step 8, we can

be no longer sure that both vi y= 0 and v \ v\ ^ 0. If the "precise" split of Step 8 fails, we

resort instead to an arbitrary split (Step 10). The following theorem states that the algorithm

essentially enjoys the same properties of the "precise" Algorithms 2 and 4.

Lemma 5 At Step 4 of Algorithm 5, we have W™~ [C (l) o T C W^+{.

Proof: Prom Equation 5.6, we have : Cpref'm(£/) C CWe^'m+(U) and Cpre i
y ,M"([/) C

Cpre,v'M(C/) for all U C V and i e {1,2}. For reachability game the approximate and accu­

rate must winning set is obtained by the respective fix-point formulas W^1* = fiY.{T]v U

Cpre] / 'M"(y) and Wf* = fiY.(T^ U Cpre1
/ 'M(F). Since we start with the same initial set and

63

in each iteration Cpre; , M~(Y) C Cpre*'M{Y) holds, it is obvious that W^~ C Wf4. Similar

arguments will prove that W™ C W™+. After we combine these two results with Lemma 2, we

obtain Wf-l C (1)<>T C W ^ + i . •

Theorem 4 T/ie following assertions hold.

1. Correctness. If Algorithm 5 terminates, it returns the correct answer.

2. Termination. Assume that Algorithm 5 is given as input a game G with a finite region

algebra U, and arguments 9,T G U, as well as with an initial abstraction V C U. As­

sume also that the region algebra U is closed with respect to the operators Cprei' ~ and

Cpre^' , for i G {1,2}, and that Step 10 of Algorithm 5 splits the abstract states in

regions in U. Then, (a) Algorithm 5 produces only abstract states in U in the course of

its execution and (b) it terminates within finite number of refinements.

Proof: (1) The correctness can be proved as Theorem 1 using Lemma 5. (2)(a)

The fact that Algorithm 5 produces only regions in U follows from the closure of U, and by

inspection of the operations performed by the algorithm, (b) The termination of Algorithm 5

follows again from the fmiteness of U, and from the fact that at each iteration, the uncertainty

region shrinks. I

5.4.2 Symbolic Game Structures

To simplify the presentation, we assume that all variables are Boolean. For a set X

of Boolean variables, we denote by {(X) the set of propositional formulas constructed from the

variables in X, the constants true and false, and the propositional connectives -i,A,V, —->. We

denote with 4>[ip/x] the result of replacing all occurrences of the variable x in (p with a formula ip.

For <j> G {{X) and x G X, we write {^}x.<fi for 4>[true/x]{^ip[false/x}. We extend this notation

64

to sets Y = {2/1,2/21 • • •, Vn) of variables, writing VY.(f> for Vyi.Vy2- • • • Vy„.</», and similarly for

3Y.<£. For a set X of variables, we also denote by X' = {x' | x £ X} the corresponding set of

primed variables; for <j) G {(X), we denote $' the formula obtained by replacing every x £ X

with x'.

A state s over a set X of variables is a truth-assignment s : X 1—> {T,F} for the

variables in X; we denote with S[X] the set of all such truth assignments. Given <f> £ {(X) and

s £ S[X], we write s \= (j) if <p holds when the variables in X are interpreted as prescribed by s,

and we let [4>\x = {s £ S[X] \ s\= <p}. Given <j> £ {(XUX') and s,t £ S[X], we write (s,t) |= <f>

if </> holds when x £ X has value s(x), and x' G X ' has value t(x). When X, and thus the state

space S[X], are clear from the context, we equate informally formulas and sets of states. These

formulas, or sets of states, can be manipulated with the help of symbolic representations such as

BDDs [21]. A symbolic game structure Gs = (X, Ai, A) consists of the following components:

• A set of Boolean variables X.

• A predicate Aj £ {(X) defining when it is player l's turn to play. We define A2 = ~Ai.

• A transition function A G {(X U X') , such that for all s £ S\X], there is some t £ S[X]

such that (s,i) \= A.

A symbolic game structure Gs — (X, Ai, A) induces a (concrete) game structure G — (S,X,5)

via 5 = S[X], and for s,t £ S, A(s) = 1 iff s \= Ai, and t £ 5(s) iff (s,t) \= A. Given a formula

(j) £ {(X), we have

C p r e i (M x) = [(Ai A 3X'.(A A0 ')) V ^ A x A VX'.(A -> 4>')\\x.

5.4.3 Symbolic Abstractions

We specify an abstraction for a symbolic game structure Gs = (AT, Ai, A) via a subset

Xa C X of its variables: the idea is that the abstraction keeps track only of the values of

65

the variables in Xa; we denote by Xc = X \ Xa the concrete-only variables. We assume that

Ai G {(Xa), so that in each abstract state, only one of the two players can move (in other words,

we consider turn-preserving abstractions [41]). With slight abuse of notation, we identify the

abstract state space V with Spf0] , where, for s £ S[X] and v G V, we let s £ v iff s(x) — v(x) for

all x G Xa. On this abstract state space, the operators Cprej'"1 and Cprej' can be computed

symbolically via the corresponding operators SCprej^ 'm and SCpre-L' , defined as follows. For

SCprei,m(<^) = 3XC. U i A 3X'.(A A ft) V A2 A VA".(A -> ft)) (5.7)

SCpre]/'M(0) = \fXc. I (Ai A 3X'.(A A ft)) V (A2 A VX'.(A -> ft) \ I (5.

The above operators correspond exactly to (5.2). Alternatively, we can abstract the transition

formula A, defining:

A£ a = 3XC.3XC '.A A%a = VXC3XC'.A .

These abstract transition relations can be used to compute approximate versions SCpre] / 'm+

and SCpre1' ~ of the controllable predecessor operators of (5.7), (5.8):

SCpre] / 'm+(0) = [(Ai A 3Xa'.(A%a A ft)) V (A2 A VX a ' . (A£ a -* ft)

S C p r e [' M - (^) = f A i A 3 X a ' . (A ^ o A 0 ') J V (A2 A V X a ' . (A ™ 0 - ^ ')

These operators, while approximate, satisfy the conditions (5.6), and can thus be used to im­

plement symbolically Algorithm 5.

5.4.4 Symbolic Abstraction Refinement

We replace the abstraction refinement step of Algorithms 2, 4, and 5 with a step that

adds a variable x € Xc to the set Xa of variables present in the abstraction. The challenge is to

66

choose a variable x that increases the precision of the abstraction in a useful way. To this end,

we follow an approach inspired directly by [31].

Denote by v G S^X0] the abstract state that Algorithms 5 chooses for splitting at

Step 7, and let ipx ~ G {{Xa) be the formula defining the set W^~ in the same algorithm.

We choose x G Xc so that there are at least two states Si,s% G v that differ only for the value

of x, and such that sy \= SCpre) / 'm+(V'ff_) and s2 ^ SCpre] / 'm + (Vf _) . Thus, the symbolic

abstraction refinement algorithm first searches for a variable x G Xc for which the following

formula is true:

3(X'\x). f x , - ^ S C p r e r - m + (< -)) j v | X . - (x # S C p r e r - m + (< -) n ,

where Xv is the characteristic formula of v.

Xv = /\<x\x<= Xa.v{x) = T \ A As -^x | x G Xa.v{x) = F

If no such variable can be found, due to the approximate computation of SCpre1 'm and

SCpre-i/ ~, then x G Xc is chosen arbitrarily. The choice of variable for Algorithm 4 can

be obtained by reasoning in dual fashion.

5.5 Conclusion

We have presented a technique for the verification of game properties based on the con­

struction, three-valued analysis, and refinement of game abstractions. The approach is suitable

for symbolic implementation, and can be implemented in a relatively straightforward manner.

The key insight of the approach consists on relying on three-valued versions of the usual predeces­

sor operators to analyze a system, avoiding the construction of a three-valued transition relation,

which would require an exponential blow-up in the size of the abstract system to achieve compa­

rable precision. The method, presented here for games, is equally suited to transition systems,

67

where it constitutes an alternative to the classical counterexample-guided refinement technique

of CEGAR [9, 31, 13].

Algorithm 3 Improved 3-valued Abstraction Refinement for Reachability Games
Input: A concrete game structure G = {S,X,S}, a set of initial states 9 C S, a set of target

states T C S, and an abstraction V Q22 \0 that is precise for 0 and T.

Output: Yes if 0 H (l) o T ^ 0, and No otherwise.

1. W:=T^

2. while true do

3. Wf := ^y.(W U Cpre} / 'M(y))

4. Wf1 := ^Y.(W U Cpre1
/ 'm(y))

5. if W ^ n 6]y = 0 then return No

6. else if W(* n 6>T̂ ^ 0 then return Yes

7. else

8. choose v G (Wf1 \ W ^) fl Cpre]/'m(M/1
M)

9. let « i : = « n Cpre^W^J.) and u2 := v \ vx

10. V:=(V\{v})U{Vl,v2}

11. W:=WU{>i}

12. end if

13. end while

69

Algorithm 4 3-valued Abstraction Refinement for Safety Games
Input: A concrete game structure G = (S,X,6), a set of initial states 8 C S, a set of target

states T C S , and an abstraction V C 22 \" that is precise for # and T.

Output: Yes if 0 n (l)nT ^ 0, and No otherwise.

1. while true do

2. Wf4 := vY.{T]^ n Cpre1
/ 'M(y))

3. W? := i/y.(TTy n Cpre5/'m(F))

4. if Wf1 n 6]y = 0 then return No

5. else if Wl4 n 6>Ty ^ 0 then return Yes

6. else

7. choose v € (Wp \ Wf4) n Cpre^ ,m(V \ Wq")

8. let vi := v n Cpre2(5 \ (Wf1!)) and w2 := u \ «i

9.]etV:=(V\{v})U{vuV2}

10. end if

11. end while

70

Algorithm 5 Approximate 3-valued Abstraction Refinement for Reachability Games
Input: A concrete game structure G — (S,X,5), a set of initial states 8 C S, a set of target

states T C S, and an abstraction V C 2 2 \® that is precise for 8 and T.

Output: Yes if 8 n (l)OT ^ 0, and No otherwise.

1. while true do

2. W f - := yY.(T]™ U C p r e ^ M _ (y))

3. W7+ : = AiF.(TT™ U Cpre1 ' 'm +(y))

4. if VF1
m+ n 6»ty = 0 then return No

5. else if W™~ n # 1 ^ 7̂ 0 then return Yes

6. else

7. choose i; G (W™+ \ Wf*~) n Cpre^'m + (W ^ ")

8. l e t v i ^ u n C p r e ^ ^ - i)

9. if v\ = 0 or vi = v

10. then split v arbitrarily into non-empty v\ and v-i

11. else w2 = f \ fi

12. end if

13. let V : = (V \ { v }) U { u i , u 2 }

14. end if

15. end while

71

Chapter 6

Interface Synthesis

6.1 Introduction

Verication of software systems is an extremely difficult problem due to the large size

of program state-space. Software programs often include library functions and these functions

are examples of open systems. The verification of such open systems becomes infeasible due to

two main problems. Firstly, in order to verify a given program one needs to 'inline' the library

function code and it increases the space complexity of the verification algorithms. Current

formal techniques like model-checking can not handle the large state-space generated from the

program variables. The second option is to verify the library functions a priori so that there is no

need to inline them. For this purpose, most of the time experts write a small code containing a

sequence of library functions calls (called client). The client code invokes the library functions to

close the open system. The library functions are difficult to verify in the absence of exhaustive

client program. Hence most of the verification approaches plug-in a client code to close the

open-system.

72

6.1.1 Interface and Properties

The current research [64, 10, 17] avoids these two problems by applying modular ver­

ification techniques which builds a small call sequence graph, called interface representing the

union of all client programs. The interface contains all possible call sequences which leads the

library to error or illegal states. Similarly, the interface should contain all possible call sequences

which avoids the error states. Henceforth the interface graph provides constrains on the use of

the function calls from outside. The user can distinguish the legal call sequences from the illegal

ones by simply looking at the interface. There are two immediate benefits of using the interfaces.

Firstly, these interfaces are a light-weight representation of the libraries and the implementa­

tion of the library functions can be replaced by the interface. Secondly, the interfaces can be

constructed without the help of any client program. The interface should be safe i.e. all illegal

call sequences (which leads the library to the error states) will be present in the interface. The

interface graph should be permissive i.e. all legal sequences will be present in the interface.

6.1.2 Related Work

However, there are some challenges in building succinct interfaces. The interface size

can become exponential in terms of number of variables. A symbolic representation and ab­

straction techniques partition the state-space into a small number of regions where every region

represents one node of the interface graph. Some researches apply these abstraction and symbolic

techniques to obtain a small but safe and permissive interface.

The work by Alur et. al. ([10]) uses Angluin's learning algorithm L* to create an

interface. The algorithm learns the interface language by asking membership and equivalence

queries to teacher (here program). The generated interface is safe and minimal; but not per­

missive. They have used predicate abstraction to handle large case-studies. However, the user

73

needs to provide the predicates in these cases. There is no automatic abstraction refinement.

The algorithm returns the minimal-size interface if the algorithm is not hit by timeout. Experi­

mental results illustrate that even in small examples timeout occurs. The CEGAR approach by

Henzinger et. al. ([64]) creates a safe and permissive interface. The size of the interface can be

large enough depending on the chosen counter-example. The direct approach by Beyer et. al.

([17]) creates an interface which is safe and permissive. This method does not use abstraction;

therefore the interface can become extremely large.

6.1.3 Contribution

Unlike the related work, this work can also be used in unstructured or non-object

oriented (C style) functions. In an object-oriented framework, every class variable is accessible to

every class method and visible to the class methods. Instead, we assume that each function may

also contain several local variables with limited scope within the function. Hence, we have more

general platform to compute interface. Each of these functions can also have several sequential

updates of variables, call to other functions even recursive calls to themselves. However, we

compute the interface including only functions accessible to the user level.

First stage of the three-stage algorithm parses each C library function by CIL (C

Intermediate Language) [82] and converts the function into TICC [37] input language. This

language syntax is similar to the guarded-update language. We have implemented the next two

stages in the symbolic tool TICC. The second stage computes the transition summary of each

function. This modular algorithm handles each function separately including local variables

within the scope. However, the space complexity of function summary becomes a bottleneck in

order to compute big functions which may contain a large number of guarded-updates. Hence,

we employ symbolic, three-valued abstraction-refinement algorithms. The abstraction in the

summarization ensures small size, and successive refinement of the abstract states fine-tunes the

74

abstraction to obtain the safety and permissiveness. The last stage builds an interface graph

from the abstract set of states. We describe different stages of building a symbolic, safe and

permissive interface in the following example.

Example 4 (Motivating Example) Figure 6.1(a) defines a stack data-type stackT and two

functions push and pop. The data type stackT has an array of integers el of size MAX and

an integer showing the top of the stack. The function pop returns error when the stack is empty

i.e. top is zero. The function push returns error if the top is equal to MAX. Otherwise, the

function copies sd into the el array at index top and increments the top later. Figure 6.1(b)

shows how the next stage converts a small C code into a set of guarded-update rules. The variable

err denotes the error in the library and the library goes to error state if the variable err equals 1.

Figure 6.1 (c) shows the interface graph from the set of rules. The initial state of the interface

graph is state 1 where the stack is empty. A call to pop function from the initial state will move

the library into an ERROR state. Similarly, a call of push form state 3 will lead the library to

an error state due to the full-stack. We can note that the interface can create many legal as well

as illegal sequences of stack functions. To check each of them we otherwise need a set of client

programs.

Finally, we discuss the applications of the safe and permissive interface graph. Firstly, any

given client program can immediately verify with the help of the interface graph whether the

function call sequence in the client leads the library to some error states. Secondly, the interface

can provide an offline test-suite for a set of functions. Often the source-code of the library is

unknown; however one can create a model program from the available documentation of the

functions. The interface graph obtained from the model program can be used to investigate the

implementation-under-test (IUT).

75

#define MAX 3
typedef struct (

int cl(.MAX] // array based
int top // range : 0 to MAX

} stackT;

voidPop(siackT*st){
if (st.lop = 0){

fprinif (stderr, "slack empty");
exil(l);

I

sl.lop = s t . top- 1;

}

void Push (siackT * st, int sd){
if(st.top==MAX){

fprintffstderr, "stack full");
cxil(l);

st.ei[top] = sd;
sl.lop = sl.lop + 1;

var sd, lop : [0..3]
varcl_0, c!_l,elj
var en-: [0..11

module pop:
vars: [0..1]
initial : s =0
output pop 1: {

s = 0 & top > 0
s = 0 & top = 0

endmodule

module push:
vars:[0..11
initial: s = 0
output pushl:{
s=0 & top = 0 ==
s=0 & top = 1 =
s=0 & top >= 2 =

endmodule

: [0..3]

= > s
=> s

>s'=
>s'=

= 1 & top
= 1 & err'

1 & el_0' =
1 & el_l' =
= 1 &err' =

= top - 1 ;
= 1;

sd & top'
sd & top'
1;

= top +
= top +

(a) Code (b) Rules (c) Rules

Figure 6.1: Stack Example

6.2 Algorithm

In this section we assume that the C functions are already parsed by CIL and modified

into a software library module Lib = (FG,VG,E,I). We describe the basic algorithms for

abstract refinement and building interface from a given library Lib. We also provide some

implementation specific optimizations.

6.2.1 Basic Algori thm

Algorithm 6 computes the interface for library Lib = (FG,VG,E,I). The algorithm

takes as input the library Lib, a set of functions F C FG, an abstraction R. The first abstraction

is obtained from the error set E and initial set I . Let us define r\ = {s G SG \ s £ E},

r2 = {s G SG I s <£ E,s € / } and r3 = {s G SG | s £ E, s £ I}. For i G {1,2,3}, if rt is

non-empty, then we add the set to R as one of the initial abstract states. The algorithm 6 calls

AbsRef for every function / G F separately to obtain a refined abstraction R w.r.t. the function.

The procedure Buildlnterf ace returns an interface graph IG given the set of abstract states.

76

Algorithm 6 Explore(Li6, F, R)

Input: a library Lib = (FQ, VQ, E, I), set of functions F, abstraction R

Output: Interface Graph IG

1. for each / G F do R:= AbsRef {R, / , E) end for

5. IG : = BuildInterface(JR, F, Lib)

Modular Verification : AbsRef (Algorithm 7) considers each function independently. The in­

terface graph is an input-enabled interface automata. Hence every abstract state in the function

can be checked individually for error reachability in one step function transition. The algorithm

starts with the initial abstraction R and gathers a number of useful variables Vabs from the

support set of the abstract states. The algorithm assigns the local abstraction Rf and the global

abstraction RQ to R. The algorithm computes the must abstraction transition with respect to

the abstraction Rf and the must pre-image SM of the error set E. The set SM determines the

set of states of the function which eventually reach the error set E. The set SM is a subset of

SM corresponding to the initial set of states of the function. One-step concrete pre-image S 1 of

SM I checks whether any new states can be added to SM I- If Sl \ SMI is non-empty, then the

algorithm refines then the local abstraction Rf, and the loop continues. Otherwise, it refines

the global abstraction RQ with respect to SM. We discuss the local and global refinements in

the following paragraph. The algorithm terminates when each abstract state can either reach E

or can not reach E in one function step.

Automatic Refinement : For refinement of the local abstraction Rf, the algorithm finds a

variable v G V? which is not in the set Vabs and is in the support set of S^ \ SMI- It adds

the variable v to the 'significant set' Vabs- The algorithm also creates a new abstraction Rf

with respect to different valuations of v. The refinement of global abstraction RQ happens after

77

the local abstraction reaches a fix-point and no new states can be added in the SM set. The

algorithm refines abstract states r G RQ that have non-empty intersections with both SM and

Building Interface : Algorithm 8 computes the interface graph from the abstraction R. The

algorithm maintains a list (Q) to iterate over all abstract states. The procedure append(Q,X)

adds each element i £ l a t the end of Q. The procedure member(Q,x) checks whether x is

a member of Q. The procedure removeFirst(Q) removes the first element from Q and returns

the element. For a function / and abstraction R, the operator Post(^R(r) computes the may-

successor of the region r. The algorithm adds an error-edge from the current state curr to the

error state Err if Post(^R(curr) and E have non-empty intersection. Otherwise, it appends the

next state Q and adds a new edge (curr, / , next). The algorithm terminates when the list Q is

empty.

Example 5 Let us revisit the Integer Stack example (Figure 6.1) to illustrate the algorithms.

We assume that the algorithm converts the library functions ({pop, push}) to the guarded-

update rules (Figure 6.1(b)). Let us denote the state-space as S. Figure 6.2 illustrates the run

of the explore algorithm(Algorithm 6). The initial abstract states TQ, r\ and r^ partitions the

state-space S into three regions (Figure 6.2(a)). The region ro = S \err=i corresponds to error

states, the region r\ = S jerr=o,top=o corresponds to the initial states without error states, the

region r^ = S \err=o,top>o corresponds to the non-initial non-error states.

The algorithm invokes AbsRef (Algorithm 7) for pop function; the significant variables

are Vabs := {err, top}. Let pop.s denotes the local variable s at function pop. In the first iteration,

the must predecessor SM of error state ro fail to include any new states. However, predecessor

of set SM returns a set S1 (i.e. S \p0p.s=o,top=o,err=o for the function pop). The support set

of S1 \ SM contains variable pop.s that belongs to the set V*, but not the set Vabs. The local

78

err = 0

err = 1

top=0

rl

top>0

r2

rO

top=0

rlO r l l

top>0

r20

rOO

r21

rOl

top=0

rl

top=l

r20

top=2

r21

rO

(a) (b) (c)

Figure 6.2: Run of the algorithm Explore on IntStack Example, (a) The initial abstraction (b)
The local abstraction inside function (c) The final global abstraction.

refinement of Rf adds different valuations of variable pop.s (Figure 6.2(b)). The second digit of

abstract states denotes the value of pop.s in the abstract state. In the next iteration, the must

predecessor SM becomes {rl0,r00,r01} and no new states can be added by the predecessor of

set SM- Hence the local abstraction Rf can not be further refined. The local refinement at

Figure 6.2(b) can not be returned as the locally added variable pop.s can not reach outside the

scope of function pop. The global set which leads the error set can be given by SM. SM is

a subset of SM corresponding to the initial state IL. The initial set IL for the pop function

is 5* |pOp.s=0- Global abstraction R provides the global abstraction RQ for pop function. The

algorithm refines the abstraction with respect to sets SM and its compliment set S \ SM. The

algorithm returns with an unchanged abstraction.

Similarly, the local abstraction includes the local variable push.s for the push function.

Even if the algorithm does not add any new global variable to the global refinement, it splits

global abstract set r^ with respect to the set of states (where top is 2 and err is 0) that reach error

states in one push call. Figure 6.2(c) shows the final abstraction. The build interface algorithm

(Algorithm 8) starts with the initial state r\ and adds the edges in the graph (Figure 6.1(c))

until the algorithm finishes exploring every node with respect to all functions.

The interface generated by Explore algorithm is safe and permissive by construction.

AbsRef Algorithm ensures the safety, and Buildlnterface algorithm ensures permissiveness. The

final abstraction R after calling AbsRef algorithms for each function / G F distinguishes error

79

reaching regions from the non-reaching ones. Buildlnterface algorithm applies all functions to

all abstract states ; therefore the interface graph captures all behaviors.

Theorem 1 Explore (Algorithm 6) returns a safe and permissive interface.

6.2.2 Implementation Optimizations

Approximate Abstract Function Summary and Predecessors: For practical purposes,

we do not compute the abstract predecessor operators on the monolithic transition relations.

Like [51], Equation 5.6 holds for approximate operators. The transition for a function / £ FQ

is represented as a number (say k) of guarded-update rules. For an abstraction R C 22 / , the

must and may abstraction of rule i £ { 1 , . . . , k} can be given as follows:

i.trans^ := {(r1}r2) £ (R x R) | rx £ i.guard]*™, r2 £ i.update(rli)
1iy}

i.trans^ := {{ri,r2) £ {R x R) \ rx £ i.guard]y , r2 £ i.update(rii)1y}

For all j £ {m+,M—}, X C 2R, the approximate transition relation, one step predecessor

operator and multi-step predecessor operator can be given respectively as:

Trans',' := I) i.trans^'

Pre^iX) -={r£R\ Trans^^r) n X + 0}

Pret'R (X):={r£R\rn (fiY.(X U Pref'*'1 (Y))) ± 0}

. For disjunctive transition relation, the approximate may predecessor operator will be precise;

however, the approximate must predecessor will be under-approximation of the precise one.

Theorem 2 For each f £ F, R C 2 z S / , and X C 2R, we have

PrebR_(X)l C Pref<*(XI) C Pre{£(X)l.

80

Rule Partition for Function One more optimization will be partitioning the rule set of each

function with respect to the abstraction to create less splitting. Computation of each individual

rule for must abstraction can create huge under-approximation; hence may need more splitting.

Example 6 In presence of If- Then-Else or Switch constructs in the source code, we may en­

counter the following rules after the translation.

r\ : hd = true ==> indata' = 0; hd' = false

ri : hd = false ==> indata' = 0; hd' = hd

The abstract set R is defined with respect to different valuations of indata variable. If we consider

each rule separately and apply the must abstraction, we miss the fact that the final value of

variable indata will be 0 and does not depend on the initial value of hd. The must predecessor

of S \indata=o will be 0 for both rules since the must abstraction of guards will be empty-set.

However, if we combine two rules by taking union of sets, then the must predecessor of S \indata=o

will be S for the combined rule and there will not be any further splitting.

The heuristic of rule set partition is obtained from the abstraction itself. If a function / has

k rules, then i-th and j - th rules can be grouped together for an abstraction R if the condition

i.guard]™ — j.guard]™ holds.

Incremental Building of Interface: Algorithm 6 can be used for incremental addition of

function sets; as we may not need to create the interface for all the functions at first. The

algorithm returns the refined interface for the included functions only. The created interface

can be used if we want to add more functions from the library.

81

6.3 Translation from C to Guard-Update Rules

In this section, we discuss the translation scheme to convert C functions into the "so­

ciable interface automata" [39] format. This format contains several guarded-update rules and

is the input format of the symbolic tool TICC. Here the front-end and back-end are indepen­

dent. Hence one only need a different front-end to parse functions from any other language (like

Java/C++) to generate the TICC input format models. The following stages of the algorithm

can reuse the out tool TICC to create interface graphs.

The algorithm feeds C functions into CIL[82] tool that parses C source code and returns

the control flow graph. The control flow graph contains block structure as nodes and conditions

as the transitions. We have modified the control flow graph for each function into a number of

guarded-update rules. The guards represent conditions and updates represent the assignments.

The specific variable s defines the location of current block. For a variable v, the primed variable

v' denotes the v in the next step. When the translator encounters a critical error condition (e.g.

call to exit(l)) in the control flow graph; the global variable err equals to 1 in the translated

library.

• Control Flow Structures: The C source like "if (a =0) {b=0;} else {b=l;}" is converted

into the following rules:

a = 0, s = 0 = = > b' = 0, s' = 1;

a! = 0,s = 0 = = > b' = l,s' = 1

The switch and loop (like while, for) structures can be handled similarly.

• Variables and Data Structures: Currently, the algorithm supports unsigned integers with a

small number (e.g. 4) of bits. The translation flattens the fixed-size arrays and structures.

In the Integer Stack example, in Figure 6.1(b) shows how 3 integer variables represent an

82

array of size 3. The structure elements are also flattened in the example. Currently, the

translation does not directly handle pointers and recursive data types. However, we can

manually translate the pointers into integers only if we know that the control flow of the

function is independent of the value at its pointer location.

• Function Calls: Currently in order to compute the abstract transition for function / , we

inline all the intermediate function call in the body of / . In the guarded-update rule

semantics, the rules of the intermediate functions are explicitly added to the rules of

/ . The algorithm maintains an explicit stack to handle functions and stores the return

address and the context variables in the stack. This trick can be applied to one function

calling another function as well as the non-tail-recursive function calls. The tail-recursive

function calls can be converted into loops and do not need the stack. In the Appendix, we

demonstrate a complete translation of a recursive c function.

6.4 Results

In this section we will provide results of some case studies and compare with the related

works.

Data Stream Case Study There is a data stream with a header of length 2h and data of

length 2d where h < d. The program uses d bits to represent the pointer and 1 bit for the

"error". The Boolean variable isHeader is 1 when in the header and is 0 otherwise. There are

four functions in the program. The function FirstHeader and FirstData takes the pointer to

the first header and data location respectively. The function Next moves the pointer within

the header or data in a cyclic fashion. The function Write results in an error when pointer

points to header section. Figure 6.3(a) shows the interface for the data-stream example. State 1

83

\
firstHeademrstData

ERROR

(a) Data Stream (b) Bit-Array-Manipulator

Figure 6.3: Interfaces

represents that the pointer in the data part and state 2 represents that the pointer in the header

part.

Bit Array Manipulator The Bit Array Manipulator has four functions : prev, next, access

and modify. Two global variables ptr of length 2k specify the current position of the pointer. The

global Boolean variable valid denotes whether the pointer is valid. Another Boolean variable

err specify the library error states. The functions next and prev respectively increments and

decrements the current pointer and set the valid flag to true. The functions access resets the

valid flag. The function modify sets err to true when the valid is false, otherwise sets valid to

false. Figure 6.3(b) shows the interface graph for the bit-array example. The state 1 represents

that the valid bit is false and the state 2 represents that the valid bit is true.

Comparison Figure 6.4 shows a comparison of explore algorithm with the related work on

these two examples. The first two columns show the name and different parameter values of the

case-studies. The next column describes the running time (in milliseconds) of explore algorithm

from the parsed guarded-update rules. The next column represents the number of non-error

84

Case Study
Data Stream

Bit Array
Manipulator

Params
h = 2,d=12
h = 4,d = 12
h = 13,<2= 13
k = 8
fc = 9
fc = 16

Time (ms) Regions
3 2
4 2
18 2
2 2
4 2
8 2

Direct Learning CEGAR
1028 2 257
4112 2 257
16384 2 2
68 2 2
130 2 2
16386 Timeout 2

Figure 6.4: Results

regions in the interface graph. The last three columns show non-error regions from other three

related works; we obtain the data from [16]. The results for Direct algorithm show that direct

algorithm runs fastest, but the size of interface graph is exponential in d. We obtain that the

CEGAR algorithm provides minimal graph only when h = d in the Data Stream example. The

size of the graph in the CEGAR algorithm depends on the proper representation of variables

with Boolean variables. The CEGAR approach refine by adding a new Boolean variable; which

has a risk of splitting many abstract states unnecessarily. In contrast, explore algorithm keeps

global abstraction separate from local abstraction inside the function and refines the global

abstraction lazily with respect to the final reachable set (SM). Learning algorithm provides

the minimal graph, but slowest of all three approaches. Explore algorithm provides the same

number of non-error regions as the learning algorithm. However, we can not compare time due

to different platforms.

6.5 Application of Interfaces

In this section, we describe how a safe and permissive interface can be useful in the

verification and testing of the software programs. The following section briefly describe the

modifications needed for the interface to be compatible with these settings.

85

6.5.1 Software Verification with Interfaces

After the algorithm builds an interface graph for a set of functions, one can easily verify

a given client program. The plan would be simulating the actions of the client program into

the interface graph and check whether the simulation trace reaches the library error state (State

ERROR). For example, a client with a single line modify(b) on the BitArrayManipulator b can

be simulated in the interface graph (Figure 6.3(b)). . We find a simulation trace from the initial

state to the error state (ERROR) (State 1). There could be an infinite number of potential

clients corresponding to those functions. We can compute the interface graph and model-check

each of them.

6.5.2 Offline Test Case Generation

In the model-based testing (MBT) paradigm, the tester checks an implementation

under test (IUT) with respect to a given model program (a specification of the IUT). The

proposed algorithm can create an interface graph from the definitions of the functions given in the

model program. We can create a C source regression test-suite from the interface generated from

the libraries. However, we need to extend the function calls with the argument values to create

a test-bench for the IUT. For example, Figure6.1(a) can be generated from the model program

in Figure6.1(c). If we have a linked-list implementation of an integer stack of finite length, we

can create an offline test-suite from the interface graph. The testing of the implementation

with respect to the test-suite checks whether the interface goes to the error state if and only if

the implementation goes to the error state. If we find a discrepancy between the behavior of

the interface graph and the system implementation, we assume the possibility of bugs in the

implementation source code.

86

6.6 Conclusions

In this chapter, we provide a new algorithm for interface synthesis with a local-global

abstraction refinement framework. This framework is can dramatically reduce the state-space of

the interface generation by hiding local variables inside each function. The abstract summariza­

tion of the functions provides scalability. The framework uses modular analysis to handle each

function separately. In this generalized setting, any C-style set of functions can be handled.

The results illustrate that the algorithm provides a safe, permissive and sufficiently

minimal (i.e. comparable to the learning algorithms) interface from the set of functions. We

have provided the approximate, abstract predecessor operators to handle the state-space inside

the function. The interface synthesis can be incremental : hence one can add new functions to

the interface and it may lead to refinements corresponding to the function.

The user can immediately verify clients with respect to the interface graph and the

graph can provide an offline test-suite for a new implementation. However, the translation

engine is extremely basic. In the future, we want to work more on covering more aspects (e.g.

pointers, recursive data types) of C source code such that we can have bigger case-studies. We

want to see how we can use the shape analysis algorithms to translate complex data types. We

also want to include CIL inside the tool TICC such that it can parse C functions and represent

the rules directly in MDD format. We want to implement the back-end using a combination of

MDD and SMT solvers such that the space-space problems can be handled better.

87

Algorithm 7 AbsRef(i?, / , E)
Input: Abstraction R, function / , error set E

Output: updated R

1- Vabs •= UreRsupport(r), Rf:=R

2. loop

3. SM := Pre^iE); Sf
M := SM n l{

4. 5 1 :=P re^ ' 1 (5Mi)

S1 \ (SMI)

6. if snew := 0 then RQ'—R

7. for each r £ R do

8. i f (r n ^) ^ 0 & (r \ 5 { ,) ^ 0

9. RG:=RG U {r i , r 2} \ {r}, where n := (r n S^) and r2 := (r \ Sf
M)

8. r e t u r n i?Q

7. else

8. split including a variable v from {i> € (V? \ Vabs) \ v £ support (snew)}

10. Abstraction i?/ is refined for all valuations of v

11. end if

88

Algorithm 8 Buildlnterface(it!, F, Lib)

Input: Abstraction R, a set of functions F, a library Lib = (FQ, VG, E, I)

Output: Interface Graph IG = (N,T,Te,In,Er)

1. Q,N,T,Te,In,Er = <D

2. append(Q, I); append(N, I U E); append(In, I); append(Er, E)

3. while Q is non-empty do

4. curr := removeFirst(Q)

5. for each / G F do

6. next := Post^R{curr)

7. if (not member(N, next)) then append (Q, next); append (N,next) endif

8. if (next C E) then Te := Te U (curr, f, Er) else T := T U (curr, / , nexi)endif

9. end for

lO.end while

89

Part IV

Probabilistic Abstraction

m

90

Chapter 7

Magnifying Lens Abstraction

7.1 Introduction

Markov decision processes (MDPs) provide a model for systems with both probabilistic

and nondeterministic behavior, and they are widely used in probabilistic verification, planning,

optimal control, and performance analysis [54, 15, 94, 33, 48]. MDPs that model realistic systems

tend to have very large state spaces, and the main challenge in their analysis consists in devising

algorithms that work efficiently on such large state spaces. In the non-probabilistic setting,

abstraction techniques have been successful in coping with large state-spaces: abstraction enables

to answer questions about a system by considering a smaller, more concise abstract model. This

has spurred research into the use of abstraction techniques for probabilistic systems [32, 67, 81,

70]. We present a novel abstraction technique, called magnifying-lens abstraction (MLA), for

the analysis of reachability and safety properties of MDPs with very large state spaces. We show

that the technique can lead to substantial space savings in the analysis of MDPs.

An MDP is denned over a state space S. At every state s G S, one or more actions

are available; with each action is associated a probability distribution over the successor states.

91

We focus on safety and reachability properties of MDPs. A safety property specifies that the

MDP's behavior should not leave a safe subset of states T C S; a reachability property specifies

that the behavior should reach a set T C S of target states. A controller can choose the actions

available at each state so as to maximize, or minimize, the probability of satisfying reachability

and safety properties. MLA computes converging upper and lower bounds for the maximal

reachability or safety probability; the minimal probabilities can be obtained by duality. In its

ability to provide both upper and lower bounds for the quantities of interest, MLA is similar to

[70].

In the analysis of large MDPs, the main challenge lies in the representation of the value

v(s) of the reachability or safety probability at all s E S. In contrast, actions and transition

probabilities from each state s can usually be either computed on the fly, or represented in a

compact fashion, via Kronecker representations or probabilistic guarded commands [85, 48, 66].

The goal of MLA is to reduce the space required for storing v and, secondarily, the running time

of the analysis. To this end, MLA partitions the state space 5* of the MDP into regions; for each

region r, it stores upper and lower bounds v+(r), v~(r) for the maximal reachability or safety

probability. The values v+(r), v~{r) constitute bounds for all states s £ r. In order to update

these estimates, MLA iterates over the regions, "magnifying" one of them at a time. When the

region r is magnified, MLA computes v+(s), v~ (s) at all concrete states s E r via value iteration,

and then summarizes these results by setting v+{r) = max s 6 r «
+ (s) and v~(r) = min s 6 rw~(s).

Figuratively, MLA slides a magnifying lens across the abstraction, enabling the algorithm to see

the concrete states of one region at a time when updating the region values. Given a desired

accuracy e for the answer, MLA periodically splits regions r with v+(r) — v~(r) > e into smaller

regions. In this way, the abstraction is refined in an adaptive fashion: smaller regions are used

where finer detail is needed, guaranteeing the convergence of the bounds, and larger regions are

used elsewhere, saving space. When splitting regions, MLA takes care to re-use information

92

gained in the analysis of the coarser abstraction, in the evaluation of the finer one. MLA can

be adapted to the problem of computing a control strategy by recording the optimal actions for

the concrete states of interest, when they are magnified.

Related work on M D P abstraction. Compared with other approaches to MDP abstrac­

tion, MLA has two distinctive features:

1. it clusters states based on value, rather than based on the similarity in their transition

function;

2. it updates the valuation of abstract states by considering the concrete states associated

with the abstract states, rather than by considering an abstract model only.

The second of the above points underlines how MLA is a semi-abstract, rather than fully ab­

stract, approach to verification: the abstract computation still involves consideration of the

concrete states, even though this is done in a way that provides space savings.

For the most part, approaches to MDP abstraction in the literature have followed

another route, which we call very broadly the full abstraction approach: an abstract model is

constructed, and then analyzed on the basis of an abstract transition structure, without further

reference to the concrete model. These fully abstract approaches generally rely on clustering

states that are similar not only in value, but also in transition structure: in this way, every region

of concrete states can be summarized via an abstract state with an associated abstract transition

structure. The abstract transition structure may, or may not, be similar to the concrete one.

For instance, [70] bases the abstract transition structure on games, rather than MDPs: in this

fashion, player 1 can represent the choice of action of the MDP, and player 2 can represent

the uncertainty about the concrete state corresponding to the abstract state. This approach

enables the computation of lower and upper bounds for properties of interest, similarly to MLA.

93

In a somewhat related spirit, but using entirely different technical means, [58] proposes to

abstract Markov chains into abstract Markov chains whose transitions are labeled with intervals

of probability, representing the uncertainty about the concrete state. Clustering states based on

the similarity in their transition probabilities has also been used in [52], which proposes to find

the coarsest refinement of an MDP where for each action, states in the same region have the same

probability of going to other regions. An approach for the verification of probabilistic reachability

properties via abstraction has been proposed in [32]. The abstraction is built through successive

refinements starting from a coarse partition based on the property. Several other approaches also,

in fact, rely on constructing MDP abstractions based on simulation or abstract interpretation

[67, 81, 80]; all of these approaches rely on clustering states with similar transition structure,

and representing these clusters of states, and their transition structures, via compact abstract

representations.

The full-abstraction approach outlined above, and the partial value-based approach

followed by MLA, each have advantages. The full-abstraction result can handle unbounded, and

(depending on the specific approach) even infinite state spaces. In contrast, the space savings

afforded by MLA are limited to a square-root factor (a system of size n can be studied in 0{y/n)

space), due to the need to consider the concrete states corresponding to each abstract one.

Furthermore, the full-abstraction approaches typically need to construct the abstract model

only once; in contrast, MLA needs to refer to concrete states (albeit not all of them at once)

during the computation.

On the other hand, the ability of MLA to cluster states based on value only, disregarding

differences in their transition relation, can lead to compact abstractions for systems where full

abstraction provides no benefit. We will give below an example supporting this. Furthermore, in

MLA the abstraction is refined dynamically, depending on the required accuracy of the analysis;

there is no need to "guess" the right state partition in advance. In our experience, MLA is

94

' 4

I f i

S

1

•

•

I

I

1

•

•

•

1

a M

16

8

1

|

I

|

I

I

|

i

m

(a) Initial Abstraction (b) Final Abstraction

Figure 7.1: Initial, and final refined abstraction, for the problem of motion planning in a 24 x 24
minefield. The circles denote the mines.

particularly well-suited to problems where there is a notion of locality in the state space, so

that it makes sense to cluster states based on variable values — even though their transition

relations may not be similar. Many planning and control problems are of this type. MLA instead

is not as well-suited to problems where clustering states based on variable values is less effective.

Approaches based on predicate abstraction could lend the MLA approach more generality.

An example of Magnifying-Lens Abstraction. To illustrate MLA, and its potential ben­

efits, we give a simple example. We consider the problem of navigating aim xn minefield. The

minefield contains m mines, each with coordinates (XJ,J/J), for 1 < i < m, where 1 < x* < n,

1 < V% < n. We consider the problem of computing the maximal probability with which a robot

can reach the target corner (n, n), from all n x n states. At interior states of the field, the robot

can choose among four actions: Up, Down, Left, Right; at the border of the field, actions that

95

lead outside of the field are missing. Prom a state s = (x,y) £ {l,...,n}2 with coordinates

(x,y), each action causes the robot to move to square (x',y') with probability q(x',y'), and to

"blow up" (move to an additional sink state) with probability 1 — q(x', y'). For action Right, we

have x' = x + 1, y' = y; similarly for the other actions. The probability q(x', y') depends on the

proximity to mines, and is given by

«(*', V') = UT exp (-0 .7 • f(x' - x%f + (y' - Vl)
2

The problem, for n = 24, is illustrated in Figure 7.1.

Intuitively, it is desirable to group the 8 x 8 states in the top-middle area into a single

region r^: since no mines are nearby, the robot can freely roam in VQ, SO that the maximal

probability of reaching the target corner is essentially constant across ro. Indeed, to a human

trying to determine a best path to the target corner, the states in TQ are essentially equivalent.

When the 8 x 8 concrete states are grouped in ro, MLA leads to accurate results, since it can

analyze the dynamics inside TQ when TQ is magnified. We also note how, in this example, the

ability of MLA to refine the abstraction adaptively is crucial. As shown in Figure 7.1(b), MLA is

able to use small regions close to mines, and large regions elsewhere. If we insisted on a uniform

region size, then we would have to adopt the smallest size throughout, and no space savings

would be possible.

On the other hand, the full-abstraction approaches described earlier, such as [32, 81, 70],

based on probabilistic simulation [95], are not well suited to this example. Such techniques would

associate with an abstract state, such as ro, a summary of the transition structure from states

s 6 ro, and use that summary to analyze the abstraction. The problem is that the states in ro,

while similar in value, are not similar in transition structure: the states on the border of ro can

transition outside of ro, while those in the interior cannot. In the abstraction, the probability

of going from ro to the region at the right hand side will be modeled as being in an interval

96

>

[0,q], for some q close to 1 (all mines are far away). Consequently, previous techniques would

have yielded a lower bound of 0, and an upper bound close to 1, for the maximum probability

of reaching the target corner. Similarly, the technique of [52] would lead to recursively splitting

the MDP, until the' regions consisted of only one concrete state each.

Other related work. MLA is reminiscent to methods that represent value functions via

ADDs or MTBDDs [30, 11] with an approximation factor used to merge leaves. The similarity,

however, is superficial: MLA leads to far more precise results in the analysis; we discuss this in

the conclusions, where the appropriate notation will be available.

MLA is also loosely reminiscent of adaptive mesh refinement (AMR) methods used in

the solution of partial differential equations [14]. There are, however, two important differences

between MLA and AMR. In AMR, separate lower and upper bounds are not kept. AMR methods

perform computation at the finest mesh sizes only where needed. In MLA, due to the discrete

nature of MDPs, we have no way of computing over a "coarse mesh" only: to update valuations

over a region, we need to "magnify" the region to its individual states. Thus, MLA is forced to

consider the individual states over the whole system, and it summarizes and returns the results

in terms of lower and upper bounds, which are well-suited to answering verification questions.

7.2 Magnifying-Lens Abstraction

Magnifying-lens abstractions (MLA) is a technique for the analysis of reachability and

safety properties of MDPs. Let v* be the valuation on S that is to be computed: v* is one of

^or11! ^DT X) V<yrn> V™x. Given a desired accuracy eabs > 0, MLA computes upper and lower

bounds for v*, spaced less than e0j,s. MLA starts from an initial partition R of S, and computes

the lower and upper bounds as valuations u~ and u+ over R. The partition is refined, until the

97

difference between u~ and u+, at all regions, is below a specified threshold. To compute u~ and

u+, MLA iteratively considers each r in turn, and performs a magnified iteration: it improves

the estimates for u~~{r) and w+(r) using value iteration on the concrete states s € r.

The MLA algorithm is presented as Algorithm 9. The algorithm has parameters T, / ,

g, which have the same meaning as in Algorithm Vallter. The algorithm also has parameters

efloat > 0 and eabs > 0. Parameter £aos indicates the maximum difference between the lower and

upper bounds returned by MLA. Parameter £ float, as in Vallter, specifies the degree of precision

to which the local, magnified value iteration should converge. 'MLA should be called with

Eabs greater than Efloat by at least one order of magnitude: otherwise, errors in the magnified

iteration can cause errors in the estimation of the bounds. Statement 2 initializes the valuations

u~ and u+ according to the property to be computed: reachability properties are computed as

least fix-points, while safety properties are computed as greatest fix-points [49]. A useful time

optimization, not shown in Algorithm 9, consists in executing the loop at lines 6-9 only for

regions r where at least one of the neighbor regions has changed value by more than £float •

Magnified iteration. The algorithm performing the magnified iteration is given as Algo­

rithm 10. The algorithm is very similar to Algorithm 1, except for three points.

First, the valuation v (which here is local to r) is initialized not to [T], but rather, to

u~(r) if / = max, and to u+(r) if / = min. Indeed, if / = max, value iteration converges from

below, and u~{r) is a better starting point than [T], since [T](s) < u~{r) < v*(s) at all s £ r.

The case for / = min is symmetrical.

Second, for s € S\r, the algorithm uses, in place of the value v(s) which is not available,

the value u~(r') or u+(r'), as appropriate, where r' is such that s G r'. In other words, the

algorithm replaces values at concrete states outside r with the "abstract" values of the regions

to which the states belong. To this end, we need to be able to efficiently find the "abstract"

98

Algorithm 9 MLA(T, f,g,Sfloat,eabs) Magnifying-Lens Abstraction

1. R := some initial partition.

2. if / = max then u~~ := 0; u+ := 0 else u~ := 1; u+ := 1

3. loop

4. repeat

5. ,u+ := u+\ u~ := u~;

6. for r £ R do

7. u+(r) := MagnifiedIteration(r, R,T,u+,u~ ,u+,m&x, / , g,efloat)

8. u~(r) := MagnifiedIteration(r, R,T,ii~,u~,u+,mm, f,g,efloat)

9. end for

10. until | \u+ - u+11 + | \u~ - u~ 11 < efloat

11. if \\u+ -W\\ > eabs

12. then R,u~,u+ := SplitRegions(i?,u~,u+,eat,s)

13. else return R,u~ ,u+

14. end if

15. end loop

counterpart [S]R of a state s £ S. We use the following scheme, similar to schemes used in AMR

[14]. Most commonly, the state-space S of the MDP consists in value assignments to a set of

variables X — {x\,X2, • • • ,x{\. We represent a partition R of S, together with the valuations

u+, u~, via a binary decision tree. The nodes of the tree are labeled by (y,i), where y G X is

the variable according to which we split, and i is the position of the bit (0 =LSB) of the variable

according to whose value we split. The leaves of the tree correspond to regions, and they are

labeled with u~, u+ values. Given s, finding [S]R in such a tree requires time logarithmic in |5 | .

Third, once the concrete valuation v is computed at all s £ r, Algorithm 10 returns

99

Algorithm 10 MagnifiedIteration(r, R,T,u,u , u + , h , f,g,efloat)

v: a valuation on r

1. if / = max

2. then for s S r do v(s) = u~(r)

3. else for s £ r do u(s) = it+(r)

4. repeat

5. 0 := v

6. for all s £ r do

/

v(s) = f moo. ^
V

^ p (s , a , s ') - ' 0 (s ') + ^ p(s,a,s ') • u([s]R)
s'eS\r s '6r

a e r(s)

7. until ||v -•0| | < e^oat

8. return /i{v(s) \ s E r}

the minimum (if /i = min) or the maximum (if h = max) of v(s) at all s £ r, thus providing a

new estimates for u~(r), u + (r) , respectively.

Adaptive abstraction refinement. We denote the imprecision of a region r by A(r) =

u+(r)— u~(r). MLA adaptively refines a partition R by splitting all regions r having A(r) > ea6s.

This is perhaps the simplest possible refinement scheme. We experimented with alternative re­

finement schemes, but none of them gave consistently better results. In particular, we considered

splitting the regions with high A-value, all whose successors, according to the optimal moves,

have low A-value: the idea is that such regions are the ones where precision degrades. While this

reduces somewhat the number of region splits, the total number of refinements is increased, and

the resulting algorithm is not clearly superior, at least in the examples we considered. We also

experimented with splitting all regions r £ R with A(r) > 8, for a threshold 5 that is initially

100

set to 5, and that is then gradually decreased to eabs- This approach, inspired by simulated

annealing, also failed to provide consistent improvements.

In the minefield example, each region is squarish (horizontal and vertical sizes differ

by at most 1); we split each such squarish region into 4 smaller squarish regions. In more

general cases, the following heuristic for splitting regions is widely applicable, and has worked

well for us. The user specifies an ordering XQ, X \ , . . . , x; for the state variables X defining S: this

specifies a priority order for splitting regions. As previously mentioned, we represent a partition

R via a decision tree, whose leaves correspond to the regions. In the refinement phase, we split

a leaf according to the value of a new variable (not present in that leaf), following the variable

ordering given by the user. Precisely, to split a region r, we look at the label (XJ, i) of its parent

node. If i > 0, we split according to bit i — 1 of Xj\ otherwise, we split according to the MSB

of Xj+\. A refinement of this technique allows the specification of groups of variables, whose

ranges are split in interleaved fashion. Once a region r has been split into regions 7"ij7"2> w e

set u~{rj) = u~{r) and u+{rj) = u+{r) for all j = 1,2. A call to SplitRegions(.R,u+ ,u~,eaf,s)

returns a triple R, u~ ,u+, consisting of the new partition with its upper and lower bounds for

the valuation.

Correctness . The following theorem summarizes MLA correctness.

Theorem 3 For all MDPs M = (S,A,T,p), all T C S, and all eabs > 0, the following asser­

tions hold.

1. Termination. For all Sfloat > 0, and for all f,g S {min,max}, the call MLA(T, f,g,£ float, tabs)

terminates.

2. (Partial) correctness. Consider any g € {max, min}, any eabs > 0, and any A € {D ,0} ;

and let f = min if A = • , and f = max if A — O. The following holds. For all S > 0,

101

there is £float > 0 such that:

Vr &R: u+{r) - u~ [r) < eabs

V s e 5 : u-{[s]R)-S < V£T(s) < u+([s]R)+d

where (R,u~,u+) = MLA(T,f,g,efloau£abs)-

We note that the theorem establishes the correctness of lower and upper bounds only within a

constant S > 0, which depends on £float- This limitation is inherited from the value-iteration

scheme used over the magnified regions. If linear programming [54, 15] were used instead,

then MLA would provide true lower and upper bounds. However, in practice value iteration

is preferred over linear programming, due to its simplicity and great speed advantage, and the

concerns about 5 are solved — in practice, albeit not in theory — by choosing a small £float > 0.

7.3 Experimental Results

In order to evaluate the time and space performance of MLA, we have implemented

a prototype, and we have used it for three case studies: the minefield navigation problem, the

Bounded Retransmission Protocol [32], and the ZeroConf protocol for the autonomous configu­

ration of IP addresses [27, 70].

When comparing MLA to Vallter, we compute the space needs of the algorithms as

follows. For Vallter, we take the space requirement to be equal to |S|, the domain of v. For

MLA, we take the space requirement to be the maximum value of 2 • |i?| + max rg# |r| that

occurs every time MLA is at line 4 of Algorithm^ this gives the maximum space required to

store the valuations u+, u~, as well as the values v for the largest magnified region. Since

maxrefl |r| > (|5|/|i2|), the space complexity of the algorithm is (lower) bounded by a square-

root function ^ 8 • | 5 | .

102

Algorithm
Vallter
MLA

Space
16,384
7,926

Time
21.97

123.54
MLA Iteration Details

#Abs
1
2
3
4
5
6

\R\
144
576

2,312
3,256
3,566
3,899

D
0.99
0.83
0.66
0.64
0.02
0.01

Time
9

38
47
11
14
2

Algorithm
Vallter
MLA

Space
65,536

7,944

Time
130.18
185.13

MLA Iteration Details
#Abs

1
2
3
4
5

\R\
256
985

1,513
2,341
3,844

D
0.98
0.65
0.77
0.60
0.01

Time
49
76
12
17
29

(b) n = 256, m = 128

(a) n = 128, m = 128

Algorithm
Vallter
MLA

Space
262,144
30,180

Time
1,065.36
3,199.31

MLA Iteration Details
#Abs

1
2
3
4
5
6

\R\
576

2,295
4,347
7,171

11,678
14,862

D
0.99
0.77
0.77
0.66
0.52
0.01

Time
299

1648
206
228
362
453

(c) 71 = 512, m = 512

Figure 7.2: Comparison between MLA and Vallter for n x n mine-fields with m mines, for
£abs = 10~2 and efloat = 10"4. Mine densities (m/n2) are (a) 1/64, (b) 1/512, and (c) 1/512.
All times are in seconds. #Abs is the number of abstraction steps (number of loops 3-15 of
MLA), and D = max r£fl(ti+(r) — u~(r)).

7.3.1 Minefield Navigation

We experimented with different-size mine-fields in the mine-field example. In all cases,

the mines were distributed in a pseudo-random fashion across the field. The performance of

algorithms Vallter and MLA, for eahs — 0.01, are compared in Figure 7.2. As we can see, the

space savings are 2.06 for a mine density of 1/64, and an average of 8.47 for a mine density of

1/512. This comes at a cost in running time, which is of 5.67 for a mine density of 1/64, and

1.42 to 3.00 for a mine density of 1/512. Especially for lower mine densities, MLA provides

space savings that are larger than the incurred time penalty. The space savings are even more

pronounced when we decrease the desired precision of the result to eabs = 0.1, as indicated in

103

Algorithm
Vallter
MLA

Space
65,536

4,548

Time
130.08
126.40

Algorithm
Vallter
MLA

Space
16,384
3,672

Time
20.51
54.51

(a) n = 128, m = 128 (b) n = 256, m = 128

Algorithm
Vallter
MLA

Space
262,144

15,476

Time
1,065.65
1,853.01

(c) n = 512, m = 512

Figure 7.3: Comparison between MLA and Vallter for n x n mine-fields with m mines, for
£abs = 10 _ 1 and efloat = 10 - 2 . Mine densities (m/n2) are (a) 1/64, (b) 1/512, and (c) 1/512.
All times are in seconds.

Figure 7.3.

7.3.2 The ZeroConf Protocol

The ZeroConf protocol [27] is used for the dynamic self-configuration of a host joining

a network; it has been used as a test-bed for the abstraction method considered in [70]. We

consider a network with 4 existing hosts, and 32 total IP addresses; protocol messages have a

certain probability of being lost during transmission. We consider the problem of determining

the worst-case probability of a host eventually acquiring an IP address: this is a probabilistic

reachability problem.

The abstraction approach of [70] reduces the problem from 26,121 concrete reachable

states to 737 abstract states. MLA reduces the problem to 131 regions, requiring a total space

of 1267 (including also the space to perform the magnification step) for eabs = 10"~3 and £float —

10""6. We cannot compare the running times, due to the absence of timing data in [70].

7.3.3 Bounded Retransmission Protocol

We also considered the Bounded Retransmission Protocol described in [32]. We com­

pared the performance of algorithms Vallter and MLA on "Property 1" from [32], stating that

104

N

16
32
64

MAX

3
5
5

Vallter
time

0.08
0.21
0.40

^Reachable
states
1,966
5,466

10,650

MLA
space

918
2,604
5,380

MLA
time
27.38

140.79
266.53

Figure 7.4: Comparison between MLA and Vallter for BRP. N denotes number of chunks and
MAX denotes the maximum number of retransmissions. All times are in seconds.

the sender eventually does not report a successful transmission. The results are compared in

Figure 7.4, for eats = 10~2 and efloat = 10 - 4 . MLA achieves a space saving of a factor of 2, but

at the price of a great increase in running time.

7.3.4 Discussion

From these examples, it is apparent that MLA does well on problems where there

is some notion of "distance" between states, so that "nearby" states have similar values for

the reachability or safety property of interest. These problems are common in planning and

control. As we discussed in the introduction, many of these problems do not lend themselves to

abstraction methods based on the similarity of transition relations, such as [70, 32], and other

methods based on simulation. We believe the MLA algorithm is valuable for the study of this

type of problems. We note that each mine affects a region of size 5 x 5 by more than the desired

precision £ais = 10~2. Therefore, while the mine density is only 1/512, the ratio of "disturbed"

vs. "undisturbed" state space is 25/512, or 1/20. This is a typical value in planning problems

with sparse obstacles.

On the other hand, for problems where simulation-based methods can be used, these

methods tend to be more effective than MLA, as they can construct, once and for all, a small

abstract model on which all properties of interest can be analyzed.

105

7.4 Conclusions

A natural question about MLA is the following: why does MLA consider the concrete

states at each iteration, as part of the "magnification" steps, rather than constructing an abstract

model once and for all, and then analyze it, as other approaches to MDP abstraction do [32,

67, 81, 70]? The answer has two parts. First, we cannot build an abstract model once and for

all: our abstraction refinement approach would require the computation of several abstractions.

Second, we have found that the cost of building abstractions that are sufficiently precise, without

resorting to a "magnification" step, is substantial, negating any benefits that might derive from

the ability to perform computation on a reduced system.

To understand the performance issues in constructing precise abstractions, consider the

problem of computing the maximal reachability probability. To summarize the maximal proba­

bility of a transition from a region r to n, we need to compute P r
+ (ri) = min s S r max l £ n Pr^ (r ^ r i) ,

where U is the "until" operator of linear temporal logic [78]; this quantity is related to building

abstractions via weak simulation [95, 12, 86]. These probability summaries are not additive: for

n ^ r2, we have that P+{r{) + Pr
+(r2) < P+{r\ U r2), and equality does not hold in general.

Indeed, these probability summaries constitute capacities, and they can be used to analyze max­

imal reachability properties via the Choquet integral [93, 59, 60]. To construct a fully precise

abstraction, one must compute P+(R') for all R' C i?, clearly a daunting task. In practice, in

the minefield example, it suffices to consider those R' C R that consist of neighbors of r. To

further lower the number of capacities to be computed, we experimented with restricting R' to

unions of no more than k regions, but for all choices of k, the algorithm either yielded grossly

imprecise results, or proved to be markedly less efficient than MLA.

The space savings provided by MLA are bounded by a square-root function of the state

space. We could improve this bound by applying MLA hierarchically, so that each magnified

106

region is studied, in turn, with a nested application of MLA.

Symbolic representations such as ADDs and MTBDDs [30, 11] have been used for

representing the value function compactly [48, 66]. The decision-tree structure used by MLA

to represent regions and abstract valuations is closely related to MTBDDs. The space savings

are limited by the fact that the value function is usually slightly different at different states.

MLA is loosely reminiscent of approaches that cluster MTBDDS leaves with values within a

specified e > 0. However, the similarity is superficial: such leaf-clustering corresponds in MLA

to taking eabs = Afloat = £, and yields considerably poorer results than clustering according to

sabs, and computing according to Sfloat, as MLA does. In particular, MTBDDS leaf-clustering

approaches do not yield lower and upper bounds for the property of interest. In the next chapter

we intend to explore symbolic implementations of MLA, where separate MTBDDs will be used

to represent lower and upper bounds.

107

Chapter 8

Symbolic Magnifying Lens Abstraction

8.1 Introduction

Markov decision processes (MDPs) provide a model for systems with both probabilistic and

nondeterministic behavior, and are widely used in probabilistic verification, planning, inventory

optimal control, and performance analysis [54, 15, 94, 33, 92]. At every state of an MDP, one

or more actions are available; each action is associated with a probability distribution over the

successor states. We focus on safety and reachability properties of MDPs. A safety property

specifies that the MDP's behavior should not leave a safe subset of states; a reachability property

specifies that the behavior should reach a set of target states. A controller can choose the actions

available at each state so as to maximize, or minimize, the probability of satisfying reachability

and safety properties. MDPs that model realistic systems tend to have very large state spaces,

and therefore the main challenge in analyzing such MDPs consists in devising algorithms that

work efficiently on large state spaces.

In the non-probabilistic setting, abstraction techniques have been successful in coping

with large state-spaces: by ignoring details not relevant to the property under study, abstraction

108

makes it possible to answer questions about a system through the analysis of a smaller, more

concise abstract model. This has spurred research into the use of abstraction techniques for

probabilistic systems [32, 67, 81, 70]. The majority of these techniques follow a full abstraction

approach: an abstract model is constructed and, during its analysis, all details about the concrete

system are forgotten.

In [50], de Alfaro and Roy proposed an alternative approach, called magnifying-lens

abstraction (MLA) [50]. This is based on partitioning the state space of an MDP into regions

and then analyzing ("magnifying") the states of each region separately. The lower and upper

bounds for the magnified region are updated by computing the minimum and maximum values

over the states of the region. Figuratively, MLA slides a magnifying lens across the abstraction,

enabling the algorithm to see the concrete states of one region at a time when updating the

region values.

Regions are refined adaptively until the difference between the lower and upper bounds

for all regions is within some specified accuracy. In this way, the abstraction is refined in

an adaptive fashion: smaller regions are used when finer detail is required, guaranteeing the

convergence of the bounds, and larger regions are used elsewhere, saving space. When splitting

regions, MLA takes care to re-use information gained in the analysis of the coarser abstraction

in the evaluation of the finer one. In its ability to provide both upper and lower bounds for the

quantities of interest, MLA is similar to [70].

Although experimental results have demonstrated that using MLA leads to space sav­

ings, the explicit representation of the probabilistic transition system employed in [50] placed a

limit on the size of MDPs that could be analyzed. A successful approach to overcome the lim­

itations of explicit representations has been to employ symbolic data structures. In particular,

BDDs (binary decision diagrams) [21] and MTBDDs (multi-terminal binary decision diagrams)

[29, 11] have been shown to enable the compact representation and analysis of very large MDPs

109

[48, 83, 65].

In this work we combine MLA with symbolic representations to improve scalability.

More precisely, we adapt the MLA algorithm of [50] to the symbolic domain, yielding an approach

that we call Symbolic Magnifying-Lens Abstraction (SMLA). We show that the "magnified"

computation performed on the regions, and the "sliding" of the magnification from one region to

the next, can be performed symbolically in a natural and efficient fashion. We have implemented

SMLA in the probabilistic model checking tool PRISM [66, 88] and, through a number of case

studies, demonstrate that SMLA leads to useful space savings.

MLA, and its symbolic variant SMLA, differ from other approaches to MDP abstraction

[70] in that they can be profitably applied to systems where there are many states with similar

value, but not necessarily similar transition structure. For instance, consider a system with

an integer state variable x, with range [0 , . . . , N], and assume that from every state where x

has value 0 < n < N, there are transitions to states where x has values n — 1, n, and n + 1.

Classical abstraction schemes associate with each region (set of states) a single abstract state,

whose transition relation over-approximates all the transition relations of the concrete states it

represents. In such a transition-based abstraction, it is not useful to group the concrete values

[0, . . . , AT] for x into regions consisting of intervals Ii, ..., Ik- In fact, since the states at the

endpoints of each interval can leave the interval, but the states in the interior cannot, the abstract

transition relation associated with each interval would have to be a gross over-approximation of

the concrete transition relations, leading to considerable loss of precision.

In MLA and SMLA, as long as the value of the property of interest is similar in states

in the same interval, abstraction is possible and useful. Indeed, experimentally we noticed

that SMLA performs well in many problems with integer-valued state variables, where the

properties vary gradually with the value of the state variables. Problems in planning, inventory

control, and similar often belong to this category. On the other hand, when it is possible to

110

use symmetry or structural knowledge of an example, and aggregate states of similar transition

relation, approaches such as [32, 70, 71] yield superior results.

8.1.1 Symbolic model checking of M D P s

Due to the sizes of the MDPs that typically arise in probabilistic verification case stud­

ies, considerable effort has been invested into building efficient model checking implementations.

In particular, symbolic techniques, which use extensions of Binary Decision Diagrams (BDDs),

have proved successful in this area. Here we focus on the use of Multi-Terminal Binary Decision

Diagrams (MTBDDs). This data structure lies at the heart of the probabilistic model checker

PRISM and has been used to model check quantitative properties of probabilistic models with

as many as 1010 states (see for example [72, 56]). In this section, we give a brief overview of

these techniques. For more detailed coverage of the MTBDD-based implementation of MDP

model checking in PRISM, see [83].

M T B D D s . Multi-terminal BDDs (MTBDDs) are rooted, directed acyclic graphs associated

with a set of ordered, Boolean variables x\ < ... < xn. An MTBDD M represents a function

fw\(xi,... ,xn) : B™ —> R over these variables. The graph contains two types of nodes: non­

terminal and terminal. A non-terminal node m is labeled by a variable var{m) e {xi,... ,xn}

and has two children, then(m) and else(m). A terminal node m is labeled by a real number

val{m). The Boolean variable ordering < is imposed onto the graph by requiring that a child m!

of a non-terminal node m is either terminal or non-terminal and satisfies var{m) < var{m'). The

value of /M(XI , . . . , xn), the function which the MTBDD represents, is determined by traversing

M from the root node, and at each subsequent node m taking the edge to then(m) or else(m)

if var(m) is 1 or 0 respectively. A BDD is simply an MTBDD with the restriction that labels

on terminal nodes can only 0/1.

I l l

Representation of M D P s using MTBDDs . MTBDDs have been used, from their in­

ception [11, 29], to encode real-valued vectors and matrices. An MTBDD v over variables

(x i , . . . , xn) represents a function /v : B™ —> R. A real vector v of length 2n is simply a mapping

from { 1 , . . . ,2™} to the reals K. Using the standard binary encoding of integers, the variables

{xi,... ,xn} can represent { 1 , . . . , 2™}. Hence, an MTBDD v can represent the vector v.

In a similar way, we can consider a square matrix M of size 2" by 2n to be a mapping

from { 1 , . . . , 2n} x { 1 , . . . , 2"} to R. This can be represented by an MTBDD over 2n variables,

n for rows (current-state variables) and n for columns (next-state variables). According to the

commonly-used heuristic for minimizing MTBDD size, the variables for rows and columns are

ordered alternately.

MTBDDs can thus easily represent the probabilistic transition matrix of a Markov

chain. Furthermore, with a simple extension of this scheme, the probabilistic transition function

p : S x A —> D(S) of an MDP can also be represented. Since the set of actions A is finite,

we can view p as a function S x A x S —> [0,1]. For an MDP with 2" states, and letting

k = ceil(log2 \A\), the probabilistic transition function p is equivalently seen as a function from

{ l , . . . , 2 n } x { l , . . . , 2 f c } x{ l , . . . , 2 n } to R, which can easily be represented by an MTBDD

over 2n + k variables.

MTBDDs are efficient because they are stored in reduced form, with duplicate nodes

merged and redundant ones removed. Their size (number of nodes) is heavily dependent on the

ordering of their Boolean variables. Although the problem of deriving the optimal ordering for

a given MTBDD is an NP-hard problem, by using heuristics [65, 83], probabilistic models with

a degree of regularity can be represented extremely compactly by MTBDDs.

Model checking of M D P s using MTBDDs . Once a model's MTBDD representation has

been constructed, it can be analyzed, for example using value iteration to compute minimum and

112

maximum reachability and safety probabilities. This comprises two stages. First, a graph-based

analysis is performed to find the states for which the corresponding probability is 0 or 1 [48].

This can be implemented using standard BDD techniques for calculating fix-points. Secondly,

numerical computation is applied to compute probabilities for the remaining states. For this,

standard iterative methods such as value iteration, can be implemented using standard MTBDD

operations, including for example algorithms from [11, 29] for matrix-vector multiplication.

8.2 Symbolic M L A

In this section, we present a symbolic implementation of the MLA algorithm using MTBDDs.

Before doing so, we highlight some important aspects of the implementation.

We first note that a potential obstacle in the use of MLA is that, although substantial

savings in terms of storage for solution vectors can be made, there is still a need to store the

probabilistic transition function of the MDP in full. A symbolic approach alleviates this problem:

it is often the case that a very compact MTBDD representation of the probabilistic transition

function of the MDP can be constructed.

Secondly, it is also common that qualitative probabilistic verification (i.e. checking for

which states of the MDP the probabilities for a reachability/safety property are exactly 0 or

1) can be applied to much larger models than can be analyzed quantitatively. This is because

qualitative properties can be model checked using only graph-based algorithms that operate on

the underlying transition relation, allowing an efficient implementation with BDDs. This means

that a symbolic version of MLA can also benefit from this: qualitative verification is applied

to the full MDP before applying the MLA algorithm (this process is often referred to as pre-

computation). Numerical computation need then only be done for states with a probability that

is neither 0 or 1. Furthermore, states with probability 0 or 1 can be removed from the MDP

113

completely, reducing computation significantly and decreasing round-off errors.

Finally, we observe that symbolic techniques are very well-suited to MLA, in terms of

the representation of solution vectors. Recall that, because of the way that MLA operates, it

requires separate storage of the numerical solution vector for the current region being magnified

(by algorithm MI see Section 7.2) and the lower/upper bounds for each region. Furthermore

when the value for a state not in the current magnified region is required, the region contains that

state must be determined before the relevant value can be looked up. Because of the way that

MTBDDs exploit regularity, representing real-valued vectors with many similar values is often

very efficient. This allows us to store the solution vector for all states of the MDP concurrently,

avoiding potentially expensive partition look-ups. Since MLA considers each region sequentially,

the solution vector will contain fewer distinct values than would be required for standard value

iteration. Thus, we expect a symbolic implementation of MLA to be less memory-intensive than

a symbolic version of value iteration.

8.2.1 Symbolic Magnifying-Lens Abstract ion (SMLA)

The symbolic version of MLA is shown in Algorithm 11. As for standard MLA (Algorithm 9),

the symbolic version is parameterized by operators f,g& {max,min} (used to select maxi­

mum/minimum reachability/safety properties) and convergence thresholds Eftoat and eabs- The

other parameter is a BDD T representing the set of target states (T in Algorithm 9). We also

assume a BDD reach representing the set of reachable states of the MDP and an MTBDD trans

representing its probabilistic transition function. In the latter, the MTBDD variables represent­

ing the rows (source states), columns (target states) and nondeterminism (actions) are denoted

wars, cvars and ndvars, respectively.

The first part of Algorithm 11 (lines 1-5) shows the use of BDD-based pre-computation

steps [48, 83] in order to obtain the BDDs yes and no, representing the sets of states for which

114

the probability is exactly 1 or 0, respectively. If this covers all states of the MDP, no further

work is required. Otherwise, rows corresponding to states in yes or no are removed from the

probabilistic transition function trans (line 5). Here (and elsewhere in the algorithms) we use a

simple infix notation to denote the application of binary operators (such as V or x) to BDDs or

MTBDDs. This is done using the standard APPLY operator [21].

The remainder of Algorithm 11 comprises the symbolic version of MLA. We start with

an initial partition R, returned by the CreatelnitialPartitionQ routine (see Section 8.2.3 for

details). The partition is implemented as a list of BDDs, each one representing a region in R.

The main part of Algorithm 11 corresponds quite closely to the original MLA algorithm (Algo­

rithm 9). Initialization of solution vectors (lines 8 and 9) is easily achieved using the MTBDD

operation CONST(fc) which returns the trivial MTBDD representing the real value k. Similarly,

checking for convergence of the main loop can be done with the operation MAXDIFF(UI , 112)

which computes the maximum point-wise difference between MTBDDs Ui and 112).

The MTBDDs representing the lower (u~) and upper (u+) bounds for each region

are computed by the SMI function, described below. After a global iteration terminates, the

algorithm calls the Split (. . .) method to refine the regions for which the difference between the

lower and upper bounds (u~ and u+) is greater than eabs. After each refinement, the algorithm

copies u~ values to u+ for the reachability objectives and u+ values to u~ for safety objectives.

8.2.2 Symbolic Magnified I terat ion (SMI)

The core part of the MTBDD-based implementation of MLA is called Symbolic Magnified Itera­

tion (SMI) and is shown in Algorithm 12. It performs a symbolic value iteration algorithm inside

the region represented by BDD r from the current partition R. The algorithm is also passed

the MTBDD trans' representing the (filtered) probabilistic transition function of the MDP, the

BDD T representing the set of target states, and the MTBDD u, which stores the (upper or

115

lower) bound for every state's corresponding region. The other parameters h, f, g and efloat,

are as for the non-symbolic version in Algorithm 10.

The algorithm initializes the solution vector v with the vector u (line 1) and then the

MTBDD trans' is filtered further to include only transitions for the current region (line 2). The

loop (lines 3-12) updates the solution vector v until the results of two successive iterations differ

less than Efioat. The first two lines of the loop perform a matrix-vector multiplication of the

transition probability matrix of the MDP with (a permuted copy of) the solution vector v. This

corresponds to the summations in line 6a of Algorithm 10. In line 7, the operator g € {max, min}

is applied over the nondeterministic variables ndvars of the resulting MTBDD (the first part

of line 6a from Algorithm 10). In line 8, the operator / is applied point-wise with the BDD T

representing the target states (line 6b of Algorithm 10). Finally, the new solution vector v' is

computed by setting values for all states not in the current region (r) to their values in u, using

the MTBDD operation ITE (If-Then-Else).

Once the while loop terminates, the algorithm computes the maximum (if h= max) or

minimum (if h=mm) value val of the region by using F INDMAX (or F I N D M I N) . Finally the

algorithm returns a solution vector with value val for the current region and the old solution

value from u for all other regions.

8.2.3 The Splitting Order

The creation of the initial partition and the way in which it is subsequently split are governed

by two user parameters: strat and level. Splitting operations are based on a priority order

X0rd — (xi,x2,- • • ,xn) of the MTBDD variables representing the state space of the MDP. In

the adaptive refinement scheme of MLA, each call to the routine Split subdivides a region into

two using the next MTBDD variable from the order Xord (we call this the splitting index).

Since the MLA algorithm does not refine regions with u+(r) — u~{r) < eabs, after a refinement,

116

different regions may have different splitting indices.

The order Xorc[is determined by the choice of a splitting strategy stmt: either "con­

secutive" or "interleaved'. In the default MTBDD variable ordering (for an MDP derived from a

PRISM model), MTBDD variables are grouped according to the (model-level) variable to which

they correspond and ordered consecutively. For strat= consecutive, we take Xord to be this de­

fault ordering. For strat=interleaved, on the other hand, the MTBDD variables corresponding

to different (model-level) variables are interleaved.

The initial creation of a partition (by routine CreatelnitialPartition) is determined by

Xord = (^1)^2, • • • ,xn) and the parameter level. Each region in the initial partition is created

by splitting on MTBDD variables x\,X2, • • • ,%ievei (i-e. the splitting index for each region is

level).

8.3 The Case Studies and Results

We have implemented the symbolic MLA algorithm within the probabilistic model checker

PRISM and, in this section, present results for the following MDP case studies.

Inventory Problem. We have modeled an inventory as an MDP. The variable "stock" denotes

the current number of items in the inventory and "init" denotes the initial item count. The

variable "time" keeps track of time elapsing. At each time step, the demand of the item is

1 with a probability p and 0 with 1 — p. The probability p is a function of current number

of items present in the inventory. The manager of the inventory visits the inventory every 7

time units and he has two actions to choose from: either place an order or do not place one.

The property we are checking is the "minimum probability that the stock reach its minimum

amount within MAXTIME time units". In PCTL, the reachability property can be expressed

117

Example

Inventory

Minefield

Hotel
Booking

Secretary

Zeroconf

Parameters

st=512, T=512
st=lK, T=1K
st=2K, T=2K
st=4K, T=4K
st=5K, T=5K
st=10K, T=10K
n=256,m=100
n=512,m=200
n=1024,m=300
c=127, b=63, T=15
c=255, b=127, T=31
c=511,b=255, T=31
c=100, T=100
c=100, T=200
c=200, T=200
c=300, T=400
c=500, T=1000
c=1000, T=2000
N=4,M=32,K=4
N=8, M=32, K=4
N=8, M=128, K=4

States
103

26
106
425

1,698
2,653

10,605
65

262
1,048

131
1,048
4,194

30
90

121
451

2,252
9,004

26
552

2,092

Trans
103

34
135
535

2,130
3,325

13,275
299

1,128
4,316

645
5,202

20,889
61

180
242
903

4,502
18,005

50
1,728
6,552

PRISM
Time Node

14 14K
54 26K

233 50K
896 99K

1,243 120K
7,118 241K

75 57K
627 91K

3,625 127K
4 30K

44 118K
2,072 373K

2 15K
3 17K

10 33K
24 55K
88 106K

392 233K
88 127K

1,307 722K
3,221 857K

MLA
Time Node Reg

15 2K 340
61 4K 676

270 9K 1,348
1,056 17K 2,692
1,424 21K 3,364
7,551 43K 3,363

263 8K 2,041
1,493 14K 4,164
5,463 20K 6,324

46 8K 903
1,013 37K 6,350
9,971 118K 25,491

7 3K 269
11 3K 345
27 6K 471
62 9K 463

199 17K 733
802 32K 768

50 14K 22
650 49K 64

2,593 151K 19

Figure 8.1: Experimental results: Symbolic MLA, compared to PRISM

as Pmin=?[0 (stock=l A time<MAXTIME))\.

Robot in a Minefield. We consider the problem of navigating an n x n minefield. The

minefield contains m mines, each with coordinates (xj,yj), for 1 < i < m, where 1 < Xj < n,

1 < J/i < n- We consider the problem of computing the maximal probability with which a robot

can reach the target corner (n, n), from all n x n states. At interior states of the field, the robot

can choose among four actions: Up, Down, Left, Right; at the border of the field, actions that

lead outside of the field are missing. From a state s = (x,y) £ { 1 , . . . , n} 2 with coordinates

(x,y), each action causes the robot to move to square (x',y') with probability q(x',y'), and to

"blow up" (move to an additional sink state) with probability 1 — q(x', y'). For action Right, we

have x' = x + 1, y' = y; similarly for the other actions. The probability q(x',y') depends on the

118

strat
cons
cons
cons
cons
cons

level
1
4
7

11
15

Node
60K
19K
12K
UK
13K

Time (s)
50
57
60
95

191

Regions
191
191
214
752

3043

strat
inter
inter
inter-
inter
inter

level
1
4
7

11
15

Node
60K
40K
18K
10K
UK

Time(s)
254
255
258
307
441

Regions
942
942
946

1057
2705

Figure 8.2: Effect of splitting strategy ('cons', 'inter' denote consecutive and interleaving re­
spectively) and initial splitting index (Secretary: c=300, MAXTIME=400)

proximity to mines, and is given by

</(*', V') = H? exp (-0.7 • (V - x{f + (y' - Vif

Optimal Stopping Game: Secretary Selection. We have modeled one application of the

optimal stopping game. One boss starts interviewing c candidates for the post of secretary. After

each interview, he can either select the candidate or continue the process with the remaining

candidates. If the boss does not select the candidate, then the candidate is eliminated from the

selection process. The variable "iime" is used to keep track of the time that has elapsed.The

boss can compare whether the current candidate is the best so far or if a better candidate was

interviewed previously. If the current candidate is the best among all candidates seen, then the

variable "best" is assigned to 1. The boss does not know the (merit) order of the candidates;

hence we model assignment of the variable with a probabilistic update. The probability that the

current one is the best among c candidates is set equal to 1/c. If the boss selects a candidate, then

the variable "stop" is assigned to 1. The property we are checking is the "maximum probability

that the interviewer has selected a non-best candidate before the timeout". In PCTL, the

reachability property can be expressed as Pmax=?[<^> (stop—I A best=0 A time<MAXTIME)].

Hotel Booking Problem. We have modeled an instance of the over-booking problem for

a hotel during a multiple-day conference. The conference-chairperson books b rooms for the

registered participants in a hotel with v rooms. The variable "days" keeps track of days that

119

>

have elapsed since the start of the conference. The participants can appear at any day during the

conference but some of the booked rooms remain vacant during the conference season due to "no-

show" of the participants. The hotel manager takes this factor into account and over-books the

hotel during the peak seasons. When he books a hotel room and the conference participant does

not appear, the manager suffers a loss. Similarly he will be in trouble whenever he allows a non-

conference visitor without keeping a room booked and the conference guest appears, requiring

him to find an alternative room for the guest at higher cost. The arrival of the participants is

probabilistic. The property we are checking will be the "maximum probability that a conference

guest arrives within the duration of the conference and does not get a room". In PCTL, the

reachability property can be expressed as Pmax=?[^ (v=0 A 6>0 A days<MAXTIME)].

Zeroconf Protocol. The Zeroconf protocol [27] is used for the dynamic self-configuration of

a host joining a network; it has been used as a test-bed for the abstraction method considered

in [70]. We consider a network with N existing hosts, and M total IP addresses; protocol

messages have a certain probability of being lost during transmission. The variable K denotes

the maximum number of probes can be sent by the new host. We consider the problem of

determining the maximal probability of a host eventually acquiring an IP address.

Results. Our experiments were run on an Intel 2.16 GHz machine with 2GB RAM. We used

Sfloat = 0.01, £at s=0.1 for both PRISM and MLA and, unless otherwise stated (see next section),

an initial splitting index [level) of _k/2\, where k is the number of MTBDD variables representing

the MDP's state space. For the splitting strategy (stmt), we used "consecutive" for all model,

except the minefield.

Figure 8.1 summarizes the results for all case studies. The first two columns show

the name and parameters of the MDP model. The third and fourth columns gives the number

120

of states and transitions for each model. The remaining columns show the performance of

analyzing the MDPs, using both PRISM and symbolic MLA. In both cases, we give the total

time required (which includes model building and model checking) and the peak MTBDD node

count (which includes the partial transition relation and the solution vectors). For MLA, we

also show the final number of generated regions. We used the MTBDD engine of PRISM, since

(a) it is generally the best performing engine for MDPs; and (b) it is the only one that can scale

to the size of models we are aiming towards. More detailed experimental data is available from:

www.soe.ucsc.edu/~pritam/qest08.html.

Discussion. The "Nodes" columns of Figure 8.1 demonstrate the efficiency of the symbolic

implementation of MLA: the memory requirements are significantly lower than the equivalent

statistics for PRISM's MTBDD engine. As discussed earlier in Section 8.2, this is due to the

fact that MLA analyzes each region in isolation, resulting in a smaller number of distinct values

in the solution vectors. For the Zeroconf example, this phenomenon actually results in MLA

also outperforming PRISM in terms of solution time.

It is also clear, from the sizes of the MDPs in the table, that the symbolic version of

MLA is able to handle MDPs considerably larger than were previously feasible for the existing

explicit implementation of [50]. Thanks to this, another positive conclusion which we can draw

from the results is that MLA generates relatively small numbers of regions for the analysis of

even large MDPs.

Finally, we also experimented with different parameter values for the splitting strategy

{stmt) and initial splitting index (level). Figure 8.2 shows results for the secretary selection

case study (c = 300 and MAXTIME = 400). For smaller values of the initial splitting index,

there are less regions initially but these regions are relatively large, resulting in higher memory

consumption. Increasing the splitting index produces smaller regions, which take less space and

121

http://www.soe.ucsc.edu/~pritam/qest08.html

time to analyze, however more global iterations are required, resulting in longer total solution

times. Hence, in our results (Figure 8.1), we opted for a trade-off by using a splitting index

close to fc/2, where k is the number of MTBDD variables representing the state space.

For the results in Figure 8.2 (and for most of our case studies), the "consecutive"

strategy performs better than the "interleaved' strategy, both in terms of memory usage, time

and number of regions. For the minefield problem, however, the reverse is true. This is due to

the "grid-like" nature of the model and the fact that the state-space is described by a pair of

co-ordinates, x and y. It is more effective to refine the state space into square regions of the

grid.

8.4 Conclusion

We have presented a symbolic implementation of the magnifying-lens abstraction (MLA) tech­

nique of [50], using the multi-terminal binary decision diagram (MTBDD) data structure. This

was implemented in the probabilistic model checker PRISM and applied to a range of MDP

case studies. The results demonstrate that symbolic MLA yields significant gains in memory

usage over standard (symbolic) implementations of MDP verification, as provided by PRISM.

Furthermore, in some cases this also produce better performance in terms of time. Our results

also show that symbolic MLA can be applied to much larger MDPs than its explicit counterpart.

In the future, we plan to make a comparison of our approach with other MDP ab­

straction techniques, including the game-based approach of [70]. We also plan to investigate the

integration of more advanced symbolic representations of state space partitions, such as [53].

122

Algori thm 11 SMLA(T, / , g,£float,£abs) Symbolic Magnifying-Lens Abstraction

1. if g = max

2. t hen no := P R O B O A (T) ; yes := PROBlE(T)

3. else no := PROBOE(T) ; yes := P R O B I A (T)

4. if no V yes = reach then r e tu rn yes

5. trans' := trans x - i (n o V yes)

6. R : = CreateInitialPartition()

7. if / = max

8. t hen u~ := u+ := CONST(O)

9. else u~ := u+ := C O N S T (I)

10. loop

11. repea t

12. u+ := u + ; u~ := u~

13. for each r s R do

14. u+:= SMI(r,i?, trans',yes, u+,max, /,g,Sfloat)

15. u_ := SMI(r, R, trans', yes, u~, min, / , g, £float)

16. end for

17. until MAXDIFF(U+, U+) < efloat &

M A X D I F F (U - , Q -) < efloat

18. if M A X D I F F (U + , U ") >£abs

19. t hen R, u~,u+ := Split(i?, u~, u+,£a(,s)

20. else r e t u r n (u~ + u+)/2

21. end if

22. if / = max then u+ := u~ else u~ := u+

23. end loop

123

Algor i thm 12 SMI(r, R, trans', T, u, h, f, g, £float) Symbolic Magnified Iteration

1. v := u

2. trans" := trans' x r

3. done :— false

4. while (done != true) do

5. tmp := PERMUTE(V, wars, cvars)

6. tmp := MVMuLT(trans",tmp)

7. tmp := REPLACE(g,tmp, ndvars)

8. tmp := ApPLY(/,tmp,T)

9. v ' : = I T E (r , t m p , u)

10. if MAXDIFF(V' ,V) < efloat t hen done := t r u e

11. v : = v '

12. end while

13. if (h = max)

14. t hen val := FlNDMAx(ITE(r, v, CONST(O)))

15. else val := FlNDMiN(ITE(r, v, C O N S T (I)))

16. r e t u r n ITE(r, C O N S T ^ O O , u)

124

Chapter 9

Conclusions

9.1 Summary

The current trend in software and system engineering is towards component-based de­

sign. In this method, a number of design units called components make a complex design.

Components are typically open systems that have inputs provided by other components and

provide inputs to other components. Designers face a number of design issues to create a com­

plex design from these components. A designed system, expected to achieve a series of tasks

following its specification, may not behave properly due to the following reasons. Firstly, one

or more components may contain bugs and behave in an undesirable way. Secondly, compo­

nents make assumptions on their environment, and assume that the actual conditions will meet

these assumptions. A number of bug-free components may not work together if their input

assumptions are violated. Hence, verification of a complex system-design can be reduced to the

verification of the components and communication among them.

The interaction between components in a design can be modeled via games, and a large

volume of studies on design and verification shows how games can be used to analyze component

125

compatibility and system correctness. However, while games provide an appropriate, mathemat­

ical model for interaction, solving the games is often impossible with current algorithms, due

to the large state-space of games representing practical components, together with the inherent

complexity of game-solving techniques. In this thesis, we propose algorithms for the efficient

analysis of games with large state spaces.

We present two novel algorithm families in the dissertation: (1) Game-based Three

Valued Abstraction (GTVA) for two-player games/transition systems, and (2) Magnifying Lens

Abstraction (MLA) for Markov Decision Processes (MDPs). GTVA evaluates the winning objec­

tives on the abstract game-model in three-valued style (yes, no, maybe) and refines the abstrac­

tion by adding more details to the maybe abstract states. However, other approaches construct

abstract models; thus verification becomes extremely expensive. We describe how to achieve

efficient enumerative and BDD-based symbolic implementations of the algorithm. MLA parti­

tions the state-space of MDP into regions and then computes upper and lower bounds on the

regions, rather than on the concrete states. MLA iterates over the regions to evaluate these lim­

its and considers the concrete states of each region in turn, as if one were moving a magnifying

lens across the abstraction and viewing the concrete states corresponding to the current region.

The algorithm refines the regions in an adaptive manner, splitting regions where we need more

details until the difference between the bounds is smaller than a user-given accuracy. We also

provide a symbolic form of algorithm MLA (SMLA).

We have implemented the proposed algorithms, and we have applied them to real-

life applications, including planning, protocol verification, and interface synthesis for software

libraries. The symbolic three-valued algorithms for reachability, safety, compatibility, and refine­

ment properties have been implemented in the tool TICC; case-studies illustrate the accuracy

and efficiency benefits of the GTVA algorithms over other approaches. We have implemented the

symbolic version of MLA in the tool PRISM. The experimental results indicate that MLA can

126

provide accurate answers, with savings in the memory requirements. These algorithms promise

to make the analysis of practical component-based designs possible by pushing the limits of the

size of games that can be solved.

9.2 Future Directions

The difference between the design complexity and the validation capacity will increase

in future. As verification researchers, we need to exercise more effective techniques to cope

with the pressure. Scalable verification and testing techniques will continue to play a vital role

in future. I want to devote my future research to seek a number of scalable verification and

test-case generation techniques to bridge the increasing gap. In addition to that, there is a

common trend towards multi-core designs and multi-threaded programs. I want to contribute

to verification and testing of concurrent designs. However, the list is not exhaustive. The future

focus lies in compact data structures, a combination of techniques, and concurrent designs.

SMT for Abstraction-Refinement and Test-case Generation: Currently, Satisfiable

Modulo Theories (SMT) solvers have become the state-of-the-art solvers for the model-checking

case-studies. I have implemented all algorithms in the thesis using symbolic data structure

such as, BDDs (and its various extensions). Although the canonicity property of BDDs is

particularly useful, the space-requirement restricts its use in real-life case-studies. I want to

modify three-valued abstraction-refinement algorithms to suit the queries of the solvers, and

make the algorithms more scalable. I also want to apply SMT techniques in the test case/stimuli

generation algorithms.

Combination of Scalable Techniques : I have worked on various techniques. The com­

bination of two or more approaches makes the algorithm scalable. For example, I developed

127

symbolic algorithms for three-valued abstraction-refinement techniques. However, integration

of the scalable techniques may require careful adjustment. I want to work on a combination of

different techniques in the future.

Interfaces to Test-cases : In the interface synthesis problem, we have only focused to create

an interface graph. I want to extend the framework to the testing of parameterized library

functions. The global state-space in the symbolic domain will provide the (symbolic) parameter

ranges to the functions. Initially, I want to work on sequential programs. Later I want to consider

an extension of the framework to concurrent programs (where each function is sequential, but

the system may have more than one function active at a given time). This project can also be

useful in hardware verification field. The interface can be used as a permissive set of test-benches

in the hardware systems.

Combination of Static and Dynamic Techniques : There is a research trend to combine

static and dynamic techniques to make the validation more scalable. All problems cannot

be caught by static analysis (e.g. array out of bound, buffer overflow). Moreover, the static

techniques like model checking are not particularly cost-effective techniques due to exhaustive

search of state-spaces. Hence combination of static and run-time verification techniques are

more pragmatic approaches. I will explore different algorithms that interleave static (property

driven, model-checking-based test-case generation), and dynamic (executing the test case) in

this direction.

128

Bibliography

[1] B. Adler, L. de Alfaro, L. D. D. Silva, M. Faella, A. Legay, V. Raman, and P. Roy. TICC:

a tool for interface compatibility and composition. In CAV 06: Proc. of 18th Conf. on

Computer Aided Verification, volume 4144 of Led. Notes in Comp. Sci., pages 59-62.

Springer-Verlag, 2006.

[2] K. Altisen, G. Goessler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A framework

for scheduler synthesis. In Proceedings of the 20th IEEE Real-Time Systems Symposium

(RTSS). IEEE Computer Society Press, 1999.

[3] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for nondeterministic

and probabilistic machines. In Proc. 27th ACM Symp. Theory of Comp., 1995.

[4] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for nondeterministic

and probabilistic machines. In Proc. 27th Ann. ACM Symp. Theory of Computing, pages

363-372, 1995.

[5] R. Alur, L. de Alfaro, T. Henzinger, and F. Mang. Automating modular verification.

In CONCUR 99: Concurrency Theory, volume 1664 of Led. Notes in Comp. Sci., pages

82-97. Springer-Verlag, 1999.

[6] R. Alur and T. Henzinger. Modularity for timed and hybrid systems. In CONCUR 97:

129

Concurrency Theory. 8th Int. Conf., volume 1243 of Led. Notes in Comp. Sci., pages

74-88. Springer-Verlag, 1997.

[7] R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design, 15:7-48,

1999.

[8] R. Alur, T. Henzinger, and O. Kupferman. Alternating time temporal logic. J. ACM,

49:672-713, 2002.

[9] R. Alur, A. Itai, R. P. Kurshan, and M. Yannakakis. Timing verification by successive

approximation. Inf. Comput., 118(1):142—157, 1995.

[10] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifications for

Java classes. SIGPLAN Not, 40(1):98-109, 2005.

[11] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Algebraic

decision diagrams and their applications. Journal of Formal Methods in System Design,

10(2/3):171-206, 1997.

[12] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes. In CAV

97: Proc. of 9th Conf. on Computer Aided Verification, volume 1254 of Lect. Notes in

Comp. Sci., pages 119-130. Springer-Verlag, 1997.

[13] T. Ball and S. Rajamani. The SLAM project: Debugging system software via static

analysis. In Proceedings of the 29th Annual Symposium on Principles of Programming

Languages, pages 1-3. ACM Press, 2002.

[14] J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential

equations. Journal of Computational Physics, 53:484-512, 1984.

130

[15] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995. Vol­

umes I and II.

[16] D. Beyer, T. A. Henzinger, and V. Singh. Three Algorithms for Interface Synthesis: A

Comparative Study. Technical report, 2006.

[17] D. Beyer, T. A. Henzinger, and V. Singh. Algorithms for interface synthesis. In W. Damm

and H. Hermanns, editors, Proceedings of the 19th International Conference on Computer

Aided Verification (CAV 2007, Berlin, July 3-7), LNCS 4590, pages 4-19. Springer-Verlag,

Berlin, 2007.

[18] A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. In FATES, pages

32-46. Springer, 2005.

[19] A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. Technical Report

MSR-TR-2005-04, Microsoft Research, January 2005. Short version of this report was

presented at FATES 2005.

[20] E. Brinksma and J. Tretmans. Testing Transition Systems: An Annotated Bibliography.

In Summer School MOVEP'2k - Modelling and Verification of Parallel Processes, volume

2067 of LNCS, pages 187-193. Springer, 2001.

[21] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions

on Computers, C-35(8):677-691, 1986.

[22] J. Biichi and L. Landweber. Solving sequential conditions by finite-state strategies. Trans.

Amer. Math. Soc, 138:295-311, 1969.

[23] C. Campbell and M. Veanes. State exploration with multiple state groupings. In

D. Beauquier, E. Borger, and A. Slissenko, editors, 12th International Workshop on Ab-

131

stract State Machines, ASM'05, March 8-11, 2005, Laboratory of Algorithms, Complexity

and Logic, University Paris 12 - Val de Marne, Creteil, France, pages 119-130, 2005.

[24] A. Chackrabarti, L. de Alfaro, M. Jurdziriski, K. Chatterjee, T. Henzinger, and F. Mang.

CHIC: Checker for interface compatibility, 2003. www-cad.eecs.berkeley.edu/ tah/chic/.

[25] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Synchronous and

bidirectional component interfaces. In CAV, pages 414-427, 2002.

[26] K. Chatterjee, L. de Alfaro, and T. A. Henzinger. Trading memory for randomness. In

QEST, pages 206-217, 2004.

[27] S. Cheshire, B. Adoba, and E. Gutterman. Dynamic configuration of ipv4 link local

addresses (internet draft).

[28] A. Church. Logic, arithmetics, and automata. In Proc. International Congress of Mathe­

maticians, 1962, pages 23-35. Institut Mittag-Leffler, 1963.

[29] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-terminal

binary decision diagrams: An efficient data structure for matrix representation. Formal

Methods in System Design, 10((2/3): 149-169, 1997.

[30] E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal binary decision

diagrams: An efficient data structure for matrix representation. In International Workshop

for Logic Synthesis, 1993.

[31] E. Clarke, O. Grumberg, Y. Lu, and H. Veith. Counterexample-guided abstraction refine­

ment. In CAV 00: Proc. of 12th Conf. on Computer Aided Verification, Lect. Notes in

Comp. Sci. Springer-Verlag, 2000.

132

http://www-cad.eecs.berkeley.edu/

[32] P. D'Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of probabilistic

systems by successive refinements. In Proc. of PAPM/PROBMIV, volume 2165 of Led.

Notes in Comp. Sci., pages 39-56. Springer-Verlag, 2001.

[33] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,

1997. Technical Report STAN-CS-TR-98-1601.

[34] L. de Alfaro. Computing minimum and maximum reachability times in probabilistic sys­

tems. In CONCUR 99: Concurrency Theory. 10th Int. Conf, volume 1664 of Led. Notes

in Comp. Sci., pages 66-81. Springer-Verlag, 1999.

[35] L. de Alfaro. Game models for open systems. In Proceedings of the International Sym­

posium on Verification (Theory in Practice), volume 2772 of Led. Notes in Comp. Sci.,

pages 269-289. Springer-Verlag, 2003.

[36] L. de Alfaro. Game models for open systems. In N. Dershowitz, editor, Verification:

Theory and Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th

Birthday, volume 2772 of LNCS, pages 269 - 289. Springer, 2004.

[37] L. de Alfaro, B. Ader, M. Faella, A. Legay, V. Raman, P. Roy, and L. Dias Da Silva. TICC:

Tool for interface compatibility checking, 2006. http://dvlab.cse.ucsc.edu/dvlab/Ticc.

[38] L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang, C. Meyer-

Kirsch, and B. Wang. Mocha: A model checking tool that exploits design structure. In

ICSE 01: Proceedings of the 23rd International Conference on Software Engineering, pages

835-836, 2001.

[39] L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable interfaces.

In FRO COS: Frontiers of Combining Systems, Proc. of the 5th Intl. Workshop, volume

3717 of Led. Notes in Comp. Sci., pages 81-105. Springer-Verlag, 2005.

133

http://dvlab.cse.ucsc.edu/dvlab/Ticc

[40] L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. The element of

surprise in timed games. In CONCUR 03: Concurrency Theory. 14th Int. Conf., volume

2761 of Led. Notes in Comp. Sci., pages 144-158. Springer-Verlag, 2003.

[41] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games: Uncer­

tainty, but with precision. In Proc. 19th IEEE Symp. Logic in Comp. Sci., pages 170-179,

2004.

[42] L. de Alfaro and T. Henzinger. Interface automata. In Proceedings of the 8th European

Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the Foun­

dations of Software Engineering (ESEC/FSE), pages 109-120. ACM Press, 2001.

[43] L. de Alfaro and T. Henzinger. Interface theories for component-based design. In EMSOFT

01: 1st Intl. Workshop on Embedded Software, volume 2211 of Led. Notes in Comp. Sci.,

pages 148-165. Springer-Verlag, 2001.

[44] L. de Alfaro and T. Henzinger. Interface-based design. In Engineering Theories of Software

Intensive Systems, proceedings of the Marktoberdorf Summer School. Kluwer, 2004.

[45] L. de Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-state

games. In CONCUR 01: Concurrency Theory. 12th Int. Conf., Lect. Notes in Comp. Sci.

Springer-Verlag, 2001.

[46] L. de Alfaro, T. Henzinger, and F. Mang. Detecting errors before reaching them. In CAV

00: Proc. of 12th Conf. on Computer Aided Verification, volume 1855 of Lect. Notes in

Comp. Sci., pages 186-201. Springer-Verlag, 2000.

[47] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the 8th Eu­

ropean Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the

Foundations of Software Engineering (ESEC/FSE), pages 109-120. ACM, 2001.

134

[48] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model

checking of concurrent probabilistic processes using MTBDDs and the Kronecker repre­

sentation. In TACAS 00: Tools and Algorithms for the Construction and Analysis of

Systems, volume 1785 of Led. Notes in Comp. Sci., pages 395-410. Springer-Verlag, 2000.

[49] L. de Alfaro and R. Majumdar. Quanti tat ive solution of omega-regular games. Journal of

Computer and System Sciences, 68:374-397, 2004.

[50] L. de Alfaro and P. Roy. Magnifying-lens abstraction for Markov decision processes. In

Proc. CAV'07, volume 4590 of LNCS, pages 325-338. Springer-Verlag, 2007.

[51] L. de Alfaro and P. Roy. Solving games via three-valued abstraction refinement. In

CONCUR 2007 - Concurrency Theory, 18th International Conference, CONCUR 2007,

Lisbon, Portugal, September 3-8, 2007, volume 4703 of Lecture Notes in Computer Science,

pages 74-89. Springer, 2007.

[52] T. Dean and R. Givan. Model minimization in markov decision processes. In AAAI/IAAI,

pages 106-111, 1997.

[53] S. Derisavi. A symbolic algorithm for optimal Markov chain lumping. In O. Grumberg

and M. Huth , editors, Proc. TACAS'07, volume 4424 of Led. Notes in Comp. Sci., pages

139-154. Springer-Verlag, 2007.

[54] C. Derman. Finite State Markovian Decision Processes. Academic Press, 1970.

[55] D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent Cir­

cuits. The MIT Press, 1989.

[56] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. A formal analysis of Bluetooth

device discovery. Int. Journal on Software Tools for Technology Transfer, 8(6):621-632,

2006.

135

[57] E. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy (extended ab­

stract). In Proc. 32nd IEEE Symp. Found, of Comp. Sci., pages 368-377. IEEE Computer

Society Press, 1991.

[58] H. Fecher, M. Leucker, and V. Wolf. Don't know in probabilistic systems. In A. Valmari,

editor, 13th International SPIN Workshop on Model Checking of Software (SPIN'06),

volume 3925 of Lecture Notes in Computer Science. Springer, 2006.

[59] I. Gilboa. Expected utility with purely subjective non-additive probabilities. Journal of

Mathematical Economics, 16:65-88, 1987.

[60] I. Gilboa and D. Schmeidler. Additive representations of non-additive measures and

the choquet integral. Discussion Papers 985, Northwestern University, Center for

Mathematical Studies in Economics and Management Science, 1992. available at

http://ideas.repec.Org/p/nwu/cmsems/985.html.

[61] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state machines

from abstract state machines. In ISSTA '02, volume 27 of Software Engineering Notes,

pages 112-122. ACM, 2002.

[62] T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In 30th Int.

Colloquium, on Automata, Languages, and Programming (ICALP), volume 2719, pages

886-902. LNCS, 2003.

[63] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proceedings

of the 29th Annual Symposium on Principles of Programming Languages (POPL), pages

58-70. ACM, 2002.

[64] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. In ESEC/FSE-13:

Proceedings of the 10th European software engineering conference held jointly with 13th

136

http://ideas.repec.Org/p/nwu/cmsems/985.html

ACM SIGSOFT international symposium on Foundations of software engineering, pages

31-40, New York, NY, USA, 2005. ACM.

[65] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the use of

MTBDDs for performability analysis and verification of stochastic systems. Journal of

Logic and Algebraic Programming, 56(1-2):23-67, 2003.

[66] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic

verification of probabilistic systems. In TACAS 06: Tools and Algorithms for the Construc­

tion and Analysis of Systems, volume 3920 of Lect. Notes in Comp. Sci., pages 441-444.

Springer-Verlag, 2006.

[67] M. Huth. On finite-state approximations for probabilistic computational-tree logic. Theor.

Comp. Sci., 346(1):113-134, 2005.

[68] C. Jard and T. Jeron. TGV: theory, principles and algorithms. In The Sixth World

Conference on Integrated Design and Process Technology, IDPT'02, Pasadena, California,

June 2002.

[69] L. Kaelbling, M. Li t tman, and A. Moore. Reinforcement learning: A survey, 1996.

[70] M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for markov decision

processes. In Proc. of QEST: Quantitative Evaluation of Systems, pages 157-166. IEEE

Computer Society, 2006.

[71] M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic model

checking. In T. Ball and R. Jones, editors, Proc. CAV'06, volume 4114 of Lect. Notes in

Comp. Sci., pages 234-248. Springer-Verlag, 2006.

[72] M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a randomized

distributed consensus protocol using Cadence SMV and PRISM. In G. Berry, H. Comon,

137

and A. Finkel, editors, Proc. CAV'01, volume 2102 of LNCS, pages 194-206. Springer-

Verlag, 2001.

[73] E. Lee. Overview of the ptolemy project. Technical Report Technical Memorandum

UCB/ERL M01/11, University of California, Berkeley, 2001.

[74] X. Leroy. Objective caml. http://caml.inria.fr/ocaml/index.en.html.

[75] H. Li and C. Lam. Using anti-ant-like agents to generate test threads from the uml

diagrams. In Proc. Testcom 2005, LNCS. Springer, 2005.

[76] N. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[77] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed

systems. In Proc. of 12th Annual Symp. on Theor. Asp. of Corap. Sci., volume 900 of

Led. Notes in Comp. Sci., pages 229-242. Springer-Verlag, 1995.

[78] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Spec­

ification. Springer-Verlag, New York, 1991.

[79] D. Martin. An extension of Borel determinacy. Annals of Pure and Applied Logic, 49:279-

293, 1990.

[80] A. Mclver and C. Morgan. Abstraction, Refinement, and Proof for Probabilistic Systems.

Monographs in Computer Science. Springer-Verlag, 2004.

[81] D. Monniaux. Abstract interpretation of programs as Markov decision processes. Science

of Computer Programming, 58(1-2): 179-205, 2005.

[82] G. Necula, S. McPeak, W. Weimer, R. To, and A. Bhargava. CIL: Infrastructure for C

program analysis and transformation.

138

http://caml.inria.fr/ocaml/index.en.html

[83] D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems. PhD

thesis, University of Birmingham, 2002.

[84] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. In FORTE, pages 225-240,

1999.

[85] B. Plateau. On the stochastic structure of parallelism and synchronization models for dis­

tributed algorithms. In SIGMETRICS '85: Proceedings of the 1985 ACM SIGMETRICS

conference on Measurement and modeling of computer systems, pages 147-154, New York,

NY, USA, 1985. ACM Press.

[86] A. Plilippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems. In

CONCUR 00: Concurrency Theory. 11th Int. Conf, volume 1877 of Led. Notes in Comp.

Sci., pages 334-349. Springer-Verlag, 2000.

[87] A. Pnueli and R. Rosner. Distributed-reactive systems are hard to synthesize. In Proc.

31th IEEE Symp. Found, of Comp. Sci., pages 746-757, 1990.

[88] PRISM web site, www.prismmodelchecker.org.

[89] C. S. Pasareanu, R. Pelanek, and W. Visser. Concrete model checking with abstract

matching and refinement. In Computer Aided Verification (CAV 2005), volume 3576 of

LNCS, pages 52-66. Springer, 2005.

[90] P. Ramadge and W. Wonham. Supervisory control of a class of discrete-event processes.

SIAM Journal of Control and Optimization, 25:206-230, 1987.

[91] P. Roy, D. Parker, G. Norman, and L. de Alfaro. Symbolic magnifying lens abstraction in

markov decision processes. In QEST, pages 103-112, 2008.

139

http://www.prismmodelchecker.org

[92] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for

Analyzing Concurrent and Probabilistic Systems, P. Panangaden and F. van Breugel (eds.),

volume 23 of CRM Monograph Series. American Mathematical Society, 2004.

[93] D. Schmeidler. Integral representation without additivity. Proceedings of the American

Mathematical Society, 97:255-261, 1986.

[94] R. Segala. Modeling and Verification of Randomized Distributed Real- Time Systems. PhD

thesis, MIT, 1995. Technical Report MIT/LCS/TR-676.

[95] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In CONCUR

94-' Concurrency Theory. 5th Int. Confi, volume 836 of Led. Notes in Comp. Sci., pages

481-496. Springer-Verlag, 1994.

[96] S. Shoham. A game-based framework for ctl counter-examples and 3-valued abstraction-

refinement. Master's thesis, TECHNION - Israel Institute of Technology, 2003. Paper

with O. Grumberg in Proceedings of CAV 2003.

[97] S. Shoham. A game-based framework for CTL counter-examples and 3-valued abstraction-

refinement. In CAV 03: Proc. of 15th Conf. on Computer Aided Verification, Lect. Notes

in Comp. Sci., pages 275-287. Springer-Verlag, 2003.

[98] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In TACAS,

volume 2988 of Lect. Notes in Comp. Sci., pages 546-560. Springer-Verlag, 2004.

[99] S. Shoham and O. Grumberg. 3-valued abstraction: More precision at less cost. In Proc.

21st IEEE Symp. Logic in Comp. Sci., pages 399-410, 2006.

[100] F. Somenzi. Cudd: Cu decision diagram package.

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.

140

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[101] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT, 1998.

URL: http://www.cs.ualberta.ca/ sutton/book/ebook/the-book.html.

[102] J. Tretmans and A. Belinfante. Automatic testing with formal methods. In EuroSTAR'99:

7th European Int. Conference on Software Testing, Analysis & Review, Barcelona, Spain,

November 8-12, 1999. EuroStar Conferences, Galway, Ireland.

[103] J. Tretmans and E. Brinksma. TorX: Automated model based testing. In 1st European

Conference on Model Driven Software Engineering, pages 31-43, Nuremberg, Germany,

December 2003.

[104] M. van der Bij, A. Rensink, and J. Tretmans. Compositional testing with ioco. In A. Pe-

trenko and A. Ulrich, editors, Formal Approaches to Software Testing: Third International

Workshop, FATES 2003, volume 2931 of LNCS, pages 86-100. Springer, 2004.

[105] M. Vardi. Automatic verification of probabilistic concurrent finite-state systems. In Proc.

26th IEEE Symp. Found, of Comp. Sci., pages 327-338. IEEE Computer Society Press,

1985.

[106] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing with model pro­

grams. In ESEC/FSE-13: Proceedings of the 10th European software engineering confer­

ence held jointly with 13th ACM SIGSOFT international symposium on Foundations of

software engineering, pages 273-282. ACM, 2005.

[107] M. Veanes, P. Roy, and C. Campbell. Online testing with reinforcement learning. In

FATES/RV, volume 4262 of Lecture Notes in Computer Science, pages 240-253. Springer,

2006.

141

http://www.cs.ualberta.ca/

