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Abstract 

Interval-based Abstraction Refinement 

by 

Pritam Roy 

The prevailing trend in software and system engineering is towards component-based design. 

In this approach, a number of small design units called components compose a complex de

sign. Components are typically open systems that have inputs provided by other components 

and provide inputs to other components. Designers face a number of design issues to build 

a complex design from these components. A designed system, expected to perform a set of 

tasks following its specification, may not behave properly due to the following reasons. Firstly, 

one or more components may contain bugs and behave in an undesirable fashion. Secondly, 

components make assumptions on their environment, and expect that the actual environment 

will meet these assumptions. A number of bug-free components may not work together if their 

input assumptions are violated. Hence, verification of a complex design can be reduced to the 

verification of the components and communication among them. 

The interaction between components in a design can be modeled via games, and a large 

body of literature on design and verification shows how games can be used to analyze component 

compatibility and system correctness. However, while games provide an appropriate, mathemat

ical model for interaction, solving the games is often impractical with current algorithms, due 

to the large state-space of games representing realistic components, together with the inherent 

complexity of game-solving techniques. In this thesis, we propose algorithms for the efficient 

analysis of games with large state spaces. 

We present two novel algorithm families in the thesis: (1) Game-based Three Valued 



Abstraction (GTVA) for two-player games/transition systems, and (2) Magnifying Lens Ab

straction (MLA) for Markov Decision Processes (MDPs). GTVA evaluates the property on the 

abstract game in three-valued fashion (yes, no, maybe) and refines the abstraction by adding 

more details to the maybe abstract states. However, other approaches construct abstract models; 

thus verification becomes extremely expensive. We explain how to achieve efficient enumerative 

and symbolic implementations of the algorithm. MLA partitions the state-space of MDP into 

regions and then computes upper and lower bounds on the regions, rather than on the concrete 

states. MLA iterates over the regions to evaluate these limits and considers the concrete states of 

each region in turn, as if one were moving a magnifying lens across the abstraction and viewing 

the concrete states corresponding to the current region. The algorithm refines the regions in an 

adaptive fashion, splitting regions where we need more details, until the difference between the 

bounds is smaller than a user-given accuracy. We also provide a symbolic version of algorithm 

MLA (SMLA). 

We have implemented the proposed algorithms, and we have applied them to real-

life applications, including planning, protocol verification, and interface synthesis for software 

libraries. The symbolic three-valued algorithms for reachability, safety, compatibility, and refine

ment properties have been implemented in the tool TICC; case-studies illustrate the accuracy 

and efficiency benefits of the GTVA algorithms over other approaches. We have implemented 

the symbolic version of MLA in the tool PRISM. The experimental results demonstrate that 

MLA can provide accurate answers, with savings in the memory requirements. These algorithms 

promise to make the analysis of realistic component-based designs possible by pushing the limits 

of the size of games that can be solved. 
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Chapter 1 

Introduction 

1.1 Component Based Design 

The prevailing t rend in software and system engineering is towards component-based 

design. In this approach, a number of small design-units called components compose a complex 

design. Hence the verification of a complex design can be reduced to the verification of its 

components and the interactions among them. By design, components should work as parts of 

larger systems. However, components assume constraints over their environment, and the actual 

environment should meet these constraints. A component is typically an open system which has 

inputs provided by others components and which provides inputs to other components. 

1.1.1 Design Issues 

The designers face a number of design issues to build a complex design. A designed 

system, expected to perform a set of tasks following its specification, may not work due to the 

following reasons. 
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Design Bugs in Components : One or more components may contain bugs (design flaws) 

and behave in an undesirable manner. The bugs in the design cost enormous amount of loss in 

terms of money, time, and other valuable resources. Hence It is imperative to verify the system-

design with respect to its specification by either by static analyses, such as model-checking, or 

dynamic analyses, such as testing. 

Incompatibilty of Components : Since components make assumptions on "their environ

ment, a set of bug-free components may not work together when output of one component 

violates another component's input assumptions. Hence it is necessary to compute the com

patibility and refinement of the components. Verification of a complex design is equivalent to 

verification of the components and communication among them. 

1.1.2 Games as System Models 

The interaction between components in a design can be modeled via games, and a large 

body of literature on design and verification shows how games can be used to analyze component 

compatibility and system correctness. Game-based models can be used to address both aspects 

of the problem. For example, the interface theories reason about the communication, refinement, 

and composition of the components using game-based models. On the other hand, game models 

of the open systems provide elegant formal semantics to these components. Hence the solution 

of a complex-design verification problem can be reduced to efficient solution of games. 

1.1.3 Classification of Games 

Games are typically classified with respect to the number of players, and each has 

different behavior and applications. For example, the internal structure of some software and 

hardware systems determines the behavior of those systems. Transition systems (1-player games) 
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can model this class of systems. A transition system has applications in verification of hardware 

and software systems. Similarly, two-player games model reactive systems. The internal struc

ture and inputs from the environment determine the behavior of reactive systems. Two-player 

game models have applications in supervisory control [90], sequential hardware synthesis and 

program synthesis [28, 22, 87], modular verification [5, 8, 46], receptiveness checking [6, 55], 

interface compatibility checking [42], and schedulability analysis [2]. Systems with probabilistic 

and non-deterministic behavior can be modeled as Markov Decision Processes (MDPs). MDPs, 

also known as 1.5 player games, are widely used in probabilistic verification, planning, optimal 

control, network analysis, and performance analysis. 

1.2 Solution of Games 

Winning Objectives : A set of specification properties formally define the desirable behavior 

of the given system. In the game semantics, the specification properties are also known as 

winning objectives. Besides the number of players, the winning objectives can also determine 

the class of the games. Games with qualitative objectives such as reachability, and safety have 

been widely studied in literature. A reachability objective specifies that the behavior of a system 

should eventually reach a set of target states. A safety objective specifies that the behavior of 

the system should never leave a safe subset of states. 

Model Checking : Games provide an appropriate, mathematical model for interaction. A 

game model M with winning objective <j) can be solved using model checking algorithms. The 

result of model checking is Boolean for the qualitative systems and a real value « 6 { 0 , 1 } for the 

probabilistic systems. The game models can be represented as graphs where the nodes and edges 

represent state-space and the transition-relation of the system. The model-checking algorithms 
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can be reduced to graph traversal problems. For example, the model-checking algorithm of 

a transition system with reachability objective OT can be reduced to a breadth-first-search 

starting from the goal set T. 

State-space Explosion : Solving the games is often impractical with current algorithms. 

The main reasons are (1) the large state-space of games representing realistic components, and 

(2) inherent complexity of game-solving techniques. One challenge for model checking and 

other algorithmic methods is the state-space explosion problems. The algorithms tend to take 

more time and space when the system becomes more complex. The capacities of the formal 

verification and testing tools have not scaled up with the design complexity. So the researchers 

face increasingly stiff challenges to verify the system-design within limited resources (time and 

space). Although techniques like symbolic representations, symmetry reduction and partial 

reduction work well; but these methods have their limitations. 

Qualitative Abstraction : The main method used to handle the state-space explosion prob

lems to the solution of games is abstraction-refinement Abstraction is a technique for reduction 

of a system with large state-spaces (concrete model) to a system with small state-spaces (ab

stract model) by removing information which is not relevant to the property one would want 

to verify. The model checking of an abstract model takes less time and space for property 

verification. However, the result of the model checking over abstract model may not be accu

rate due to the coarse nature of the abstraction; hence the abstract model needs refinement by 

splitting some abstract states. This iterative framework (known as the abstraction-refinement 

framework) continues "model-check and refinement" steps until the one gets a precise result. 

In recent times, there has been much research based on this abstraction-refinement framework. 

Henzinger et. al. [62] have applied counter-example guided abstraction refinement (CEGAR) 
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[9, 13, 31] approach. These algorithms have one-sided errors. Shoham et.al. [96, 98] applied 3 

valued abstraction refinement approach for verification. These algorithms construct abstract-

models using hyper-transitions [98]; thus the construction of abstract-model and verification 

become extremely expensive. Unfortunately, these game algorithms either contain one-sided 

errors or expensive computations of abstract models. 

Quantitative Abstraction: The successful application of abstraction techniques in non-

probabilistic systems has spurred research into probabilistic systems [32, 67, 81, 70]. The 

abstraction construction in probabilistic systems is a harder problem due to the presence of 

probabilities. Like non-probabilistic abstraction algorithms, most of the techniques build ab

stract models with respect to state transitions in the concrete model (full abstraction methods). 

Most quantitative abstraction techniques are approximate; they apply either simulation or ab

stract interpretation. Like their qualitative counterpart, these algorithms also contains one-sided 

errors and/or expensive construction of abstract models. 

Interval-based Abstraction Refinement : My dissertation presents a novel framework on 

interval-based abstraction-refinement. This framework covers a class of abstraction refinement 

algorithms and this set of algorithms (1) do not involve costly abstract model computation, (2) do 

not contain one-sided errors. We present two interval-based abstraction refinement algorithms: 

Three Valued Abstraction (TVA) and Magnifying Lens Abstraction (MLA). We have applied 

these scalable algorithms into several real-life applications like planning, protocol verification, 

interface synthesis for software libraries. Our thesis is that the 

verification problem of a complex design can be reduced to the verification of the 
components and communication among them, and can be solved using game-based 
models, and the proposed abstraction-refinement algorithms make the analysis of 
realistic component-based designs possible by pushing the limits of the size of games 
that can be solved 
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The remainder of the chapter provides the contributions, related works, and an overview of the 

organization of the thesis. 

1.3 Research Contribution 

The research contribution can be divided into two main parts - (1) Application of 

game-based models, (2) interval-based abstraction refinement frame work and applications. 

1.3.1 Application of Game Models 

Interface Compatibility Checking of Components: In component-based design, it is cru

cial to know whether interfaces of two components are compatible, and whether a new component 

can replace an existing component in an integrated system (refinement). Interface automata 

are light-weight representations of the behavior of components of the design. We have designed 

an extension of interface automata called Sociable Interface [39]. Interface theory provides a 

game-theoretic way of solving the compatibility and refinement problems. We developed sym

bolic algorithms for compatibility, and refinement properties of interfaces. We implemented the 

algorithms in the tool TICC[1] where user can specify and verify different properties of a design. 

Software Testing: Software testing is another practical application of game models. In the 

literature, the researchers often view software testing as a game that the tester plays against an 

implementation under test (IUT) [3, 18]. The tester does not know the implementation; instead 

it knows the model behavior of the IUT. Since both the model and IUT (more precisely a wrapper 

around the IUT) are examples of open systems, they behave as interface automata [35, 42] and 

interface theories evaluate the compatibility of these two interfaces. Online testing (also called 

on-the-fly testing) is a testing procedure that merges test generation and test execution into 

a single process. Online testing can be modeled as a MDP where the tester has a goal and 
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the other player (the IUT) is unaware that it is playing and makes random choices following 

a probability distribution [18]. In online testing, the compatibility checking of IUT with the 

model is a necessary step. If the goal of the tester is to reach a set of states, then the work [18] 

solves the problem using value-iteration algorithms. If the goal of the tester is to maximize the 

coverage for a number of test-runs and number of steps per run, then the work [107] solves the 

problem using reinforcement learning techniques [101]. The large state-space of these problems 

has prompted state-grouping abstraction [107, 23]. 

1.3.2 Interval-based Abstract ion Refinement Framework 

My dissertation presents a new framework on interval-based abstraction-refinement. 

This framework covers a class of abstraction refinement algorithms that 

1. Partition the state-space into a set of abstract states (known as regions), 

2. Model-check the partitioned state-space and return an interval [i>-,-i;+] for each region, 

3. Refine adaptively a set of regions where the interval is wider than user-given constant eabs. 

These algorithms (1) do not contain one-sided errors, and (2) do not involve costly model-

construction algorithms. We present two novel algorithm families in the thesis: (1) Game-based 

Three Valued Abstraction (GTVA) for two-player games/transition systems, and (2) Magnifying 

Lens Abstraction (MLA) for Markov Decision Processes (MDPs). 

Game-based Three-Valued Abstraction (GTVA): We developed a novel symbolic ab

straction algorithm [51] for the solution of transition systems and two-player games with reacha

bility, or safety goals. GTVA evaluates the property on the abstract game in three-valued fashion 

(yes, no, maybe). If the computation fails to yield a certain yes/no result to the validity of the 

property on the initial states, our algorithm refines the abstraction by splitting uncertain ab-
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stract states. Most three-valued approaches construct abstract models using hyper-transitions; 

thus the abstract model construction and verification become very expensive. Our approach 

does not build the abstract model explicitly; rather abstract predecessor operators (based on 

the abstraction function) work on the Binary Decision Diagram (BDD) based symbolic repre

sentation of the concrete game structure. We have implemented these three-valued abstraction 

algorithms in the tool TICC. 

Magnifying Lens Abstraction: GTVA algorithms [51] motivated us to investigate a similar 

set of techniques for the probabilistic counterpart. We have developed a novel abstraction 

technique which allows the analysis of reachability and safety properties of MDPs with very 

large state spaces. The technique, called magnifying-lens abstraction, (MLA) [50] copes with 

the state-explosion problem by partitioning the state-space into regions and then computing 

upper and lower bounds on the regions, rather than on the states. To compute these bounds, 

MLA iterates over the regions, considering the concrete states of each region in turn, as if one 

were sliding a magnifying lens across the abstraction which facilitates a closer view of the concrete 

states. The algorithm adaptively refines the regions, using smaller regions where more detail is 

needed, until the difference between upper and lower bounds is smaller than a specified accuracy. 

The experimental results show that MLA can provide accurate answers, with savings in memory 

requirements. We have prototyped a python implementation to show the space-savings of the 

of MLA algorithm [50]. We provided a symbolic version of the MLA algorithm that combines 

symbolic techniques with abstraction techniques to handle the space-explosion problem better. 

We have implemented a symbolic version of the MLA algorithms (called SMLA [91]) in the 

probabilistic model checking tool PRISM. 
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Interfaces for Libraries: Automatic construction of a model in the model based testing 

(MBT) framework is a relatively new concept. Given a high-level specification of the library 

behavior and error conditions, an interface (function call sequence) graph can assume the role of 

a model for the implementation-under-test (IUT). The edges of the interface graph denote the 

functions and the states denote the valuations of the global variables. Given a set of functions 

from a library, we compute an interface graph to identify the safe (not leading the library to 

error) calls in the library. We developed and implemented symbolic abstraction-refinement based 

algorithms by summarizing every function in a purely modular approach. Related work by other 

groups does not apply purely modular approach to create the interface graphs. 

1.4 Related Works 

In this section we discuss the related works and compare with my contributions. 

1.4.1 Interface Theories and Tools 

Previous interface models, such as interface automata [42, 44] and interface modules 

[43, 25] were based on either actions, or variables, but not both. In sociable interfaces, however, 

we want to have both: actions to model synchronization, and variables to encode the global and 

local state of components. In this, sociable interfaces are closely related to the I/O Automata 

Language (IOA) of [76].However, sociable interfaces diverge from I/O Automata in several ways. 

Unlike I/O Automata, where every state must be receptive to every possible input event, socia

ble interfaces allow states to forbid some input events. By not accepting certain inputs, sociable 

interfaces express the assumption that the environment never generates these inputs: hence, 

sociable interfaces (like other interface models) model both the output behavior, and the input 

assumptions, of a component. This approach implies a notion of composition (based on synthe-
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sizing the weakest environment assumptions that guarantee compatibility) which is not present 

in the I/O Automata Model. 

Variable-based interface formalisms In variable-based interface formalisms, such as the 

formalisms of [43, 25], communication is mediated by input and output variables, and the 

system evolves in synchronous steps. It is well known that synchronous, variable-based models 

can also encode communication via actions [7]. However, this encoding prevents the modeling of 

many-to-one and many-to-many communication. In fact, due to the synchronous nature of the 

formalism, a variable can be modified at most by one module: if two modules modified it, there 

would be no simple way to determine its updated value. As a consequence, we cannot write 

modules that can accept inputs from multiple sources: every module must know precisely which 

other modules can provide inputs to it, so that distinct communication actions can be used. 

The advance knowledge of the modules involved in communication hampers module re-use. 

Action-based interface formalisms Action-based interfaces, such as the models of [42, 44] 

, enable a natural encoding of asynchronous communication. In previous proposal, however, two 

interfaces could be composed only if they did not share output actions again ruling out many-

to-one communication. Furthermore, previous action-based formalisms lacked a notion of global 

variables which are visible to all the modules of a system. Such global variables are a very pow

erful and versatile modeling paradigm, providing a notion of global, shared state. Mimicking 

global variables in purely action-based models is rather inconvenient: it requires encapsulat

ing every global variable by a module, whose state corresponds to the value of the variable. 

Read and write accesses to the variable must then be translated to appropriate sequences of 

input and output actions, leading to cumbersome models. The asynchronous, action-based 

interface theories of [42, 44] are implemented as part of the Ptolemy tool-set [73]. The tool 
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CHIC implements synchronous, variable-based interface theories closely modeled after[24]. rich 

communication schemes, including exclusive, and many-to-many schemes, and differentiates the 

modules of TICC from other modules with more restrictive communication primitives, such as 

I/O Automata [76] and Reactive Modules [7]. 

1.4.2 Application of Game-based Algorithms in Software Testing 

The basic idea of online testing has been introduced in the context of labeled transition 

systems using IOCO theory [20, 102, 104] and implemented in the TorX tool [103]. TGV [68] is 

another tool frequently used for online or on-the-ny test generation that uses ioco. loco theory 

is a formal testing theory based on labeled transition systems with input actions and output 

actions. Interface automata [36] are suitable for the game view [25] of online testing and provide 

the foundation for the conformance relation that we use. Online testing with model programs in 

the Spec-Explorer tool is discussed in [106]. The algorithm in [106] does not use learning, and 

as far as we know learning algorithms have not been considered in the context of model based 

testing. The relation between ioco and refinement of interface automata is briefly discussed 

in [106]. Specifications given by a guarded command language are used also in [89]. In Black-

box testing, some work [84] has been done which uses supervised learning procedures. As far as 

we know, no previous work has addressed online testing with learning in the context of Model 

Based Testing. The main intuition behind our algorithm is similar to an anti-ant approach [75] 

used for test case generation form UML diagrams. From the game point of view, the online 

testing problem is a 1 ^-player game. It is known that 1 ̂ -player games are Markov Decision 

Processes [26]. The view of finite explorations of model programs for offline test case generation 

as negative total reward Markov decision problems with infinite horizon are studied in [19]. 
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1.4.3 Qualitative Abstraction 

Counterexample-guided abstraction refinement (CEGAR) [9, 13, 31], the most suc

cessful abstraction technique, has been applied in both hardware [31] and software [13, 63] 

verification. According to this technique, given a system abstraction, we check whether the ab

straction satisfies the property. If the answer is affirmative, we are done. Otherwise, the check 

yields an abstract counterexample, encoding a set of "suspect" system behaviors. The abstract 

counterexample is then further analyzed, either yielding a concrete counterexample (a proof that 

the property does not hold), or yielding a refined abstraction, in which that particular abstract 

counterexample is no longer present. The process continues until either a concrete counterex

ample is found, or until the property can be shown to hold (i.e., no abstract counterexamples 

are left). The appeal of CEGAR lies in the fact that it is a fully automatic technique, and that 

the abstraction is refined on-demand, in a property-driven fashion, adding just enough detail 

as is necessary to perform the analysis. The CEGAR technique has been extended to games in 

counterexample-guided control [62]. 

In its aim of reducing the number of may-states, our technique is related to the three-

valued abstraction refinement schemes proposed for CTL and transition systems in [97, 98]. We 

avoid the explicit construction of the tree-valued transition relation of the abstraction, relying 

instead on may and must versions of the controllable predecessor operators. Our approach 

provides precision and efficiency benefits. In fact, to retain full precision, the must-transitions of 

a three-valued model need to be represented as hyper-edges, rather than normal edges [98, 41, 99]; 

in turn, hyper-edges are computationally expensive both to derive and to represent. The may 

and must predecessor operators we use provide the same precision as the hyper-edges, without 

the associated computational penalty. For a similar reason, we show that our three-valued 

abstraction refinement technique is superior to the CEGAR technique of [62], in the sense that 
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it can prove a given property with an abstraction that never needs to be finer, and that can 

often be coarser. Again, the advantage is due to the fact that [62] represents player-1 moves in 

the abstract model via must-edges, rather than must hyper-edges. A final benefit of avoiding 

the explicit construction of the abstract model, relying instead on predecessor operators, is that 

the resulting technique is simpler to present, and simpler to implement. On the other side, we 

remark that the techniques of [62] extend easily to parity goals, whereas the refinement scheme 

we propose can be extended, but only at the price of cumbersome bookkeeping. 

1.4.4 M L A 

For the most part, approaches to MDP abstraction in the literature have followed a 

conventional route, which we call very broadly the full abstraction approach: an abstract model 

is constructed, and then analyzed on the basis of an abstract transition structure, without 

further reference to the concrete model. These fully abstract approaches generally rely on 

clustering states that are similar not only in value, but also in transition structure: in this 

way, every region of concrete states can be summarized via an abstract state with an associated 

abstract transition structure. The abstract transition structure may, or may not, be similar to 

the concrete one. For instance, [70] bases the abstract transition structure on games, rather 

than MDPs: in this fashion, player 1 can represent the choice of action of the MDP, and 

player 2 can represent the uncertainty about the concrete state corresponding to the abstract 

state. This approach enables the computation of lower and upper bounds for properties of 

interest, similarly to MLA. In a somewhat related spirit, but using entirely different technical 

means, [58] proposes to abstract Markov chains into abstract Markov chains whose transitions 

are labeled with intervals of probability, representing the uncertainty about the concrete state. 

Clustering states based on the similarity in their transition probabilities has also been used in 

[52], which proposes to find the coarsest refinement of an MDP where for each action, states 
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in the same region have the same probability of going to other regions. An approach for the 

verification of probabilistic reachability properties via abstraction has been proposed in [32]. The 

abstraction is built through successive refinements starting from a coarse partition based on the 

property. Several other approaches also, in fact, rely on constructing MDP abstractions based on 

simulation or abstract interpretation [67, 81, 80]; all of these approaches rely on clustering states 

with similar transition structure, and representing these clusters of states, and their transition 

structures, via compact abstract representations. 

Compared with other approaches to MDP abstraction, MLA (and SMLA) has two 

distinctive features: 

1. it clusters states based on value, rather than based on the similarity in their transition 

function; 

2. it updates the valuation of abstract states by considering the concrete states associated 

with the abstract states, rather than by considering an abstract model only. 

The second of the above points underlines how MLA is a semi-abstract, rather than fully ab

stract, approach to verification: the abstract computation still involves consideration of the 

concrete states, even though this is done in a way that provides space savings. 

The full-abstraction approach outlined above, and the partial value-based approach 

followed by MLA, each have advantages. The full-abstraction result can handle unbounded, and 

(depending on the specific approach) even infinite state spaces. In contrast, the space savings 

afforded by MLA are limited to a square-root factor (a system of size n can be studied in 0(^/n) 

space), due to the need to consider the concrete states corresponding to each abstract one. 

Furthermore, the full-abstraction approaches typically need to construct the abstract model 

only once; in contrast, MLA needs to refer to concrete states (albeit not all of them at once) 

during the computation. 
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On the other hand, the ability of MLA to cluster states based on value only, disregarding 

differences in their transition relation, can lead to compact abstractions for systems where full 

abstraction provides no benefit. We will give below an example supporting this. Furthermore, in 

MLA the abstraction is refined dynamically, depending on the required accuracy of the analysis; 

there is no need to "guess" the right state partition in advance. In our experience, MLA is 

particularly well-suited to problems where there is a notion of locality in the state space, so 

that it makes sense to cluster states based on variable values — even though their transition 

relations may not be similar. Many planning and control problems are of this type. MLA instead 

is not as well-suited to problems where clustering states based on variable values is less effective. 

Approaches based on predicate abstraction could lend the MLA approach more generality. 

In MLA, as long as the value of the property of interest is similar in states in the 

same interval, abstraction is possible and useful. Indeed, experimentally we noticed that SMLA 

performs well in many problems with integer-valued state variables, where the properties vary 

gradually with the value of the state variables. Problems in planning, inventory control, and 

similar often belong to this category. On the other hand, when it is possible to use symme

try or structural knowledge of an example, and aggregate states of similar transition relation, 

approaches such as [32, 70, 71] yield superior results. 

MLA is reminiscent to methods that represent value functions via ADDs or MTBDDs 

[30, 11] with an approximation factor used to merge leaves. The similarity, however, is superficial: 

MLA leads to far more precise results in the analysis; we discuss this in the conclusions, where 

the appropriate notation will be available. 

MLA is also loosely reminiscent of adaptive mesh refinement (AMR) methods used in 

the solution of partial differential equations [14]. There are, however, two important differences 

between MLA and AMR. In AMR, separate lower and upper bounds are not kept. AMR methods 

perform computation at the finest mesh sizes only where needed. In MLA, due to the discrete 
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nature of MDPs, we have no way of computing over a "coarse mesh" only: to update valuations 

over a region, we need to "magnify" the region to its individual states. Thus, MLA is forced to 

consider the individual states over the whole system, and it summarizes and returns the results 

in terms of lower and upper bounds, which are well-suited to answering verification questions. 

1.5 Organization of the Thesis 

I have organized the thesis into four main parts: Part I (Chapter 2) provides prelimi

nary definitions and algorithms to understand the rest of the chapters. Part II (Chapters 3-4) 

provides the application of game models in interface compatibility checking and online-testing 

algorithms. Part III(Chapters 5-6) provides game-based three-valued abstraction-refinement 

(GTVA) algorithms and applications. Part IV (Chapters 7-8) provides Magnifying Lens Abstrac

tion (MLA) algorithms and their symbolic counterparts SMLA. Finally, Chapter 9 concludes 

with the summary and future work. 
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Part I 

Background 



Chapter 2 

Background 

2.1 Preliminary Definitions 

For a countable set S, a probability distribution on S is a function p : S i—> [0,1] such 

that X^sgsP(s) = 1 > w e denote the set of probability distributions on S by D(S). A valuation 

over a set 5 is a function u : S i—> K associating a real number v(s) with every s G S. For 

valuations v, u over S, we define operators and inequalities in point-wise fashion: for instance, 

we define v + u by (v + u)(s) = v(s) + u(s) for all s £ S, and we write v < u if t>(s) < u(s) 

at all s 6 5. For i £ 1 , we denote by x the valuation with constant value x\ for T C S, we 

indicate by [T] the valuation having value 1 in T and 0 elsewhere. For two valuations v, u on S, 

we define \\v — u\\ = sup s e 5 |^(s) — u(s)\-

A partition of a set S is a set R C 2 s , such that |J{s|s G R} = S, and such that for 

all r, r' G R, if r ^ r' then r fl r' = 0. We will define abstractions of the state space S simply 

via partitions of S. For s G S and a partition R of 5, we denote by [s]^ the element r € R with 

s £ r . We say that a partition R! is /mer than a partition i? if the elements of R can be written 

as unions of the elements of R'. 
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2.2 Game Models 

Def in i t ion 1 T w o P l a y e r G a m e s : A two-player game structure G = (S, A, S) consists of: 

• A state space S. 

• A turn function A : S —> {1,2}, associating with each state s E S the player A(s) whose 

turn it is to play at the state. We write ~ 1 = 2, ~ 2 = 1, and we let Si = {s G S \ A(s) = 1} 

andS2 = {s G S | A(s) = 2}. 

• A transition function 5 : S t—> 2 s \ 0, associating with every state s £ S a non-empty set 

S(s) C S of possible successors. 

Def in i t ion 2 M a r k o v D e c i s i o n P r o c e s s e s ( M D P s ) : A Markov decision process (MDP) 

M = (S,A,T,p) consists of the following components: 

• A state space S. 

• A finite set A of actions (moves), 

• A move assignment T : S —> 2A \ 0. 

• A probabilistic transition function p : S x A —> D(S). 

At every state s S S, the controller can choose an action a G T(s ) ; the MDP then proceeds to 

the successor state t with probability p(s, a, t), for all t G S. 

Transition systems (1-player games) are special cases of two-player games where S2 = 0 and for 

all s G S, X(s) = 1. The game takes place over the s tate space S, and proceeds in an infinite 

sequence of rounds. At every round, from the current state s G S, player A(s) G {1, 2} chooses 

a successor state s' G S(s), and the game proceeds to s'. The infinite sequence of rounds gives 

rise to a path ~s G S": precisely, a path of G is an infinite sequence s = SQ, SI, s2, • • • of states in 

S such tha t for all k > 0, we have Sfc+i G <5(sfc). We denote by Q, the set of all paths. 
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2.3 Objectives 

A game(G,$) consists of a game structure G together with an objective $ for a player. 

An qualitative objective $ for a game structure G is a subset $ C Su of the sequences of states 

of G. A quantitative objective is specified as a measurable function / : 0. —> K. 

Given a subset T C S of states, the reachability objective OT = {so, s i i s2, • • • £ Su \ 

3fc > O.s/c £ T} consists of all paths that reach T; the safety objective uT = {so, s±, s2, • • • £ 

S^ j \/k > O.Sfc G T} consists of all paths that stay in T forever. Games with reachability or 

safety objectives are called reachability and safety games, respectively. 

2.4 Strategies 

Strategy in Two-Player Games : A strategy for player i £ {1,2} in a game G = (S,X,5) 

is a mapping 7Tj : S* x Si i—> 5 that associates with every nonempty finite sequence cr of states 

ending in Si, representing the past history of the game, a successor state. We require that, for all 

u g S " and all s £ Si, we have ^(crs) £ S(s). An initial state So £ S and two strategies ixi, TT2 

for players 1 and 2 uniquely determine a sequence of states Outcome(sQ, ni,^) = so, si, $2, • • •> 

where for k > 0 we have Sk+i = 7Ti(s0,..., s/c) if Sfc G Si, and Sfc+1 = 7r2(s0 , . . . , Sfe) if Sk £ S2. 

Given an initial state so and a winning objective $ C 5 " for player i £ {1,2}, we say that 

state s £ S is winning for player i if there is a player-i strategy 7Tj such that, for all player ~ i 

strategies n^i, we have Owteome(s0,7r1,7T2) G $. We denote by (i)<3? C S1 the set of winning 

states for player i for objective $ C S " . A result by [57], as well as the determinacy result of 

[79], ensures that for all w-regular goals $ we have (1}$ = S ,\(2)->$, where ->$ = S\ $. Given 

a set 8 C S oi initial states, and a property $ C S", we will present algorithms for deciding 

whether 8 n (i)<E> ^ 0 or, equivalently, whether 0 C (i)$, for i G {1,2}. 
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Strategy in Markov Decision Processes : We model the choice of actions, on the part of 

the controller, via a strategy (strategies are also variously called schedulers [94] or policies [54]). 

A strategy is a mapping 7r : S+ i—> D(A): given a past history as G S+ for the MDP, a strategy 

IT chooses each action a G T(s) with probability n(as)(a); we obviously require ir(as)(b) = 0 for 

&\\beA\T(s). 

2.5 Controllable Predecessor Operators 

Two-player games with reachability, safety winning conditions are commonly solved 

using controllable predecessor operators. We define the player-1 controllable predecessor operator 

Cprej : 2s ^ 2s as follows, for all X C S and i G {1, 2}: 

CpreipO = {s G Si | S(s) n X + 0} U {s € S„4 | <5(s) C X } . (2.1) 

Intuitively, for i G {1, 2}, the set Cpre^X) consists of the states from which player i can force 

the game to X in one step. 

We will express our algorithms for solving games on the state-space S in /i-calculus 

notation [57]. Consider a function 7 : 2 s 1—> 2 s , monotone when 2 s is considered as a lattice 

with the usual subset ordering. We denote by fj,Z.j(Z) (resp. isZ.'y(Z)) the least (resp. greatest) 

fix-point of 7, that is, the least (resp. greatest) set Z C S such that Z = j(Z). As is well known, 

since 5 is finite, these fix-points can be computed via Picard iteration: fiZ.j(Z) = lirrin^oo 7n(0) 

and VZ.'Y(Z) — limj^oo 7™(5). In the solution of parity games we will make use of nested fix-

point operators, which can be evaluated by nested Picard iteration [57]. 
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Algorithm 1 ValIter(T, / , g,£float) Value iteration 

1. v := [T] 

2. repeat 

3. v := v 

4. for all s G S do v(s) := / ( [T](s), J E , £ S P ( S , a, s') • v(s') a G T(s) 

5. until Hu-ull < efloat 

6. return v 

2.6 Optimal Values in Markov Decision Processes 

These sets of paths Q, are measurable [105] in Markov Decision Processes, so that given 

a strategy 7r G II, we can define the probabilities Pr^(OT), Pr^(DT) of following a path in 

these sets from an initial state s £ S under strategy 7r. By choosing appropriate strategies, 

the controller can maximize or minimize these probabilities. Thus, we consider the problem of 

computing, at all s G 5, the quantities: 

Vn
m

T
ax(s) = maxPr^(DT) V^x(s) = maxPr^(OT) 

7rsn 7ren 

V^ n ( s ) = minPr^(DT) V^ n ( s ) = minPr^OT) . 
wGn 7ren 

The fact that on the right-hand side we have max, min rather than sup, inf is a consequence 

of the existence of optimal (and memoryless) strategies [54]. Thus, strategies can be both 

history-dependent, and randomized. We denote by II the set of all strategies. 

2.6.1 Implementation via Value Iteration 

Reachability and safety probabilities on an MDP can be computed via a classical 

value-iteration scheme [54, 15, 49]. The algorithm, depicted as Algorithm 1, is parameterized 
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Quantity 
T/max 

T/min 

Quantity 
T/max 
VOT 
T/min 

f 
min 
min 

/ 
max 
max 

9 
max 
min 

9 
max 
min 

convergence 
from above 
from above 
convergence 
from below 
from below 

Table 2.1: Parameters to be used in the call to ValIter(T, / , g) in order to compute reachability 
and safety properties. The table also indicates whether the computation converges from above, 
or from below. 

by two operators f,g e {max, min}. The operator / specifies how to merge the valuation 

of the current state with the expected next-state valuation; we use / = max for reachability 

goals, and / = min for safety ones. The operator g specifies whether to select the action 

that maximizes, or minimizes, the expected next-state valuation; we use g = max to compute 

maximal probabilities, and g = min to compute minimal probabilities, The algorithm is also 

parameterized by £float > 0: this is the threshold below which we consider value iteration to 

have converged. The following facts are well-known (see, e.g., [54, 33, 34]). For all Sfloat > 0 

and for all / , g € {min, max}, the call ValIter(T, / , g,£float) terminates. Moreover, consider any 

g G {max, min} and any A € {D, O}, and let / = min if A = • , and / = max if A = O. Then, 

for all S > 0, there is an Sfloat > 0 such that, at all s G S: 

v(s)-S < VlT(s) < v(s)+5 

where v = ValIter(T, / , g, Sfloat). We can replace statement 1 of Algorithm 1 with the following 

initialization: if / = max then v := 0 else v :— 1. 
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Part II 

Applications of Games 
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Chapter 3 

Interface Theories in Component Based 

Design and TICC 

Open systems are systems whose behavior is jointly determined by their internal struc

ture, and by the inputs that they receive from their environment. In previous work, it has been 

argued that games constitute a natural model for open systems [35] We use games to repre

sent the interaction between the behavior originating within a component, and the behavior 

originating from the components environment. In particular, we model components as Input-

Output games: the moves of Input represent the behavior the component can accept from the 

environment, while the moves of Output represent the behavior the component can generate. 

Unlike component models based on transition systems, models based on games provide a notion 

of compatibility [42, 44]. When two components P and Q are composed, we can check whether 

the output behavior of P satisfies the input requirements of Q, and vice-versa. However, we 

do not define P and Q to be compatible only if their input requirements are always satisfied. 

Rather, we recognize that the output behavior of P and Q can still be influenced by their residual 

interaction with the environment (unless the composition of P and Q is closed). Thus, we define 
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P and Q to be compatible if there is some environment under which their input assumptions 

are mutually satisfied, and we associate with their composition P||Q the weakest (most general) 

assumptions about the environment that guarantee mutual compatibility. In game-theoretic 

terms, P and Q are compatible if, in their joint model, Input has a strategy to guarantee that all 

outputs from P to Q can be accepted by Q, and vice-versa; the environment assumption of P| |Q 

is simply the most general such Input strategy. These game-based component models have been 

called interface theories, and two tools for interface theories predate Ticc. The asynchronous, 

action-based interface theories of [42, 44] are implemented as part of the Ptolemy tool-set [73]. 

The tool Chic implements synchronous, variable-based interface theories closely modeled after 

[24]. Our goal in developing Ticc was to provide an asynchronous model where components have 

rich communication primitives that facilitate the modeling of software and distributed systems. 

In Ticc, variables encode both the local state of the components (called modules) and the global 

state of the system. Modules synchronize on shared actions, and the occurrence of actions can 

cause variables to be updated. Each global variable can be updated by more than one module, 

so that it is both read and write-shared; restrictions ensure that variable updates are free from 

race-conditions. An action can appear in a module both as input and as output. If an action 

a occurs in a module P as output, but not as input, then P can generate a, but not accept it 

from other modules. If a occurs in P both as input and as output, then P can both generate a, 

and accept it from other modules. This enables the encoding of rich communication schemes, 

including exclusive, and many-to-many schemes, and differentiates the modules of Ticc from 

other modules with more restrictive communication primitives, such as I/O Automata [76] and 

Reactive Modules [7]. The theory behind Ticc has been presented in detail in [39]; here, we 

describe the tool itself. 
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3.1 Tool 

Ticc parses interfaces, called modules, encoded in a guarded-command language, and 

builds symbolic representations for these interfaces tha t are used for compatibility checking 

and composition. Ticc is writ ten in OCaml [74], and the symbolic algorithms rely on the 

M D D / B D D Glue sand Cudd packages [100]. The code of Ticc is freely available and can be 

downloaded from ht tp: / /dvlab.cse .ucsc.edu/dvlab/Ticc. This web site is an open Wiki tha t 

also contains the documentation for the tool, and several additional examples. We illustrate 

the modeling language of Ticc by means of a simple example: a fire detection system. The 

system is composed of a control unit and several smoke detectors. When a detector senses 

smoke (action smoke), it reports it by emitting the action fire. When the control unit receives 

action fire from any of the detectors, it emits the action call fd , corresponding to a call to the 

fire department. Additionally, an input disable disables both the control unit and the detectors, 

so tha t the smoke sensors can be tested without triggering an alarm. We provide the code for 

the control unit module (ControlUnit), for one of the (several) fire detectors (FireDetectorl) , 

as well as for a faulty detector tha t ignores the disable messages (Faulty FireDetector2): The 

body of each module starts with the list of its local variables; Ticc supports Boolean and integral 

range variables. The transitions are specified using guarded commands guard ) command, where 

guard and command are boolean expressions over the local and global variables; as usual, primed 

variables refer to the values, after a transition is taken. For instance, the output transition fire 

in module FireDetectorl can be taken only when s has value 1; the transit ion leads to a state 

where s = 2. 

module C o n t r o l U n i t : 
va r s : [ 0 . . 3 ] / / 0 = w a i t i n g , l=a la rm r a i s e d , 2=fd c a l l e d , 3 = d i s a b l e d 

i n p u t f i r e : { l o c a l : s = 0 | s = 1 ==> s := 1 
e l s e s = 2 ==> } 
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input disable: { local: true ==> s := 3 } 
output call_fd: { s = 1 ==> s = 2 } 
endmodule 

module FireDetectorl: 
var s: [0..2] // 0=idle, l=smoke detected, 2=inactive 

input smokel: { local: s = 0 I s = 1 ==> s := 1 

else s = 2 ==> } // do nothing if inactive 

output fire: { s = 1 ==> s = 2 } 

input fire: { } // accepts (and ignores) fire inputs 

input disable: { local: true ==> s := 2 } 
endmodule 

module Faulty_FireDetector2: 
var s: [0..2] // 0=idle, l=smoke detected, 2=inactive 

input smoke2: { local: s = 0 I s = 1 ==> s := 1 
else s = 2 ==> } // do nothing if inactive 

output fire: { s = 1 ==> s = 2 } 

input f i r e : { } / / accepts (and ignores) f i r e inputs 
/ / does not l i s t e n to d isable ac t ion 

endmodule 

When modules ControlUnit and FireDetectorl are composed, they synchronize on the 

shared actions fire and disable. First, input transitions in a module synchronize with the cor

responding output transitions in the other module. Thus, the output transition labeled with 

fire in FireDetectorl synchronizes with the input transitions labeled with fire in ControlUnit. 

Moreover, input transitions associated to a shared action in different modules also synchro

nize. For instance, the input transitions associated with fire in FireDetectorl and ControlUnit 

synchronize, so that the composition FireDetectorl ||ControlUnit can also accept fire as input, 

and can therefore be composed with other fire detectors. The composition of ControlUnit and 

Faulty FireDetector2 goes less smoothly. When the composition receives a disable action, the 

control unit shuts down (s = 3), while the faulty detector remains in operation. When the 
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faulty detector senses smoke (input smoke2), it will emit fire: if the control unit has been dis

abled by the disable action, this causes an incompatibility. Ticc diagnoses this incompatibility 

by synthesizing the following input restrictions: 

• A restriction preventing the input disable if the faulty detector is in state s = 1, that is, 

it has detected smoke and is about to issue fire. 

• A restriction preventing the input smoke2 when Control-Unit is at s = 3 (disabled). 

Since the actions disable and smoke2 should be acceptable at any time, the new input re

strictions for these actions are a strong indication that the composition Control-Unit || Faulty 

Fire-Detector2 does not work properly. 

3.2 Using TICC 

Ticc is implemented as a set of functions that extends the capabilities of the OCaml 

command-line. The incompatibility mentioned in the previous section is exposed by the following 

series of OCaml commands: 

# open T icc ; ; 
# parse " f i r e - d e t e c t o r - d i s a b l e . s i " ; ; 
# l e t cont ro lun i t = mk_sym "ControlUnit"; ; 
# l e t wfire2 = mk_sym "Faulty_FireDetector2"; ; 
# p r i n t _ i n p u t _ r e s t r i c t i o n (compose cont ro luni t wfire2) " d i s a b l e " ; ; 
# p r i n t _ i n p u t _ r e s t r i c t i o n (compose cont ro luni t wfire2) "smoke2";; 

The mk sym function builds a symbolic representation of a module, given the module name. 

The last two lines print how the input actions have been restricted in the composition. 
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Chapter 4 

Online Testing with Learning 

4.1 Introduction 

Many software systems are reactive. The behavior of a reactive system, especially 

when distributed or multi-threaded, can be nondeterministic. For example, systems may produce 

spontaneous outputs like asynchronous events. Factors such as thread scheduling are not entirely 

under the control of the tester but may still affect the behavior observed. In these cases, a test 

suite generated offline may be infeasible, since all of the observable behaviors would have to be 

encoded a priori as a decision tree, and the size of such a decision tree can be very large. 

Online testing (also called on-the-fly testing) can be more appropriate than offline 

tests for reactive systems. The reason is that with online testing the tests may be dynamically 

adapted at runtime, effectively pruning the search space to include only those behaviors actually 

observed instead of all possible behaviors. The interaction between tester and implementation 

under test (IUT) is seen as a game [4] where the tester chooses moves based on the observed 

behavior of the implementation under test. Only the tester is assumed to have a goal; the other 

player (the IUT) is unaware that it is playing. This kind of game is known in the literature as 
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a 1 ̂ -player game [26]. 

Online testing is a form of model-based testing (MBT), where the tester uses a specifi

cation (or model) of the system's behavior to guide the testing and to detect the discrepancies 

between the IUT and the model. It is an established technique, supported in tools like TorX [103] 

and Spec Explorer [106]. We express the model as a set of guarded update rules that operate on 

an abstract state. This formulation is called a model program. Both the IUT and the model are 

viewed as interface automata [47] in order to establish a a formal conformance relation between 

them. 

We distinguish between moves of the tester and moves of the IUT. The actions available 

to the tester are called controllable actions. The IUT's responses are observable actions. A 

conformance failure occurs when the IUT rejects a controllable action produced by the model 

or when the model rejects an observable action produced by the IUT. 

A principal concern of online testing is the strategy used to choose test actions. A 

poor strategy may fail to provoke behaviors of interest or may take an infeasible amount to time 

to achieve good coverage. One can think of strategy in economic terms. The cost of testing 

increases with the number of test runs and the number of steps per run. We want to minimize the 

number of steps taken to achieve a given level of coverage for the possible behaviors. Exhaustive 

coverage is often infeasible. Instead, we strive for the best coverage possible within fixed resource 

constraints. The main challenge is to choose actions that minimize backtracking, since resetting 

the IUT to its initial state can be an expensive operation. 

A purely random strategy for selecting test actions can be wasteful in this regard, since 

the tester may repeat actions that have already been tested or fail to systematically explore the 

reachable model states. A random strategy cannot benefit from remembering actions chosen in 

previous runs. 

In this chapter we propose an algorithm for online testing, using the ideas from Rein-
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forcement Learning (RL) [101, 69]. RL techniques address some of the drawbacks of random 

action selection. Our algorithm is related to the anti-ant algorithm introduced in [75], which 

avoids the generation of redundant test cases from UML diagrams. 

RL refers to a collection of techniques in which an agent makes moves (called actions) 

with respect to the state of an environment. Actions are associated with rewards or costs in 

each state. The agent's goal is to choose a sequence of actions to maximize expected reward or, 

equivalently, to minimize expected cost. 

The history needed to compute the strategy is encoded in a data structure called a 

"Test-Trace Graph (TTG)". We compare several such strategies below. The results show that 

a greedy strategy (Least-Cost) has a suboptimal solution. The probability of reaching a failure 

state does not change with a purely randomized strategy (Random), though the probability 

reduces monotonically in a randomized greedy strategy (RandomizedLeastCost). This is because 

the probability in the latter case is negatively reinforced by the number of times a failure state 

has been visited, whereas it remains same in the former case. 

The contributions of this chapter are the following: 

• We transform the online testing problem into a special case of reinforcement learning where 

the frequencies of various abstract behaviors are recorded. This allows us to better choose 

controllable actions. 

. • We show with benchmarks that an RL-based approach can significantly outperform ran

dom action selection. 

4.2 Testing Theory 

In model-based testing a tester uses a specification for two purposes. One is confor

mance checking: to decide if the IUT behaves as expected or specified. The other is scenario 
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control: which actions should be taken in which order and pattern. Model-based testing is 

currently a growing practice in industry. In many respects the second purpose is the main use of 

models to drive tests and relates closely to test scenarios is traditional testing. However, with a 

growing complexity and need for protocol level testing and interaction testing, the first purpose 

is gaining importance. 

Formally, model programs are mapped (unwound) to interface automata in order to 

do conformance checking. The conformance relation that is used can be defined as a form of 

alternating refinement. This form of testing is provided by the Spec Explorer tool, see e.g. [106]. 

4.2.1 Model Programs as Specifications 

States are memories that are finite mappings from (memory) locations to a fixed uni

verse of values. By an update rule we mean here a finite representation of a function that given 

a memory (state) produces an updated memory (state). A update rule p may be parameterized 

with respect to a sequence of formal input parameters x, denoted by p\x\. The instantiation 

of p[x] with input values v of appropriate type, is denoted by p[v]. In general, an update rule 

may be nondeterministic, in which case it may yield several states from a given state and given 

inputs. Thus, an update rule p\x\,... ,xn] denotes a relation \p\ C States x Values71 x States. 

When p is deterministic, we consider [p] as a function |p] : States x Values™ —> States and we 

say that the invocation (or execution) of p[v] from state s yields the state |p](s,i;). 

A guard ip is a state dependent formula that may contain free logic variables x = 

Xi,..., xn, denoted by <p[x]; <p is closed if it contains no free variables. Given values v = v\ ..., vn 

we write tp[v] for the replacement of x^ in tp by Vi for 1 < i < n. A closed formula (p has the 

standard truth interpretation s J= ip in a state s. A guarded update rule is a pair (<p,p) containing 

a guard ip[x] and an update rule p[x}\ intuitively (<p,p) limits the execution of p to those states 

and arguments v where p[v] holds. 
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Definition 3 A model program P has the following components. 

• A state space States. 

• A value space Values. 

• An initial state So £ States, 

• A finite vocabulary E of action symbols partitioned into two disjoint sets 

— Ec of controllable action symbols, and 

— E° of observable action symbols. 

• A reset action symbol Reset G Ec. 

• A family (</>/,j>/)/6£ of guarded update rules. 

— The arity of / is the number of input parameters of pf. 

— The arity of Reset is 0 and [pfleset] (s) = So f°r all s \= f Reset-

P is deterministic if, for all action symbols / G E, p / is deterministic. 

An n-ary action symbol has logically the term interpretation, i.e. two ground terms whose 

function symbols are action symbols are equal if and only if the action symbols are identical and 

their corresponding arguments are equal. An action has the form /(i>i, . . . ,vn) where / is an 

n-ary action symbol and each Vi is a value that matches the required type of the corresponding 

input parameter of pf. We say that an action f(v) is enabled is a state s if s \= <p(v). Notice 

the two special cases regarding reset: one when reset is always disabled (ifReset = false), in 

which case the definition of PReset is irrelevant, and the other one when reset is always enabled 

{f Reset = true), in which case PReset must be able to reestablish the initial state from any other 

program state. 

34 



We sometimes use action to mean an action symbol, when this is clear from the context 

or when the action symbol is miliary in which case there is no distinction between the two. 

6 

4.2.2 Example: Recycling Robot 

We show a model program of a collection of recycling robots written in C # in Figure 4.1. 

A robot is a movable recycle-bin, it can either 

1. move and search for a can if its power level (measured in percentage) is above the given 

threshold 30%, or 

2. remain stationary and wait for people to dispose of a can if its power level is below the 

given threshold 50%. 

A robot gets a reward by collecting cans. The reward is bigger when searching than while 

waiting, but each search reduces the power level of the robot by 30%. A robot can be recharged 

when it is not fully charged, i.e when the power level is less than 100%. New robots can be 

started dynamically provided that the total number of robots does not exceed a limit (if such a 

limit is given). 

Actions In this example, the action symbols are Start, Search, Wait and Recharge, where the 

first three symbols are classified as being controllable and the last one is classified as being 

observable. All of the symbols are unary (i.e., they take one input). All actions have the form 

f(i) where / is one of the four action symbols and i is a non-negative integer representing the 

id of a robot. The reset action is in this example implicit, and is assumed to be enabled in all 

states. 

Sta tes The state signature has three state variables, a map Robot. Instances from object ids 

(natural numbers) to robots (objects of type Robot), and two field value maps power and reward 
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class Robot : Enumeratedlnstance / / The base class keeps track of created robot instances 

int power = 0; 
int reward = 0; 

> 

class RobotModel 
i 

static int maxNoOfRobots = . . . ; 

[Action] 
s tat ic void Start(int robotld) 
•C 

Assume.IsTrue(Robot.Instances.Count < maxNoOfRobots kk 
-i Robot.Instances.Count =~ robotld)); 

new Robot(robotld); 
> 

[Action] 
static void Search(int robotld) 

< 
Assume.IsTrue(robotld £ Robot.Instances); 
Robot robot = Robot.Instances[robotld]; 
Assume.IsTrue(robot.power > 30); 

robot.power = robot.power - 30; 
robot.reward = robot.reward + 2; 

> 
[Action] 
static void Wait(int robotld) 

{ 
Assume.IsTrue(robotld £ Robot.Instances); 
Robot robot = Robot.Instances[robotld]; 
Assume . IsTrue (robot .power <= 50); 

robot.reward = robot.reward + 1; 
} 

[ActionCKind = Observable)] 
static void RechargeCint robotld) 
i 

Assume.IsTrue(robotld £ Robot.Instances); 
Robot robot = Robot.Instances[robotld]; 
Assume . IsTrue (robot .power < 100); 

} 
robot.power = 100; 

Figure 4.1: Model Program of the Recycling Robot example. 

that map robots to their corresponding power and reward values. The initial state is the state 

where all those maps are empty. 

Guarded update rules For each of the four actions / the guarded update rule (<Pf,P/) is 

denned by the corresponding static method / of the RobotModel class. Given a robot id i and 

a state s, the guard ipf(i) is true in s, if all the Assume. IsTrue statements evaluate to true in 

s. Execution of Pf[i] corresponds to the method invocation of f(i). For example, in the initial 

state, say SQ, of the robot model, the single enabled action is Start (0). In the resulting state 
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|pstartl(sOiO) a new robot with id 0 has been created whose reward and power are 0. 

4.2.3 Deterministic model programs as interface automata 

We use the notion of interface automata [47, 36] following the exposition in [36]. The 

view of a model program as an interface automaton is important for formalizing the conformance 

relation. In this chapter, we use the terms "controllable" and "observable" here instead of the 

terms "input" and "output" used in [36]. 

Definition 4 An interface automaton M has the following components: 

• A set S of states. 

• A nonempty subset 5 l m t of S called the initial states. 

• Mutually disjoint sets of controllable actions Ac and observable actions A°. 

• Enabling functions Fc and r ° from S to subsets of Ac and ^4°, respectively. 

• A transition function 5 that maps a source state and an action enabled in the source state 

to a target state. 

In order to identify a component of an interface automaton M, we index that component by M, 

unless M is clear from the context. Let P be a deterministic model program (States, Values, SQ, S, 

EC ,S°, Reset, (ipf , p / ) / 6 s ) . P has the following straightforward denotation [P] as an interface 

automaton: 
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5[p] = States 

Ac
m={f(v)\feZc,vC Values} 

A°m={f(v)\feJ:0,vC Values} 

nPj(s) = {f(v)€AlPj\s^^f(v)} 

^P](s) = {f(v)eA°lPi\3\=tp/(v)} 

5lPj(s,f(v)) = lPfl(s,v) (for / G E, s e Stotes, s |= V/(f>)) 

Note that <5jpj is well-defined, since P is deterministic. In light of the above definition we 

occasionally drop the distinction between P and the interface automaton [P] it denotes. 

4.2.4 Implementing a Model Program as an Interface Automaton 

A model program P exposes itself as an interface automaton through a stepper that 

provides a particular "walk" through the interface automaton one transition at a time. A 

stepper of P is implemented through the IStepper interface defined below. A stepper has an 

implicit current state that is initially the initial state of P. In the current state s of a stepper, the 

enabled actions are given by Tjpj(s). Doing a step in the current state s of the stepper according 

to a given action a corresponds to setting the current state of the stepper to <5[pj(s,a). The 

Reset action is handled separately and is not included in the set of currently enabled actions 

EnabledControllables. 

interface IStepper 
{ 

Sequence<Action> EnabledControllables { get; } 
Sequence<Action> EnabledObservables { get; > 
void DoStepCAction action); 

void ResetC); 
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bool ResetEnabled < get; } 
} 

For conformance testing, an implementation is also assumed to be an interface automa

ton that is exposed through a stepper. If both the model and the IUT are interface automata 

with a common action signature, we test the conformance of the two automata using the refine

ment relation between interface automata as defined in [36]. 

4.3 Online Testing Algorithm 

In this section we describe an algorithm that uses reinforcement learning to choose 

controllable actions during conformance testing of an implementation / against a model (speci

fication) M. Both M and I are assumed to be given as model programs that expose an IStepper 

interface to the algorithm. In addition, the model exposes an interface that provides an abstract 

value of the current state of the model and an abstract value of any action enabled in a given 

state. It is convenient to view this interface as an extension IModelStepper of the IStepper 

interface: 

interface IModelStepper : IStepper 
{ 

IComparable GetAbstractState(Action action); 
IComparable GetAbstractAction(Action action); 

} 

The main motivation for these functions is to divide the state space and the action 

space into equivalence classes that reflect "interesting" groups of states and actions for the 

purposes of coverage. 

Example 1 Consider the Robot model. We could define the abstract states and abstract actions 

to be the concrete states and the concrete actions as follows. In other words, there is no grouping 

of either states or actions in this case. 

class RobotModel : IModelStepper 
{ 

Sequence<Pair<int,int>> GetAbstractState(Action action) 
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{ 
return [Cr.power, r.reward) I r in Robot.Instances] 

> 
Action GetAbstractActionCAction action); 
{ 

return action; 
} 

Example 2 A more interesting case is if we abstract away the id of the robot and project the 

state to the state of the robot doing the action, or a default value if the robot has not been started 

yet. This is reasonable because the robots do not interact with each other. 

class RobotModel : IModelStepper 
{ 

Pair<int,int> GetAbstractStateCAction action) 
{ 

if (action.Name == "Start") return (-1, -1); 
Robot r = Robot.Instances[action.Argument CO)]; 
return (r.power, r.reward); 

> 
string GetAbstractActionCAction action); 
{ 

return action.Name; 
} 

We use pseudo code that is similar to the original implementation code written in C # 

to describe the algorithm. We consider two controllable action selection strategies Let and Rlc 

that are explained below, in addition to a memoryless purely randomized strategy Rnd. 

enum Strategy {Rnd, Let, Rlc} 

The algorithm uses also an "oracle" to ask advice about whether to observe an observ

able action from the implementation, to call a controllable action, or to end a particular test 

run, during a single step of the algorithm. The oracle makes a random choice between control

ling an observing when an observable action is enabled in the implementation at the same time 

as a controllable action is enabled in the model. If there are no observable actions enabled in 

the implementation and no controllable actions enabled in the model then the only meaningful 

advice the oracle can give is to end the current test run. 

enum Advice {Control, Observe, End} 

class Oracle 
{ 

IStepper M; 
IStepper I; 

Advice AdviseC) 
{ 
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bool noCtlrs = M.EnabledControllables.IsEmpty; 
bool noObs = I.EnabledObservables.IsEmpty; 

if CnoCtlrs A noObs) return Advice.End; 
if CnoCtlrs) return Advice.Observe; 
if CnoObs) return Advice. Control; 
return new Choose(Advice.Control, Advice.Observe); 

} 
} 

4.3.1 Top level loop 

The top level loop of the algorithm is described by the following pseudo code. 

class OnlineTesting 
{ 

IModelStepper M; 
IStepper I; 
int maxRun; 
int maxStep; 
Strategy h; 
Oracle oracle; 

bool ResetEnabled {get return M.ResetEnabled A I-ResetEnabled;} 

void RunO 
{ 

int run = 0; 
while (run < maxRun) 
{ 

RunTestCaseC) ; / / The core algorithm 
if (^ResetEnabled) return; / / Cannot continue, must abort 
Reset(); 
run += 1; 

} 
} 

The inputs to the algorithm are a model program M that provides the IModelStepper 

interface and is the specification, a model program I that provides the IStepper interface an is 

the implementation under test, an upper bound maxRun on the total number of runs, an upper 

bound maxStep on the total number of steps (state transitions) per one run, a strategy h, and 

an oracle oracle as explained above. 

4.3.2 The Core Algorithm 

The algorithm keeps track of the weights of abstract transitions that have occurred 

during the test runs. An abstract transition is a pair (s, a) where s is an abstract state and a is 

an abstract action. The weight of an abstract transition is total number of times it has occurred 

plus one, since the algorithm was started. The abstract state and action values are calculated 
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using the IModelStepper interface introduced above. This weight information is stored in a test 

trace graph that is updated dynamically and is initially empty. 

class TestTraceGraph 
{ 

Map<AbstractTransition, int> F = 0; / / Frequencies of explored abstract t ransi t ions 

IModelStepper M; 

i n t WCAction a) / / Weights are positive 

Abs t rac tS ta te s = M.GetAbstractState(a) ; 
AbstractAction b = M.GetAbstractAction(a); 
if C(s,b) e F) r e tu rn F [ ( s , b ) ] ; e l s e r e tu rn 1; 

> 
void Update(Action a, int w) 
•c 

AbstractState s = M.GetAbstractState(a); 
AbstractAction b = M.GetAbstractAction(a); 
F[(s,b)] = W(a) + w; 

> 
} 

The next controllable action is chosen by the algorithm from a nonempty set of con

trollable actions that are currently enabled, using the given strategy. 

class TestTraceGraph 
{ 

Action ChooseAction(Sequence<Action> acts, Strategy h) 

switch (h) 
i 

case S t ra t egy .Le t : 
Action a = acts.Head; 
Pair<Set<Action>,int> l e t = 

acts .Tai l .Reduce (Reducer , ({acts .Head},W(acts .Head))) ; 
r e t u r n l e t . F i r s t . C h o o s e ( ) ; 

case S t ra t egy .Rlc : 
Sequence<int> cos ts = [W(a) I a £ a c t s ] ; 
i n t prod = . . . ; / / Compute an approximate common multiple of cos ts 
Sequence<int> occurs = [prod/x i x £ c o s t s ] ; 
Bag<Action> bg ~ -{{(actsCi], occurs [ i ] ) I i < a c t s . Count}}-; 
r e t u r n bg.ChooseO; 

de fau l t : 
return acts. Choose() ; 

} 
> 
Pair<Set<Action>,int> Reducer(Action a, Pair<Set<Action>,int> let) 
i 

if (W(a) < let.Second) return ({a}, w) ; 
else if (W(a) == let.Second) return (let.First U {a}, w); 
else return let; 

} 
} 

Let: Choose an action that has the "least cost". Here cost of an action a is measured as the 

current weight of the abstract transition (s, 6), where s is the abstract state computed in 

the current model state with respect to a, and b is the abstract action corresponding to 

a, computed in the current model state. If several actions have the same least cost, one is 

chosen randomly from among those. 
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Rlc: Choose an action with a likelihood that is inversely proportional to its current cost, 

with cost having the same meaning as above. Intuitively this means that the least fre

quent actions are the most favored ones. In other words, if the candidate actions are 

{o-i)i<k for some k, having costs (c,),<fc, then the probability of selecting the action <Zj is 

c~1/Y^j^ticJ1- T n e implementation uses a built-in bag construct to make such a choice. 

Rnd: Make a random choice. 

The algorithm runs one test case until, either a conformance failure occurs (in form of 

a violation of the refinement relation between [M] and [ij), or until the given maximum number 

of steps has been reached. 

class OnlineTesting 

TestTraceGraph ttg = new TestTraceGraph(M); 

bool RunTestCaseQ 
< 

int step = 0; 
while (step < maxStep) 

< 
Advice advice = oracle.Advise(); 

if (advice == Advice. Control) 
< 

Sequence<Action> cs = M.EnabledControllables; 
Action c = ttg.ChooseActionCcs, h); 
ttg.Update(c, 1); / / Increase the weight by 1 
M.DoStep(c); / / Do the step in M 

if (c g I.EnabledControllables) 
I.DoStep(c); / / Do the corresponding step in I 

else 
return false; / / Conformance failure occurred 

} 
else if (advice == Advice.Observe) 
{ 

Sequence<Action> os = I.EnabledObservables; 
/ / This is an abstract view of the execution of the implementation, in reality 
/ / the implementation performs the choice itself and notifies the test harness 
Action o = os.ChooseO; 
I.DoStep(o); 
if (o £ M.EnabledObservables) 
{ 

ttg.Update(o, 1); / / Increase the weight by 1 
M.DoStep(o); / / Do the corresponding step in M 

} 
else 

return false; / / Conformance failure occurred 
#endregion 

> 
else 

return true; / / No more steps can be performed 
step += 1; 

} 
return true; / / The test case succeeds 

} 
> 
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The Let strategy is a greedy approach; it is very simple and relatively cheap to compute. 

However, it favors actions that have been used less frequently, and thus may systematically avoid 

long sequences of the same action, as is illustrated next. 

Example 3 Consider a bounded stack of size n. The stack has two controllable actions, top 

and push, enabled in every state. The greedy strategy will alternate between these two actions 

until the stack is full. If we want to test the behavior of push when the stack is full, we need to 

continue testing for at least 2n steps (so that push is executed n times). 

In the given algorithm, the weight increase is always 1. This value can be made domain specific 

and can vary depending both on the action and the current state, for example by extending the 

IModelStepper interface with a function that provides the wait increase for the given action in 

the current state and using that function instead of 1. 

By using Rlc, the probability of selecting an action is inversely proportional to its 

frequency. Thus, the more an action has been selected the less likely it is that it will be selected 

again. So the potential problem shown in Example 3 is still there but ameliorated, since no 

enabled action is excluded from the choice. 

4.4 Experiments 

We used the Robot model to conduct a few experiments with the algorithm in order to 

evaluate and compare the different strategies. The main purpose was to see if the two proposed 

strategies Let or Rlc are useful by providing better or at least as good coverage of the state space 

as the purely random approach. Since we are interested in state and transition coverage only, 

we ran the algorithm against a correct implementation. We ran the algorithm with a different 

maximum number of robots, different abstraction functions introduced in the examples above, 

and different limits on the total number of runs and the total number of steps per run. The 
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experiments are summarized in Tables 4.1 and 4.2. We ran each case independently 50 times, 

the entries in the tables are shown on the form m±cr where m is the mean of the obtained results 

and a is the standard deviation. The absolute running times are shown only for comparison, 

the concrete machine was a 3GHz Pentium 4. 

If states and actions are not grouped at all, by assuming the definitions given in Exam

ple 1, the majority of abstract transitions will occur only a single time and the strategies perform 

more or less as the random case, which is shown in Table 4.1. One can see that Let performs 

marginally better than Rnd when the number of robots and the number of runs increases. 

Table 4.1: Execution of the online algorithm on the Robot model without grouping. 

Parameters 

Robots 

1 

1 

1 

1 

2 

2 

2 

2 

5 

5 

5 

5 

Runs 

1 

10 

100 

100 

1 

10 

100 

100 

1 

10 

100 

100 

Steps 

100 

100 

100 

500 

100 

100 

100 

500 

100 

100 

100 

500 

Let 

#States 

100 ± 0 

420 ± 11 

503 ± 3 

2485 ± 5 

100 ± 0 

951 ± 8 

7449 ± 83 

44119 ±225 

100 ± 0 

972 ± 3 

9368 ± 17 

49364 ± 19 

i(ms) 

3 

20 

275 

1303 

3 

24 

286 

1548 

5 

42 

516 

2794 

Rlc 

#States 

100 ± 0 

415 ± 8 

503 ± 3 

2485 ± 5 

100 ± 0 

941 ± 10 

7085 ± 110 

42437 ± 339 

100 ± 0 

971 ± 3 

9328 ± 22 

49330 ± 25 

t(ms) 

1 

19 

241 

1292 

1 

22 

284 

1479 

3 

37 

468 

2541 

Rnd 

#States 

100 ± 0 

414 ± 9 

502 ± 2 

2485 ± 6 

100 ± 0 

938 ± 12 

7055 ± 114 

42364 ± 289 

100 ± 0 

969 ± 4 

9322 ± 24 

49320 ± 19 

t(ms) 

1 

15 

172 

968 

2 

14 

201 

1040 

1 

18 

297 

1587 

When the states and the actions are mapped to abstract values, as defined in Example 2, 

then Let starts finding many more abstract states than Rnd as the number of robots grows. The 

robot id is ignored by the abstraction and thus concrete transitions of different robots that differ 

only by the id are mapped to the same abstract transition. Overall this will have the effect that 

the Let approach will favor actions that transition to new abstract states. The same is true for 
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the Rlc case but the increase in coverage is smaller. 

Table 4.2: Execution of the online algorithm on the Robot model with state grouping and action 
grouping. 

Parameters 

Robots 

1 

1 

1 

1 

2 

2 

2 

2 

5 

5 

5 

5 

5 

10 

10 

10 

10 

Runs 

1 

10 

100 

100 

1 

10 

100 

100 

1 

10 

100 

100 

100 

10 

100 

100 

1000 

Steps 

100 

100 

100 

500 

100 

100 

100 

500 

100 

100 

100 

500 

1000 

100 

100 

1000 

1000 

Let 

#States 

100 ± 0 

417 ± 9 

502 ± 2 

2486 ± 5 

100 ± 0 

419 ± 7 

502 ± 3 

2485 ± 5 

100 ± 0 

418 ± 10 

503 ± 3 

2484 ± 5 

4949 ± 8 

418 ± 9 

502 ± 3 

4951± 11 

4985 ± 8 

i(ms) 

3 

9 

100 

508 

1 

10 

106 

561 

< 1 

10 

115 

561 

1200 

10 

103 

1131 

12521 

Rlc 

#States 

100 ± 0 

413 ± 8 

503 ± 3 

2486 ± 6 

90 ± 3 

284 ± 2 1 

437 ± 12 

1602 ± 33 

66 ± 4 

279 ± 30 

472 ± 7 

1696 ± 96 

2467 ± 95 

293 ± 25 

473 ± 6 

3541 ± 198 

4352 ± 66 

t(ms) 

< 1 

7 

88 

417 

< 1 

9 

96 

506 

1 

11 

116 

657 

1388 

12 

137 

1718 

18043 

R n d 

#States 

100 ± 0 

416 ± 8 

502 ± 2 

2484 ± 6 

93 ± 5 

237 ± 8 

293 ± 6 

1324 ± 15 

61 ± 2 

117± 5 

155 ± 7 

582 ± 10 

1088 ± 13 

91 ± 6 

128 ± 6 

602 ± 10 

654 ± 9 

t(ms) 

< 1 

4 

44 

234 

< 1 

4 

46 

241 

< 1 

5 

50 

247 

540 

5 

59 

578 

5953 

The Robot case study is representative for models that deal with multiple agents at 

the same time, which is a typical case in testing of multi-threaded software [106]. Often the 

threads are mostly independent, an abstraction technique that can be used in this context is to 

look at the part of the state that belongs to the agent doing the action. This is an instance of 

so-called multiple state-grouping approach that is also used as an exploration technique for FSM 

generation [23]. This is exactly what is done in Example 2. It seems that Let is a promising 

heuristic for online testing of these kinds of models. One can note that, the coverage provided by 

the random approach degrades almost by half as the number of robots is doubled (for example 

from 5 to 10). 
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4.5 Related Work 

The basic idea of online testing has been introduced in the context of labeled transition 

systems using ioco theory [20, 102, 104] and implemented in the TorX tool [103]. TGV [68] is 

another tool frequently used for online or on-the-fly test generation that uses ioco. Ioco theory 

is a formal testing theory based on labeled transition systems with input actions and output 

actions. Interface automata [36] are suitable for the game view [25] of online testing and provide 

the foundation for the conformance relation that we use. Online testing with model programs in 

the Spec-Explorer tool is discussed in in [106]. The algorithm in [106] does not use learning, and 

as far as we know learning algorithms have not been considered in the context of model based 

testing. The relation between ioco and refinement of interface automata is briefly discussed 

in [106]. Specifications given by a guarded command language are used also in [89]. 

In Black-box testing, some work [84] has been done which uses supervised learning 

procedures. As far as we know, no previous work has addressed online testing with learning in 

the context of Model Based Testing. The main intuition behind our algorithm is similar to an 

anti-ant approach [75] used for test case generation form UML diagrams. From the game point 

of view, the online testing problem is a l|-player game. It is known that 1^-player games are 

Markov Decision Processes [26]. The view of finite explorations of model programs for offline 

test case generation as negative total reward Markov decision problems with infinite horizon are 

studied in [19]. 

4.6 Open Problems 

One of the interesting areas that is also practically very relevant is to gain better under

stating of approaches for online testing that learn from mo del-cover age that uses abstractions. 

The experiments reported in Section 4.4 exploited that idea to a certain extent by using state 
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and action abstraction through the IModelStepper interface, but the general technique and the

ory need to be developed further. Such abstraction functions can either be user-provided [61, 23] 

or automatically generated from program text similar to iterative refinement [89]. 

Currently we have an implementation of the presented algorithm using a modeling 

library developed in C # . As a short-term goal, we are working on a more detailed report where 

we are considering larger case studies. 

The algorithm can also be adapted to run without a model, just as a semi-random 

(stress) testing tool of implementations. In that case the history of used actions is kept solely 

based on the test runs of the implementation. In this case, erroneous behaviors would for 

example manifest themselves through unexpected exceptions thrown by the implementation, 

rather than trough conformance violations. 
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Part III 

Qualitative Abstraction 
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Chapter 5 

Game-Based Three Valued Abstraction 

5.1 Introduction 

Games provide a computational model that is widely used in applications ranging from 

controller design, to modular verification, to system design and analysis. The main obstacle to 

the practical application of games to design and control problems lies in very large state space 

of games modeling real-life problems. In system verification, one of the main methods for coping 

with large-size problems is abstraction. An abstraction is a simplification of the original system 

model. To be useful, an abstraction should contain sufficient detail to enable the derivation 

of the desired system properties, while being succinct enough to allow for efficient analysis. 

Finding an abstraction that is simultaneously informative and succinct is a difficult task, and 

the most successful approaches rely on the automated construction, and gradual refinement, 

of abstractions. Given a system and the property, a coarse initial abstraction is constructed: 

this initial abstraction typically preserves only the information about the system that is most 

immediately involved in the property, such as the values of the state variables mentioned in 

the property. This initial abstraction is then gradually, and automatically, refined, until the 
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property can be proved or disproved, in the case of a verification problem, or until the property 

can be analyzed to the desired level of accuracy, in case of a quantitative problem. 

One of the most successful techniques for automated abstraction refinement is the tech

nique of counterexample-guided refinement, or CEGAR [9, 31, 13]. According to this technique, 

given a system abstraction, we check whether the abstraction satisfies the property. If the answer 

is affirmative, we are done. Otherwise, the check yields an abstract counterexample, encoding 

a set of "suspect" system behaviors. The abstract counterexample is then further analyzed, 

either yielding a concrete counterexample (a proof that the property does not hold), or yielding 

a refined abstraction, in which that particular abstract counterexample is no longer present. 

The process continues until either a concrete counterexample is found, or until the property can 

be shown to hold (i.e., no abstract counterexamples are left). The appeal of CEGAR lies in the 

fact that it is a fully automatic technique, and that the abstraction is refined on-demand, in a 

property-driven fashion, adding just enough detail as is necessary to perform the analysis. The 

CEGAR technique has been extended to games in counterexample-guided control [62]. 

We propose here an alternative technique to CEGAR for refining game abstractions: 

namely, we propose to use three-valued analysis [97, 98, 41] in order to guide abstraction re

finement for games. The technique is suited to reachability games, where the goal is to reach a 

set of target states, and to safety properties, where the goal is to stay always in a set of "safe" 

states. The technique works as follows. Given a game abstraction, we analyze it in three-valued 

fashion, computing the set of must-win states, which are known to satisfy the reachability or 

safety property, and the set of never-win states, which are known not to satisfy the property; the 

remaining states, for which the satisfaction is unknown, are called the may-win states. If this 

three-valued analysis yields the desired information (for example, showing the existence of an 

initial state with a given property), the analysis terminates. Otherwise, we refine the abstraction 

in a way that reduces the number of may-win states. The abstraction refinement proceeds in a 
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property-dependent way. For reachability properties, we refine the abstraction at the may-must 

border, splitting a may-win abstract state into two parts, one of which is known to satisfy the 

property (and that will become a must-win state). For the dual case of safety properties, the 

refinement occurs at the may-never border. 

Our proposed three-valued abstraction refinement technique can be implemented in 

fully symbolic fashion, and it can be applied to games with both finite and infinite state spaces. 

The technique terminates whenever the game has a finite region algebra (a partition of the state 

space) that is closed with respect to Boolean and controllable-predecessor operators [45]: this is 

the case for many important classes of games, among which timed games [77, 40]. Furthermore, 

we show that the technique never performs unnecessary refinements: the final abstraction is 

never finer than a region algebra that suffices for proving the property. 

In its aim of reducing the number of may-states, our technique is related to the three-

valued abstraction refinement schemes proposed for CTL and transition systems in [97, 98]. 

Differently from these approaches, however, we avoid the explicit construction of the tree-valued 

transition relation of the abstraction, relying instead on may and must versions of the control

lable predecessor operators. Our approach provides precision and efficiency benefits. In fact, 

to retain full precision, the must-transitions of a three-valued model need to be represented as 

hyper-edges, rather than normal edges [98, 41, 99]; in turn, hyper-edges are computationally 

expensive both to derive and to represent. The may and must predecessor operators we use 

provide the same precision as the hyper-edges, without the associated computational penalty. 

For a similar reason, we show that our three-valued abstraction refinement technique is superior 

to the CEGAR technique of [62], in the sense that it can prove a given property with an abstrac

tion that never needs to be finer, and that can often be coarser. Again, the advantage is due to 

the fact that [62] represents player-1 moves in the abstract model via must-edges, rather than 

must hyper-edges. A final benefit of avoiding the explicit construction of the abstract model, 
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relying instead on predecessor operators, is that the resulting technique is simpler to present, 

and simpler to implement. On the other side, we remark that the techniques of [62] extend 

easily to parity goals, whereas the refinement scheme we propose can be extended, but only at 

the price of cumbersome bookkeeping. 

While we present the technique for games, the technique also yields a three-valued ab

straction refinement scheme for the verification of safety and reachability properties of transition 

systems. 

5.2 Definitions 

5.2.1 Game Abstractions 

An abstraction V of a game structure G = (S, A, 5} consists of a set V C 22 \0 of 

abstract states: each abstract state v € V is a non-empty subset v C S of concrete states. We 

require [JV = S. For subsets T C S and U C V, we write: 

Ul = [Jueuu TW = {v£V\vnTj:<il} T1™ = {veV\vCT} (5.1) 

Thus, for a set U C V of abstract states, U[ is the corresponding set of concrete states. For a 

set T C S of concrete states, T | y and T]y are the set of abstract states that constitute over 

and under-approximations of the concrete set T. The following result follows immediately from 

the definitions (5.1). 

Lemma 1 For all sets T C S, we have: 

T]M Q T T m f ( T T M } i Q T Q ^ m ^ _ 

We say that the abstraction V of a state-space S is precise for a set T C 5 o f states if 

1 \v — l I v • 
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5.2.2 Abstract Controllable Predecessor Operators 

In order to allow the solution of games on the abstract state space V, we introduce 

abstract versions of Cpre.. As multiple concrete states may correspond to the same abstract 

state, we cannot compute, on the abstract state space, a precise analogous of Cpre.. Thus, for 

player i G {1,2}, we define two abstract operators: the may operator Cpre^ 'm : 2V i—> 2V, which 

constitutes an over-approximation of Cprej, and the must operator Cpre^' : 2V i—> 2V, which 

constitutes an under-approximation of Cpre; [41]. We let, for U C V and i G {1,2}: 

Cpre]/'m(C/) = Cpre,((7|)T^ Cpre,v'M(tf) = Cpie^Ui)^. (5.2) 

By the results of [41], we have the duality 

Cpre^M([ /) = V \ Cpre^f (V \ U). (5.3) 

The fact that Cpre. 'm and Cpre. 'M are over and under-approximations of the concrete predeces

sor operator is made precise by the following observation, which follows directly from Lemma 1: 

for all U C V and i G {1,2}, we have 

CWe('M{U)[ C Cpre^C/j) C Cpre]/'m(C/)I . (5.4) 

5.3 Reachability and Safety Games 

We present our three-valued abstraction refinement technique by applying it first to 

the simplest games: reachability and safety games. It is convenient to present the arguments 

first for reachability games; the results for safety games are then obtained by duality. 

5.3.1 Reachability Games 

Our three-valued abstraction-refinement scheme for reachability proceeds as follows. 

We assume we are given a game G = (S, X, S), together with an initial set 6 C S and a final set 
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T C S, and an abstraction V for G that is precise for 9 and T. The question to be decided is: 

0 n ( l ) O T = 0? 

The algorithm proceeds as follows. Using the may and must predecessor operators, 

we compute respectively the set W™ of may-winning abstract states, and the set Wf4 of must-

winning abstract states. If W™ D 61™ = 0, then the algorithm answers the question No; if 

Wf n 6]y ^ 0, then the algorithm answers the question Yes. Otherwise, the algorithm picks 

an abstract state v such that 

v G (Wf \ W^) n Cpie\,m(Wl*). (5.5) 

Such a state lies at the border between W^1 and W™. The state v is split into two abstract 

states v\ and V2, where: 

Vl=vn Cpre^Wfl) v2 = v \ Cpve^Wfl). 

As a consequence of (5.5), we have that V\,V2 j^ 0- The algorithm is given in detail as Algo

rithm 2. We first state the partial correctness of the algorithm, postponing the analysis of its 

termination to Section 5.3.4. 

Lemma 2 After Step 3 of Algorithm 2, we have W^[ C (l)OT C W^i-

Proof: The result follows from (5.4), and from the monotonicity of the /x-calculus 

operators appearing in Steps 2 and 3 of Algorithm 2. I 

Lemma 3 If Step 7 of Algorithm 2 is reached, there is at least one region v G (W™ \ W^1) n 

Cpre\>m(W¥). 

Proof: First, notice that since the algorithm did not terminate at Step 4 or Step 5, it 

must be Wp n 0fv ^ 0 and Wf n 6]y = 0, which by the previous lemma implies W^ C W?. 
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Algorithm 2 3-valued Abstraction Refinement for Reachability Games 
Input: A concrete game structure G = (S,\,S), a set of initial states 0 C S, a set of target 

states T C S, and an abstraction V C 22 \0 that is precise for 9 and T. 

Output: Yes if 6 n (l)OT / 0, and No otherwise. 

1. while true do 

2. W^ := Aty.(TTv U C p r e ^ F ) ) 

3. Wf1 := /xy.(TTv U Cpre] / 'm(y)) 

4. if Wf1 n 6>Tv = 0 then return No 

5. else if Wf n 6»T̂  ^ 0 then return Yes 

6. else 

7. choose v € (Wf \ W\M) n Cpre1
/'m(W1

M) 

8. let vi:=vC\ Cpre^Wj^J.) and v2 :=v\ v\ 

9. V:=(V\{v})U{v1,v2} 

10. end if 

11. end while 

From the fact that W? is a least fix-point, we have W^ = fj,Y.(Wf U Cpre^'m(Y)). Thus, there 

must be some v G W? \ Wf* with v £ Cpre]/'m(W1
M). I 

Lemma 4 27ie sets i>i and v2 computed at Step 8 of Algorithm 2 are both non-empty. 

Proof: Consider w e W 1
r a \ Wf4 with v £ Cpre]/'m(W1

M). For Vl = v n C p r e ^ W ^ l ) , 

we have v\ ^ 0, for otherwise v\ g" Cpre1 'm(W1
M). Furthermore, we have V\ C v, for else we 

would have v e Cpre1 ' (W^4), contradicting the fact that Wf4 is the fix-point computed at 

Step 2. I 
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Theorem 1 (partial correctness) Algorithm 2 can be executed without errors. Moreover: 

1. if the algorithm terminates with answer Yes, then 9 n (l)OT ^ 0; 

2. if the algorithm terminates with answer No, then 9 n (1)<>T = 0. 

Proof: The only statement that could result in an error in the execution of Algorithm 2 

is the choice of v at Step 7; Lemma 3 ensures that the error never arises. The fact that if the 

algorithm terminates, it returns a correct answer, is a consequence of Lemma 2. I 

Figure 5.1: Three-Valued Abstraction Refinement in Reachability Game 

Sufficient conditions for the termination of the algorithm are presented later, in Sec

tion 5.3.4 

Example. As an example, consider the game G illustrated in Figure 5.1. The state 

space of the game is S = {1,2,3,4,5,6,7}, and the abstract state space is V = {va,Vb,vc,Vd}, as 

indicated in the figure; the player-2 states are S2 = {2, 3,4}. We consider 9 = {1} and T = {7}. 

After Steps 2 and 3 of Algorithm 2, we have W™ — {va,Vb,vc,Vd}, and WjM = {vc,Vd}-

Therefore, the algorithm can answer neither No in Steps 4, nor Yes in Step 5, and proceeds to 

refine the abstraction. In Step 7, the only candidate for splitting is v = Vb, which is split into 

Vi = Vb n Cprej(Wj^I) = {3}, and v2 = Vb \ v\ = {2,4}. It is easy to see that at the next 

iteration of the analysis, v\ and va are added to Wf4, and the algorithm returns the answer Yes. 
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5.3.2 An Improved Algorithm for Reachability 

Algorithm 2 can be improved by avoiding the full re-computation of the sets W^1 

and W™ at each abstraction refinement. Once we obtain v\ and V2 as in Step 8, we can set 

W :— W^1 U {vi}, and we can compute for the next iteration: 

Wf := nY.(W U Cwe\M(Y))Wr := nY.{W U Cpre^Y)) 

The resulting algorithm is presented as Algorithm 3. 

5.3.3 Safety Games 

We next consider a safety game specified by a target T C S, together with an initial 

condition 9 C S. Given an abstraction V that is precise for T and 9, the goal is to answer the 

question of whether 9 n ( l )nT = 0. As for reachability games, we begin by computing the set 

W™ of may-winning states, and the set W^1 of must-winning states. Again, if W™r\01™ = 0, we 

answer we answer Yes. In safety games, unlike in reachability games, 

we cannot split abstract states at the may-must boundary. For reachability games, a may-state 

can only win by reaching the goal T, which is contained in Wf4[: hence, we refine the may-

must border. In a safety game with objective DT, on the other hand, we have W™[ C T, and a 

state in W™1 can be winning even if it never reaches W\M j (which indeed can be empty if the 

abstraction is too coarse). Thus, to solve safety games, we split abstract states at the may-losing 

boundary, that is, at the boundary between W™ and its complement. This can be explained by 

the fact that ( l )nT = S\ (2)O^T: the objectives DT and O^T are dual. Therefore, we adopt 

for DT the same refinement method we would adopt for O^T, and the may-must boundary for 

(2)0- |T is the may-losing boundary for (l)oT. This yields Algorithm 4. 

Theorem 2 (partial correctness) Algorithm 4 can be executed without errors. Moreover: 
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1. if the algorithm terminates with answer Yes, then 8 D ( l )nT ^ 0; 

2. if the algorithm terminates with answer No, then 6 D ( 1 ) D T = 0. 

Proof : The theorem can be proved by noting that the goals OT and O^T are dual, 

and by noting that from (5.3) we have: 

vY.{T^ n C p r e ^ F ) ) = V \ fiY.«S \ T)^ U CWe\M(Y)) 

vY.{T]™ n Cpre^ m (y)) = V \ fiY.((S \ T)T£ U Cpref 'm(y)) . 

Thus, the Algorithm 4 is the dual of Algorithm 2, and its correctness can be proved in analogous 

fashion. I 

We note that it is possible to obtain a more efficient version of Algorithm 4 by per

forming a dual transformation to the one that yielded Algorithm 3. Precisely, before Step 1, we 

let W := (T |v ) ; the fix-points at Steps 2 and 3 are computed via W^ := z / K . f W n C p r e ^ F ) ) 

and W? := vY.{W C\ C p r e J ^ y ) ) ; and after Step 8 we set W := WJ" \ {vx}. 

5.3.4 Termination 

We present a condition that ensures termination of Algorithms 2 and 4 (and thus also 

Algorithm 3). The condition states that, if there is a finite algebra of regions (sets of concrete 

states) that is closed under Boolean operations and controllable predecessor operators, and that 

is precise for the sets of initial and target states, then (i) Algorithms 2 and 4 terminate, and 

(ii) the algorithms never produce abstract states that are finer than the regions of the algebra 

(guaranteeing that the algorithms do not perform unnecessary work). Formally, a region algebra 

for a game G = (S, A, S) is an abstraction U such that: 

• U is closed under Boolean operations: for all u±,U2 € U, we have u\ U U2 £ U and 

S\U!<=U. 

59 



• U is closed under controllable predecessor operators: for all u € U, we have Cpre1(u) £ U 

and Cpre2('u) G U. 

Theorem 3 (termination) Consider a game G with a finite region algebra U. Assume that 

Algorithm 2 or 4 are called with arguments G, 9, T, with 9,T £ U, and with an initial abstraction 

V C U. Then, the following assertions hold for both algorithms: 

1. The algorithms, during their executions, produce abstract states that are all members of 

the algebra U. 

2. The algorithms terminate. 

Proof : Let us prove the theorem for the reachability game. The proof for safety game 

can be easily obtained by duality. 

First, note that due to the closure properties of the region algebra U, the algorithm 

computes entirely with regions in U: precisely, variables are only assigned regions of U. This 

yields the first assertion of the theorem. 

The termination of Algorithm 2 can be proved by the following argument. At each 

refinement loop, the algorithm decreases the size of the uncertainty region W™ \ W^1, since the 

set v\ computed in Step 8 will belong to W^1 in the following iteration. As the region algebra 

U is finite, within a finite number of refinements the uncertainty region will be empty, and the 

algorithm will return either Yes or No. I 

Many games, including timed games, have the finite region algebras mentioned in the above 

theorem [77, 45, 40]. 
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Figure 5.2: Safety game, with objective aT for T = {1, 2, 3, 4}. 

5.3.5 Comparison with Counterexample-Guided Control 

It is instructive to compare our three-valued refinement approach with the counterexample-

guided control approach of [62]. In [62], an abstract game structure is constructed and analyzed. 

The abstract game contains must transitions for player 1, and may transitions for player 2. Ev

ery counterexample to the property (spoiling strategy for player 2) found in the abstract game 

is analyzed in the concrete game. If the counterexample is real, the property is disproved; If the 

counterexample is spurious, it is ruled out by refining the abstraction. The process continues 

until either the property is disproved, or no abstract counterexamples is found, proving the 

property. 

The main advantage of our proposed three-valued approach over counterexample-

guided control is, somewhat paradoxically, that we do not explicitly construct the abstract 

game. It was shown in [98, 41] that, for a game abstraction to be fully precise, the must tran

sitions should be represented as hyper-edges (an expensive representation, space-wise). In the 

counterexample-guided approach, instead, normal must edges are used: the abstract game rep

resentation incurs a loss of precision, and more abstraction refinement steps may be needed than 

with our proposed three-valued approach. This is best illustrated with an example. 

Example. Consider the game structure depicted in Figure 5.2. The state space is 

S = {1,2,3,4,5,6}, with Si = {1,2,3,4} and S2 = {5,6}; the initial states are 6 = {1,2}. 
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We consider the safety objective DT for T — {1,2,3,4}. We construct the abstraction V = 

{va,Vb,vc} precise for 6 and T, as depicted. In the counterexample-guided control approach 

of [62], hyper-must transitions are not considered in the construction of the abstract model, 

and the transitions between va and Vb are lost: the only transitions from va and Vb lead to 

vc. Therefore, there is a spurious abstract counterexample tree va —> vc; ruling it out requires 

splitting va into its constituent states 1 and 2. Once this is done, there is another spurious 

abstract counterexample 2 —> Vb —> vc; ruling it out requires splitting Vb in its constituent states. 

In contrast, in our approach we have immediately W^4 = {va: Vb} and va,Vb € Cprej' ({va,Vb}), 

so that no abstraction refinement is required. I 

The above example illustrates the fact that the counterexample-guided control ap

proach of [62] may require a finer abstraction than our three-valued refinement approach, to 

prove a given property. On the other hand, it is easy to see that if an abstraction suffices to 

prove a property in the counterexample-guided control approach, it also suffices in our three-

valued approach: the absence of abstract counterexamples translates directly in the fact that 

the states of interest are must-winning. 

5.4 Symbolic Implementation 

We now present a concrete symbolic implementation of our abstraction scheme. We 

chose a simple symbolic representation for two-player games; while the symbolic game represen

tations encountered in real verification systems (see, e.g.,[38, 39]) are usually more complex, the 

same principles apply. 
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5.4.1 Approximate Abstract ion Refinement Schemes 

While the abstraction refinement scheme above is fairly general, it makes two assump

tions that may not hold in a practical implementation: 

• it assumes that we can compute Cpre^'m and Cpre^'M of (5.2) precisely; 

• it assumes that, once we pick an abstract state v to split, we can split it into V\ and v-i 

precisely, as outlined in Algorithms 2 and 4. 

In fact, both assumptions can be related, yielding a more widely applicable abstraction refine

ment algorithm for two-player games. We present the modified algorithm for the reachability 

case only; the results can be easily extended to the dual case of safety objectives. Our start

ing point consists in approximate versions Cpre i ' , Cprej' ~ : 2V >—> 2V of the operators 

Cpref'm, Cpre^'M, for i e {1,2}. We require that, for all U C V and i e {1,2}, we have: 

Cpi<%'m(U) C Cpref 'm +(t /) Cpre^ M - (C/)CCpr e i
y ' M (C/) . (5.6) 

With these operators, we can phrase a new, approximate abstraction scheme for reachability, 

given in Algorithm 5. The use of the approximate operators means that, in Step 8, we can 

be no longer sure that both vi y= 0 and v \ v\ ^ 0. If the "precise" split of Step 8 fails, we 

resort instead to an arbitrary split (Step 10). The following theorem states that the algorithm 

essentially enjoys the same properties of the "precise" Algorithms 2 and 4. 

Lemma 5 At Step 4 of Algorithm 5, we have W™~ [ C ( l ) o T C W^+{. 

Proof: Prom Equation 5.6, we have : Cpref'm(£/) C CWe^'m+(U) and Cpre i
y ,M"([/) C 

Cpre,v'M(C/) for all U C V and i e {1,2}. For reachability game the approximate and accu

rate must winning set is obtained by the respective fix-point formulas W^1* = fiY.{T]v U 

Cpre] / 'M"(y) and Wf* = fiY.(T^ U Cpre1
/ 'M(F). Since we start with the same initial set and 
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in each iteration Cpre; , M~(Y) C Cpre*'M{Y) holds, it is obvious that W^~ C Wf4. Similar 

arguments will prove that W™ C W™+. After we combine these two results with Lemma 2, we 

obtain Wf-l C (1)<>T C W ^ + i . • 

Theorem 4 T/ie following assertions hold. 

1. Correctness. If Algorithm 5 terminates, it returns the correct answer. 

2. Termination. Assume that Algorithm 5 is given as input a game G with a finite region 

algebra U, and arguments 9,T G U, as well as with an initial abstraction V C U. As

sume also that the region algebra U is closed with respect to the operators Cprei' ~ and 

Cpre^' , for i G {1,2}, and that Step 10 of Algorithm 5 splits the abstract states in 

regions in U. Then, (a) Algorithm 5 produces only abstract states in U in the course of 

its execution and (b) it terminates within finite number of refinements. 

Proof: (1) The correctness can be proved as Theorem 1 using Lemma 5. (2)(a) 

The fact that Algorithm 5 produces only regions in U follows from the closure of U, and by 

inspection of the operations performed by the algorithm, (b) The termination of Algorithm 5 

follows again from the fmiteness of U, and from the fact that at each iteration, the uncertainty 

region shrinks. I 

5.4.2 Symbolic Game Structures 

To simplify the presentation, we assume that all variables are Boolean. For a set X 

of Boolean variables, we denote by {(X) the set of propositional formulas constructed from the 

variables in X, the constants true and false, and the propositional connectives -i,A,V, —->. We 

denote with 4>[ip/x] the result of replacing all occurrences of the variable x in (p with a formula ip. 

For <j> G {{X) and x G X, we write {^}x.<fi for 4>[true/x]{^ip[false/x}. We extend this notation 
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to sets Y = {2/1,2/21 • • •, Vn) of variables, writing VY.(f> for Vyi.Vy2- • • • Vy„.</», and similarly for 

3Y.<£. For a set X of variables, we also denote by X' = {x' | x £ X} the corresponding set of 

primed variables; for <j) G {(X), we denote $' the formula obtained by replacing every x £ X 

with x'. 

A state s over a set X of variables is a truth-assignment s : X 1—> {T,F} for the 

variables in X; we denote with S[X] the set of all such truth assignments. Given <f> £ {(X) and 

s £ S[X], we write s \= (j) if <p holds when the variables in X are interpreted as prescribed by s, 

and we let [4>\x = {s £ S[X] \ s\= <p}. Given <j> £ {(XUX') and s,t £ S[X], we write (s,t) |= <f> 

if </> holds when x £ X has value s(x), and x' G X ' has value t(x). When X, and thus the state 

space S[X], are clear from the context, we equate informally formulas and sets of states. These 

formulas, or sets of states, can be manipulated with the help of symbolic representations such as 

BDDs [21]. A symbolic game structure Gs = (X, Ai, A) consists of the following components: 

• A set of Boolean variables X. 

• A predicate Aj £ {(X) defining when it is player l's turn to play. We define A2 = ~Ai. 

• A transition function A G {(X U X') , such that for all s £ S\X], there is some t £ S[X] 

such that (s,i) \= A. 

A symbolic game structure Gs — (X, Ai, A) induces a (concrete) game structure G — (S,X,5) 

via 5 = S[X], and for s,t £ S, A(s) = 1 iff s \= Ai, and t £ 5(s) iff (s,t) \= A. Given a formula 

(j) £ {(X), we have 

C p r e i ( M x ) = [(Ai A 3X'.(A A0 ' ) ) V ^ A x A VX'.(A -> 4>')\\x. 

5.4.3 Symbolic Abstractions 

We specify an abstraction for a symbolic game structure Gs = (AT, Ai, A) via a subset 

Xa C X of its variables: the idea is that the abstraction keeps track only of the values of 
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the variables in Xa; we denote by Xc = X \ Xa the concrete-only variables. We assume that 

Ai G {(Xa), so that in each abstract state, only one of the two players can move (in other words, 

we consider turn-preserving abstractions [41]). With slight abuse of notation, we identify the 

abstract state space V with Spf0] , where, for s £ S[X] and v G V, we let s £ v iff s(x) — v(x) for 

all x G Xa. On this abstract state space, the operators Cprej'"1 and Cprej' can be computed 

symbolically via the corresponding operators SCprej^ 'm and SCpre-L' , defined as follows. For 

SCprei,m(<^) = 3XC. U i A 3X'.(A A ft) V A2 A VA".(A -> ft)) (5.7) 

SCpre]/'M(0) = \fXc. I ( Ai A 3X'.(A A ft)) V ( A2 A VX'.(A -> ft) \ I (5. 

The above operators correspond exactly to (5.2). Alternatively, we can abstract the transition 

formula A, defining: 

A£ a = 3XC.3XC '.A A%a = VXC3XC'.A . 

These abstract transition relations can be used to compute approximate versions SCpre] / 'm+ 

and SCpre1' ~ of the controllable predecessor operators of (5.7), (5.8): 

SCpre] / 'm+(0) = [ (Ai A 3Xa'.(A%a A ft)) V (A2 A VX a ' . (A£ a -* ft) 

S C p r e [ ' M - ( ^ ) = f A i A 3 X a ' . ( A ^ o A 0 ' ) J V (A2 A V X a ' . ( A ™ 0 - ^ ' ) 

These operators, while approximate, satisfy the conditions (5.6), and can thus be used to im

plement symbolically Algorithm 5. 

5.4.4 Symbolic Abstraction Refinement 

We replace the abstraction refinement step of Algorithms 2, 4, and 5 with a step that 

adds a variable x € Xc to the set Xa of variables present in the abstraction. The challenge is to 
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choose a variable x that increases the precision of the abstraction in a useful way. To this end, 

we follow an approach inspired directly by [31]. 

Denote by v G S^X0] the abstract state that Algorithms 5 chooses for splitting at 

Step 7, and let ipx ~ G {{Xa) be the formula defining the set W^~ in the same algorithm. 

We choose x G Xc so that there are at least two states Si,s% G v that differ only for the value 

of x, and such that sy \= SCpre) / 'm+(V'ff_) and s2 ^ SCpre] / 'm + (Vf _ ) . Thus, the symbolic 

abstraction refinement algorithm first searches for a variable x G Xc for which the following 

formula is true: 

3(X'\x). f x , - ^ S C p r e r - m + ( < - ) ) j v | X . - ( x # S C p r e r - m + ( < - ) n , 

where Xv is the characteristic formula of v. 

Xv = /\<x\x<= Xa.v{x) = T \ A As -^x | x G Xa.v{x) = F 

If no such variable can be found, due to the approximate computation of SCpre1 'm and 

SCpre-i/ ~, then x G Xc is chosen arbitrarily. The choice of variable for Algorithm 4 can 

be obtained by reasoning in dual fashion. 

5.5 Conclusion 

We have presented a technique for the verification of game properties based on the con

struction, three-valued analysis, and refinement of game abstractions. The approach is suitable 

for symbolic implementation, and can be implemented in a relatively straightforward manner. 

The key insight of the approach consists on relying on three-valued versions of the usual predeces

sor operators to analyze a system, avoiding the construction of a three-valued transition relation, 

which would require an exponential blow-up in the size of the abstract system to achieve compa

rable precision. The method, presented here for games, is equally suited to transition systems, 
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where it constitutes an alternative to the classical counterexample-guided refinement technique 

of CEGAR [9, 31, 13]. 



Algorithm 3 Improved 3-valued Abstraction Refinement for Reachability Games 
Input: A concrete game structure G = {S,X,S}, a set of initial states 9 C S, a set of target 

states T C S, and an abstraction V Q22 \0 that is precise for 0 and T. 

Output: Yes if 0 H ( l ) o T ^ 0, and No otherwise. 

1. W:=T^ 

2. while true do 

3. Wf := ^y.(W U Cpre} / 'M(y)) 

4. Wf1 := ^Y.(W U Cpre1
/ 'm(y)) 

5. if W ^ n 6]y = 0 then return No 

6. else if W(* n 6>T̂  ^ 0 then return Yes 

7. else 

8. choose v G (Wf1 \ W ^ ) fl Cpre]/'m(M/1
M) 

9. let « i : = « n Cpre^W^J.) and u2 := v \ vx 

10. V:=(V\{v})U{Vl,v2} 

11. W:=WU{>i} 

12. end if 

13. end while 
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Algorithm 4 3-valued Abstraction Refinement for Safety Games 
Input: A concrete game structure G = (S,X,6), a set of initial states 8 C S, a set of target 

states T C S , and an abstraction V C 22 \" that is precise for # and T. 

Output: Yes if 0 n ( l )nT ^ 0, and No otherwise. 

1. while true do 

2. Wf4 := vY.{T]^ n Cpre1
/ 'M(y)) 

3. W? := i/y.(TTy n Cpre5/'m(F)) 

4. if Wf1 n 6]y = 0 then return No 

5. else if Wl4 n 6>Ty ^ 0 then return Yes 

6. else 

7. choose v € (Wp \ Wf4) n Cpre^ ,m(V \ Wq") 

8. let vi := v n Cpre2(5 \ (Wf1!)) and w2 := u \ «i 

9. ]etV:=(V\{v})U{vuV2} 

10. end if 

11. end while 
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Algorithm 5 Approximate 3-valued Abstraction Refinement for Reachability Games 
Input: A concrete game structure G — (S,X,5), a set of initial states 8 C S, a set of target 

states T C S, and an abstraction V C 2 2 \® that is precise for 8 and T. 

Output: Yes if 8 n (l)OT ^ 0, and No otherwise. 

1. while true do 

2. W f - := yY.(T]™ U C p r e ^ M _ ( y ) ) 

3. W7+ : = AiF.(TT™ U Cpre1 ' 'm +(y)) 

4. if VF1
m+ n 6»ty = 0 then return No 

5. else if W™~ n # 1 ^ 7̂  0 then return Yes 

6. else 

7. choose i; G (W™+ \ Wf*~) n Cpre^'m + ( W ^ " ) 

8. l e t v i ^ u n C p r e ^ ^ - i ) 

9. if v\ = 0 or vi = v 

10. then split v arbitrarily into non-empty v\ and v-i 

11. else w2 = f \ fi 

12. end if 

13. let V : = ( V \ { v } ) U { u i , u 2 } 

14. end if 

15. end while 
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Chapter 6 

Interface Synthesis 

6.1 Introduction 

Verication of software systems is an extremely difficult problem due to the large size 

of program state-space. Software programs often include library functions and these functions 

are examples of open systems. The verification of such open systems becomes infeasible due to 

two main problems. Firstly, in order to verify a given program one needs to 'inline' the library 

function code and it increases the space complexity of the verification algorithms. Current 

formal techniques like model-checking can not handle the large state-space generated from the 

program variables. The second option is to verify the library functions a priori so that there is no 

need to inline them. For this purpose, most of the time experts write a small code containing a 

sequence of library functions calls (called client). The client code invokes the library functions to 

close the open system. The library functions are difficult to verify in the absence of exhaustive 

client program. Hence most of the verification approaches plug-in a client code to close the 

open-system. 
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6.1.1 Interface and Properties 

The current research [64, 10, 17] avoids these two problems by applying modular ver

ification techniques which builds a small call sequence graph, called interface representing the 

union of all client programs. The interface contains all possible call sequences which leads the 

library to error or illegal states. Similarly, the interface should contain all possible call sequences 

which avoids the error states. Henceforth the interface graph provides constrains on the use of 

the function calls from outside. The user can distinguish the legal call sequences from the illegal 

ones by simply looking at the interface. There are two immediate benefits of using the interfaces. 

Firstly, these interfaces are a light-weight representation of the libraries and the implementa

tion of the library functions can be replaced by the interface. Secondly, the interfaces can be 

constructed without the help of any client program. The interface should be safe i.e. all illegal 

call sequences (which leads the library to the error states) will be present in the interface. The 

interface graph should be permissive i.e. all legal sequences will be present in the interface. 

6.1.2 Related Work 

However, there are some challenges in building succinct interfaces. The interface size 

can become exponential in terms of number of variables. A symbolic representation and ab

straction techniques partition the state-space into a small number of regions where every region 

represents one node of the interface graph. Some researches apply these abstraction and symbolic 

techniques to obtain a small but safe and permissive interface. 

The work by Alur et. al. ( [10]) uses Angluin's learning algorithm L* to create an 

interface. The algorithm learns the interface language by asking membership and equivalence 

queries to teacher (here program). The generated interface is safe and minimal; but not per

missive. They have used predicate abstraction to handle large case-studies. However, the user 
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needs to provide the predicates in these cases. There is no automatic abstraction refinement. 

The algorithm returns the minimal-size interface if the algorithm is not hit by timeout. Experi

mental results illustrate that even in small examples timeout occurs. The CEGAR approach by 

Henzinger et. al. ( [64]) creates a safe and permissive interface. The size of the interface can be 

large enough depending on the chosen counter-example. The direct approach by Beyer et. al. 

( [17]) creates an interface which is safe and permissive. This method does not use abstraction; 

therefore the interface can become extremely large. 

6.1.3 Contribution 

Unlike the related work, this work can also be used in unstructured or non-object 

oriented (C style) functions. In an object-oriented framework, every class variable is accessible to 

every class method and visible to the class methods. Instead, we assume that each function may 

also contain several local variables with limited scope within the function. Hence, we have more 

general platform to compute interface. Each of these functions can also have several sequential 

updates of variables, call to other functions even recursive calls to themselves. However, we 

compute the interface including only functions accessible to the user level. 

First stage of the three-stage algorithm parses each C library function by CIL (C 

Intermediate Language) [82] and converts the function into TICC [37] input language. This 

language syntax is similar to the guarded-update language. We have implemented the next two 

stages in the symbolic tool TICC. The second stage computes the transition summary of each 

function. This modular algorithm handles each function separately including local variables 

within the scope. However, the space complexity of function summary becomes a bottleneck in 

order to compute big functions which may contain a large number of guarded-updates. Hence, 

we employ symbolic, three-valued abstraction-refinement algorithms. The abstraction in the 

summarization ensures small size, and successive refinement of the abstract states fine-tunes the 
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abstraction to obtain the safety and permissiveness. The last stage builds an interface graph 

from the abstract set of states. We describe different stages of building a symbolic, safe and 

permissive interface in the following example. 

Example 4 (Motivating Example) Figure 6.1(a) defines a stack data-type stackT and two 

functions push and pop. The data type stackT has an array of integers el of size MAX and 

an integer showing the top of the stack. The function pop returns error when the stack is empty 

i.e. top is zero. The function push returns error if the top is equal to MAX. Otherwise, the 

function copies sd into the el array at index top and increments the top later. Figure 6.1(b) 

shows how the next stage converts a small C code into a set of guarded-update rules. The variable 

err denotes the error in the library and the library goes to error state if the variable err equals 1. 

Figure 6.1 (c) shows the interface graph from the set of rules. The initial state of the interface 

graph is state 1 where the stack is empty. A call to pop function from the initial state will move 

the library into an ERROR state. Similarly, a call of push form state 3 will lead the library to 

an error state due to the full-stack. We can note that the interface can create many legal as well 

as illegal sequences of stack functions. To check each of them we otherwise need a set of client 

programs. 

Finally, we discuss the applications of the safe and permissive interface graph. Firstly, any 

given client program can immediately verify with the help of the interface graph whether the 

function call sequence in the client leads the library to some error states. Secondly, the interface 

can provide an offline test-suite for a set of functions. Often the source-code of the library is 

unknown; however one can create a model program from the available documentation of the 

functions. The interface graph obtained from the model program can be used to investigate the 

implementation-under-test (IUT). 
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#define MAX 3 
typedef struct ( 

int cl(.MAX] // array based 
int top // range : 0 to MAX 

} stackT; 

voidPop(siackT*st){ 
if (st.lop = 0){ 

fprinif (stderr, "slack empty"); 
exil(l); 

I 

sl.lop = s t . top- 1; 

} 

void Push (siackT * st, int sd){ 
if(st.top==MAX){ 

fprintffstderr, "stack full"); 
cxil(l); 

st.ei[top] = sd; 
sl.lop = sl.lop + 1; 

var sd, lop : [0..3] 
varcl_0, c!_l,elj 
var en-: [0..11 

module pop: 
vars: [0..1] 
initial : s =0 
output pop 1: { 

s = 0 & top > 0 
s = 0 & top = 0 

endmodule 

module push: 
vars:[0..11 
initial: s = 0 
output pushl:{ 
s=0 & top = 0 == 
s=0 & top = 1 = 
s=0 & top >= 2 = 

endmodule 

: [0..3] 

= > s 
=> s 

>s'= 
>s'= 

= 1 & top 
= 1 & err' 

1 & el_0' = 
1 & el_l' = 
= 1 &err' = 

= top - 1 ; 
= 1; 

sd & top' 
sd & top' 
1; 

= top + 
= top + 

(a) Code (b) Rules (c) Rules 

Figure 6.1: Stack Example 

6.2 Algorithm 

In this section we assume that the C functions are already parsed by CIL and modified 

into a software library module Lib = (FG,VG,E,I). We describe the basic algorithms for 

abstract refinement and building interface from a given library Lib. We also provide some 

implementation specific optimizations. 

6.2.1 Basic Algori thm 

Algorithm 6 computes the interface for library Lib = (FG,VG,E,I). The algorithm 

takes as input the library Lib, a set of functions F C FG, an abstraction R. The first abstraction 

is obtained from the error set E and initial set I . Let us define r\ = {s G SG \ s £ E}, 

r2 = {s G SG I s <£ E,s € / } and r3 = {s G SG | s £ E, s £ I}. For i G {1,2,3}, if rt is 

non-empty, then we add the set to R as one of the initial abstract states. The algorithm 6 calls 

AbsRef for every function / G F separately to obtain a refined abstraction R w.r.t. the function. 

The procedure Buildlnterf ace returns an interface graph IG given the set of abstract states. 
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Algorithm 6 Explore(Li6, F, R) 

Input: a library Lib = (FQ, VQ, E, I), set of functions F, abstraction R 

Output: Interface Graph IG 

1. for each / G F do R:= AbsRef {R, / , E) end for 

5. IG : = BuildInterface(JR, F, Lib) 

Modular Verification : AbsRef (Algorithm 7) considers each function independently. The in

terface graph is an input-enabled interface automata. Hence every abstract state in the function 

can be checked individually for error reachability in one step function transition. The algorithm 

starts with the initial abstraction R and gathers a number of useful variables Vabs from the 

support set of the abstract states. The algorithm assigns the local abstraction Rf and the global 

abstraction RQ to R. The algorithm computes the must abstraction transition with respect to 

the abstraction Rf and the must pre-image SM of the error set E. The set SM determines the 

set of states of the function which eventually reach the error set E. The set SM is a subset of 

SM corresponding to the initial set of states of the function. One-step concrete pre-image S 1 of 

SM I checks whether any new states can be added to SM I- If Sl \ SMI is non-empty, then the 

algorithm refines then the local abstraction Rf, and the loop continues. Otherwise, it refines 

the global abstraction RQ with respect to SM. We discuss the local and global refinements in 

the following paragraph. The algorithm terminates when each abstract state can either reach E 

or can not reach E in one function step. 

Automatic Refinement : For refinement of the local abstraction Rf, the algorithm finds a 

variable v G V? which is not in the set Vabs and is in the support set of S^ \ SMI- It adds 

the variable v to the 'significant set' Vabs- The algorithm also creates a new abstraction Rf 

with respect to different valuations of v. The refinement of global abstraction RQ happens after 
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the local abstraction reaches a fix-point and no new states can be added in the SM set. The 

algorithm refines abstract states r G RQ that have non-empty intersections with both SM and 

Building Interface : Algorithm 8 computes the interface graph from the abstraction R. The 

algorithm maintains a list (Q) to iterate over all abstract states. The procedure append(Q,X) 

adds each element i £ l a t the end of Q. The procedure member(Q,x) checks whether x is 

a member of Q. The procedure removeFirst(Q) removes the first element from Q and returns 

the element. For a function / and abstraction R, the operator Post(^R(r) computes the may-

successor of the region r. The algorithm adds an error-edge from the current state curr to the 

error state Err if Post(^R(curr) and E have non-empty intersection. Otherwise, it appends the 

next state Q and adds a new edge (curr, / , next). The algorithm terminates when the list Q is 

empty. 

Example 5 Let us revisit the Integer Stack example (Figure 6.1) to illustrate the algorithms. 

We assume that the algorithm converts the library functions ({pop, push}) to the guarded-

update rules (Figure 6.1(b)). Let us denote the state-space as S. Figure 6.2 illustrates the run 

of the explore algorithm(Algorithm 6). The initial abstract states TQ, r\ and r^ partitions the 

state-space S into three regions (Figure 6.2(a)). The region ro = S \err=i corresponds to error 

states, the region r\ = S jerr=o,top=o corresponds to the initial states without error states, the 

region r^ = S \err=o,top>o corresponds to the non-initial non-error states. 

The algorithm invokes AbsRef (Algorithm 7) for pop function; the significant variables 

are Vabs := {err, top}. Let pop.s denotes the local variable s at function pop. In the first iteration, 

the must predecessor SM of error state ro fail to include any new states. However, predecessor 

of set SM returns a set S1 (i.e. S \p0p.s=o,top=o,err=o for the function pop). The support set 

of S1 \ SM contains variable pop.s that belongs to the set V*, but not the set Vabs. The local 
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rO 

(a) (b) (c) 

Figure 6.2: Run of the algorithm Explore on IntStack Example, (a) The initial abstraction (b) 
The local abstraction inside function (c) The final global abstraction. 

refinement of Rf adds different valuations of variable pop.s (Figure 6.2(b)). The second digit of 

abstract states denotes the value of pop.s in the abstract state. In the next iteration, the must 

predecessor SM becomes {rl0,r00,r01} and no new states can be added by the predecessor of 

set SM- Hence the local abstraction Rf can not be further refined. The local refinement at 

Figure 6.2(b) can not be returned as the locally added variable pop.s can not reach outside the 

scope of function pop. The global set which leads the error set can be given by SM. SM is 

a subset of SM corresponding to the initial state IL. The initial set IL for the pop function 

is 5* |pOp.s=0- Global abstraction R provides the global abstraction RQ for pop function. The 

algorithm refines the abstraction with respect to sets SM and its compliment set S \ SM. The 

algorithm returns with an unchanged abstraction. 

Similarly, the local abstraction includes the local variable push.s for the push function. 

Even if the algorithm does not add any new global variable to the global refinement, it splits 

global abstract set r^ with respect to the set of states (where top is 2 and err is 0) that reach error 

states in one push call. Figure 6.2(c) shows the final abstraction. The build interface algorithm 

(Algorithm 8) starts with the initial state r\ and adds the edges in the graph (Figure 6.1(c)) 

until the algorithm finishes exploring every node with respect to all functions. 

The interface generated by Explore algorithm is safe and permissive by construction. 

AbsRef Algorithm ensures the safety, and Buildlnterface algorithm ensures permissiveness. The 

final abstraction R after calling AbsRef algorithms for each function / G F distinguishes error 
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reaching regions from the non-reaching ones. Buildlnterface algorithm applies all functions to 

all abstract states ; therefore the interface graph captures all behaviors. 

Theorem 1 Explore (Algorithm 6) returns a safe and permissive interface. 

6.2.2 Implementation Optimizations 

Approximate Abstract Function Summary and Predecessors: For practical purposes, 

we do not compute the abstract predecessor operators on the monolithic transition relations. 

Like [51], Equation 5.6 holds for approximate operators. The transition for a function / £ FQ 

is represented as a number (say k) of guarded-update rules. For an abstraction R C 22 / , the 

must and may abstraction of rule i £ { 1 , . . . , k} can be given as follows: 

i.trans^ := {(r1}r2) £ (R x R) | rx £ i.guard]*™, r2 £ i.update(rli)
1iy} 

i.trans^ := {{ri,r2) £ {R x R) \ rx £ i.guard]y , r2 £ i.update(rii)1y} 

For all j £ {m+,M—}, X C 2R, the approximate transition relation, one step predecessor 

operator and multi-step predecessor operator can be given respectively as: 

Trans',' := I ) i.trans^' 

Pre^iX) -={r£R\ Trans^^r) n X + 0} 

Pret'R (X):={r£R\rn (fiY.(X U Pref'*'1 (Y))) ± 0} 

. For disjunctive transition relation, the approximate may predecessor operator will be precise; 

however, the approximate must predecessor will be under-approximation of the precise one. 

Theorem 2 For each f £ F, R C 2 z S / , and X C 2R, we have 

PrebR_(X)l C Pref<*(XI) C Pre{£(X)l. 
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Rule Partition for Function One more optimization will be partitioning the rule set of each 

function with respect to the abstraction to create less splitting. Computation of each individual 

rule for must abstraction can create huge under-approximation; hence may need more splitting. 

Example 6 In presence of If- Then-Else or Switch constructs in the source code, we may en

counter the following rules after the translation. 

r\ : hd = true ==> indata' = 0; hd' = false 

ri : hd = false ==> indata' = 0; hd' = hd 

The abstract set R is defined with respect to different valuations of indata variable. If we consider 

each rule separately and apply the must abstraction, we miss the fact that the final value of 

variable indata will be 0 and does not depend on the initial value of hd. The must predecessor 

of S \indata=o will be 0 for both rules since the must abstraction of guards will be empty-set. 

However, if we combine two rules by taking union of sets, then the must predecessor of S \indata=o 

will be S for the combined rule and there will not be any further splitting. 

The heuristic of rule set partition is obtained from the abstraction itself. If a function / has 

k rules, then i-th and j - th rules can be grouped together for an abstraction R if the condition 

i.guard]™ — j.guard]™ holds. 

Incremental Building of Interface: Algorithm 6 can be used for incremental addition of 

function sets; as we may not need to create the interface for all the functions at first. The 

algorithm returns the refined interface for the included functions only. The created interface 

can be used if we want to add more functions from the library. 
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6.3 Translation from C to Guard-Update Rules 

In this section, we discuss the translation scheme to convert C functions into the "so

ciable interface automata" [39] format. This format contains several guarded-update rules and 

is the input format of the symbolic tool TICC. Here the front-end and back-end are indepen

dent. Hence one only need a different front-end to parse functions from any other language (like 

Java/C++) to generate the TICC input format models. The following stages of the algorithm 

can reuse the out tool TICC to create interface graphs. 

The algorithm feeds C functions into CIL[82] tool that parses C source code and returns 

the control flow graph. The control flow graph contains block structure as nodes and conditions 

as the transitions. We have modified the control flow graph for each function into a number of 

guarded-update rules. The guards represent conditions and updates represent the assignments. 

The specific variable s defines the location of current block. For a variable v, the primed variable 

v' denotes the v in the next step. When the translator encounters a critical error condition (e.g. 

call to exit(l)) in the control flow graph; the global variable err equals to 1 in the translated 

library. 

• Control Flow Structures: The C source like "if (a =0) {b=0;} else {b=l;}" is converted 

into the following rules: 

a = 0, s = 0 = = > b' = 0, s' = 1; 

a! = 0,s = 0 = = > b' = l,s' = 1 

The switch and loop (like while, for) structures can be handled similarly. 

• Variables and Data Structures: Currently, the algorithm supports unsigned integers with a 

small number (e.g. 4) of bits. The translation flattens the fixed-size arrays and structures. 

In the Integer Stack example, in Figure 6.1(b) shows how 3 integer variables represent an 
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array of size 3. The structure elements are also flattened in the example. Currently, the 

translation does not directly handle pointers and recursive data types. However, we can 

manually translate the pointers into integers only if we know that the control flow of the 

function is independent of the value at its pointer location. 

• Function Calls: Currently in order to compute the abstract transition for function / , we 

inline all the intermediate function call in the body of / . In the guarded-update rule 

semantics, the rules of the intermediate functions are explicitly added to the rules of 

/ . The algorithm maintains an explicit stack to handle functions and stores the return 

address and the context variables in the stack. This trick can be applied to one function 

calling another function as well as the non-tail-recursive function calls. The tail-recursive 

function calls can be converted into loops and do not need the stack. In the Appendix, we 

demonstrate a complete translation of a recursive c function. 

6.4 Results 

In this section we will provide results of some case studies and compare with the related 

works. 

Data Stream Case Study There is a data stream with a header of length 2h and data of 

length 2d where h < d. The program uses d bits to represent the pointer and 1 bit for the 

"error". The Boolean variable isHeader is 1 when in the header and is 0 otherwise. There are 

four functions in the program. The function FirstHeader and FirstData takes the pointer to 

the first header and data location respectively. The function Next moves the pointer within 

the header or data in a cyclic fashion. The function Write results in an error when pointer 

points to header section. Figure 6.3(a) shows the interface for the data-stream example. State 1 
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(a) Data Stream (b) Bit-Array-Manipulator 

Figure 6.3: Interfaces 

represents that the pointer in the data part and state 2 represents that the pointer in the header 

part. 

Bit Array Manipulator The Bit Array Manipulator has four functions : prev, next, access 

and modify. Two global variables ptr of length 2k specify the current position of the pointer. The 

global Boolean variable valid denotes whether the pointer is valid. Another Boolean variable 

err specify the library error states. The functions next and prev respectively increments and 

decrements the current pointer and set the valid flag to true. The functions access resets the 

valid flag. The function modify sets err to true when the valid is false, otherwise sets valid to 

false. Figure 6.3(b) shows the interface graph for the bit-array example. The state 1 represents 

that the valid bit is false and the state 2 represents that the valid bit is true. 

Comparison Figure 6.4 shows a comparison of explore algorithm with the related work on 

these two examples. The first two columns show the name and different parameter values of the 

case-studies. The next column describes the running time (in milliseconds) of explore algorithm 

from the parsed guarded-update rules. The next column represents the number of non-error 
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Case Study 
Data Stream 

Bit Array 
Manipulator 

Params 
h = 2,d=12 
h = 4,d = 12 
h = 13,<2= 13 
k = 8 
fc = 9 
fc = 16 

Time (ms) Regions 
3 2 
4 2 
18 2 
2 2 
4 2 
8 2 

Direct Learning CEGAR 
1028 2 257 
4112 2 257 
16384 2 2 
68 2 2 
130 2 2 
16386 Timeout 2 

Figure 6.4: Results 

regions in the interface graph. The last three columns show non-error regions from other three 

related works; we obtain the data from [16]. The results for Direct algorithm show that direct 

algorithm runs fastest, but the size of interface graph is exponential in d. We obtain that the 

CEGAR algorithm provides minimal graph only when h = d in the Data Stream example. The 

size of the graph in the CEGAR algorithm depends on the proper representation of variables 

with Boolean variables. The CEGAR approach refine by adding a new Boolean variable; which 

has a risk of splitting many abstract states unnecessarily. In contrast, explore algorithm keeps 

global abstraction separate from local abstraction inside the function and refines the global 

abstraction lazily with respect to the final reachable set (SM). Learning algorithm provides 

the minimal graph, but slowest of all three approaches. Explore algorithm provides the same 

number of non-error regions as the learning algorithm. However, we can not compare time due 

to different platforms. 

6.5 Application of Interfaces 

In this section, we describe how a safe and permissive interface can be useful in the 

verification and testing of the software programs. The following section briefly describe the 

modifications needed for the interface to be compatible with these settings. 
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6.5.1 Software Verification with Interfaces 

After the algorithm builds an interface graph for a set of functions, one can easily verify 

a given client program. The plan would be simulating the actions of the client program into 

the interface graph and check whether the simulation trace reaches the library error state (State 

ERROR). For example, a client with a single line modify(b) on the BitArrayManipulator b can 

be simulated in the interface graph (Figure 6.3(b)). . We find a simulation trace from the initial 

state to the error state (ERROR) (State 1). There could be an infinite number of potential 

clients corresponding to those functions. We can compute the interface graph and model-check 

each of them. 

6.5.2 Offline Test Case Generation 

In the model-based testing (MBT) paradigm, the tester checks an implementation 

under test (IUT) with respect to a given model program (a specification of the IUT). The 

proposed algorithm can create an interface graph from the definitions of the functions given in the 

model program. We can create a C source regression test-suite from the interface generated from 

the libraries. However, we need to extend the function calls with the argument values to create 

a test-bench for the IUT. For example, Figure6.1(a) can be generated from the model program 

in Figure6.1(c). If we have a linked-list implementation of an integer stack of finite length, we 

can create an offline test-suite from the interface graph. The testing of the implementation 

with respect to the test-suite checks whether the interface goes to the error state if and only if 

the implementation goes to the error state. If we find a discrepancy between the behavior of 

the interface graph and the system implementation, we assume the possibility of bugs in the 

implementation source code. 
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6.6 Conclusions 

In this chapter, we provide a new algorithm for interface synthesis with a local-global 

abstraction refinement framework. This framework is can dramatically reduce the state-space of 

the interface generation by hiding local variables inside each function. The abstract summariza

tion of the functions provides scalability. The framework uses modular analysis to handle each 

function separately. In this generalized setting, any C-style set of functions can be handled. 

The results illustrate that the algorithm provides a safe, permissive and sufficiently 

minimal (i.e. comparable to the learning algorithms) interface from the set of functions. We 

have provided the approximate, abstract predecessor operators to handle the state-space inside 

the function. The interface synthesis can be incremental : hence one can add new functions to 

the interface and it may lead to refinements corresponding to the function. 

The user can immediately verify clients with respect to the interface graph and the 

graph can provide an offline test-suite for a new implementation. However, the translation 

engine is extremely basic. In the future, we want to work more on covering more aspects (e.g. 

pointers, recursive data types) of C source code such that we can have bigger case-studies. We 

want to see how we can use the shape analysis algorithms to translate complex data types. We 

also want to include CIL inside the tool TICC such that it can parse C functions and represent 

the rules directly in MDD format. We want to implement the back-end using a combination of 

MDD and SMT solvers such that the space-space problems can be handled better. 
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Algorithm 7 AbsRef(i?, / , E) 
Input: Abstraction R, function / , error set E 

Output: updated R 

1- Vabs •= UreRsupport(r), Rf:=R 

2. loop 

3. SM := Pre^iE); Sf
M := SM n l{ 

4. 5 1 :=P re^ ' 1 (5Mi ) 

S1 \ (SMI) 

6. if snew := 0 then RQ'—R 

7. for each r £ R do 

8. i f ( r n ^ ) ^ 0 & ( r \ 5 { , ) ^ 0 

9. RG:=RG U {r i , r 2} \ {r}, where n := (r n S^) and r2 := (r \ Sf
M) 

8. r e t u r n i?Q 

7. else 

8. split including a variable v from {i> € (V? \ Vabs) \ v £ support (snew)} 

10. Abstraction i?/ is refined for all valuations of v 

11. end if 
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Algorithm 8 Buildlnterface(it!, F, Lib) 

Input: Abstraction R, a set of functions F, a library Lib = (FQ, VG, E, I) 

Output: Interface Graph IG = (N,T,Te,In,Er) 

1. Q,N,T,Te,In,Er = <D 

2. append(Q, I); append(N, I U E); append(In, I); append(Er, E) 

3. while Q is non-empty do 

4. curr := removeFirst(Q) 

5. for each / G F do 

6. next := Post^R{curr) 

7. if ( not member(N, next)) then append (Q, next); append (N,next) endif 

8. if (next C E) then Te := Te U (curr, f, Er) else T := T U (curr, / , nexi)endif 

9. end for 

lO.end while 
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Part IV 

Probabilistic Abstraction 

m 
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Chapter 7 

Magnifying Lens Abstraction 

7.1 Introduction 

Markov decision processes (MDPs) provide a model for systems with both probabilistic 

and nondeterministic behavior, and they are widely used in probabilistic verification, planning, 

optimal control, and performance analysis [54, 15, 94, 33, 48]. MDPs that model realistic systems 

tend to have very large state spaces, and the main challenge in their analysis consists in devising 

algorithms that work efficiently on such large state spaces. In the non-probabilistic setting, 

abstraction techniques have been successful in coping with large state-spaces: abstraction enables 

to answer questions about a system by considering a smaller, more concise abstract model. This 

has spurred research into the use of abstraction techniques for probabilistic systems [32, 67, 81, 

70]. We present a novel abstraction technique, called magnifying-lens abstraction (MLA), for 

the analysis of reachability and safety properties of MDPs with very large state spaces. We show 

that the technique can lead to substantial space savings in the analysis of MDPs. 

An MDP is denned over a state space S. At every state s G S, one or more actions 

are available; with each action is associated a probability distribution over the successor states. 
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We focus on safety and reachability properties of MDPs. A safety property specifies that the 

MDP's behavior should not leave a safe subset of states T C S; a reachability property specifies 

that the behavior should reach a set T C S of target states. A controller can choose the actions 

available at each state so as to maximize, or minimize, the probability of satisfying reachability 

and safety properties. MLA computes converging upper and lower bounds for the maximal 

reachability or safety probability; the minimal probabilities can be obtained by duality. In its 

ability to provide both upper and lower bounds for the quantities of interest, MLA is similar to 

[70]. 

In the analysis of large MDPs, the main challenge lies in the representation of the value 

v(s) of the reachability or safety probability at all s E S. In contrast, actions and transition 

probabilities from each state s can usually be either computed on the fly, or represented in a 

compact fashion, via Kronecker representations or probabilistic guarded commands [85, 48, 66]. 

The goal of MLA is to reduce the space required for storing v and, secondarily, the running time 

of the analysis. To this end, MLA partitions the state space 5* of the MDP into regions; for each 

region r, it stores upper and lower bounds v+(r), v~(r) for the maximal reachability or safety 

probability. The values v+(r), v~{r) constitute bounds for all states s £ r. In order to update 

these estimates, MLA iterates over the regions, "magnifying" one of them at a time. When the 

region r is magnified, MLA computes v+(s), v~ (s) at all concrete states s E r via value iteration, 

and then summarizes these results by setting v+{r) = max s 6 r «
+ ( s ) and v~(r) = min s 6 rw~(s). 

Figuratively, MLA slides a magnifying lens across the abstraction, enabling the algorithm to see 

the concrete states of one region at a time when updating the region values. Given a desired 

accuracy e for the answer, MLA periodically splits regions r with v+(r) — v~(r) > e into smaller 

regions. In this way, the abstraction is refined in an adaptive fashion: smaller regions are used 

where finer detail is needed, guaranteeing the convergence of the bounds, and larger regions are 

used elsewhere, saving space. When splitting regions, MLA takes care to re-use information 
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gained in the analysis of the coarser abstraction, in the evaluation of the finer one. MLA can 

be adapted to the problem of computing a control strategy by recording the optimal actions for 

the concrete states of interest, when they are magnified. 

Related work on M D P abstraction. Compared with other approaches to MDP abstrac

tion, MLA has two distinctive features: 

1. it clusters states based on value, rather than based on the similarity in their transition 

function; 

2. it updates the valuation of abstract states by considering the concrete states associated 

with the abstract states, rather than by considering an abstract model only. 

The second of the above points underlines how MLA is a semi-abstract, rather than fully ab

stract, approach to verification: the abstract computation still involves consideration of the 

concrete states, even though this is done in a way that provides space savings. 

For the most part, approaches to MDP abstraction in the literature have followed 

another route, which we call very broadly the full abstraction approach: an abstract model is 

constructed, and then analyzed on the basis of an abstract transition structure, without further 

reference to the concrete model. These fully abstract approaches generally rely on clustering 

states that are similar not only in value, but also in transition structure: in this way, every region 

of concrete states can be summarized via an abstract state with an associated abstract transition 

structure. The abstract transition structure may, or may not, be similar to the concrete one. 

For instance, [70] bases the abstract transition structure on games, rather than MDPs: in this 

fashion, player 1 can represent the choice of action of the MDP, and player 2 can represent 

the uncertainty about the concrete state corresponding to the abstract state. This approach 

enables the computation of lower and upper bounds for properties of interest, similarly to MLA. 
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In a somewhat related spirit, but using entirely different technical means, [58] proposes to 

abstract Markov chains into abstract Markov chains whose transitions are labeled with intervals 

of probability, representing the uncertainty about the concrete state. Clustering states based on 

the similarity in their transition probabilities has also been used in [52], which proposes to find 

the coarsest refinement of an MDP where for each action, states in the same region have the same 

probability of going to other regions. An approach for the verification of probabilistic reachability 

properties via abstraction has been proposed in [32]. The abstraction is built through successive 

refinements starting from a coarse partition based on the property. Several other approaches also, 

in fact, rely on constructing MDP abstractions based on simulation or abstract interpretation 

[67, 81, 80]; all of these approaches rely on clustering states with similar transition structure, 

and representing these clusters of states, and their transition structures, via compact abstract 

representations. 

The full-abstraction approach outlined above, and the partial value-based approach 

followed by MLA, each have advantages. The full-abstraction result can handle unbounded, and 

(depending on the specific approach) even infinite state spaces. In contrast, the space savings 

afforded by MLA are limited to a square-root factor (a system of size n can be studied in 0{y/n) 

space), due to the need to consider the concrete states corresponding to each abstract one. 

Furthermore, the full-abstraction approaches typically need to construct the abstract model 

only once; in contrast, MLA needs to refer to concrete states (albeit not all of them at once) 

during the computation. 

On the other hand, the ability of MLA to cluster states based on value only, disregarding 

differences in their transition relation, can lead to compact abstractions for systems where full 

abstraction provides no benefit. We will give below an example supporting this. Furthermore, in 

MLA the abstraction is refined dynamically, depending on the required accuracy of the analysis; 

there is no need to "guess" the right state partition in advance. In our experience, MLA is 
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(a) Initial Abstraction (b) Final Abstraction 

Figure 7.1: Initial, and final refined abstraction, for the problem of motion planning in a 24 x 24 
minefield. The circles denote the mines. 

particularly well-suited to problems where there is a notion of locality in the state space, so 

that it makes sense to cluster states based on variable values — even though their transition 

relations may not be similar. Many planning and control problems are of this type. MLA instead 

is not as well-suited to problems where clustering states based on variable values is less effective. 

Approaches based on predicate abstraction could lend the MLA approach more generality. 

An example of Magnifying-Lens Abstraction. To illustrate MLA, and its potential ben

efits, we give a simple example. We consider the problem of navigating aim xn minefield. The 

minefield contains m mines, each with coordinates (XJ,J/J), for 1 < i < m, where 1 < x* < n, 

1 < V% < n. We consider the problem of computing the maximal probability with which a robot 

can reach the target corner (n, n), from all n x n states. At interior states of the field, the robot 

can choose among four actions: Up, Down, Left, Right; at the border of the field, actions that 

95 



lead outside of the field are missing. Prom a state s = (x,y) £ {l,...,n}2 with coordinates 

(x,y), each action causes the robot to move to square (x',y') with probability q(x',y'), and to 

"blow up" (move to an additional sink state) with probability 1 — q(x', y'). For action Right, we 

have x' = x + 1, y' = y; similarly for the other actions. The probability q(x', y') depends on the 

proximity to mines, and is given by 

«(*', V') = UT exp ( -0 .7 • f(x' - x%f + (y' - Vl)
2 

The problem, for n = 24, is illustrated in Figure 7.1. 

Intuitively, it is desirable to group the 8 x 8 states in the top-middle area into a single 

region r^: since no mines are nearby, the robot can freely roam in VQ, SO that the maximal 

probability of reaching the target corner is essentially constant across ro. Indeed, to a human 

trying to determine a best path to the target corner, the states in TQ are essentially equivalent. 

When the 8 x 8 concrete states are grouped in ro, MLA leads to accurate results, since it can 

analyze the dynamics inside TQ when TQ is magnified. We also note how, in this example, the 

ability of MLA to refine the abstraction adaptively is crucial. As shown in Figure 7.1(b), MLA is 

able to use small regions close to mines, and large regions elsewhere. If we insisted on a uniform 

region size, then we would have to adopt the smallest size throughout, and no space savings 

would be possible. 

On the other hand, the full-abstraction approaches described earlier, such as [32, 81, 70], 

based on probabilistic simulation [95], are not well suited to this example. Such techniques would 

associate with an abstract state, such as ro, a summary of the transition structure from states 

s 6 ro, and use that summary to analyze the abstraction. The problem is that the states in ro, 

while similar in value, are not similar in transition structure: the states on the border of ro can 

transition outside of ro, while those in the interior cannot. In the abstraction, the probability 

of going from ro to the region at the right hand side will be modeled as being in an interval 
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[0,q], for some q close to 1 (all mines are far away). Consequently, previous techniques would 

have yielded a lower bound of 0, and an upper bound close to 1, for the maximum probability 

of reaching the target corner. Similarly, the technique of [52] would lead to recursively splitting 

the MDP, until the' regions consisted of only one concrete state each. 

Other related work. MLA is reminiscent to methods that represent value functions via 

ADDs or MTBDDs [30, 11] with an approximation factor used to merge leaves. The similarity, 

however, is superficial: MLA leads to far more precise results in the analysis; we discuss this in 

the conclusions, where the appropriate notation will be available. 

MLA is also loosely reminiscent of adaptive mesh refinement (AMR) methods used in 

the solution of partial differential equations [14]. There are, however, two important differences 

between MLA and AMR. In AMR, separate lower and upper bounds are not kept. AMR methods 

perform computation at the finest mesh sizes only where needed. In MLA, due to the discrete 

nature of MDPs, we have no way of computing over a "coarse mesh" only: to update valuations 

over a region, we need to "magnify" the region to its individual states. Thus, MLA is forced to 

consider the individual states over the whole system, and it summarizes and returns the results 

in terms of lower and upper bounds, which are well-suited to answering verification questions. 

7.2 Magnifying-Lens Abstraction 

Magnifying-lens abstractions (MLA) is a technique for the analysis of reachability and 

safety properties of MDPs. Let v* be the valuation on S that is to be computed: v* is one of 

^or11! ^DT X ) V<yrn> V™x. Given a desired accuracy eabs > 0, MLA computes upper and lower 

bounds for v*, spaced less than e0j,s. MLA starts from an initial partition R of S, and computes 

the lower and upper bounds as valuations u~ and u+ over R. The partition is refined, until the 
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difference between u~ and u+, at all regions, is below a specified threshold. To compute u~ and 

u+, MLA iteratively considers each r in turn, and performs a magnified iteration: it improves 

the estimates for u~~{r) and w+(r) using value iteration on the concrete states s € r. 

The MLA algorithm is presented as Algorithm 9. The algorithm has parameters T, / , 

g, which have the same meaning as in Algorithm Vallter. The algorithm also has parameters 

efloat > 0 and eabs > 0. Parameter £aos indicates the maximum difference between the lower and 

upper bounds returned by MLA. Parameter £ float, as in Vallter, specifies the degree of precision 

to which the local, magnified value iteration should converge. 'MLA should be called with 

Eabs greater than Efloat by at least one order of magnitude: otherwise, errors in the magnified 

iteration can cause errors in the estimation of the bounds. Statement 2 initializes the valuations 

u~ and u+ according to the property to be computed: reachability properties are computed as 

least fix-points, while safety properties are computed as greatest fix-points [49]. A useful time 

optimization, not shown in Algorithm 9, consists in executing the loop at lines 6-9 only for 

regions r where at least one of the neighbor regions has changed value by more than £float • 

Magnified iteration. The algorithm performing the magnified iteration is given as Algo

rithm 10. The algorithm is very similar to Algorithm 1, except for three points. 

First, the valuation v (which here is local to r) is initialized not to [T], but rather, to 

u~(r) if / = max, and to u+(r) if / = min. Indeed, if / = max, value iteration converges from 

below, and u~{r) is a better starting point than [T], since [T](s) < u~{r) < v*(s) at all s £ r. 

The case for / = min is symmetrical. 

Second, for s € S\r, the algorithm uses, in place of the value v(s) which is not available, 

the value u~(r') or u+(r'), as appropriate, where r' is such that s G r'. In other words, the 

algorithm replaces values at concrete states outside r with the "abstract" values of the regions 

to which the states belong. To this end, we need to be able to efficiently find the "abstract" 
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Algorithm 9 MLA(T, f,g,Sfloat,eabs) Magnifying-Lens Abstraction 

1. R := some initial partition. 

2. if / = max then u~~ := 0; u+ := 0 else u~ := 1; u+ := 1 

3. loop 

4. repeat 

5. ,u+ := u+\ u~ := u~; 

6. for r £ R do 

7. u+(r) := MagnifiedIteration(r, R,T,u+,u~ ,u+,m&x, / , g,efloat) 

8. u~(r) := MagnifiedIteration(r, R,T,ii~,u~,u+,mm, f,g,efloat) 

9. end for 

10. until | \u+ - u+11 + | \u~ - u~ 11 < efloat 

11. if \\u+ -W\\ > eabs 

12. then R,u~,u+ := SplitRegions(i?,u~,u+,eat,s) 

13. else return R,u~ ,u+ 

14. end if 

15. end loop 

counterpart [S]R of a state s £ S. We use the following scheme, similar to schemes used in AMR 

[14]. Most commonly, the state-space S of the MDP consists in value assignments to a set of 

variables X — {x\,X2, • • • ,x{\. We represent a partition R of S, together with the valuations 

u+, u~, via a binary decision tree. The nodes of the tree are labeled by (y,i), where y G X is 

the variable according to which we split, and i is the position of the bit (0 =LSB) of the variable 

according to whose value we split. The leaves of the tree correspond to regions, and they are 

labeled with u~, u+ values. Given s, finding [S]R in such a tree requires time logarithmic in |5 | . 

Third, once the concrete valuation v is computed at all s £ r, Algorithm 10 returns 
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Algorithm 10 MagnifiedIteration(r, R,T,u,u , u + , h , f,g,efloat) 

v: a valuation on r 

1. if / = max 

2. then for s S r do v(s) = u~(r) 

3. else for s £ r do u(s) = it+(r) 

4. repeat 

5. 0 := v 

6. for all s £ r do 

/ 

v(s) = f moo. ^ 
V 

^ p ( s , a , s ' ) - ' 0 ( s ' ) + ^ p(s,a,s ' ) • u([s]R) 
s'eS\r s '6r 

a e r(s) 

7. until ||v -•0| | < e^oat 

8. return /i{v(s) \ s E r} 

the minimum (if /i = min) or the maximum (if h = max) of v(s) at all s £ r, thus providing a 

new estimates for u~(r), u + ( r ) , respectively. 

Adaptive abstraction refinement. We denote the imprecision of a region r by A(r) = 

u+(r)— u~(r). MLA adaptively refines a partition R by splitting all regions r having A(r) > ea6s. 

This is perhaps the simplest possible refinement scheme. We experimented with alternative re

finement schemes, but none of them gave consistently better results. In particular, we considered 

splitting the regions with high A-value, all whose successors, according to the optimal moves, 

have low A-value: the idea is that such regions are the ones where precision degrades. While this 

reduces somewhat the number of region splits, the total number of refinements is increased, and 

the resulting algorithm is not clearly superior, at least in the examples we considered. We also 

experimented with splitting all regions r £ R with A(r) > 8, for a threshold 5 that is initially 
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set to 5, and that is then gradually decreased to eabs- This approach, inspired by simulated 

annealing, also failed to provide consistent improvements. 

In the minefield example, each region is squarish (horizontal and vertical sizes differ 

by at most 1); we split each such squarish region into 4 smaller squarish regions. In more 

general cases, the following heuristic for splitting regions is widely applicable, and has worked 

well for us. The user specifies an ordering XQ, X \ , . . . , x; for the state variables X defining S: this 

specifies a priority order for splitting regions. As previously mentioned, we represent a partition 

R via a decision tree, whose leaves correspond to the regions. In the refinement phase, we split 

a leaf according to the value of a new variable (not present in that leaf), following the variable 

ordering given by the user. Precisely, to split a region r, we look at the label (XJ, i) of its parent 

node. If i > 0, we split according to bit i — 1 of Xj\ otherwise, we split according to the MSB 

of Xj+\. A refinement of this technique allows the specification of groups of variables, whose 

ranges are split in interleaved fashion. Once a region r has been split into regions 7"ij7"2> w e 

set u~{rj) = u~{r) and u+{rj) = u+{r) for all j = 1,2. A call to SplitRegions(.R,u+ ,u~,eaf,s) 

returns a triple R, u~ ,u+, consisting of the new partition with its upper and lower bounds for 

the valuation. 

Correctness . The following theorem summarizes MLA correctness. 

Theorem 3 For all MDPs M = (S,A,T,p), all T C S, and all eabs > 0, the following asser

tions hold. 

1. Termination. For all Sfloat > 0, and for all f,g S {min,max}, the call MLA(T, f,g,£ float, tabs) 

terminates. 

2. (Partial) correctness. Consider any g € {max, min}, any eabs > 0, and any A € {D ,0} ; 

and let f = min if A = • , and f = max if A — O. The following holds. For all S > 0, 
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there is £float > 0 such that: 

Vr &R: u+{r) - u~ [r) < eabs 

V s e 5 : u-{[s]R)-S < V£T(s) < u+([s]R)+d 

where (R,u~,u+) = MLA(T,f,g,efloau£abs)-

We note that the theorem establishes the correctness of lower and upper bounds only within a 

constant S > 0, which depends on £float- This limitation is inherited from the value-iteration 

scheme used over the magnified regions. If linear programming [54, 15] were used instead, 

then MLA would provide true lower and upper bounds. However, in practice value iteration 

is preferred over linear programming, due to its simplicity and great speed advantage, and the 

concerns about 5 are solved — in practice, albeit not in theory — by choosing a small £float > 0. 

7.3 Experimental Results 

In order to evaluate the time and space performance of MLA, we have implemented 

a prototype, and we have used it for three case studies: the minefield navigation problem, the 

Bounded Retransmission Protocol [32], and the ZeroConf protocol for the autonomous configu

ration of IP addresses [27, 70]. 

When comparing MLA to Vallter, we compute the space needs of the algorithms as 

follows. For Vallter, we take the space requirement to be equal to |S|, the domain of v. For 

MLA, we take the space requirement to be the maximum value of 2 • |i?| + max rg# |r| that 

occurs every time MLA is at line 4 of Algorithm^ this gives the maximum space required to 

store the valuations u+, u~, as well as the values v for the largest magnified region. Since 

maxrefl |r| > (|5|/|i2|), the space complexity of the algorithm is (lower) bounded by a square-

root function ^ 8 • | 5 | . 
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(b) n = 256, m = 128 

(a) n = 128, m = 128 
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MLA Iteration Details 
#Abs 
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4 
5 
6 
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2,295 
4,347 
7,171 

11,678 
14,862 

D 
0.99 
0.77 
0.77 
0.66 
0.52 
0.01 

Time 
299 

1648 
206 
228 
362 
453 

(c) 71 = 512, m = 512 

Figure 7.2: Comparison between MLA and Vallter for n x n mine-fields with m mines, for 
£abs = 10~2 and efloat = 10"4. Mine densities (m/n2) are (a) 1/64, (b) 1/512, and (c) 1/512. 
All times are in seconds. #Abs is the number of abstraction steps (number of loops 3-15 of 
MLA), and D = max r£fl(ti+(r) — u~(r)). 

7.3.1 Minefield Navigation 

We experimented with different-size mine-fields in the mine-field example. In all cases, 

the mines were distributed in a pseudo-random fashion across the field. The performance of 

algorithms Vallter and MLA, for eahs — 0.01, are compared in Figure 7.2. As we can see, the 

space savings are 2.06 for a mine density of 1/64, and an average of 8.47 for a mine density of 

1/512. This comes at a cost in running time, which is of 5.67 for a mine density of 1/64, and 

1.42 to 3.00 for a mine density of 1/512. Especially for lower mine densities, MLA provides 

space savings that are larger than the incurred time penalty. The space savings are even more 

pronounced when we decrease the desired precision of the result to eabs = 0.1, as indicated in 
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(a) n = 128, m = 128 (b) n = 256, m = 128 

Algorithm 
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(c) n = 512, m = 512 

Figure 7.3: Comparison between MLA and Vallter for n x n mine-fields with m mines, for 
£abs = 10 _ 1 and efloat = 10 - 2 . Mine densities (m/n2) are (a) 1/64, (b) 1/512, and (c) 1/512. 
All times are in seconds. 

Figure 7.3. 

7.3.2 The ZeroConf Protocol 

The ZeroConf protocol [27] is used for the dynamic self-configuration of a host joining 

a network; it has been used as a test-bed for the abstraction method considered in [70]. We 

consider a network with 4 existing hosts, and 32 total IP addresses; protocol messages have a 

certain probability of being lost during transmission. We consider the problem of determining 

the worst-case probability of a host eventually acquiring an IP address: this is a probabilistic 

reachability problem. 

The abstraction approach of [70] reduces the problem from 26,121 concrete reachable 

states to 737 abstract states. MLA reduces the problem to 131 regions, requiring a total space 

of 1267 (including also the space to perform the magnification step) for eabs = 10"~3 and £float — 

10""6. We cannot compare the running times, due to the absence of timing data in [70]. 

7.3.3 Bounded Retransmission Protocol 

We also considered the Bounded Retransmission Protocol described in [32]. We com

pared the performance of algorithms Vallter and MLA on "Property 1" from [32], stating that 
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N 

16 
32 
64 

MAX 

3 
5 
5 

Vallter 
time 

0.08 
0.21 
0.40 

^Reachable 
states 
1,966 
5,466 

10,650 

MLA 
space 

918 
2,604 
5,380 

MLA 
time 
27.38 

140.79 
266.53 

Figure 7.4: Comparison between MLA and Vallter for BRP. N denotes number of chunks and 
MAX denotes the maximum number of retransmissions. All times are in seconds. 

the sender eventually does not report a successful transmission. The results are compared in 

Figure 7.4, for eats = 10~2 and efloat = 10 - 4 . MLA achieves a space saving of a factor of 2, but 

at the price of a great increase in running time. 

7.3.4 Discussion 

From these examples, it is apparent that MLA does well on problems where there 

is some notion of "distance" between states, so that "nearby" states have similar values for 

the reachability or safety property of interest. These problems are common in planning and 

control. As we discussed in the introduction, many of these problems do not lend themselves to 

abstraction methods based on the similarity of transition relations, such as [70, 32], and other 

methods based on simulation. We believe the MLA algorithm is valuable for the study of this 

type of problems. We note that each mine affects a region of size 5 x 5 by more than the desired 

precision £ais = 10~2. Therefore, while the mine density is only 1/512, the ratio of "disturbed" 

vs. "undisturbed" state space is 25/512, or 1/20. This is a typical value in planning problems 

with sparse obstacles. 

On the other hand, for problems where simulation-based methods can be used, these 

methods tend to be more effective than MLA, as they can construct, once and for all, a small 

abstract model on which all properties of interest can be analyzed. 
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7.4 Conclusions 

A natural question about MLA is the following: why does MLA consider the concrete 

states at each iteration, as part of the "magnification" steps, rather than constructing an abstract 

model once and for all, and then analyze it, as other approaches to MDP abstraction do [32, 

67, 81, 70]? The answer has two parts. First, we cannot build an abstract model once and for 

all: our abstraction refinement approach would require the computation of several abstractions. 

Second, we have found that the cost of building abstractions that are sufficiently precise, without 

resorting to a "magnification" step, is substantial, negating any benefits that might derive from 

the ability to perform computation on a reduced system. 

To understand the performance issues in constructing precise abstractions, consider the 

problem of computing the maximal reachability probability. To summarize the maximal proba

bility of a transition from a region r to n, we need to compute P r
+ (ri) = min s S r max l £ n Pr^ ( r ^ r i ) , 

where U is the "until" operator of linear temporal logic [78]; this quantity is related to building 

abstractions via weak simulation [95, 12, 86]. These probability summaries are not additive: for 

n ^ r2, we have that P+{r{) + Pr
+(r2) < P+{r\ U r2), and equality does not hold in general. 

Indeed, these probability summaries constitute capacities, and they can be used to analyze max

imal reachability properties via the Choquet integral [93, 59, 60]. To construct a fully precise 

abstraction, one must compute P+(R') for all R' C i?, clearly a daunting task. In practice, in 

the minefield example, it suffices to consider those R' C R that consist of neighbors of r. To 

further lower the number of capacities to be computed, we experimented with restricting R' to 

unions of no more than k regions, but for all choices of k, the algorithm either yielded grossly 

imprecise results, or proved to be markedly less efficient than MLA. 

The space savings provided by MLA are bounded by a square-root function of the state 

space. We could improve this bound by applying MLA hierarchically, so that each magnified 
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region is studied, in turn, with a nested application of MLA. 

Symbolic representations such as ADDs and MTBDDs [30, 11] have been used for 

representing the value function compactly [48, 66]. The decision-tree structure used by MLA 

to represent regions and abstract valuations is closely related to MTBDDs. The space savings 

are limited by the fact that the value function is usually slightly different at different states. 

MLA is loosely reminiscent of approaches that cluster MTBDDS leaves with values within a 

specified e > 0. However, the similarity is superficial: such leaf-clustering corresponds in MLA 

to taking eabs = Afloat = £, and yields considerably poorer results than clustering according to 

sabs, and computing according to Sfloat, as MLA does. In particular, MTBDDS leaf-clustering 

approaches do not yield lower and upper bounds for the property of interest. In the next chapter 

we intend to explore symbolic implementations of MLA, where separate MTBDDs will be used 

to represent lower and upper bounds. 
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Chapter 8 

Symbolic Magnifying Lens Abstraction 

8.1 Introduction 

Markov decision processes (MDPs) provide a model for systems with both probabilistic and 

nondeterministic behavior, and are widely used in probabilistic verification, planning, inventory 

optimal control, and performance analysis [54, 15, 94, 33, 92]. At every state of an MDP, one 

or more actions are available; each action is associated with a probability distribution over the 

successor states. We focus on safety and reachability properties of MDPs. A safety property 

specifies that the MDP's behavior should not leave a safe subset of states; a reachability property 

specifies that the behavior should reach a set of target states. A controller can choose the actions 

available at each state so as to maximize, or minimize, the probability of satisfying reachability 

and safety properties. MDPs that model realistic systems tend to have very large state spaces, 

and therefore the main challenge in analyzing such MDPs consists in devising algorithms that 

work efficiently on large state spaces. 

In the non-probabilistic setting, abstraction techniques have been successful in coping 

with large state-spaces: by ignoring details not relevant to the property under study, abstraction 
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makes it possible to answer questions about a system through the analysis of a smaller, more 

concise abstract model. This has spurred research into the use of abstraction techniques for 

probabilistic systems [32, 67, 81, 70]. The majority of these techniques follow a full abstraction 

approach: an abstract model is constructed and, during its analysis, all details about the concrete 

system are forgotten. 

In [50], de Alfaro and Roy proposed an alternative approach, called magnifying-lens 

abstraction (MLA) [50]. This is based on partitioning the state space of an MDP into regions 

and then analyzing ("magnifying") the states of each region separately. The lower and upper 

bounds for the magnified region are updated by computing the minimum and maximum values 

over the states of the region. Figuratively, MLA slides a magnifying lens across the abstraction, 

enabling the algorithm to see the concrete states of one region at a time when updating the 

region values. 

Regions are refined adaptively until the difference between the lower and upper bounds 

for all regions is within some specified accuracy. In this way, the abstraction is refined in 

an adaptive fashion: smaller regions are used when finer detail is required, guaranteeing the 

convergence of the bounds, and larger regions are used elsewhere, saving space. When splitting 

regions, MLA takes care to re-use information gained in the analysis of the coarser abstraction 

in the evaluation of the finer one. In its ability to provide both upper and lower bounds for the 

quantities of interest, MLA is similar to [70]. 

Although experimental results have demonstrated that using MLA leads to space sav

ings, the explicit representation of the probabilistic transition system employed in [50] placed a 

limit on the size of MDPs that could be analyzed. A successful approach to overcome the lim

itations of explicit representations has been to employ symbolic data structures. In particular, 

BDDs (binary decision diagrams) [21] and MTBDDs (multi-terminal binary decision diagrams) 

[29, 11] have been shown to enable the compact representation and analysis of very large MDPs 
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[48, 83, 65]. 

In this work we combine MLA with symbolic representations to improve scalability. 

More precisely, we adapt the MLA algorithm of [50] to the symbolic domain, yielding an approach 

that we call Symbolic Magnifying-Lens Abstraction (SMLA). We show that the "magnified" 

computation performed on the regions, and the "sliding" of the magnification from one region to 

the next, can be performed symbolically in a natural and efficient fashion. We have implemented 

SMLA in the probabilistic model checking tool PRISM [66, 88] and, through a number of case 

studies, demonstrate that SMLA leads to useful space savings. 

MLA, and its symbolic variant SMLA, differ from other approaches to MDP abstraction 

[70] in that they can be profitably applied to systems where there are many states with similar 

value, but not necessarily similar transition structure. For instance, consider a system with 

an integer state variable x, with range [0 , . . . , N], and assume that from every state where x 

has value 0 < n < N, there are transitions to states where x has values n — 1, n, and n + 1. 

Classical abstraction schemes associate with each region (set of states) a single abstract state, 

whose transition relation over-approximates all the transition relations of the concrete states it 

represents. In such a transition-based abstraction, it is not useful to group the concrete values 

[0, . . . , AT] for x into regions consisting of intervals Ii, ..., Ik- In fact, since the states at the 

endpoints of each interval can leave the interval, but the states in the interior cannot, the abstract 

transition relation associated with each interval would have to be a gross over-approximation of 

the concrete transition relations, leading to considerable loss of precision. 

In MLA and SMLA, as long as the value of the property of interest is similar in states 

in the same interval, abstraction is possible and useful. Indeed, experimentally we noticed 

that SMLA performs well in many problems with integer-valued state variables, where the 

properties vary gradually with the value of the state variables. Problems in planning, inventory 

control, and similar often belong to this category. On the other hand, when it is possible to 
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use symmetry or structural knowledge of an example, and aggregate states of similar transition 

relation, approaches such as [32, 70, 71] yield superior results. 

8.1.1 Symbolic model checking of M D P s 

Due to the sizes of the MDPs that typically arise in probabilistic verification case stud

ies, considerable effort has been invested into building efficient model checking implementations. 

In particular, symbolic techniques, which use extensions of Binary Decision Diagrams (BDDs), 

have proved successful in this area. Here we focus on the use of Multi-Terminal Binary Decision 

Diagrams (MTBDDs). This data structure lies at the heart of the probabilistic model checker 

PRISM and has been used to model check quantitative properties of probabilistic models with 

as many as 1010 states (see for example [72, 56]). In this section, we give a brief overview of 

these techniques. For more detailed coverage of the MTBDD-based implementation of MDP 

model checking in PRISM, see [83]. 

M T B D D s . Multi-terminal BDDs (MTBDDs) are rooted, directed acyclic graphs associated 

with a set of ordered, Boolean variables x\ < ... < xn. An MTBDD M represents a function 

fw\(xi,... ,xn) : B™ —> R over these variables. The graph contains two types of nodes: non

terminal and terminal. A non-terminal node m is labeled by a variable var{m) e {xi,... ,xn} 

and has two children, then(m) and else(m). A terminal node m is labeled by a real number 

val{m). The Boolean variable ordering < is imposed onto the graph by requiring that a child m! 

of a non-terminal node m is either terminal or non-terminal and satisfies var{m) < var{m'). The 

value of /M(XI , . . . , xn), the function which the MTBDD represents, is determined by traversing 

M from the root node, and at each subsequent node m taking the edge to then(m) or else(m) 

if var(m) is 1 or 0 respectively. A BDD is simply an MTBDD with the restriction that labels 

on terminal nodes can only 0/1. 
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Representation of M D P s using MTBDDs . MTBDDs have been used, from their in

ception [11, 29], to encode real-valued vectors and matrices. An MTBDD v over variables 

( x i , . . . , xn) represents a function /v : B™ —> R. A real vector v of length 2n is simply a mapping 

from { 1 , . . . ,2™} to the reals K. Using the standard binary encoding of integers, the variables 

{xi,... ,xn} can represent { 1 , . . . , 2™}. Hence, an MTBDD v can represent the vector v. 

In a similar way, we can consider a square matrix M of size 2" by 2n to be a mapping 

from { 1 , . . . , 2n} x { 1 , . . . , 2"} to R. This can be represented by an MTBDD over 2n variables, 

n for rows (current-state variables) and n for columns (next-state variables). According to the 

commonly-used heuristic for minimizing MTBDD size, the variables for rows and columns are 

ordered alternately. 

MTBDDs can thus easily represent the probabilistic transition matrix of a Markov 

chain. Furthermore, with a simple extension of this scheme, the probabilistic transition function 

p : S x A —> D(S) of an MDP can also be represented. Since the set of actions A is finite, 

we can view p as a function S x A x S —> [0,1]. For an MDP with 2" states, and letting 

k = ceil(log2 \A\), the probabilistic transition function p is equivalently seen as a function from 

{ l , . . . , 2 n } x { l , . . . , 2 f c } x{ l , . . . , 2 n } to R, which can easily be represented by an MTBDD 

over 2n + k variables. 

MTBDDs are efficient because they are stored in reduced form, with duplicate nodes 

merged and redundant ones removed. Their size (number of nodes) is heavily dependent on the 

ordering of their Boolean variables. Although the problem of deriving the optimal ordering for 

a given MTBDD is an NP-hard problem, by using heuristics [65, 83], probabilistic models with 

a degree of regularity can be represented extremely compactly by MTBDDs. 

Model checking of M D P s using MTBDDs . Once a model's MTBDD representation has 

been constructed, it can be analyzed, for example using value iteration to compute minimum and 
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maximum reachability and safety probabilities. This comprises two stages. First, a graph-based 

analysis is performed to find the states for which the corresponding probability is 0 or 1 [48]. 

This can be implemented using standard BDD techniques for calculating fix-points. Secondly, 

numerical computation is applied to compute probabilities for the remaining states. For this, 

standard iterative methods such as value iteration, can be implemented using standard MTBDD 

operations, including for example algorithms from [11, 29] for matrix-vector multiplication. 

8.2 Symbolic M L A 

In this section, we present a symbolic implementation of the MLA algorithm using MTBDDs. 

Before doing so, we highlight some important aspects of the implementation. 

We first note that a potential obstacle in the use of MLA is that, although substantial 

savings in terms of storage for solution vectors can be made, there is still a need to store the 

probabilistic transition function of the MDP in full. A symbolic approach alleviates this problem: 

it is often the case that a very compact MTBDD representation of the probabilistic transition 

function of the MDP can be constructed. 

Secondly, it is also common that qualitative probabilistic verification (i.e. checking for 

which states of the MDP the probabilities for a reachability/safety property are exactly 0 or 

1) can be applied to much larger models than can be analyzed quantitatively. This is because 

qualitative properties can be model checked using only graph-based algorithms that operate on 

the underlying transition relation, allowing an efficient implementation with BDDs. This means 

that a symbolic version of MLA can also benefit from this: qualitative verification is applied 

to the full MDP before applying the MLA algorithm (this process is often referred to as pre-

computation). Numerical computation need then only be done for states with a probability that 

is neither 0 or 1. Furthermore, states with probability 0 or 1 can be removed from the MDP 
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completely, reducing computation significantly and decreasing round-off errors. 

Finally, we observe that symbolic techniques are very well-suited to MLA, in terms of 

the representation of solution vectors. Recall that, because of the way that MLA operates, it 

requires separate storage of the numerical solution vector for the current region being magnified 

(by algorithm MI see Section 7.2) and the lower/upper bounds for each region. Furthermore 

when the value for a state not in the current magnified region is required, the region contains that 

state must be determined before the relevant value can be looked up. Because of the way that 

MTBDDs exploit regularity, representing real-valued vectors with many similar values is often 

very efficient. This allows us to store the solution vector for all states of the MDP concurrently, 

avoiding potentially expensive partition look-ups. Since MLA considers each region sequentially, 

the solution vector will contain fewer distinct values than would be required for standard value 

iteration. Thus, we expect a symbolic implementation of MLA to be less memory-intensive than 

a symbolic version of value iteration. 

8.2.1 Symbolic Magnifying-Lens Abstract ion (SMLA) 

The symbolic version of MLA is shown in Algorithm 11. As for standard MLA (Algorithm 9), 

the symbolic version is parameterized by operators f,g& {max,min} (used to select maxi

mum/minimum reachability/safety properties) and convergence thresholds Eftoat and eabs- The 

other parameter is a BDD T representing the set of target states (T in Algorithm 9). We also 

assume a BDD reach representing the set of reachable states of the MDP and an MTBDD trans 

representing its probabilistic transition function. In the latter, the MTBDD variables represent

ing the rows (source states), columns (target states) and nondeterminism (actions) are denoted 

wars, cvars and ndvars, respectively. 

The first part of Algorithm 11 (lines 1-5) shows the use of BDD-based pre-computation 

steps [48, 83] in order to obtain the BDDs yes and no, representing the sets of states for which 
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the probability is exactly 1 or 0, respectively. If this covers all states of the MDP, no further 

work is required. Otherwise, rows corresponding to states in yes or no are removed from the 

probabilistic transition function trans (line 5). Here (and elsewhere in the algorithms) we use a 

simple infix notation to denote the application of binary operators (such as V or x) to BDDs or 

MTBDDs. This is done using the standard APPLY operator [21]. 

The remainder of Algorithm 11 comprises the symbolic version of MLA. We start with 

an initial partition R, returned by the CreatelnitialPartitionQ routine (see Section 8.2.3 for 

details). The partition is implemented as a list of BDDs, each one representing a region in R. 

The main part of Algorithm 11 corresponds quite closely to the original MLA algorithm (Algo

rithm 9). Initialization of solution vectors (lines 8 and 9) is easily achieved using the MTBDD 

operation CONST(fc) which returns the trivial MTBDD representing the real value k. Similarly, 

checking for convergence of the main loop can be done with the operation MAXDIFF(UI , 112) 

which computes the maximum point-wise difference between MTBDDs Ui and 112). 

The MTBDDs representing the lower (u~) and upper (u+) bounds for each region 

are computed by the SMI function, described below. After a global iteration terminates, the 

algorithm calls the Split (. . .) method to refine the regions for which the difference between the 

lower and upper bounds (u~ and u+) is greater than eabs. After each refinement, the algorithm 

copies u~ values to u+ for the reachability objectives and u+ values to u~ for safety objectives. 

8.2.2 Symbolic Magnified I terat ion (SMI) 

The core part of the MTBDD-based implementation of MLA is called Symbolic Magnified Itera

tion (SMI) and is shown in Algorithm 12. It performs a symbolic value iteration algorithm inside 

the region represented by BDD r from the current partition R. The algorithm is also passed 

the MTBDD trans' representing the (filtered) probabilistic transition function of the MDP, the 

BDD T representing the set of target states, and the MTBDD u, which stores the (upper or 
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lower) bound for every state's corresponding region. The other parameters h, f, g and efloat, 

are as for the non-symbolic version in Algorithm 10. 

The algorithm initializes the solution vector v with the vector u (line 1) and then the 

MTBDD trans' is filtered further to include only transitions for the current region (line 2). The 

loop (lines 3-12) updates the solution vector v until the results of two successive iterations differ 

less than Efioat. The first two lines of the loop perform a matrix-vector multiplication of the 

transition probability matrix of the MDP with (a permuted copy of) the solution vector v. This 

corresponds to the summations in line 6a of Algorithm 10. In line 7, the operator g € {max, min} 

is applied over the nondeterministic variables ndvars of the resulting MTBDD (the first part 

of line 6a from Algorithm 10). In line 8, the operator / is applied point-wise with the BDD T 

representing the target states (line 6b of Algorithm 10). Finally, the new solution vector v' is 

computed by setting values for all states not in the current region (r) to their values in u, using 

the MTBDD operation ITE (If-Then-Else). 

Once the while loop terminates, the algorithm computes the maximum (if h= max) or 

minimum (if h=mm) value val of the region by using F INDMAX (or F I N D M I N ) . Finally the 

algorithm returns a solution vector with value val for the current region and the old solution 

value from u for all other regions. 

8.2.3 The Splitting Order 

The creation of the initial partition and the way in which it is subsequently split are governed 

by two user parameters: strat and level. Splitting operations are based on a priority order 

X0rd — (xi,x2,- • • ,xn) of the MTBDD variables representing the state space of the MDP. In 

the adaptive refinement scheme of MLA, each call to the routine Split subdivides a region into 

two using the next MTBDD variable from the order Xord (we call this the splitting index). 

Since the MLA algorithm does not refine regions with u+(r) — u~{r) < eabs, after a refinement, 
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different regions may have different splitting indices. 

The order Xorc[ is determined by the choice of a splitting strategy stmt: either "con

secutive" or "interleaved'. In the default MTBDD variable ordering (for an MDP derived from a 

PRISM model), MTBDD variables are grouped according to the (model-level) variable to which 

they correspond and ordered consecutively. For strat= consecutive, we take Xord to be this de

fault ordering. For strat=interleaved, on the other hand, the MTBDD variables corresponding 

to different (model-level) variables are interleaved. 

The initial creation of a partition (by routine CreatelnitialPartition) is determined by 

Xord = (^1)^2, • • • ,xn) and the parameter level. Each region in the initial partition is created 

by splitting on MTBDD variables x\,X2, • • • ,%ievei (i-e. the splitting index for each region is 

level). 

8.3 The Case Studies and Results 

We have implemented the symbolic MLA algorithm within the probabilistic model checker 

PRISM and, in this section, present results for the following MDP case studies. 

Inventory Problem. We have modeled an inventory as an MDP. The variable "stock" denotes 

the current number of items in the inventory and "init" denotes the initial item count. The 

variable "time" keeps track of time elapsing. At each time step, the demand of the item is 

1 with a probability p and 0 with 1 — p. The probability p is a function of current number 

of items present in the inventory. The manager of the inventory visits the inventory every 7 

time units and he has two actions to choose from: either place an order or do not place one. 

The property we are checking is the "minimum probability that the stock reach its minimum 

amount within MAXTIME time units". In PCTL, the reachability property can be expressed 
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Example 

Inventory 

Minefield 

Hotel 
Booking 

Secretary 

Zeroconf 

Parameters 

st=512, T=512 
st=lK, T=1K 
st=2K, T=2K 
st=4K, T=4K 
st=5K, T=5K 
st=10K, T=10K 
n=256,m=100 
n=512,m=200 
n=1024,m=300 
c=127, b=63, T=15 
c=255, b=127, T=31 
c=511,b=255, T=31 
c=100, T=100 
c=100, T=200 
c=200, T=200 
c=300, T=400 
c=500, T=1000 
c=1000, T=2000 
N=4,M=32,K=4 
N=8, M=32, K=4 
N=8, M=128, K=4 

States 
103 

26 
106 
425 

1,698 
2,653 

10,605 
65 

262 
1,048 

131 
1,048 
4,194 

30 
90 

121 
451 

2,252 
9,004 

26 
552 

2,092 

Trans 
103 

34 
135 
535 

2,130 
3,325 

13,275 
299 

1,128 
4,316 

645 
5,202 

20,889 
61 

180 
242 
903 

4,502 
18,005 

50 
1,728 
6,552 

PRISM 
Time Node 

14 14K 
54 26K 

233 50K 
896 99K 

1,243 120K 
7,118 241K 

75 57K 
627 91K 

3,625 127K 
4 30K 

44 118K 
2,072 373K 

2 15K 
3 17K 

10 33K 
24 55K 
88 106K 

392 233K 
88 127K 

1,307 722K 
3,221 857K 

MLA 
Time Node Reg 

15 2K 340 
61 4K 676 

270 9K 1,348 
1,056 17K 2,692 
1,424 21K 3,364 
7,551 43K 3,363 

263 8K 2,041 
1,493 14K 4,164 
5,463 20K 6,324 

46 8K 903 
1,013 37K 6,350 
9,971 118K 25,491 

7 3K 269 
11 3K 345 
27 6K 471 
62 9K 463 

199 17K 733 
802 32K 768 

50 14K 22 
650 49K 64 

2,593 151K 19 

Figure 8.1: Experimental results: Symbolic MLA, compared to PRISM 

as Pmin=?[0 (stock=l A time<MAXTIME))\. 

Robot in a Minefield. We consider the problem of navigating an n x n minefield. The 

minefield contains m mines, each with coordinates (xj,yj), for 1 < i < m, where 1 < Xj < n, 

1 < J/i < n- We consider the problem of computing the maximal probability with which a robot 

can reach the target corner (n, n), from all n x n states. At interior states of the field, the robot 

can choose among four actions: Up, Down, Left, Right; at the border of the field, actions that 

lead outside of the field are missing. From a state s = (x,y) £ { 1 , . . . , n} 2 with coordinates 

(x,y), each action causes the robot to move to square (x',y') with probability q(x',y'), and to 

"blow up" (move to an additional sink state) with probability 1 — q(x', y'). For action Right, we 

have x' = x + 1, y' = y; similarly for the other actions. The probability q(x',y') depends on the 
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strat 
cons 
cons 
cons 
cons 
cons 

level 
1 
4 
7 

11 
15 

Node 
60K 
19K 
12K 
UK 
13K 

Time (s) 
50 
57 
60 
95 

191 

Regions 
191 
191 
214 
752 

3043 

strat 
inter 
inter 
inter-
inter 
inter 

level 
1 
4 
7 

11 
15 

Node 
60K 
40K 
18K 
10K 
UK 

Time(s) 
254 
255 
258 
307 
441 

Regions 
942 
942 
946 

1057 
2705 

Figure 8.2: Effect of splitting strategy ('cons', 'inter' denote consecutive and interleaving re
spectively) and initial splitting index (Secretary: c=300, MAXTIME=400) 

proximity to mines, and is given by 

</(*', V') = H? exp (-0.7 • ( V - x{f + (y' - Vif 

Optimal Stopping Game: Secretary Selection. We have modeled one application of the 

optimal stopping game. One boss starts interviewing c candidates for the post of secretary. After 

each interview, he can either select the candidate or continue the process with the remaining 

candidates. If the boss does not select the candidate, then the candidate is eliminated from the 

selection process. The variable "iime" is used to keep track of the time that has elapsed.The 

boss can compare whether the current candidate is the best so far or if a better candidate was 

interviewed previously. If the current candidate is the best among all candidates seen, then the 

variable "best" is assigned to 1. The boss does not know the (merit) order of the candidates; 

hence we model assignment of the variable with a probabilistic update. The probability that the 

current one is the best among c candidates is set equal to 1/c. If the boss selects a candidate, then 

the variable "stop" is assigned to 1. The property we are checking is the "maximum probability 

that the interviewer has selected a non-best candidate before the timeout". In PCTL, the 

reachability property can be expressed as Pmax=?[<^> (stop—I A best=0 A time<MAXTIME)]. 

Hotel Booking Problem. We have modeled an instance of the over-booking problem for 

a hotel during a multiple-day conference. The conference-chairperson books b rooms for the 

registered participants in a hotel with v rooms. The variable "days" keeps track of days that 
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have elapsed since the start of the conference. The participants can appear at any day during the 

conference but some of the booked rooms remain vacant during the conference season due to "no-

show" of the participants. The hotel manager takes this factor into account and over-books the 

hotel during the peak seasons. When he books a hotel room and the conference participant does 

not appear, the manager suffers a loss. Similarly he will be in trouble whenever he allows a non-

conference visitor without keeping a room booked and the conference guest appears, requiring 

him to find an alternative room for the guest at higher cost. The arrival of the participants is 

probabilistic. The property we are checking will be the "maximum probability that a conference 

guest arrives within the duration of the conference and does not get a room". In PCTL, the 

reachability property can be expressed as Pmax=?[^ (v=0 A 6>0 A days<MAXTIME)]. 

Zeroconf Protocol. The Zeroconf protocol [27] is used for the dynamic self-configuration of 

a host joining a network; it has been used as a test-bed for the abstraction method considered 

in [70]. We consider a network with N existing hosts, and M total IP addresses; protocol 

messages have a certain probability of being lost during transmission. The variable K denotes 

the maximum number of probes can be sent by the new host. We consider the problem of 

determining the maximal probability of a host eventually acquiring an IP address. 

Results. Our experiments were run on an Intel 2.16 GHz machine with 2GB RAM. We used 

Sfloat = 0.01, £at s=0.1 for both PRISM and MLA and, unless otherwise stated (see next section), 

an initial splitting index [level) of \_k/2\, where k is the number of MTBDD variables representing 

the MDP's state space. For the splitting strategy (stmt), we used "consecutive" for all model, 

except the minefield. 

Figure 8.1 summarizes the results for all case studies. The first two columns show 

the name and parameters of the MDP model. The third and fourth columns gives the number 
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of states and transitions for each model. The remaining columns show the performance of 

analyzing the MDPs, using both PRISM and symbolic MLA. In both cases, we give the total 

time required (which includes model building and model checking) and the peak MTBDD node 

count (which includes the partial transition relation and the solution vectors). For MLA, we 

also show the final number of generated regions. We used the MTBDD engine of PRISM, since 

(a) it is generally the best performing engine for MDPs; and (b) it is the only one that can scale 

to the size of models we are aiming towards. More detailed experimental data is available from: 

www.soe.ucsc.edu/~pritam/qest08.html. 

Discussion. The "Nodes" columns of Figure 8.1 demonstrate the efficiency of the symbolic 

implementation of MLA: the memory requirements are significantly lower than the equivalent 

statistics for PRISM's MTBDD engine. As discussed earlier in Section 8.2, this is due to the 

fact that MLA analyzes each region in isolation, resulting in a smaller number of distinct values 

in the solution vectors. For the Zeroconf example, this phenomenon actually results in MLA 

also outperforming PRISM in terms of solution time. 

It is also clear, from the sizes of the MDPs in the table, that the symbolic version of 

MLA is able to handle MDPs considerably larger than were previously feasible for the existing 

explicit implementation of [50]. Thanks to this, another positive conclusion which we can draw 

from the results is that MLA generates relatively small numbers of regions for the analysis of 

even large MDPs. 

Finally, we also experimented with different parameter values for the splitting strategy 

{stmt) and initial splitting index (level). Figure 8.2 shows results for the secretary selection 

case study (c = 300 and MAXTIME = 400). For smaller values of the initial splitting index, 

there are less regions initially but these regions are relatively large, resulting in higher memory 

consumption. Increasing the splitting index produces smaller regions, which take less space and 
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time to analyze, however more global iterations are required, resulting in longer total solution 

times. Hence, in our results (Figure 8.1), we opted for a trade-off by using a splitting index 

close to fc/2, where k is the number of MTBDD variables representing the state space. 

For the results in Figure 8.2 (and for most of our case studies), the "consecutive" 

strategy performs better than the "interleaved' strategy, both in terms of memory usage, time 

and number of regions. For the minefield problem, however, the reverse is true. This is due to 

the "grid-like" nature of the model and the fact that the state-space is described by a pair of 

co-ordinates, x and y. It is more effective to refine the state space into square regions of the 

grid. 

8.4 Conclusion 

We have presented a symbolic implementation of the magnifying-lens abstraction (MLA) tech

nique of [50], using the multi-terminal binary decision diagram (MTBDD) data structure. This 

was implemented in the probabilistic model checker PRISM and applied to a range of MDP 

case studies. The results demonstrate that symbolic MLA yields significant gains in memory 

usage over standard (symbolic) implementations of MDP verification, as provided by PRISM. 

Furthermore, in some cases this also produce better performance in terms of time. Our results 

also show that symbolic MLA can be applied to much larger MDPs than its explicit counterpart. 

In the future, we plan to make a comparison of our approach with other MDP ab

straction techniques, including the game-based approach of [70]. We also plan to investigate the 

integration of more advanced symbolic representations of state space partitions, such as [53]. 
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Algori thm 11 SMLA(T, / , g,£float,£abs) Symbolic Magnifying-Lens Abstraction 

1. if g = max 

2. t hen no := P R O B O A ( T ) ; yes := PROBlE(T) 

3. else no := PROBOE(T) ; yes := P R O B I A ( T ) 

4. if no V yes = reach then r e tu rn yes 

5. trans' := trans x - i ( n o V yes) 

6. R : = CreateInitialPartition() 

7. if / = max 

8. t hen u~ := u+ := CONST(O) 

9. else u~ := u+ := C O N S T ( I ) 

10. loop 

11. repea t 

12. u+ := u + ; u~ := u~ 

13. for each r s R do 

14. u+:= SMI(r,i?, trans',yes, u+,max, /,g,Sfloat) 

15. u_ := SMI(r, R, trans', yes, u~, min, / , g, £float) 

16. end for 

17. until MAXDIFF(U+, U+) < efloat & 

M A X D I F F ( U - , Q - ) < efloat 

18. if M A X D I F F ( U + , U " ) >£abs 

19. t hen R, u~,u+ := Split(i?, u~, u+,£a(,s) 

20. else r e t u r n (u~ + u+)/2 

21. end if 

22. if / = max then u+ := u~ else u~ := u+ 

23. end loop 
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Algor i thm 12 SMI(r, R, trans', T, u, h, f, g, £float) Symbolic Magnified Iteration 

1. v := u 

2. trans" := trans' x r 

3. done :— false 

4. while (done != true) do 

5. tmp := PERMUTE(V, wars, cvars) 

6. tmp := MVMuLT(trans",tmp) 

7. tmp := REPLACE(g,tmp, ndvars) 

8. tmp := ApPLY(/,tmp,T) 

9. v ' : = I T E ( r , t m p , u) 

10. if MAXDIFF(V' ,V) < efloat t hen done := t r u e 

11. v : = v ' 

12. end while 

13. if (h = max) 

14. t hen val := FlNDMAx(ITE(r, v, CONST(O))) 

15. else val := FlNDMiN(ITE(r, v, C O N S T ( I ) ) ) 

16. r e t u r n ITE(r, C O N S T ^ O O , u) 
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Chapter 9 

Conclusions 

9.1 Summary 

The current trend in software and system engineering is towards component-based de

sign. In this method, a number of design units called components make a complex design. 

Components are typically open systems that have inputs provided by other components and 

provide inputs to other components. Designers face a number of design issues to create a com

plex design from these components. A designed system, expected to achieve a series of tasks 

following its specification, may not behave properly due to the following reasons. Firstly, one 

or more components may contain bugs and behave in an undesirable way. Secondly, compo

nents make assumptions on their environment, and assume that the actual conditions will meet 

these assumptions. A number of bug-free components may not work together if their input 

assumptions are violated. Hence, verification of a complex system-design can be reduced to the 

verification of the components and communication among them. 

The interaction between components in a design can be modeled via games, and a large 

volume of studies on design and verification shows how games can be used to analyze component 
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compatibility and system correctness. However, while games provide an appropriate, mathemat

ical model for interaction, solving the games is often impossible with current algorithms, due 

to the large state-space of games representing practical components, together with the inherent 

complexity of game-solving techniques. In this thesis, we propose algorithms for the efficient 

analysis of games with large state spaces. 

We present two novel algorithm families in the dissertation: (1) Game-based Three 

Valued Abstraction (GTVA) for two-player games/transition systems, and (2) Magnifying Lens 

Abstraction (MLA) for Markov Decision Processes (MDPs). GTVA evaluates the winning objec

tives on the abstract game-model in three-valued style (yes, no, maybe) and refines the abstrac

tion by adding more details to the maybe abstract states. However, other approaches construct 

abstract models; thus verification becomes extremely expensive. We describe how to achieve 

efficient enumerative and BDD-based symbolic implementations of the algorithm. MLA parti

tions the state-space of MDP into regions and then computes upper and lower bounds on the 

regions, rather than on the concrete states. MLA iterates over the regions to evaluate these lim

its and considers the concrete states of each region in turn, as if one were moving a magnifying 

lens across the abstraction and viewing the concrete states corresponding to the current region. 

The algorithm refines the regions in an adaptive manner, splitting regions where we need more 

details until the difference between the bounds is smaller than a user-given accuracy. We also 

provide a symbolic form of algorithm MLA (SMLA). 

We have implemented the proposed algorithms, and we have applied them to real-

life applications, including planning, protocol verification, and interface synthesis for software 

libraries. The symbolic three-valued algorithms for reachability, safety, compatibility, and refine

ment properties have been implemented in the tool TICC; case-studies illustrate the accuracy 

and efficiency benefits of the GTVA algorithms over other approaches. We have implemented the 

symbolic version of MLA in the tool PRISM. The experimental results indicate that MLA can 
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provide accurate answers, with savings in the memory requirements. These algorithms promise 

to make the analysis of practical component-based designs possible by pushing the limits of the 

size of games that can be solved. 

9.2 Future Directions 

The difference between the design complexity and the validation capacity will increase 

in future. As verification researchers, we need to exercise more effective techniques to cope 

with the pressure. Scalable verification and testing techniques will continue to play a vital role 

in future. I want to devote my future research to seek a number of scalable verification and 

test-case generation techniques to bridge the increasing gap. In addition to that, there is a 

common trend towards multi-core designs and multi-threaded programs. I want to contribute 

to verification and testing of concurrent designs. However, the list is not exhaustive. The future 

focus lies in compact data structures, a combination of techniques, and concurrent designs. 

SMT for Abstraction-Refinement and Test-case Generation: Currently, Satisfiable 

Modulo Theories (SMT) solvers have become the state-of-the-art solvers for the model-checking 

case-studies. I have implemented all algorithms in the thesis using symbolic data structure 

such as, BDDs (and its various extensions). Although the canonicity property of BDDs is 

particularly useful, the space-requirement restricts its use in real-life case-studies. I want to 

modify three-valued abstraction-refinement algorithms to suit the queries of the solvers, and 

make the algorithms more scalable. I also want to apply SMT techniques in the test case/stimuli 

generation algorithms. 

Combination of Scalable Techniques : I have worked on various techniques. The com

bination of two or more approaches makes the algorithm scalable. For example, I developed 
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symbolic algorithms for three-valued abstraction-refinement techniques. However, integration 

of the scalable techniques may require careful adjustment. I want to work on a combination of 

different techniques in the future. 

Interfaces to Test-cases : In the interface synthesis problem, we have only focused to create 

an interface graph. I want to extend the framework to the testing of parameterized library 

functions. The global state-space in the symbolic domain will provide the (symbolic) parameter 

ranges to the functions. Initially, I want to work on sequential programs. Later I want to consider 

an extension of the framework to concurrent programs (where each function is sequential, but 

the system may have more than one function active at a given time). This project can also be 

useful in hardware verification field. The interface can be used as a permissive set of test-benches 

in the hardware systems. 

Combination of Static and Dynamic Techniques : There is a research trend to combine 

static and dynamic techniques to make the validation more scalable. All problems cannot 

be caught by static analysis (e.g. array out of bound, buffer overflow). Moreover, the static 

techniques like model checking are not particularly cost-effective techniques due to exhaustive 

search of state-spaces. Hence combination of static and run-time verification techniques are 

more pragmatic approaches. I will explore different algorithms that interleave static (property 

driven, model-checking-based test-case generation), and dynamic (executing the test case) in 

this direction. 
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