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Abstract

Reputation Systems and Incentives Schemes for Quality Control in Crowdsourcing

by

Michael B. Shavlovsky

Crowdsourcing combines the abilities of computers and humans to solve tasks that computers

find difficult. In crowdsourcing, computers process and aggregate input that is solicited from

human workers; thus, the quality of workers’ input is crucial to the success of crowdsourced

solutions. Performing quality control at scale is a difficult problem: workers can make mis-

takes, and computers alone, without human input, cannot be used to verify the solutions. We

develop reputation systems and incentive schemes for quality control in the context of different

crowdsourcing applications.

To have a concrete source of crowdsourced data, we built CrowdGrader, a web based

peer grading tool that lets students submit and grade solutions for homework assignments. In

CrowdGrader, each submission receives several student-assigned grades which are aggregated

into the final grade using a novel algorithm based on a reputation system. We first overview

our work and the results on peer grading obtained via Crowdgrader. Then, motivated by our

experience, we propose hierarchical incentive schemes that are truthful and cheap. The incen-

tives are truthful as the optimal worker behavior consists in providing accurate evaluations. The

incentives are cheap as they leverage hierarchy so that they be effected with a small amount

of supervised evaluations, and the strength of the incentive does not weaken with increasing

hierarchy depth. We show that the proposed hierarchical schemes are robust: they provide in-
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centives in heterogeneous environments where workers can have limited proficiencies, as long

as there are enough proficient workers in the crowd. Interestingly, we also show that for these

schemes to work, the only requisite is that workers know their place in the hierarchy in advance.

As part of our study of user work in crowdsourcing and collaborative environments,

we also study the problem of authorship attribution in revisioned content such as Wikipedia,

where virtually anyone can edit an article. Information about the origin of a contribution is

important for building a reputation system as it can be used for assigning reputation to editors

according the quality of their contribution. Since anyone can edit an article, to attribute a new

revision, a robust method has to analyze all previous revisions of the article. We describe a novel

authorship attribution algorithm that can scale to very large repositories of revisioned content,

as we show via experimental data over the English Wikipedia.
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Chapter 1

Introduction

1.1 Quality Control in Crowdsourcing

Computers enable humans to solve tasks that could not be solved by humans alone.

Computers can easily process large amounts of data, perform complex arithmetic computations,

and so forth. However, there are tasks that are hard or impossible to solve using computers

alone, without any human input. People can answer questions that are unique to human expe-

rience. They can transfer knowledge and concepts from one domain to another. As a result,

humans can easily judge the quality of a movie, write a description for a product, or describe a

meaning of a sentence.

Human computation and crowdsourcing [57] is a method of solving tasks by out-

sourcing them to a large group of workers. Workers are usually distributed and submit solutions

via the Internet. Crowdsourcing can offer improvements in cost, speed, scalability and diversity.

Researchers, universities and companies use crowdsourcing to solve a wide range of tasks: data
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annotation, grading of homework submissions, writing product descriptions, surveys, and so

forth.

There are many examples of problems that have been solved using crowdsourcing.

Galaxy Zoo is a crowdsourcing project with the goal of classifying galaxies in telescope im-

ages. Hundreds of thousands of volunteers helped classify millions of galaxies. The unprece-

dented scale allowed researchers to classify a large number of galaxies much faster, compared to

the original approach when only astronomy researchers and graduate students classified galax-

ies. Universities and Massive Open Online Courses (MOOCs) use crowdsourcing in classes to

evaluate homework submissions. Peergrading is the practice when students grade each others

homeworks submissions; students serve both roles as the providers of tasks and as the workers.

Peergrading is especially popular in large classes as it helps reduce the grading burden on in-

structors and teaching assistants. Companies use crowdsourcing to solve business related tasks

such as writing product descriptions, surveys, annotating datasets for machine learning algo-

rithms, transcribing scanned receipts, and others. Another prominent example is Wikipedia,

The Free Encyclopedia. Editors from all over the world write articles on a wide range of topics,

from classic articles one can find in an encyclopedia, to articles covering recent news.

Quality control is a central problem in crowdsourcing. The very nature of crowd-

sourcing makes quality control a challenging problem. Workers can be unreliable, and comput-

ers alone, without human input, cannot be used to evaluate workers. A natural solution is to

employ experts that evaluate the workers. However, experts are usually expensive, and the total

price of quality control at scale can be too large. In the extreme case, having experts evaluate

all workers is equivalent to the experts doing all the work.

2



Reputation systems and incentives schemes are tools for improving the quality of con-

tributions obtained via crowdsourcing. Reputation systems [71] measure reliability of workers

based on available signals. For example, if workers have common tasks then reputation can be

estimated via a comparison of answers on those tasks. Peer prediction [58] is an approach of

estimating the quality of answers by measuring agreement between peers. However, reputation

systems based on peer prediction are prone to collusions. As an illustration, if all workers agree

to report the same answer on any tasks, then workers appear to be in perfect agreement with

each other, while providing no useful information.

Mechanism design is a subfield of economics [27] that studies incentives schemes

in settings where players (workers) act strategically. A successful incentive scheme takes into

account workers’ strategic choices and guarantees that a diligent work is the optimal worker

behavior.

In this work we developed reputation systems and incentives schemes for quality

control in crowdsourcing.

1.2 Outline of the Dissertation

To investigate the algorithms and incentives that can be used in crowdsourcing qual-

ity evaluations, we built CrowdGrader, a tool that lets students submit and collaboratively grade

solutions to homework assignments. In Chapter 2, we present the algorithms and techniques

used in CrowdGrader, and we describe our results and experience in using the tool for sev-

eral computer-science assignments. CrowdGrader combines the student-provided grades into

3



a consensus grade for each submission using a novel crowdsourcing algorithm that relies on a

reputation system. The algorithm iteratively refines inter-dependent estimates of the consensus

grades, and of the grading accuracy of each student. On synthetic data, the algorithm performs

better than alternatives not based on reputation. On our experimental data, the performance

seems dependent on the nature of review errors, with errors that can be ascribed to the reviewer

being more tractable than those arising from random external events. To provide an incentive

for reviewers, the grade each student receives in an assignment is a combination of the con-

sensus grade received by their submissions, and of a reviewing grade capturing their reviewing

effort and accuracy. This incentive worked well in practice.

We also study the factors that influence errors in peer grading. We analyze 288 as-

signments with 25,633 submissions and 113,169 reviews conducted with CrowdGrader. First,

we found that large grading errors are generally more closely correlated with hard-to-grade sub-

missions, rather than with imprecise students. Second, we detected a weak correlation between

review accuracy and student proficiency, as measured by the quality of the student’s own work.

Third, we found little correlation between review accuracy and the time it took to perform the

review, or how late in the review period the review was performed. Finally, we found a clear

evidence of tit-for-tat behavior when students give feedback on the reviews they received. We

conclude with remarks on how these data can lead to improvements in peer-grading tools.

In Chapter 3, we develop incentives schemes for crowdsourcing problems where the

workers are asked to provide evaluations for items; the worker evaluations are then used to esti-

mate the true quality of items. Lacking an incentive scheme, workers have no motive for making

an effort in completing the evaluations, providing inaccurate answers instead. We show that a

4



simple approach of providing incentives by assessing randomly chosen workers is not scalable:

to guarantee an incentive to be truthful the number of workers that the supervisor needs to assess

grows linearly with total number of workers. To address the scalability problem, we propose

incentive schemes that are truthful and cheap: the truthful as the optimal worker behavior con-

sists in providing accurate evaluations, and cheap because the truthfulness is achieved with little

supervision cost. We consider both discrete evaluation tasks, where an evaluation can be done

either correctly, or incorrectly, with no degrees of approximation in between, and quantitative

evaluation tasks, where evaluations are real numbers, and the error is measured as distance from

the correct value. For both types of tasks, we develop hierarchical incentive schemes that can be

effected with a small amount of supervised evaluations, and that scale to arbitrarily large crowd

sizes: they have the property that the strength of the incentive does not weaken with increasing

hierarchy depth. We show that the proposed hierarchical schemes are robust: they provide in-

centives in heterogeneous environments where workers can have limited proficiencies, as long

as there are enough proficient workers in the crowd. Interestingly, we also show that for these

schemes to work, the only requisite is that workers know their place in the hierarchy in advance.

Determining who is the author of a piece of text is an important problem in crowd-

sourced and revisioned content such as Wikipedia. The knowledge on authorship can help

determine user reputation [1]. In Chapter 4 we consider the problem of attributing authorship

to such revisioned content, and we develop scalable attribution algorithms that can be applied

to very large bodies of revisioned content, such as the English Wikipedia. Since content can be

deleted, only to be later re-inserted, we introduce a notion of authorship that requires compar-

ing each new revision with the entire set of past revisions. For each portion of content in the

5



newest revision, we search the entire history for content matches that are statistically unlikely

to occur spontaneously, thus denoting common origin. We use these matches to compute the

earliest possible attribution of each word (or each token) of the new content. We show that this

“earliest plausible attribution” can be computed efficiently via compact summaries of the past

revision history. This leads to an algorithm that runs in time proportional to the sum of the size

of the most recent revision, and the total amount of change (edit work) in the revision history.

This amount of change is typically much smaller than the total size of all past revisions. The

resulting algorithm can scale to very large repositories of revisioned content, as we show via

experimental data over the English Wikipedia.
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Chapter 2

Crowdsourcing Quality Evaluations in the

Context of Peergrading

2.1 Problem Setting and Contributions

Ranking items according to their quality is a universal problem, occurring when hir-

ing, admitting students, accepting conference papers, presenting search results, selecting win-

ners in contests, and more. Often, the quality of items is best judged by human evaluators. As

relying on a single evaluator is often impractical — and can be perceived as unfair — an overall

evaluation can be obtained via crowdsourcing: several evaluators compare or grade a subset of

the items, and their feedback is then combined in an overall ranking or scoring of the items.

To study the algorithms and incentives that can be used in crowdsourcing quality

evaluations, we built CrowdGrader, a tool for the crowdsourced evaluation of homework as-

signments. CrowdGrader lets students submit, and collaboratively grade, solutions to home-

7



work assignments; their grade for each assignment depends both on the quality of their sub-

mitted solution, and on the quality of their work as graders. CrowdGrader is available at

http://www.crowdgrader.org/.

We chose to focus on homework grading for several reasons. First, this is a problem

that we know well, and we were confident that the tool would be used by us and by some

of our colleagues, providing valuable experimental data. Furthermore, solutions submitted to a

homework assignment share the same topic: we do not need to address the problem of matching

the topic of each submission to the domain of expertise of each reviewer, as it is necessary for

conference submissions. The students submitting the homework solutions would provide a

ready pool of graders. Last, but not least, we hoped the tool would provide educational benefits

to the students. We hoped students would benefit from being able to examine the solutions

submitted by other students: accomplished students would be able to look at alternative ways

of solving the same problem, and students who encountered difficulties would be able to study

several working solutions to the problem while grading. We also hoped that students would

benefit from their peer’s feedback.

The first question we studied with the help of CrowdGrader concerned the algorithms

that can be used to merge the grades provided by each evaluator, into overall consensus grades

for each assignment. We developed a novel crowdsourcing algorithm, which we nicknamed

vancouver, that combines the grades provided by the students with the help of a reputation

system that captures the student’s grading accuracy. The algorithm proceeds via iterations,

following a structure inspired by [48], and inspired also by expectation maximization techniques

[24, 21, 70]. In each iteration, the algorithm computes a consensus estimate of the grade of each

8
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submission, weighing the student input according to the accuracy of each student; the consensus

estimates are then used to update the estimated accuracy of the students. On synthetic data,

vancouver performs well, far outperforming algorithms such as the average or median. On our

real-world data, the results are mixed. Our impression is that vancouver outperforms simpler

algorithms when the grading errors of the students are not random. However, in one of the

classes where CrowdGrader was used, the grading errors were random in nature, due to mis-

matches between the code compilation environments of the students submitting and evaluating

homework solutions, and in that case, vancouver performed slightly worse than simple average.

The second question we studied concerned the incentives necessary to obtain quality

evaluations from the students. Our approach was simple: we made the grade each student

received depend on both the quality of the solution they submitted, and on the quality of their

review and grading work. This worked well in practice, and we will describe the methods we

used for assigning grading credit.

The third question we studied concerned the factors cause or influence the errors

in peer-assigned grades? We analyze 288 assignments with 25,633 submissions and 113,169

reviews conducted with CrowdGrader. First, we found that large grading errors are generally

more closely correlated with hard-to-grade submission, rather than with imprecise students.

Second, we detected a weak correlation between review accuracy and student proficiency, as

measured by the quality of the student’s own work. Third, we found little correlation between

review accuracy and the time it took to perform the review, or how late in the review period the

review was performed. Finally, we found a clear evidence of tit-for-tat behavior when students

give feedback on the reviews they received. We conclude with remarks on how these data can
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lead to improvements in peer-grading tools.

2.2 Related Work

The work most closely related in goals to ours is the proposal to crowdsource the

review of proposals for use of telescope time by [56], as well as the recent NSF pilot project for

reviewing funding proposals [31]. As in those approaches, we also distribute the task of review-

ing the submissions to the same set of people who submitted the items to be reviewed. Both

for proposals submitted to a specific panel, and for solutions submitted to the same homework

assignment, the submissions are on sufficiently related topics that the problem of matching sub-

mission topic with reviewer expertise can be disregarded. For proposals, of course, care must be

taken to avoid conflicts of interest; our situation for homeworks is relatively simpler. Where the

problems differ is that proposal reviewing is essentially a top-k problem: the best k proposals

must be selected for funding. Homework grading, on the other hand, is an evaluation problem:

each item needs to be graded on a scale. In top-k problems, the most important consideration is

precision at the top; mis-ranking items that are far from the top-k carries no real consequence.

In our evaluation problem, each evaluation carries approximately the same importance, and we

do not need to precisely rank students whose submissions have approximately the same quality.

While there are techniques that can be applied to both problems, this difference in goals justifies

the reliance of [56, 31] on comparisons, and ours on grades. Comparisons can allow the precise

determination of the top-k items in a ranking [19]; we chose instead to develop reputation-based

algorithms for merging grades.
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The works of [56] and [31] discuss incentive mechanisms for reviewers, consisting

in awarding a better placement in the final ranking to proposals whose authors did a better job

of reviewing. We follow the same approach, but we have the additional constraint that students

must find the reviewing work appropriately rewarded with respect to the time it takes. Students

are most often under time pressure, and they often consider the question of whether one hour

is better spent reviewing for one class, or working on the homework assignment of another. A

reward such as the one of [31], where a couple of places in the ranking are awarded based on

reviewing work, would not have sufficed, especially in the context of an evaluation rather than

top-k setting. Rather, we let instructors chose a reward magnitude that is commensurate with

the time required by reviewing. Furthermore, unlike [56, 31], we face the additional constraint

that students must regard the reward as fair and non-punitive; as we will see in Section 2.6, this

affected our choice of reward metrics.

The effect of review incentive on the quality of the ranking is examined in depth in

[60]. The main problem, also raised in [56], is that the incentive mechanism makes the grading

a “Keynesian beauty contest”, where reviewers are rewarded for thinking like other reviewers;

in turn, this may encourage a “race to mediocrity”, in which non-controversial, blander prop-

sals may fare better than more audacious and original ones. We agree with the authors of [60]

that this may be a true problem for proposal review. However, we believe that in the context

of homework assignments, the problem may be minor or non-existent. Our incentive function,

described in Section 2.6, gives a farily generous reward that would not overly decrease if a

students mis-ranks one of the assignments; this gives more leeway to students presented with

a homework submission that does not follow the beaten path. We also believe that the less
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competitive evaluation setting, as compared to a top-k setting, may lessen the problem. Finally,

in our somewhat limited real-world experience, students generally were more ready to reward

originality than teaching assistants. The main goal of a teaching assistant is often to avoid con-

troversy, in order to avoid confrontations with students. Thus, teaching assistants generally felt

a stronger obligation to follow a rigid grading scheme, for the sake of consistency, and subtract

a fixed number of points for each type of error encountered. Students felt less constrained by

the need for full consistency, as the authors of the submissions they graded could not easily

identify or compare the grades they received from the same grader.

The reputation-based crowdsourcing algorithm we use to aggregate grades is inspired

by the algorithm of [48] for the aggregation of boolean input. Unlike that work, however, we

do not have a proof of convergence for our crowdsourcing algorithm, nor a full theoretical

characterization of how the precision depends asymptotically on the number of reviews. The

algorithm is also inspired, and related, to the technique of expectation maximization [24, 21,

75, 43, 83, 70, 82]. The approach is also related to belief propagation methods [63, 89]. A

related, but coarser, method was used by one of the authors to aggregate information provided

by editors of Google Maps via the Crowdsensus system [22].

Rank aggregation methods have a very long history. The problem originally arose

in the context of elections. In a classical contribution [23], de Borda proposed that each voter

assigns each of n candidates a score 1,2, . . . ,n, according to the preference; the candidates were

then ranked according to the total score they received from all voters. Again in the context

of elections, Arrow proved a famous theorem, stating that any rank aggregation that satisfies

transitivity, unanimity, and independence of irrelevant alternatives is a dictatorship, where there
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is a single fixed voter (the dictator) who determines the outcome [6, 34]. An overview of rank

aggregation methods used in democracies around the world can be found in [53].

Kemeny-optimal rankings minimize the sum of Kendall-Tau distances between the

ranks proposed by individual voters, and the aggregate rank. The problem of computing Kemeny-

optimal rankings is known to be NP-hard [7, 25]. Cynthia Dwork, Ravi Kumar et al. [25] study

approximation methods that can be applied to the problem of ranking search results by combin-

ing the output of several rankers. Nir Ailon et al. [4] developed an algorithm to find approximate

solution subject to additional constraints. The problem of finding Kemeny optimal solution is

equivalent to the minimum feedback arc set problem, and Kenyon-Mathieu and Schudy [50]

obtained polynomial time algorithm for computing a solution with loss at most (1+ ε).

On-line algorithms for rank aggregation have been long studied, especially in their

application to ranking in sports such as chess and tennis. In these algorithms, a global ranking

is gradually refined and updated according to a stream of incoming comparisons. In sports,

these comparisons consist in the outcomes of matches between players; in other settings, the

comparisons may be obtained by asking users or visitors to sites to select a winner among a

set of alternatives. In the original paper by Bradley and Terry, the player strenghts are obtained

from match outcomes via a maximum-likelyhood approach [9, 54]; Elo replaced this with a

dynamic update process which could account also for the time-varying aspect of player strenghts

[26]. Glickman then refined the models and the algorithms by first adapting a Bayesian update

approach [38], and by then obtaining efficient algorithms via approximation and parameter

estimation [37].

The accuracy of peer grading in the context of MOOCs has been analyzed in [52],
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where the match between instructor grade and student grades is analyzed in detail. The study

finds a tendency by student to rate higher people that share their country of origin — and this

in spite of the grading process being anonymous. The study finds that improvement in grading

rubrics lead to improved grading accuracy. Geographical origin, along with gender, employ-

ment status, and other factors, are found to have influence on engagement in peer grading in a

French MOOC in [16]. Our work is thus somewhat orthogonal to [16, 52]: we do not have data

on student ethnicity, and we focus instead on factors measurable from the peer grading activity

itself.

Frequently, peer grades are accompanied with reviewers’ comments or feedback; [88]

explores the possibility of using the review text to asses review quality. The authors show

a successful application of classifiers and statistical Natural Language Processing to evaluate

reviews.

Peer Instruction is a process in which students can observe grades by other reviewers,

discuss the review, and consequently modify their grades [18]. The factors that influence grades

in peer instruction have been studied in [8]. In spite of the different settings, [8] also observe

that the behavior of high and low-scoring students is fairly similar in terms of their grading

accuracy.

2.3 CrowdGrader

CrowdGrader lets students submit and collaboratively grade solutions to homework

assignments. The lifecycle of an assignment in CrowdGrader consists of three phases: a sub-
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mission phase, a review phase, and a grading phase.

The submission phase is standard.

In the review phase, each student must review a given number of submissions. The

more submissions each student reviews, the more accurate the crowd-sourced grade will be, but

the larger the workload on the students. In our experiments, asking that each submission was

reviewed by 5 or more students yielded acceptable accuracy.

Once the review period is over, CrowdGrader computes a consensus grade for each

submission, aggregating the grades or comparisons provided by the students via the algorithms

we will present in Section 2.5. Crowdgrader then assigns a “crowd-grade” to each student,

by combining the consensus grade of the submission with a review grade which quantifies the

review effort and accuracy of each student. In our experiments, computing the crowd-grade by

giving 75% weight to the submission grade, and 25% to the review grade, provided sufficient

motivation for the students to put adequate effort in reviewing. The instructors can either use

the crowd-grade as the grade for the student in the assignment, or they can fine-tune the final

grades, for instance to correct overall biases.

We applied CrowdGrader to the grading of coding assignments, namely, Android pro-

gramming assignments (CMPS 121, taught by one of the authors at UCSC); C++ programming

assignments (CMPS 109, also taught at UCSC); and Java assignments (taught at University of

Naples). While CrowdGrader can support in principle many types of assignments, we focused

on programming assignments for three reasons.

Programming assignments are especially burdensome to grade: unpacking, compil-

ing, and testing each submission is a time-consuming process. CrowdGrader enabled us to give
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coding assignments weekly, spreading what would have been a very onerous grading task on

the students participating in the class.

Second, we thought that students would be able to test and evaluate the submitted

code with reasonable accuracy.

Third, we believed that students would directly benefit from reading the code submit-

ted by other students. Strong students would be presented with alternative ways of solving the

problems, and weaker students would have an opportunity to study several working solutions.

Indeed, students reported a positive experience from the tool, citing their ability to learn from

others, and at the usefulness of the feedback they received, as the main benefits.

The code for CrowdGrader as used for this paper is available from https://github.

com/lucadealfaro/crowdranker, and CrowdGrader itself is available at http://www.crowdgrader.

org/.

2.4 Design of the Review Phase

The review phase is of primary importance for the accuracy of the generated ranking,

and we experimented with several designs.

2.4.1 Review assignment

We opted for an anonymous review process, in which submissions to review were as-

signed automatically to students. Since students could not choose which submissions to review,

nor in general did they know the identity of the submissions’ authors, they had limited ability
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to collude and cause their friends to receive higher grades.

In usual computer-science conferences, papers are assigned to program-committee

members in a single batch; each member then has a period of time to read the papers and enter

all reviews. We decided to follow a different approach, in which submissions were assigned

to students for review one at a time: students were assigned a new review task only upon

completion of the previous one. Our chief concern in making this decision was to ensure that

students would not get the submissions, and their reviews, mixed up. Unlike conference papers,

the submitted homework solutions are all on the same topic, and they can be fairly similar to

each other; furthermore, to preserve anonymity, submissions under review were denoted by

un-memorable names such as “Homework 2 Assignment 3”. By having students work on one

review at a time, we hoped to cut down on the possibility of mix-ups. Indeed, we received no

valid reports of mis-directed reviews.

Delaying the review assignment until the last moment offered two additional benefits.

First, we were able to ensure that all submissions received roughly the same number of reviews,

even if some students failed to do any reviewing work. For each submission, we considered

the number of likely reviews, consisting of the completed reviews, along with the review tasks

that had been assigned only a short time before. When assigning reviews, we chose submissions

having least number of likely reviews. Second, the delayed assignment let us gather information

about the quality of submissions, as the review process proceeded, enabling us to optimize the

review assignment by routing submissions to students who were in the best position to provide

feedback on them. We have experimented with various techniques for routing submissions,

but we do not yet have sufficient experimental evidence to report on the performance of the
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algorithms.

2.4.2 Comparisons vs. grades

For the first homework assignment conducted using CrowdGrader, we decided to ask

students to rank homework submissions, rather than grade them. We had more faith in the

students’ ability to compare submissions, than in their ability to assign grades with sufficient

consistency, so that grades assigned by different students would be comparable. When re-

viewing a submission, students were presented with a screen displaying the submissions they

had already ranked, in the quality order they had previously entered; at the bottom, and in a

highlighted color, was the new submission to review. Students were instructed to write some

feedback for the submission’s author, and then to drag and drop the new submission into the

appropriate place in the ranking.1

Unfortunately, after writing the feedback paragraph, many students skipped the rank-

ing step, leaving the new submission where they found it — at the bottom of the ranking. To

confirm this, we measured the fraction of times fh that students would rank the newly assigned

submission higher than a given submission they had already reviewed. Had students been ac-

curate, this fraction should have been close to 50%, since there was no relationship between the

quality of the new submissions, and that of the previously-reviewed ones. Instead, in the first

assignment this fraction was only 36%. Even after strongly reminding students to provide a

ranking, the fraction fh rose only to 41% in the second assignment. Table 2.1 reports the value

of fh for the five CMPS 121 Android assignments.

1While inserting the new submission in the ranking, the students were able to re-order previously ranked sub-
missions.
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Assignment fh Number of pairs
CMPS 121 hw 1 36% 252
CMPS 121 hw 2 41% 231
CMPS 121 hw 3 53% 271
CMPS 121 hw 4 52% 277
CMPS 121 hw 5 49% 221

Table 2.1: Fraction fh of pairs consisting of a previously-reviewed submission, and a submission

under review, in which the submission under review was ranked higher by the student than the

previously-reviewed one.

Talking to students, we understood that they were skipping the ranking step because

of a combination of forgetfulness, and unwillingness. Several students mentioned that they felt

unconfortable with providing a ranking of their peers. Furthermore, they thought that ranking

was a blunt instrument. They complained about having to arbitrarily rank submissions that they

felt were roughly equivalent, and they worried that ranking did not differentiate between the

situations of submissions of roughly equivalent quality, and submissions of widely different

quality. While ranking can indeed be precise, we are concerned not only with precision, but

also with how the tool is received by the students.

The problem in our UI, of course, was that we could not distinguish between a skipped

ranking, and a valid ranking. Starting from the third homework assignment, we modified the

UI so that students needed to both rank the submissions, and assign a grade to each one: the

ranking had to reflect the grades. As students could not leave grades blank, this effectively

forced students to provide a valid ranking. Table 2.1 shows that from assignment 3 onwards

the fraction fh was very close to 50%. Adding grades led to a more accurate ranking of the

submissions — regardless of whether the grades themselves were used! The student satisfaction
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with CrowdGrader also markedly increased, once grades were seen as the primary method of

providing input to the tool.

Once grades were available, we decided to use the additional information they con-

vey, and we focused on the development of crowdsourcing algorithms for the aggregation of

grades. In the current UI of CrowdGrader, students still need to both rank submissions, and

assign them a grade. Obviously, once we have grades, the ranking step is un-necessary. How-

ever, we believe that asking students to also rank the submissions forces them to consider the

relationship between submissions with similar grades, leading them to fine-tune the grades to

more accurately reflect their quality assessment. We intend to confirm this belief in future work,

comparing the accuracy of the grades with, and without, the ranking step.

2.4.3 Rejecting evaluations

We discovered early on that it was important to allow students to leave some submis-

sions ungraded, and yet consider their reviewing duty for the submission as completed, as far

as the computation of the students’ own review grades were concerned. In our programming

assignments, there were many cases in which well-intentioned students were unable to review

submissions. In the Android class, their installation of Eclipse and Android SDK occasionally

misbehaved in a way that left students unable to load and review the code submitted by other stu-

dents. In the C++ class, glitches or differences in the build environment occasionally prevented

students from compiling and executing the submissions under review. Initially, students needed

to enter a grade to receive credit for their review effort, and students entered very low grades for

the submissions they could not evaluate. In our informal analysis of the accuracy of the tool,
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this was the largest source of discrepancy in the grades assigned by different students to the

same submission. The solution was to let students flag a review task as “declined”, omitting the

grade, and providing instead an explanation of why they were declining it. In our experiments,

no more than 1% of submissions required instructor evaluation, since all students declined their

review; these submissions typically were markedly incomplete and non-functional.

2.5 The Vancouver Crowdsourcing Algorithm

Once students assign grades to the submissions they review, we need to aggregate the

student-provided grades into a consensus grade for each submission. The simplest algorithm

for computing consensus grades consists in averaging the grades each submission has received;

we refer to this algorithm as avg. We developed an alternative algorithm, the vancouver al-

gorithm.2 The vancouver algorithm measures each student’s grading accuracy, by comparing

the grades assigned by the student with the grades compared to the same submissions by other

students, and gives more weight to the input of students with higher measured accuracy. The

algorithm thus implements a reputation system for students, where higher accuracy leads to

higher reputation, and to higher influence on the consensus grades.

On synthetic data, vancouver is far more accurate than avg. On our experimental

data, vancouver performs better than avg, but as we will report in Section 4.6, the difference is

not quite as large, perhaps due to the fact that our assumptions about user behavior do not fully

correspond to how students behave in practice.

2The algorithm owes its name to the fact that it was conceived while strolling the pleasant streets of this Canadian
city.
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2.5.1 Variance minimization principle

The vancouver algorithm is based on the following fact.

Proposition 1. (minimum variance estimator) Suppose we have available uncorrelated es-

timates X̂1, . . . , X̂n of a quantify x of interest, where each X̂i is a random variable with average

x and variance vi, for 1≤ i≤ n. We can obtain an estimate of x that has minimum variance by

averaging X̂1, . . . , X̂n while giving each X̂i a weight proportional to 1/vi, for 1≤ i≤ n. That is,

the minimum variance estimator X̂ of x can be obtained as:

X̂ =
∑

n
i=1 X̂i/vi

∑
n
i=1 1/vi

.

The variance of this estimator is

var(X̂) =

(
n

∑
i=1

1
vi

)−1

.

Proof. Given two uncorrelated estimates X̂1, X̂2, with variances v1,v2, consider their linear com-

bination Y = α1X̂1 +α2X̂2, with α1 +α2 = 1. By the Bienaymé formula, the variance of Y is

given by α2
1v1 +(1−α1)

2v2.. If we take the derivative with respect to α1, and set it to 0, we

obtain α1v1 = α2v2, or α1 ∝ 1/v1 and α2 ∝ 1/v2. The general case for n estimates follows

similarly.

This observation immediately suggests how to obtain reputation-based crowdsourcing

algorithms for grades: if we could somehow measure the variance vi of each student i, we could

weigh the input provided by student i in proportion to 1/vi.
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2.5.2 Algorithm structure

We developed an algorithm that proceeds in iterative fashion, using consensus grades

to estimate the grading variance of each user, and using the information on user variance to

compute more precise consensus grades. The structure of the algorithm is inspired by the algo-

rithm of [48] for computing consensus boolean values. To state the algorithm, we denote by U

the set of students, and by S the set of items to be graded (the submissions). We let G = (T,E)

be the graph encoding the review relation, where T = S∪U and S∩U = /0, and where (i, j) ∈ E

iff j reviewed i; for (i, j) ∈ E, we let gi j be the grade assigned by j to i. We denote by ∂t the

1-neighborhood of a node t ∈ T .

The algorithm proceeds by updating estimates v j of the variance of user j ∈U , and

estimates ci of the consensus grade of item i ∈ S, and estimates vi of the variance with which ci

is known. To produce these estimates, the algorithm relies on messages m = (l,x,v) consisting

of a source l ∈ S∪U , of a value x, and of a variance v. We denote by Mi,M j the lists of messages

associated with item i ∈ T or user j ∈U . Given a set M of messages, we indicate by

E(M) =
∑(l,x,v)∈M x/v

∑(l,x,v)∈M 1/v

var(M) =

(
∑

(l,x,v)∈M

1
v

)−1

the best estimator we can obtain from M, and its variance.

The details are given in Algorithm . Lines 2–4 initialize the messages to items using

the grade assigned by the users, and a constant variance (whose precise value is unimportant). If
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Algorithm The Vancouver Algorithm.
Input: A review graph G = ((S ∪U),E) such that |∂t| > 1 for all t ∈ S ∪U , along with

{gi j}(i, j)∈E , and number of iterations K > 0.

Output: Estimates q̂i for i ∈ S.

1: {Initialization}
2: for all i ∈ S do

3: Mi := {( j,gi j,1) | (i, j) ∈ E}.
4: end for

5: for iteration k = 1,2, . . . ,K do

6: {Propagation from items}
7: for all j ∈U do

8: M j := /0

9: end for

10: for all i ∈ S do

11: for all j ∈ ∂i do

12: Let M− j = {( j′,x,v) ∈Mi | j′ 6= j} in M j := M j ∪ (i,E(M− j),var(M− j))

13: end for

14: end for

15: {Propagation from users}
16: for all i ∈ S do

17: Mi := /0

18: end for

19: for all j ∈U do

20: for all i ∈ ∂ j do

21: Let M−i = {(i′,(x−gi′ j)
2,v) | (i′,x,v) ∈M j, i′ 6= i} in Mi := Mi∪ ( j,gi j,E(M− j))

22: end for

23: end for

24: end for

25: {Final Aggregation}
26: for all i ∈ S do

27: q̂i := E(Mi)

28: end for
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we had a-priori information on the variance of some users, it could be used in this initialization

step. Lines 7–14 propagate, from items to the users who graded them, the best estimate available

on the item grades and variances. In line 12, when we compute the estimate that is sent to each

user, we do not use information coming from that same user. Lines 16–23 propagate, from

users to the items they graded, the (immutable) grade the user assigned to the item, and a

newly-recomputed estimate of the user’s grading variance. The estimate of the user variance

is computed by considering the differences between the item grades assigned by the user, and

the estimates received from the items. Again, when computing the user variance that will be

sent to an item, we do not consider the contribution to the variance due to this same item.

Finally, in lines 26–28 we aggregate the information from users into our final estimates of item

grades. We note that we gave above the most concise presentation of the algorithm; a more

efficient implementation can be obtained by optimizing, in the loops at lines 11 and 20, the

constructions of the sets of messages, considering the overlap between the sets. This reduces

the time for each loop from O(nm2) to O(nm), where n is the number of users and items, and m

is the number of reviews for each item.

2.5.3 Performance on synthetic data

We evaluated the performance of vancouver on simulated data; results on real-world

data will be given in Section 4.6. We considered 50 users and 50 items, with each user reviewing

6 items; these numbers are similar to those occurring in our actual assignments. The true quality

qi of each item i we assumed was normal-distributed with standard deviation 1. We assumed

that each user j had a characteristic variance v j, and we let the grade qi j assigned by j to i be
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ρ σ

k = 2 k = 3 k = 2 k = 3
avg 0.82 0.63 0.69 1.21

vancouver 0.99 0.93 0.15 0.38

Table 2.2: Performance of vancouver algorithm on synthetic data.

equal to qi+∆i j, where qi is the true quality of i, and ∆i j has normal distribution with mean 0 and

variance v j. We assumed that the variances {v j} j∈U of the users were distributed according to

a Gamma distribution with scale 0.4, and shape factors k = 2,3. The results are summarized in

Table 2.2. For each shape factor, and each of the two algorithms avgand vancouver, we report

the statistical correlation ρ between true quality qi and consensus quality q̂i for all items i, as

well as the standard deviation σ of the difference qi− q̂i. Each entry in the table is the average

over 100 runs. The vancouver algorithm reduces the error between true and consensus grades

by a factor between 3 and 4, compared with simple average avg. The fact that the gain is larger

for shape factor k = 2 compared with k = 3 indicates that the algorithm performs better when

there are fewer, more imprecise users. Even more significant is the increase in the correlation

ρ. The code used for the table can be obtained from https://github.com/lucadealfaro/

vancouver, and corresponds to the tag “2013-techrep”; the code can be easily adapted to study

the performance of the algorithms under different sets of assumptions on user behavior.

2.5.4 Performance on the Crowdgrader Data

We performed two different types of evaluations of the precision of the vancouver

algorithm in assigning consensus grades to assignments. In one type of evaluation, we compared

crowdsourced consensus grades with control grades given by the instructor or other domain
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experts; in the other type, we measured the grade difference among submissions that we knew

were identical.

2.5.4.1 The dataset

The evaluation dataset consisted in five homework assignments for an Android class

(CMPS 121); five homework assignments for a C++ class (CMPS 109), and one homework

assignment for a Java class (LP2). The number of homework submissions, and reviews, for

these classes are summarized in Table 2.3. As the table indicates, students generally performed

the reviews that they were asked to do, indicating that the system of incentives we have in place

(discussed more in depth in Section 2.6) was effective. Some of the difference between the

number of reviews due, and performed, can be ascribed to the fact that students could decline to

review specific submissions. The table also shows that, in the initial homework assignments of

each class, some submissions received a low number of reviews. This occurred as we had not

yet fine-tuned our algorithms for assigning reviews to students. Once we developed algorithms

that try to predict the probability that each outstanding review will be completed, we were able

to ensure a more uniform review coverage.

2.5.4.2 Evaluation using control grades

For some assignments, we had available control grades given by the instructor, or

other domain experts, for a randomly selected subset of submissions that numbered at least 20.

For the Android assignments, the control grades were assigned by a Teaching Assistant (TA)

who was a fairly accomplished Android developer. For the Java assignment, the control grades
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Assignment |S| RevsDue MinRevs AvgRevs
CMPS 121 hw 1 60 6 2 5.4

hw 2 61 6 2 5.3
hw 3 68 6 0 4.8
hw 4 62 6 6 6.1
hw 5 57 6 5 5.3

CMPS 109 hw 1 102 5 0 4.6
hw 2 97 5 3 4.6
hw 3 91 5 4 5.1
hw 4 97 5 3 4.6
hw 5 90 5 4 5.1

Table 2.3: Number of reviews assigned and performed for the homework assignments that are

part of the dataset. |S| is the number of submissions, RevsDue is the number of reviews that

each student ought to have done, MinRevs is the minimum number of reviews received by a

submission, and AvgRevs is the average number of reviews per submission.

were provided by the instructor. For the C++ assignments, the authors graded 20 or more

randomly selected submissions for each assignment. We compared the control grades with the

consensus grades computed by avg and vancouver according to the following metrics:

• ρ: the coefficient of statistical correlation (also known as Pearson’s correlation) between

the control grades {qi} and the consensus grades {q̂i}.

• KT: the Kendall-Tau distance between the orderings induced by the control and consensus

grades [49]. If ri and ti are the ranks received by submission i in the computed, and

control, rankings respectively, then KT = ∑i(ri− ti).

• norm-2: the norm-2 distance (∑i(qi− q̂i)
2)1/2 between the control grades {qi} and the

consensus grades {q̂i}. Grades were awarded on a scale from 0 to 10 in the assignments.3

3The grading scale can be chosen for each assignment, but all assignments so far have used a 0 to 10 scale.
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• s-score: we first normalize the control grades {qi} and the consensus grades {q̂i}, so that

they both have zero mean and unit variance, obtaining {q′i}, {q̂′i} Then, we compute the

standard deviation s of {q′i− q̂′i}, and we report the s-score 1− s/
√

2.

The results for the various assignments are reported in Table 2.4. We see that the

results are unclear: in CMPS 121 and JP2, vancouver does better; in the two CMPS 109

assignments, it does worse. This may be a consequence of the fact that the primary cause of

evaluation error in CMPS 109 consisted in failures encountered by students in compiling the

C++ submissions of other students, triggered by development environment (operating system,

build chain) differences. These failures are not well modeled by the assumption that each user

has an intrinsic review accuracy: the fact that compilation problems occurred in one review

may have little bearing on the accuracy of other reviews by the same user. The low correlation

between consensus grades and control grades for CMPS 121 is due to the fact that the control

grades have a very coarse granularity (few values in the grading scale were used). We also

note that this evaluation is inherently approximate, since the control grade is affected by the

same type of imprecision that affects the student-provided grades. While instructor and TAs

are (usually) more knowledgeable than students in the subject matter, they also make mistakes

when grading homeworks, failing to spot problems, or not giving credit to great aspects of the

work that go undetected.

2.5.4.3 Evaluation using pairs of identical submissions

For some of the CMPS 109 C++ homework assignments, students were able to work

in groups. Since at the time CrowdGrader did not support group submissions (the feature has
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Homework Algorithm ρ KT norm-2 s-score
CMPS 109 hw 2 avg 0.75 0.37 1.40 0.50

vancouver 0.69 0.39 1.59 0.45
CMPS 109 hw 3 avg 0.84 0.39 1.49 0.60

vancouver 0.80 0.42 1.75 0.55
CMPS 121 hw 3 avg 0.39 0.53 1.63 0.22

vancouver 0.49 0.53 1.33 0.29
LP2 avg 0.85 0.20 1.75 0.61

vancouver 0.87 0.18 1.79 0.64

Table 2.4: Performance of avg and vancouver, with respect to control grades.

Assignment D, vancouver D, avg N. pairs
CMPS 109 hw 2 1.97 3.24 6
CMPS 109 hw 3 1.29 1.39 12
CMPS 109 hw 4 0.98 1.07 20
CMPS 109 hw 5 1.38 1.19 20

Table 2.5: Average square difference between grades received by identical assignments, using

crowdsourcing algorithms vancouver and avg.

since been added), the students were asked to each submit a solution. The student submissions

would be graded independently, and the TA, who had a list of groups and their members, would

then average the grades received by the students in the same group, and assign to each group

member this average. This meant that we had available several pairs of identical submissions,

coming from members of the same group. This made it possible to judge the quality of a

crowdsourcing algorithm according to how close were the grades received by pairs of such

identical submissions. In Table 2.5, we report on the average D of (q̂i− q̂l)
2, computed over

all pairs (i, l) of identical submissions, for the algorithms vancouver and avg. We see that

according to this measure, even for CMPS 109 vancouver has generally better performance

than avg, even though the difference is not large.
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2.5.4.4 Discussion

The results presented in this section show that, for our assignments, the vancouver

algorithm provides a smaller advantage, compared to avg, than it would be expected from

Table 2.2. We believe that the lower performance is due to the fact that the user error model

used in developing algorithm vancouver, in which each user i has a variance vi, is only an

approximation for the real behavior of students reviewing submissions. The largest single cause

of review errors were:

• Unclear problem statements, that caused different students to have different interpreta-

tions of what constituted a good homework solution.

• Variability in the student’s code development environment that occasionally prevented

students from compiling and evaluating submissions.

The clarity and precision of homework assignments is likely the major factor in the precision

of any tool, or any TA, in evaluating submitted solutions. We believe that the higher correlation

and quality of the results for the Java assignment are due to the uniformity of the environment

enforced for that submission.

We also experimented with a number of variations of algorithm vancouver, some

based on using notions of median or weighed median for selecting grades. In particular, we ex-

perimented with a method we nicknamed “maverage”, in which we aggregated student-assigned

grades for each item by first discarding the highest and lowest grades, then doing a weighted

average using the reciprocal of variance as weights. This process was inspired by the way used

to average the grades given by Olympic judges in competitions. We also tried to learn the posi-
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tive or negative bias of each student compared to the others, and subtract the bias before using

the student’s grades. None of these variants was clearly superior to vancouver. We believe

that larger datasets are needed for us to be able to formulate and validate algorithms superior to

vancouver.

2.6 Review Incentive and Final Grade Assignment

2.6.1 Review Incentive

To provide an incentive for students to complete a certain number of reviews per

assignment, we made the review effort a component of the overall grade that was assigned to

students. For each homework assignment, the instructor could choose the number N of reviews

each student had to perform, and the fraction 0 < pr < 1 of the grade that was due to reviews.

Each student j then received for the assignment a crowd-grade equal to

(1− pr)q̂ j + pr
min(m j,N)

N
r̂ j ,

where m j is the number of reviews actually performed by student j, and where r̂ j is the estimated

review quality of j, which we discuss below. The choice of N and pr was dictated chiefly

by practical considerations. In our coding assignments, evaluating a homework submission

entailed a lengthy process of unpacking a submission in its own directory, loading it with a tool,

reading the various source code files, compiling it, and testing it sometimes with the help of test

data. The whole process would take between 5 and 10 minutes for each homework; we chose
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N = 5 or N = 6, as the results appeared to be sufficiently accurate. We also wanted to ensure

that each student was able to learn by reading good-quality submissions by others, and a value

of N = 5 was sufficient in practice to ensure this (students could always do additional reviews

if they wished to see even more solutions). For pr, a common choice was 0.25, so that 25% of

the crowd-grade was due to the reviews. This value roughly reflected the proportion between

the time required to review the submissions, and the time required to complete and submit one’s

own submission.

The decision of how to measure r̂ j for a student j turned out to be more difficult.

Initially, we defined it as follows. Let {gi j}i∈S, j∈U be the set of all grades that were assigned,

and let {q̂i}i∈U be the set of all consensus grades, as before. Then,

ṽ = E({(gi j− q̂l)
2} j∈U ;i,l∈S)

is the average square error with respect to the consensus grades of a hypothetical “fully ran-

dom” user, who assigns to each submission a grade picked at random from the complete set

of assigned grades. The actual average square error ṽ j of a student j ∈U with respect to the

consensus grades is instead:

ṽ j = E({(gi j− q̂i)}i∈S) .

Therefore, we experimented with assigning to each student a review grade that measured how

much better the student was than such a fully random grader, using:

r̂ j = 1−
√

min(ṽ j, ṽ)
ṽ

.
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This choice appealed to us from a theoretical point of view, especially as it is scale-invariant,

so that it would not matter whether students were using the full grading scale (in our case,

[0,10]) or a subset of it (for instance, assigning grades only in the interval [4,8]). However, the

choice did not work to our satisfaction in practice. In each assignment, some perfectly honest

and motivated students received very low review grades, including 0: strange as it might seem,

some students really did worse than a random grader, in spite of their best intentions. Those

students were not pleased to see the time they put into reviewing homework submissions go

completely unrewarded. The problem was especially acute in the initial homework assignments

of each class, where a large fraction of homework submissions received the maximum grade,

thereby lowering ṽ, and making it harder to improve on the random grader.

As student satisfaction is one of our goals, we needed a different approach. We do

not yet have a perfect solution: a metric that is scale invariant and rewards true accuracy as

compared to random input, and yet, that students find fair and gratifying. The metric currently

used by CrowdGrader is a fairly generous one. We let vG = G2/3.125 be a reference level

for the average square error, where G is the maximum of the grading scale used (we omit the

justification, as it is fairly ad-hoc), and we use:

r̂ j = 1−
√

min ṽ j,vG

vG
.

This is not scale-invariant, so that students would get a higher review grade simply by agreeing

to use only a small portion of the overall grade range available to them. We are still seeking a

scale-invariant solution that students find equitable.
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2.6.2 Final grade assignment

CrowdGrader produces crowd-grades that depend both on the submission and on the

review grades, as described above. The instructor can then either accept these grades as final, or

provide final grades for a few of the students; the final grades for the remainder of the students

are then derived by interpolation, according to their crowd-grades. This gives the ability to

the instructor to re-shape the grade curve of the class. In the Android class (CMPS 121), the

instructor relied on this function to manually choose the dividing lines between A/B, B/C, and

C/F grades. The instructor examined several assignments chosen from the class rank order,

read the reviews, and assign grades (5.3 for A+, 4.5 for the A/B dividing line, etc.) to selected

assignments; CrowdGrader then computed the remaining final grades by linear interpolation, in

proportion to the crowd-grades. In CMPS 109, the instructors often used the crowd-grades as

final grades.

2.7 Error Factors in Peer Grading

Successful peer grading is predicated on the ability to reconstruct a reasonably ac-

curate consensus grade from the grades assigned by the students. This leads to the following

question: what factors cause or influence the errors in peer-assigned grades? We are interested

in this question for three reasons. First, we wish to obtain a better understanding of the dy-

namics and human factors in peer grading. Second, a better understanding of the causes of

error has the potential to lead to tool improvements that reduce the errors. For example, if

mis-understanding on the work submitted constituted a large source of error, then peer grading
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tools could be augmented with means for work authors and graders to communicate, so that the

misunderstandings could be resolved. Third, a better model of peer grading errors might lead

to better algorithms for aggregating the student-assigned grades into the consensus grades for

each item.

Our interest in the origin of peer-grading errors is also due to our work on the peer-

grading tool CrowdGrader.We have put considerable effort in reducing the error in the consen-

sus grade computed by CrowdGrader, as compared to control instructor-assigned grades. While

efforts on the tool UI and UX paid off, as we will detail later, the efforts to create more precise

grade-aggregation algorithms did not. In the context of MOOCs, [64] reports a 30% decrease

in error using parameter-estimation algorithms that infer, and correct for, the imprecision and

biases of individual users. CrowdGrader is used mostly in universities and high-schools. On

CrowdGrader data, the parameter-estimation algorithm of [64] offers no benefit compared with

the simple “Olympic average” obtained by removing lowest and highest grades, and averaging

the rest. Indeed, we have spent a large amount of time experimenting with variations upon the

algorithm and new ideas, but we are yet to find an algorithm that offers consistent error reduc-

tion of more than 10% compared to the Olympic average. Thus our interest on the origin of

errors in CrowdGrader: what are the main causes? What makes them so difficult to remove

using algorithms based on parameter estimation, reputation systems, and more?

To gain an understanding of the dynamics of peer grading, we have analyzed a set

of CrowdGrader data consisting in 288 assignments, 25,633 submissions, and 113,169 grades

and reviews. Of the 25,633 submissions, 2,564 were graded by the instructors in addition to the

students. The questions we ask include the following.
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Is error mostly due to items or to students? We first ask the question of whether the

imprecision in peer grades can be best explained in terms of students being imprecise, or items

being difficult to grade. We answer this question in two different ways.

First, we build a parameterized probabilistic model of the review process, similar to

the model of [64], in which every review error is the sum of a component due to the submission

being reviewed, and of a component due to the reviewer. The parameters of the model are then

estimated via Gibbs sampling [35]. The results indicate that students contribute roughly two

thirds of the total evaluation error.

This result, however, speaks to the average source of error. Of particular concern in

peer grading are the very large errors that happen less frequently, but have more impact on the

perceived fairness and effectiveness of peer grading. We measure the correlation of large errors

in items, and in users; our results indicate that hard-to-grade items are a more common cause of

large errors than very imprecise students.

Do better students make better graders? A natural question is whether better students

make better graders. In Section 2.7.4 we give an affirmative answer: students whose submis-

sions are in the lower 30%-percentile quality-wise have a grading error that is about 15% above

average. The effect is fairly weak, a likely testament to the fundamental homogeneity in abili-

ties in a high-school or college class, as well as to the fact that grading a homework is usually

easier than solving the homework.

Does the timing of reviews affect their precision? In Section 2.7.5 we consider the

relation of review timing and review precision. We did not detect strong dependencies between

grading error and the time taken to complete a review, the order in which the student completed

37



the reviews, or how late the reviews were completed with respect to the review deadline.

Does error vary with class topic? In Section 2.7.2 we consider the question of whether

grading precision varies from topic to topic. Comparing broad topic areas, such as computer

science, essays, science, we find the statistics to be quite similar, indicating how general factors

are less important than the specifics of each class.

Does tit-for-tat affect review feedback? CrowdGrader allows students to leave feed-

back on the reviews and grades they receive; this feedback is then used as one of the factor that

determines the student’s grade in the assignment. The feedback was introduced to provide an

incentive for writing helpful reviews. In Section 2.7.6 we show that when a grade is over 20%

below the consensus, it receives a low feedback score due to tit-for-tat about 38% of the time.

In the next section we give describe the datasets on which our analysis is based. The

subsequent sections present the details of the answers to the above questions. We conclude with

a discussion on the nature of errors in peer grading, and on the implications for algorithms and

reputation systems for computing consensus grades.

2.7.1 The CrowdGrader dataset

The overall dataset we examined consisted in 288 assignments, for a total of 25,633

submissions and 113,169 reviews, written by 23,762 distinct reviewers. The number of review-

ers is smaller than the number of submissions, as some students did not participate in the review

phase. Table 2.6 gives a break-down of the dataset according to subject area. On average, each

submission received 4.41 reviews, and each reviewer wrote on average 4.76 reviews.

We will refer to submissions also as items, and we will refer to students or reviewers
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Assign- Submis- Reviewers Reviews Graded Graded
ments sions Assign- Submis-

ments sions
Computer Science 188 19397 17829 86347 68 2402

Physics 7 274 270 907 6 33
Epidemiology 5 337 313 1551 0 0

Sociology 49 3822 3683 18339 3 16
Business 26 1217 1108 3915 15 106
English 9 397 383 1717 1 7

High-school 7 279 278 1097 5 20
Other 4 189 176 393 0 0

All Combined 288 25633 23762 113169 93 2564

Table 2.6: The CrowdGrader dataset used in this study. Graded assignments are the assignments

where an instructor or teaching assistant graded at least a subset of the submissions. Graded

submissions is the number of submissions that were graded by instructors or teaching assistants,

in addition to peer grading.

also as users, thus adopting common terminology for general peer-review systems.

CrowdGrader includes three features that promote grading accuracy; these features

likely influenced the data presented in this study.

Incentives for accuracy. The overall grade a student receives in a CrowdGrader as-

signment is a weighed average of the student’s submission, accuracy, and helpfulness grades.

The accuracy grade reflects the precision of the student’s grade, compared either to the other

grades for the same submission or, when available, to the instructor-assigned grade. The help-

fulness grade grade reflects the rating received by the reviews written by the student. Combining

the submission grade with the accuracy grade creates an incentive for students to be precise in

their grading. The amount of incentive can be chosen by the instructor, but the default is to give

75% weight to the submission grade, 15% weight to the accuracy grade, and 10% weight to the

helpfulness grade, and most instructors do not change this default.
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Ability to decline reviews. Early in the development of CrowdGrader, we noticed that

some of the most glaring grading errors occurred when reviewers were forced to enter a grade

for submissions that they could not properly evaluate. This occurred, for instance, when students

could not open the files uploaded as part of the submission, due to software incompatibilities. To

mitigate this problem, we gave students the ability to decline to perform reviews of particular

submissions. The total number of submissions a student can decline is bounded, to prevent

students from “shopping around” for the easiest submissions to review.

Submission discussion forums. Another early source of large errors in CrowdGrader

consisted in gross mis-understandings between the author of a submission, and the reviewers.

For instance, when zip archives are submitted, the reviewers may expect some information to be

contained in one of the component files, whereas the author might have included it in another.

Another example consists in mis-organizing the content of a software submission, so that the

reviewers do not know how to run it and evaluate it. To remedy this, CrowdGrader introduced

anonymous forums associated with each submission, where submission authors and reviewers

can discuss any issues they encounter in evaluating the work.

2.7.2 Errors in Peer Grading

Instructor grades and Olympic averages. We measure review error as the difference

between individual student grades, and the “consensus grade” for each submission. We con-

sider two kinds of consensus grades. One is the Olympic average of the grades provided by

the students: this is obtained by discarding the lowest and highest grade for each submission,

and taking the average of the remaining grades. The other is the instructor grade. In Crowd-

40



Grader, instructors (or teaching assistants) have the option of re-grading submissions. In some

assignments, instructors decided to grade most submissions as control; in other assignments,

instructors mostly re-graded only submissions where student grades were in too much disagree-

ment. When considering instructor grades, we consider only assignments of the first type, where

instructors graded at least 30% of all submissions. Considering assignments where instructors

grade only problematic submissions would considerably skew the statistics. The dataset, for

instructor grades, is thus reduced to 19 assignments and 7675 reviews. Instructor and Olympic

average grades have a coefficient of correlation ρ = 0.81 (with p < 10−200), and an average

absolute difference of 6.11 on the [0, 100] grading range.

Global and per-topic errors. Table 2.7 reports the size of errors in CrowdGrader peer

grading assignments, split by assignment topic, and taking instructor grades and Olympic grades

as reference. When the error is measured with respect to instructor grades, computer science,

physics, and high-school assignments showed smaller average error than business, sociology

and English, all of whose assignments required essay-writing. When the error is measured with

respect to Olympic average, is is mainly business and English that show larger error.

2.7.3 Item vs. Student Error

We consider in this section the question of whether error can be attributed predomi-

nantly to imprecise students, or to items that are difficult to grade.
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Average Error N. of Assignments
Computer Science 7.52 15

Physics 10.6 1
Business 16.5 2

English 17.2 1
High School 10.6 1

All 7.67 19

(a) Error with respect to instructor grades, based on assignments with at least 30% of items graded by

the instructor.

Average Error N. of Assignments
Computer Science 6.34 188

Physics 4.65 7
Epidemiology 4.57 5

Sociology 4.93 49
Business 7.7 26

English 8.37 9
High School 5.09 7

Other 8.15 4
All 6.16 288

(b) Error with respect to Olympic average.

Table 2.7: Mean absolute value difference error by topic. The grading range is normalized to

[0, 100].

2.7.3.1 Average error behavior

To compare the contribution of students and items to grading errors, we develop a

probabilistic model in which both students and items contribute to the evaluation error. The

model is a modification of the PG1 model in [64], which allowed for student (but not item)

error. In our model, each student has a reliability and each item has a simplicity; the variances of

student and item errors are inversely proportional to their respective reliabilities and simplicities.
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Precisely:

(Reliability) τu ∼G(α0,β0) for every student u,

(Simplicity) si ∼G(α1,β1) for every item i,

(True Grade) qi ∼N (µ0,1/γ0) for every item i,

(Observed Grade) giu ∼N (qi,1/τu +1/si)

for every observed peer grade giu

where G(α,β) denotes the Gamma distribution with parameters α, β, and N (q,v) denotes the

normal distribution with average q and variance v.

Given an assignment, we use Gibbs sampling [35] to infer the parameters α0,β0,α1,β1,µ0,γ0.

In order to apply Gibbs sampling, we need to start from suitable prior values for the quantities

being estimated. To obtain suitable priors for the distribution of item quality, we first compute

an estimated grade for each item using Olympic average, and we obtain µ0 and γ0 by fitting

a normal distribution to the estimated grades. To estimate prior parameters α0,β0 of student

reliabilities we fit a Gamma distribution to a set of approximated students reliabilities. In detail,

for every student u we populate a list of errors lu by the student. Again, we computer errors

with respect to the average item grades after removing the extremes (the Olympic average).

Using the list of error lu, we estimate a standard deviation σu for every student u ∈ U . This

allows us to approximate student reliability τ̂u as 1
σ2

u
. Prior parameters α0,β0 are obtained by

fitting a Gamma distribution to the set of estimated student reliabilities {τ̂u|u ∈U}. To estimate

prior parameters α1,β1 for item simplicities we use the same approach as for α0,β0; the only
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difference is that item simplicities ŝi are estimated using error lists li computed for every item i,

rather than for every student u.

students items
Average Standard Deviation 14.2 6.4

Table 2.8: The average standard deviation of students and items errors computed over 288

assignment with 25633 items. The grading range is [0, 100].

Table 2.8 reports the average standard deviation of students and items inferred from

the model. As we can see, students are responsible for over two thirds of the overall reviewing

error.

2.7.3.2 Large error behavior

While students intuitively understand that small random errors will be averaged out,

they are very concerned by large errors that, they fear, will skew their overall grade. Thus, we

are interested in determining whether such large errors are more often due to students who are

grossly imprecise, or items that are very hard to grade. In other words: do large errors cluster

more around imprecise students, or around hard-to-grade items? We can answer this question

because in CrowdGrader, items are assigned to students in a completely random way. Thus, any

correlation between errors on items or students indicates causality.

We answer this question in two ways. First, we measured the information-theoretic

coefficient of constraint. To compute it, let X and Y be two random variables, obtained by

sampling uniformly at random two reviews x and y corresponding to the same item, or to the

same student, and letting X (resp. Y ) be 1 if x (resp. y) is incorrect by more than a pre-defined
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threshold (such as, 20% of the grading range for the assignment). Then, the mutual information

I(Y,X) indicates the amount of information shared by X and Y , and the coefficient of constraint

I(X ,Y )/H(X), where H(X) is the entropy of X , is an information-theoretic measure of the

correlation between X and Y .

Tables 2.9 gives I(X ,Y )/H(X) for student and item errors, for different values of

the error choice, and taking as reference truth for each item either the instructor grade, or the

Olympic average for the item. When taking instructor grades as reference (Table 2.9a), large

errors are about 5 times more correlated on items than on students, as measured by the coeffi-

cient of constraint. When Olympic grades are take as reference (Table 2.9b), large errors are

about as correlated on items as they are on students. The difference in behavior is due to the

fact that, when an instructor disagrees with the student-given grades on an item, this generates

highly correlated errors on that item with respect to the instructor grade, but not with respect

to the Olympic average. In any case, the results show that there is no particular correlation on

students.

Another way to measure whether large errors tend to cluster around hard-to-evaluate

items or around imprecise students consists in measuring the conditional probability ρn =P(ξ≥

n|ξ≥ n−1) of an item (resp. student) having ξ≥ n grossly erroneous reviews, given than it has

at least n− 1. If errors on an item (resp. reviewer) are uncorrelated, we would expect that

ρ1 = ρ2 = ρ3 = · · · . If these conditional probabilities grow with n, so that ρ3 > ρ2 > ρ1, this

indicates that the more errors an item (resp. a student) has participated in, the more likely it is

that there are additional errors. The values of ρ1,ρ2,ρ3, . . . allow thus one to form an intuitive

appreciation for how clustered around items or students the errors are.
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Error Threshold
10% 15% 20% 25% 30%

Students 0.015 0.026 0.017 0.019 0.017
Items 0.075 0.082 0.082 0.1 0. 097

(a) Item errors computed with respect to instructor’s grades. We use only assignments that have at least

30% of items grade by the instructor.

Error Threshold
10% 15% 20% 25% 30%

Students 0.018 0.018 0.019 0.020 0.021
Items 0.045 0.030 0.020 0.021 0.020

(b) Item errors computed with respect to Olympic average.

Table 2.9: Coefficient of constraint I(X ,Y )/H(X) of large errors on the same item or by the

same student, for different error thresholds.

The results are given in Figure 2.1. The data shows some clustering around users, for

large errors of over 30% of the grading range. However, clustering around users seems weaker

than clustering around items.

This provides a possible explanation for why reputation systems have not proved

effective in dealing with errors in peer-graded assignments with CrowdGrader. Reputation sys-

tems are effective in characterizing the precision of each student, and taking it into account

when computing each item’s grade. Our results indicate however that errors in CrowdGrader

are not strongly correlated with students, limiting the potential of reputation systems.

2.7.4 Student ability vs. accuracy

A natural question is whether better students make better graders. To answer this

question, we can approximate the expertise of every student with the grade received by the

student’s own submission, and we can then study the correlation between the student’s submis-

46



1 2 3

n - number of errors

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

P
ro

ba
bi

lit
y

(a) Errors computed with respect to the instruc-

tor’s grades. We use only assignments that have

at least 30% of items grade by the instructor.
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(b) Errors computed with respect to Olympic av-

erage.

Items, Error Threshold = 15
Items, Error Threshold = 20
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Users, Error Threshold = 15
Users, Error Threshold = 20
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Figure 2.1: Conditional probabilities ρn = P(ξ ≥ n|ξ ≥ n− 1) of least n errors given at least

n−1 errors. We considered error thresholds of 15%, 20%, 25%, 30%.

sion grade, and the review error. As we have only partial coverage of students with instructor

grades, we compute the grade received by the student’s own submission via Olympic average,

rather than instructor grade. As the two generally are close, this increases coverage with mini-

mal influence on the results. We study grading error with respect to both instructor grades and

Olympic average.
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2.7.4.1 Aggregating data from multiple assignments

When aggregating data from multiple assignments, we cannot directly compare abso-

lute values of grades, or absolute amount of time spent reviewing: each assignment has its own

grade distribution, review time distribution, and so forth. To account for variation across assign-

ments, we use the following approach. For each student there is an independent variable x, and

an error e. In this section, x is the grade received by the student’s own submission, measured via

Olympic average; in the next section, x will be related to the time spent during the review, or the

time at which the review is turned in. The error e is the difference, for each review, between the

grade assigned as part of the review, and the grade of the reviewed submission, obtained either

via Olympic average or via instructor grading.

First, for each assignment independently, we sort all students according to their x-

value, and we assign them to one of 10 percentile bins: if the assignment comprises m students

and the student ranks k-th, the student will be in the d10k/me bin; we call these bins the 10%,

20%, . . . , 100% bins. For each assignment a, we normalize the grading range to [0,100],

and we let na,q and ea,q be the number of students and the average error in the q percentile

bin of assignment a, respectively. The average error for assignment a overall is thus ea =

∑q na,qea,q/∑q na,q. There are two ways of measuring the average error ea,q for one bin: as

average absolute value error, or as average root-mean-square error. The two approaches lead

to qualitatively similar conclusions, as we show later in this section. We present here only the

results for average absolute value, as they are somewhat less sensitive to rare large errors, and

thus, more stable.
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We aggregate data from multiple assignments, computing for each percentile bin an

absolute and a relative error, as follows. The absolute error eq for each percentile q is computed

as

eq = ∑a na,qea,q

/
∑a na,q. (2.1)

The relative error rq for each percentile q is computed as

rq = ∑a na,q

(
ea,q/ea

)/
∑a na,q, (2.2)

where ea,q/ea is the relative error of bin q in assignment a.

2.7.4.2 Student ability vs. error

The data reported in Figure 2.2b shows the existence of some correlation between

student submission grade, and grading precision, measured with respect to the Olympic average.

In relative terms, students in the 80–100% percentile brackets show error that is 10% to 20%

greater than students with higher submission grade. The absolute error tells a similar story.

The two graphs do not have the same shape, due to the fact that relative errors are computed in

(2.2) in a per-assignment fashion. In Figure 2.2a we report the same data, computed using rms

error rather than average absolute value error. The data is qualitatively similar. In the remaining

graphs we consider only average absolute error.

In Figure 2.3 we compare the error with respect to Olympic average with the error

compared to instructor grades, for the subset of classes where at least 30% of submissions have

been instructor-graded. While the absolute values are different, we see that the curves are very
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(b) Root mean square error.

Figure 2.2: Average grading errors arranged into authors’ submissions quality percentiles.

Grading errors and submission qualities are measured with respect to the Olympic average

grades. The first percentile bin 10% corresponds to reviewers that have authored submissions

with highest grades. Error bars correspond to one standard deviation.

closely related, indicating that Olympic averages are a good proxy for instructor grades when

studying relative changes in precision. The error with respect to instructor grades has very wide

error bars for the 90% percentile, mainly due to the low number of data points we have for that
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Figure 2.3: Average grading error arranged into authors’ submission quality percentiles. The

first percentile bin 10% corresponds to reviewers that have authored submissions with highest

grades. We report the error both with respect to instructor grades, and to the Olympic aver-

age, considering only assignments for which at least 30% of submissions have been graded by

instructors. Error bars correspond to one standard deviation.

percentile bracket in our dataset. We favor the comparison with the Olympic average, since the

abundance of data makes the statistics more reliable.

The correlation between student ability (as measured by the submission score) and

grading precision is lower than we expected. This might be a testament to the clarity of the

rubrics and grading instructions provided by the instructors: apparently, such instructions ensure

that most students are able to grade with reasonable precision the work by others. This may

also be a consequence of the fundamental skill and background homogeneity of students in a

classroom, as compared to a MOOC. We note that [8] also reported low correlation between

student grades and student precision in the related setting of peer instruction.
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2.7.5 Review timing vs. accuracy

We next studied the effect of the time taken to perform the reviews, and the order in

which they were performed, on review accuracy. These measurements are made possible by the

fact that CrowdGrader assigns reviews one at a time: a student is assigned the next submission

to review only once the previous review is completed. This dynamic assignment ensures that all

submissions receive a sufficient number of reviews. If each student were pre-assigned a certain

set of submissions to review, as is customary in conference paper reviewing, then students

who omitted or forgot to perform reviews could cause some submissions to receive insufficient

reviews. CrowdGrader records the time at which each submission is assigned for review to a

student, and the time when the review is completed. For these results, to conserve space, we

provide the error only with respect to the Olympic average, for which we have more data. A

comparison of error with respect to Olympic average and instructor grades confirms that the

Olympic average is a good proxy for studying variation with respect to instructor grade.

Time to complete a review. We first considered the correlation between the time spent

by students performing each review, and the accuracy of the review; the results are reported in

Figure 2.4. The results indicate that reviews that are performed moderately quickly tend to be

slightly more precise. The correlation is weaker than we expected. We expected to find error

peaks due to students that spent very little time reviewing, and that entered a quick guess for

the submission grade, rather than performing a proper review. There are no such peaks: either

students are very good at quickly estimating submission quality, or they mostly take reviewing

and seriously in CrowdGrader. We believe the latter hypothesis is likely the correct one: for
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instance, in many computer science assignments, there is no good way of “eye-balling” the

quality of a submission without compiling and running it.
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Figure 2.4: Absolute and relative grading error vs. the time employed to perform a review; the

first percentile bin 10% corresponds to reviews with shortest review time. The grading range is

normalized to [0,100], and the error is measured with respect to the Olympic average. The error

bars indicate one standard deviation.

Time at which a review is completed. Next, we studied the correlation between the

absolute time when reviews are performed, and the precision of the reviews. Figure 2.5 shows

the existence of a modest correlation: the reviews that are completed in the first 10% percentile

tend to be 10% more accurate than later reviews. The effect is rather small, however. In a

typical CrowdGrader assignment, students are given ample time to complete their reviews, and

the reviews themselves take only one hour or so to complete. Students likely do not feel they

are under strong time pressure to complete the reviews, and time to deadline has little effect on

accuracy.

Order in which reviews are completed. Lastly, we study whether the order in which a

student performs the reviews affects the accuracy of the reviews. We are interested in the ques-

53



5

6

7

8

A
bs

ol
ut

e
E

rr
or

0 20 40 60 80 100
−20

−10

0

10

20

E
rr

or
%

Figure 2.5: Absolute and relative grading error vs. absolute time when a review is completed.

The first percentile bin 10% corresponds to the 10% of reviews that were completed first among

all assignment reviews. The grading range is normalized to [0,100], and the error is measured

with respect to the Olympic average. The error bars indicate one standard deviation.

5.6

5.8

6.0

6.2

6.4

A
bs

ol
ut

e
E

rr
or

1 2 3 4 5
−4
−3
−2
−1

0
1
2
3

E
rr

or
%

Figure 2.6: Absolute and relative grading error vs. ordinal number of a review by a student.

The review 1 is the first a student performs, 2 is the second, and so forth. The grading range

is normalized to [0,100], and the error is measured with respect to the Olympic average. Error

bars indicate one standard deviation.
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tion of whether students learn while doing reviews, and become more precise, or whether they

grow tired and impatient as they perform the reviews, and their accuracy decreases. Figure 2.6

shows that the accuracy of students does not vary significantly as the students progress in their

review work. Evidently, the typical review load is sufficiently light that students do not suffer

from decreased attention while completing the reviews.

2.7.6 Tit-for-tat in review feedback

In CrowdGrader, students can leave feedback to each review and grade they receive.

The feedback is expressed via 1-to-5 star rating systems as follows:

• 1 star: factually wrong; bogus.

• 2 stars: unhelpful.

• 3 stars: neutral.

• 4 stars: somewhat helpful.

• 5 stars: very helpful.

Many such ratings are given as tit-for-tat: when a student receives a low grade, the student

responds by assigning a low feedback score (typically, 1 star) to the corresponding review. In-

deed, CrowdGrader includes a technique for identifying such tit-for-tat, so that students, whose

overall grade depends also on the helpfulness of their reviews, are not unduly penalized. We

were interested in analyzing the question of how prevalent tit-for-tat is.

Overall, review grade and review feedback have a correlation of 0.39, with a p-value

smaller than 10−300. The correlation between grade and feedback indicates tit-for-tat, as there
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is no reason why lower grades should per-se be associated with written reviews that are less

helpful. Interestingly, the correlation is fairly independent from the subject area. To bring the

tit-for-tat into sharper evidence, we computed also the following statistics. We consider a grade

a p (resp. n) outlier if the grade is over 20% above (resp. below) the Olympic average. We then

measured the conditional probabilities Pp, Pn that p and n outliers would receive a one or two-

star rating, conditioned over the probability that the reviews received a rating at all (students

do not always rate the reviews they receive). Over all assignments, we measured Pp = 0.06

and Pn = 0.44. Since there is no a-priori reason why overly negative reviews may be of worse

quality than overly positive ones, the excess probability Pn−Pp = 0.38 can be explained by

tit-for-tat. This shows that tit-for-tat is rather common: for grades that are 20% or more below

the consensus, there is a 38% probability of low feedback due to tit for tat. Fortunately, it is

easy to discard low ratings given in response to below-average grades, as CrowdGrader does.

2.8 Conclusions

We conclude with some informal impressions on the performance of CrowdGrader in

a class setting.

We investigated many cases where the control and consensus grades differed by some

non-trivial amount. In some cases, this was due to superficial reviews by students using Crowd-

Grader. However, in other cases the problem was with the control grade, as the instructor or TA

had missed problems with the submission that were instead detected by some students review-

ing it. Overall, for coding assignments, our impression was that the consensus grades computed
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by CrowdGrader were at least of the same quality as those provided by a TA. A TA is more

consistent in evaluating submissions, paying attention to the same aspects of each submission.

On the other hand, the greater number of reviews used in CrowdGrader led to a more com-

prehensive assessment, in which flaws or positive aspects were more likely to be pointed out.

From the perspective of the individual student, we felt the two grading options were of similar

quality: with TAs, the risk is that they do not pay attention in their grading to the aspects where

most effort is put (or where the flaws are); with crowdsourced grades, the risk is in the inherent

variability of the process.

Where the crowdsourced evaluations proved clearly superior was in the feedback pro-

vided to the students. When instructors or TAs are faced with grading a large number of as-

signments, the feedback they provide on each individual assignment is usually limited. With

CrowdGrader, students had access to multiple reviews of their homework submissions.

In coding assignments, there is usually more than one way to solve each problem,

and students commented on the benefit of being able to see, and learn from, other students’

solutions. Students who could not complete the assignment particularly benefited from being

able to examine several different working solutions to the homework problems.

In informal comments we received, the two aspects of CrowdGrader students appre-

ciated the most was the quality of the feedback received, and the ability to learn from other

students’ solutions. The one aspect they enjoyed the least, of course, was the time it took for

them to do the reviews.

While CrowdGrader may not be suitable for all types of homework assignments, the

tool performed to our satisfaction for coding assignments, and we believe that the tool is well-
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suited to any homework assignment where students can, by comparing solutions among them

and with their own, come to an assessment of their peers’ work.

We also presented an analysis of a large body of peer-grading data, gathered on as-

signments that used CrowdGrader across a wide set of subjects, from engineering to business

and humanities. Our main interest consisted in identifying the factors that influence grading

errors, so that we could devise methods to control or compensate for such factors. Out results

can be thus summarized:

• Large errors are no more strongly correlated on students than they are on items. In other

words, students who are imprecise on many submissions are not a dominant source of

error.

• There is some correlation between the quality of a student’s own submission (which is

an indication of the student’s accomplishment), and the grading accuracy of the student,

but the correlation is weak and limited to the student with highest, and lowest submission

grades.

• There is little correlation between the accuracy of a review, and the time it took to perform

the review, or how late in the review period the review was performed.

• There is clear evidence of tit-for-tat behavior when students give feedback on the reviews

they receive.

All of the correlations we measured, except for the tit-for-tat one, are rather weak. This is

a reassuring confirmation that peer-grading works as intended.There are no large sources of
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uncontrolled error due to factors such as student fatigue in doing the reviews, or gross inability

of weaker students to perform the reviews. The peer-grading tool, in our classroom settings,

ensures that the remaining errors are fairly randomly distributed, with little remaining structure.

The results highlight the difficulties in using reputation systems to compute submis-

sion grades in peer-grading assignments in high-school and university settings. Reputation sys-

tems characterize the behavior of each student, in terms for instance of their grading accuracy

and bias, and compensate for each student’s behavior when aggregating the individual review

grades into a consensus grade. However, our results indicate that the large errors that most af-

fect the fairness perception of peer grading are most closely associated with items, rather than

with students. Reputation systems are powerless with respect to errors caused by hard-to-grade

items: even if they can correctly pinpoint which submissions are hard to grade, little can be

done except flagging them for instructor grading. Indeed, the reputation system approach of

[64], which yielded error reductions of about 30% for MOOCs, yielded virtually no benefit in

our classroom settings.

There is more potential, instead, in approaches that make it easier to grade difficult

submissions. In CrowdGrader, we introduced anonymous forums, associated with each submis-

sion, where submissions authors and reviewers can discuss any issues that arise while reviewing

the submission. These forums are routinely used, for instance, to solve the glitches that often

arise when trying to compile or run code written by someone else. Anectodally, these forums

have markedly increased the satisfaction with the peer-grading tool, as students feel that they

have a safety net if they make small mistakes in formatting or submitting their work, and are in

the loop should any issues occur.
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Chapter 3

Incentives Schemes for Truthful Evaluations

3.1 Problem Setting and Contributions

Crowdsourcing allows access to large populations of human workers, and it can be

an efficient and cheap solution for many applications. The very farming out of work to many

independent workers, however, creates the problem of quality control. In the absence of effec-

tive supervision or quality-control mechanisms, the workers may submit low quality work, or

they may deliberately engage in straight-out vandalism. Workers can also collude with each

other to game the system and collect rewards without performing the required work. In this

paper, we describe supervisory schemes that provide an incentive towards high-quality work,

and we show that the incentive is both cheap in terms of the required supervisor time and work

overhead, and effective in making honest and accurate work the best strategy for workers.

We focus on crowdsourcing tasks which are verifiable, that is, they have objective an-

swers that a supervisor or another worker can check to conclude whether a worker is submitting
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quality work or not. We further consider two types of verifiability: binary, and quantitative. In

binary verifiable tasks, the question of whether a worker submits quality work can be answered

with either a Yes or a No. In quantitatively verifiable tasks, the solution of a task is a real

number, and we can measure the quantitative difference between the submitted and the true so-

lutions of tasks. Classification tasks are examples of binary verifiable tasks, as supervisors can

check that the classification in discrete categories submitted by a worker matches expectations.

Grading tasks are examples of quantitatively-verifiable tasks.

We propose schemes that provide truthful incentives to the human workers at a low

cost for the supervisors regardless of the size of the human worker population.

Using golden sets is a practice for quality control in crowdsourcing [78]. Golden sets

are sets of tasks for which the answer is known to the supervisor and are presented to workers

with the goal of evaluating their performance; such sets showed a positive impact on worker

performance in crowdsourcing systems [42]. Golden sets, however, can be difficult and costly

to obtain [62], as they create an overhead for workers to perform extra tasks for quality control.

In applications that already require significant incentive to extract a small amount of items of

work from workers, wasting work on golden set tasks is undesirable if there is an alternative.

Moreover, golden sets might be unavailable in advance. For example, in peer grading of home-

work assignments, a golden set would need to be constructed for each homework assignment

(unless the assignments are identical). In addition, the golden set approach is problematic from

a mechanism design point of view: knowing that the supervision is performed in this way, work-

ers can infer the identity of golden set tasks by intersecting allocated tasks of different workers,

and minimize effort by only being truthful in the golden tasks. For class homework, where
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students can communicate with each other and some distinctive features may be easy to spot

(‘Did you also have to grade the Android app where the ball goes through the green wall?’), the

golden set approach can be particularly weak.

The schemes that we propose rely on comparing the answers given by workers per-

forming the same tasks with each other; in particular, they do not require golden sets of tasks

for which the answer is known in advance.

We first study a simple one-level scheme and thereafter we propose a hierarchical

scheme.

In the simple one-level scheme, workers perform tasks which are directly evaluated by

the supervisor with some probability. We study the conditions that ensure that workers maintain

the incentive to provide truthful answers.

The one-level scheme does not scale to large crowds, as the supervisor needs to per-

form an amount of work that grows linearly with the number of workers. Thus, we introduce a

hierarchical scheme, where the work of the supervisor is bounded even as the number of tasks

and workers grows. The scheme organizes workers in a hierarchy, where the supervisor is at the

top, and the other workers are arranged in layers below. Every worker in the hierarchy shares

one common task with each worker below, so that it can verify part of the work performed

by lower levels of the hierarchy. This hierarchical verification scheme entails no wasted work,

and provides a truthful incentive to the workers regardless of their level in the hierarchy. The

scheme is based on one, uniform, category of workers: we do not need to split workers into

“regular” workers and meta-reviewers. As the worker population increases, the hierarchy be-

comes deeper, but the amount of work that the supervisor needs to do remains constant, and so
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does the incentive towards correct behavior. We show that the only information about the hier-

archy that needs to be communicated beforehand to the workers is their level in the hierarchy

itself. We provide matching upper and lower bounds for the amount of information that needs

to be communicated beforehand to workers in the hierarchy to maintain a truthful incentive,

showing that a logarithmic amount of information in the number of workers is both necessary

and sufficient.

We study the practical aspects of the implementation of the hierarchy. Many crowd-

sourcing tasks benefit from redundancy, that is, from assigning the same task to more than one

worker. For instance, by assigning the same item to multiple graders, it is possible to recon-

struct a higher-accuracy grade for the item than would be available from one grader alone [65]

We show that in redundant tasks in which there is no control over task allocation to workers, the

problem of creating an optimal hierarchy is NP-hard. We present fast approximation algorithms

that are optimal within constant factors. If the supervisor can control the allocation of tasks

to workers, as in many real applications, we show that constructing the hierarchy is an easy

problem.

We develop our results first in the case of binary verifiable tasks. These are common in

classification tasks: spam or not, correct answer or not, etc. We consider a model where workers

need to make an “effort” of f (e) in order to ensure that their error probability is lower than e.

We obtain a tight lower bound for the mistake penalties necessary to ensure that the correctness

incentive propagates to all levels of the hierarchy. We show that the truthful incentive holds

even when the supervisor occasionally makes mistakes, and in populations of workers with

diverse proficiency, where workers can have limited proficiency, provided that there are enough
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proficient workers in the crowd.

We then show how the results on binary verifiable tasks transfer to the case of quan-

titative tasks. In quantitative tasks, the notion of a task performed correctly is replaced by the

notion of variance in the quantitative outcome of the task. The effort function relates the effort

(or cost) to the worker to the variance in the worker’s evaluation. In the model, increased worker

effort produces higher expected precision of the worker’s answers, and is similar to other mod-

els proposed in the literature [12]. We show that we can shape the incentives to ensure that it

is optimal for all players to put sufficient effort to ensure their variance is below a given thresh-

old, independently of the worker position in the hierarchy. In other words, hierarchical distance

from the supervisor does not entail loss of precision in the tasks performed. This enables the

scheme to scale to arbitrarily large crowds, while keeping the work of the supervisor bounded

and the precision constant.

The proposed schemes are thus applicable to a multitude of crowdsourcing applica-

tions, from conventional classification tasks using generic crowds in crowdsourcing market-

places to peer grading in Massive Open Online Courses with an arbitrarily large population of

students.

3.2 Example of Worker Collusion in a Peergrading Setting

Reviewing is hard work. In order to motivate students to perform high quality reviews

of other students’ work, some incentive is needed. A simple approach consists in making the

review work part of the overall assignment grade, giving each student a review grade that is
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related to the student’s grading accuracy. To measure the grading accuracy of a student, the

simplest solution is to look at the discrepancy between the grades assigned by the student, and

the consensus grades computed from all input on the assignment.

Unfortunately, such approach opens up an opportunity for students to game the sys-

tem. A big enough group of students can affect the consensus grades and thus affect how they

and other reviewers are evaluated. One obvious grading strategy for a reviewer is to assign the

maximum grade to every assignment they grade. In this way, students spend no time examining

the submissions, and yet get perfect grades both for their submission, and for their reviewing

work.

We have observed this behavior in real classrooms. In a class whose grading data we

analyzed, held at a US university,1 the tool CrowdGrader2 was used to peer-grade homework.

The initial homework assignments were somewhat easy, so that a large share of submissions de-

served the maximum grade on their own merit. As more homework was assigned and graded, a

substantial number of students switched to a strategy where they assigned the maximum grade

to every submission they were assigned to grade. Submissions that had obvious flaws were

getting high grades, and reviewers who did diligent work were getting low review grades be-

cause their accurate evaluations did not match the top-grade consensus for the submissions

they reviewed. Figure 3.1 displays the fraction of students who assignmed maximum grades

to assignments in the class. A surprisingly high percentage of students were giving maximum

grades; the percentage rose to 60% in the 13th assignment. Between the 13th and 14th assign-

ment there was a big drop in the fraction of such students, as the instructor announced that there

1Privacy restrictions prevent us from disclosing more details on the class.
2www.crowdgrader.org
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would be a new grading procedure introduced that would penalize such behavior. However, the

hastily-introduced procedure did not work, and the students returned to give inflated evaluations

spending little time reviewing.
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Figure 3.1: Frequency of assignments receiving maximum grades for a class with 27 homework

assignments and 83 students; each student graded 5 homework submissions. The dashed line

plots the number of maximum grades, as a fraction of all grades assigned, for each homework.

The solid line plots the fraction of students who gave maximum grades to all the submissions

they graded, for each homework.

3.3 Related Work

Providing incentives to human agents to return truthful responses is one of the central

challenges for crowdsourcing algorithms and applications [36].

Prediction markets are models with a goal of obtaining predictions about events of

interest from experts. After experts provide predictions, a system assigns a reward based on a
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scoring rule to every expert. Proper scoring rules ensure that the highest reward is achieved by

reporting the true probability distribution [85, 44, 17]. An assumption of the scoring rules is

that the future outcome must be observable. This assumption prevents crowdsourcing systems

to scale to large crowds as obtaining the correct answer for each event or task is prohibitively

expensive.

The model presented in [15] relaxes this assumption. The proposed scoring rule eval-

uates experts by comparing them to each other. The model assigns a higher score for an expert

if her predictions are in agreement with predictions of other experts. Work [15] belongs to the

class of peer prediction methods. Peer prediction methods is wide class of models for providing

incentives [66, 58, 28, 87, 86, 20, 46, 68, 72, 90, 79, 47, 51] . Such methods elicit truthful

answers by analyzing the consensus between workers in one form or another. Peer prediction

methods encourage cooperation between workers and, as a result, promote uninformative equi-

libria. The study in [45] shows that for the scoring rules proposed in the peer-prediction method

[58], a strategy that always outputs “good” or “bad” answer is a Nash equilibrium with a higher

payoff than the truthful strategy. Works by [46, 79] show that the existence of such equilibria

is inevitable. In contrast, hierarchical incentive schemes we propose make the truthful strategy

the only Nash equilibrium.

The model described in [46] considers a scenario of rational buyers who report on

the quality of products of different types. In the developed payment mechanism the strategy of

honest reporting is the only Nash equilibrium. However, the model requires that the prior dis-

tribution over product types and condition distributions of qualities is the common knowledge.

This requirement is a strong assumption.
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The Bayesian Truth Serum scoring method proposed in [66] elicits truthful subjec-

tive answers on multiple choice questions. The author shows that the truthful reporting is a

Nash equilibrium with the highest payoff. The model is different from other approaches in that

besides the answers, workers need to provide predictions on the final distribution of answers.

Workers receive a high score if their answer is “surprisingly” common - the actual percent-

age of their answer is larger than the predicted fraction. Similarly, incentive mechanisms in

[87, 86, 68, 69, 72] require workers provide belief reports along with answers on tasks. Truthful

mechanisms in [58, 90, 51] requires knowledge about the distribution from which answers are

drawn. Our mechanisms do not rely on worker’s beliefs on other workers’ responses nor require

knowledge about the global answer distribution.

The work in [5] studies the problem of incentives for truthfulness in a setting where

persons vote other persons for a position. The analysis derives a randomized approximation

technique to obtain the higher voted persons. The technique is strategyproof, that is, voters

(which are also candidates) cannot game the system for their own benefit. The setting of this

analysis is significantly different from ours, as the limiting assumption is that the sets of voters

and votees are identical. Also, the study focuses on obtaining the top-k voted items, while in

our setting we do not necessarily rank items.

The PeerRank method proposed in [80] obtains the final grades of students using a

fixed point equation similar to the PageRank method. However, while it encourages precision,

it does not provide a strategyproof method for the scenario that students collude to game the

system without making the effort to grade truthfully.

Authors of [62] propose an automated process to generate golden tasks for quality
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assurance in crowdsourcing. An initial set of golden tasks is used to bootstrap a larger set of

golden tasks. A tasks is chosen if it has several matching answers by the reliable workers, that

is, workers who provided correct answers to the original golden tasks. The chosen tasks are

then used to create new golden tasks by injecting common errors. The step of error injecting is

to ensure that common error types are present in then new golden set. Note that the process of

detecting common error types is manual. The authors report on decreasing amount of manual

work to manage large crowds. The main difference with our work is that we provide theoretical

guarantees that the proposed incentive mechanisms require constant amount of work by the

supervisor for arbitrary large crowds. Moreover, golden sets are not suitable for all applications.

For example, in peergrading of homework assignments the total set of homework submissions

cannot be obtained before the homework is posted. Also, information on the competence of

workers from previous homeworks or classrooms cannot be used reliably for newer homeworks

or in different classrooms with different material. The incentive schemes we propose do not

require golden sets.

Employees in organizations and firms are frequently organized into hierarchies. Economists

study incentives in hierarchical organizations, the influence of hierarchical structure on firms

sizes and the loss of control within hierarchies. Previous studies on hierarchies relevant to ours

are found in [84, 13, 14, 67]

However, our work and the work by organizational economists is not directly compa-

rable due to different models. Our model is designed to reflect the nature of evaluation tasks.

Models by [84, 13, 14, 67] are designed to reflect economic aspects of firms. Our work is not

directly comparable to the work of organizational economist, as the model we describe are ap-
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plicable to peer grading setting rather than corporate hierarchy setting. For example, the model

described in [84] assumes that workers on the bottom layer do the production work, while all

other workers (managers) do the coordination and supervision work. Subordinate workers sat-

isfy requests by their superiors with a discount factor that is within (0,1) range. The smaller

the discount factor, the smaller the contributions by the workers to the firm’s revenue. In con-

trast, in our models, all workers perform evaluation work. Workers are evaluated based on the

comparison of their answers to the answers of their supervisors. Our models admit that worker

can make mistakes or have bounded proficiencies. The work in [84] shows that there is a limit

on the size of hierarchy due to loss of control. In contrast, the hierarchies of workers that we

propose have the property that the incentive to do truthful evaluations does not deteriorate with

the hierarchy depth.

3.4 Crowdsourcing Models

We consider two crowdsourcing models: the binary-verifiable model and the quantitatively-

verifiable model. In the binary-verifiable model, tasks can be done either correctly, or incor-

rectly. For example, a task of classifying items from a discrete set categories is binary-verifiable.

In the quantitatively-verifiable model, the solution to tasks are real numbers, and we can mea-

sure the distance of the answers given from the correct answer. The tasks of assigning a real-

valued grade to a homework submission is an example of a quantitatively-verifiable tasks. We

make these settings precise via the following models.

Let U and I be the set of workers and tasks respectively. Every worker u performs a
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subset of tasks from I. We construct a bipartite graph G = (U ∪ I,E} with tasks and workers as

nodes. For a task i ∈ I and a worker u ∈U , the edge (i,u) belongs to the set of edges E iff the

worker u was assigned the task i ∈ I. We denote the set of tasks assigned to a worker u as ∂u,

the set of workers assigned with a task i as ∂i.

3.4.1 The Binary-verifiable Model

In the binary-verifiable model, each task i ∈ I has a solution from a set A. A worker

performs task i by choosing a solution from set A. Every tasks i∈ I has a correct solution si ∈ A.

To find the correct solution the worker needs to make effort.

Effort Function. Let ai be a solution proposed by a worker on a task i ∈ I, and let e be

the probability that ai is wrong, i.e. e = Pr(ai 6= si). The effort is defined by a function f :

(0,1]→ [0,+∞), so that a worker needs to pay cost f (e) to have error probability at most e. We

require the cost function f to be monotonically decreasing (larger error bounds cost less), and

to be differentiable and strictly convex. Requiring that f is convex does not entail any loss in

generality. For x,y ∈ (0,1] and 0 < α < 1, if we had f ((1−α)x+αy)> (1−α) f (x)+α f (y),

contradicting convexity, then the worker would obtain a lower cost simply by paying f (x) a

fraction 1−α of the time, and f (y) a fraction α of the time, obtaining overall error probability

equal to (1−α)x+αy at a cost lower than f ((1−α)x+αy). Strict convexity of f entails that,

the closer x goes to 0, the more difficult it gets to reduce the error by the same amount.

Strategies. A worker’s strategy is the choice of error probability e and corresponding effort

f (e). For a specified error threshold ε∈ (0,1], we call a strategy with error probability e truthful

iff e < ε.
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Supervision. We assume that there is a supervisor who can verify whether tasks are done

correctly or not. Let worker u provides a solution au on a task i, while the supervisor provides

a solution a for the same task. The supervisor assigns loss l(au,a) to the worker defined by

l(au,a) = 0 if au = a, and l(au,a) = C if au 6= a, for a fixed punishment cost C > 0. Note

that, when the supervisor verifies a task i, the supervisor can verify all the workers that also

performed i, that is, all the workers in ∂i.

3.4.2 The Quantitative Model

In the quantitative model, the workers are asked to evaluate items from a set I, asso-

ciating to each item i ∈ I a value qi ∈ R.

Effort Function. In order to produce a precise measurement of the quality of an item, a worker

needs to pay a price defined by an effort function. To produce a measurement of the quality

of an item to within variance v, a worker needs to pay a price f (v), where f is a non-negative,

monotonically decreasing, strictly convex function defined on the set R+ of strictly positive

variances. Again, the hypotheses that f be strictly convex and monotonically decreasing are not

restrictive.

Strategies. A strategy of a worker consists in choosing a precision (variance) v and correspond-

ing effort f (v). Similarly to the binary-verifiable model, let ε ∈ R be a variance threshold. We

call a strategy v truthful if v < ε.

Supervision. In order to produce an incentive towards precise work, workers can be evaluated

by the supervisor, or by a worker in a higher level. If the worker produces estimate x, while

the supervisor or upper-level worker produces estimate y, the worker is penalized using the loss
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function, for a penalty constant c > 0:

`(x,y) = c(x− y)2 . (3.1)

In the following sections we will propose one level and hierarchical supervision

schemes that provide incentive to workers so that they play with the truthful strategy.

3.5 One Level Supervised Schemes

In this section we study “one-level”, or flat, supervision schemes where workers are

directly verified by the supervisor. To verify a worker u ∈U , the supervisor examines a task

i ∈ ∂u assigned to the worker. The supervisor then imposes a loss l to the worker depending

on their solution. To provide an incentive to workers U to play with a truthful strategy, the

supervisor chooses a subset of tasks to examine. We indicate with p the probability that a

randomly chosen worker has a task that is being verified. By selecting first a random subset of

m workers, and then picking an item for each worker, the supervisor can ensure a probability

at least p = m/|U | of verifying a worker. The higher the probability p, the higher the influence

of the supervisor on all workers. We show that the number of items the supervisor needs to

evaluate grows linearly with the numbers of items. The result of this section is very similar

to the one in the work by [33]. We consider a setting where the supervisor provides precise

answers without making mistakes. Such an assumption simplifies the proofs of theorems in this

section, without limiting the generality of the results, as we consider the most favorable setting

for the instructor to provide incentives. Still, the number of items to evaluate grows linearly with
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the total number of workers. We will relax this assumption in the future sections and consider

settings when the supervisor makes mistakes too.

Binary-verifiable model. Theorem 1 establishes a lower bound on p for the binary-verifiable

model so that workers have an incentive to be truthful. Note that − f ′(x) > 0 as the effort

function is monotonically decreasing.

Theorem 1. If every worker is assigned k tasks, the penalty cost equals C, and the probability

p of being verified by the supervisor satisfies the following inequality:

p >
(− f ′(ε))k

C
, (3.2)

then workers minimize their loss by playing with a truthful strategy.

Proof. The expected loss L of a worker u∈U consists of two components: the effort to perform

k tasks, and the expected penalty due to the supervisor when the worker provides a wrong

solution

L(e) = k f (e)+ epC . (3.3)

The expected loss L(e) is a convex function of e as a sum of a decreasing strict convex and an

increasing linear function, where the decreasing convex function is bounded from below by 0.

Thus it has a global minimum e∗ that satisfies the equality

k f ′(e∗)+ pC = 0⇒ p =
− f ′(e∗)k

C
. (3.4)
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We substitute the probability p in inequality (3.2) with the expression of (3.4) and obtain

− f ′(e∗)k
C

>
− f ′(ε)k

C
⇒ f ′(e∗)< f ′(ε) . (3.5)

Because function f ′(e) is increasing as the derivative of a strictly convex function [73], it fol-

lows from the inequality f ′(e) < f ′(ε) that e < ε. Therefore, to minimize the loss, a worker

chooses to play with an error probability e∗ such that e∗ < ε, thus being truthful.

Quantitative model. For the quantitative model, the following theorem establishes a similar

lower bound on the probability p of being verified by the supervisor.

Theorem 2. If every worker is assigned k tasks, the penalty constant of loss (3.1) is c , and the

probability p of being verified by the supervisor satisfies the following inequality

p >
(− f ′(ε))k

c
, (3.6)

then workers minimize their loss by playing with a truthful strategy.

We omit the proof as it follows similar steps as in the poof of Theorem 1.

For both models, the number of workers m = p|U | that the supervisor needs to ex-

amine grows linearly with the total number of workers. This limits the applicability of the flat

approach to relatively small task sets and worker crowds. In the following section, we develop

a hierarchical setting that overcomes this limitation.
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3.6 Hierarchical Supervised Schemes

In this section we develop hierarchical schemes that require a fixed amount of work

by the supervisor to provide an incentive to workers for doing diligent work, regardless of

the total number of workers. We first consider the case without redundancy when no task is

guaranteed multiple workers; the case with redundancy, when every task is guaranteed multiple

workers, is studied in Section 3.7 later. We develop hierarchical incentive schemes for both the

binary-verifiable model and the quantitative model. In these schemes all workers perform tasks;

there are no special meta-review tasks. The tasks are assigned so that each worker shares at

least one task with a worker one level above in the hierarchy. By comparing the answers of the

workers on these shared tasks, the workers at upper levels effectively check the work of workers

at lower hierarchical levels. We note that the workers do not know which tasks they share with

other workers; all they need to know, as we will show, is their level in the hierarchy. We will

show that an incentive to be truthful does not deteriorate as the depth of a hierarchy grows.

The scheme organizes workers into a supervision tree (see Definition 1). The internal

nodes of the supervision tree represent workers; the leaves represent tasks. A parent node and

a child node share one task; this shared item is used to evaluate the quality of the child node’s

review work. At the root of the tree is the supervisor who is truthful, that is, she has a small

probability of mistakes.

Definition 1. A supervision tree of depth L is a tree with tasks as leaves, workers as internal

nodes, and the supervisor as root. The nodes are grouped into levels l = 0, . . . ,L−1, according

to their depth; the leaves are the nodes at level L− 1 (and are thus all at the same depth). In
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the tree, workers at level L− 2 perform the tasks they are connected to. Every node at level

0≤ l < L−2 performs exactly one task in common with each of its children.

To construct a supervision tree of branching factor at most k, we proceed as follows.

We place the tasks as leaves and the above level of workers with at most k tasks per worker.

Once level l is built, we build level l−1 by enforcing a branching factor of at most k. For each

node x at level l, let y1, . . . ,yn be its children. For each child y1, . . . ,yn, we pick at random a task

si performed by yi, and we assign node x with the task of examining the set {s1, . . . ,sn} of tasks.

At the root of the tree, we place the supervisor, following the same method for assigning tasks,

that is, we assign the supervisor with doing one task from each of his or her children nodes,

picked at random. Figure 3.2 illustrates a supervision tree with branching factor 2 and depth 3.

Tasks

Supervisor

Workers

Workers

Figure 3.2: An example of a supervision tree with branching factor 2. The process starts bottom

up. Each worker is assigned 2 tasks. For each depth-2 worker, a depth-1 worker is assigned

one task in common with worker at depth-2 (red edges). The evaluation of the depth-2 worker

will depend on the depth-1 worker. Similarly, the supervisor evaluates a depth-1 worker by

reviewing one of the two tasks that the depth-1 worker has done(black edges).

In the following two subsections we study hierarchical schemes with binary-verifiable

and quantitative tasks respectively.
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3.6.1 The Binary-verifiable Model

We consider the case of a homogeneous worker population first, where workers have

the same effort function. We find a tight bound on penalty cost C that ensures that a hierarchical

scheme provides incentives. We then extend our results to the case of heterogeneous worker

population, where worker effort functions are different, modeling a more realistic setting. The

bound (3.11) will be crucial in distinguishing between workers who are proficient and workers

with limited proficiency. We will show that if a population of workers is proficient on average,

then a hierarchical scheme provides an incentive to be truthful.

Homogeneous worker population. We consider a setting where all workers have the same

effort function f . We will show that the proposed hierarchical scheme provides incentives for

worker to be truthful. First, to prove our main results, we formulate Lemma 1 that considers a

worker and their superior in a supervision tree. It computes the expected loss of the worker, and

it provides an upper bound on the worker’s error probability.

Lemma 1. Let workers u,w ∈U have error probabilities eu,ew respectively, and let worker w

be the parent of worker u in a supervision tree with branching factor k and penalty cost C > 0. If

worker u has effort function f then the expected loss L(eu,ew) of worker u under the supervision

of worker w is

L(eu,ew) = k f (eu)+ eu(1− ew)C+(1− eu)ewC+ euewD , (3.7)

where D is a constant from the [0,C] interval. Moreover, if there is σ,ε ∈ (0,1/2) such that
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ew < ε and

C ≥ f ′(σ)k
2ε−1

, (3.8)

then every e∗u ∈ argmin
eu

L(eu,ew) satisfies inequality e∗u < σ .

Proof. The expected loss L(eu,ew) of worker u consists of 4 components:

L(eu,ew) = k f (eu)+(1− eu)ewC+ eu(1− ew)C+ euewD .

The first component k f (eu) is due to the effort of performing k tasks with error probability eu.

The other components account for the penalty that the superior w imposes in three mutually

exclusive events. In particular, the second component (1−eu)ewC accounts for the event where

worker u provides the correct solution to the common task but the superior makes a mistake.

The third component eu(1− ew)C accounts for the case where the worker makes a mistake

and the superior is correct. The fourth component euewD accounts for the event where both

worker and superior are incorrect; the penalty D belongs to the interval [0,C], depending on the

probability of the event when the worker and the superior have different answers and both of

them are incorrect.

The loss L(eu,ew) is a convex function of eu as a combination of convex and linear

functions. Therefore, the set argminL(eu,ew) is not empty. Let e∗u ∈ argminL(eu,ew). Error
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probability e∗u satisfies the following inequality

k f ′(e∗u)− ewC+(1− ew)C+ ewD = 0⇒ f ′(e∗u) =
(2ew−1)C− ewD

k
.

Combining it with the fact that ew,D≥ 0, and with the assumption that ew < ε, we obtain

f ′(e∗u)≤
(2ew−1)C

k
<

(2ε−1)C
k

. (3.9)

Note that the (2ε− 1) multiplier is negative as ε < 1/2. Because (2ε− 1) < 0, the right hand

side of inequality (3.9) can be bounded using inequality (3.8)

(2ε−1)C
k

≤ (2ε−1)
k

f ′(σ)k
2ε−1

= f ′(σ) . (3.10)

From inequalities (3.9, 3.10), it follows that f ′(e∗u) < f ′(σ). Because function f ′ is increasing

as the derivative of a strictly convex function [73], we conclude that e∗u < σ.

The following theorem shows that in the proposed hierarchical scheme, we can choose

the penalty C so that all Nash equilibria have the property that every worker plays truthfully.

Theorem 3. Let the workers be organized into a supervision tree with branching factor k. If

workers are rational and have the same effort function f , and penalty C satisfies the inequality

C ≥ f ′(ε)k
2ε−1

, (3.11)

for ε ∈ (0,1/2), then all Nash equilibria have the property that every worker in an equilibrium
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plays truthfully.

Proof. The strategic choice of a player u depends only on the players placed above u. Thus the

proof is by induction on the depth l = 0,1, . . . ,L− 1 of the tree. The inductive hypothesis is

that the best response for players at depth up to l is to play with a truthful strategy, i.e. with

error probability less that ε. At depth 0, the result holds trivially, as the supervisor plays a fixed

truthful strategy.

To prove the inductive step, let us consider a worker u at level l +1 and the worker’s

superior w at level l, with error probabilities eu and ew respectively. The loss of worker u is

solely depends on the superior w. By the inductive hypothesis, the superior w plays with a

truthful strategy and therefore provides an incorrect solution to the common task with proba-

bility ew < ε. The conditions of Lemma 1 for worker u with superior w are satisfied: superior

w has error probability ew < ε, and inequality (3.8) holds for σ = ε. Therefore, it follows from

Lemma 1 that the best response of worker u is to play with error probability e∗u that is less than

ε, i.e. by choosing a truthful strategy.

We can show that the inequality (3.11) is tight: if cost C does not satisfy inequality

(3.11), then there exists an effort function, a supervision tree, and a level l such that a rational

worker chooses a strategy with error probability greater than ε, that is, not a truthful strategy.

Theorem 4. The bound proved in Theorem 3 is tight. Precisely, if the cost C does not satisfy

inequality (3.11), then there exists an effort function, a supervision tree, and a level l such that

a rational worker chooses a strategy with error probability greater than ε.
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Proof. To prove the theorem, we will show that when the cost C satisfies inequality

C <
f ′(ε)k
2ε−1

, (3.12)

then there exists an effort function, a supervision tree, and a level l such that a rational worker

chooses a strategy with error probability greater than ε. In particular, we choose effort function

to be f (x) = − ln(x), and we assume that (3.12) holds for ε ∈ (0,1/4). To construct a tree we

assume that the solution set A consists of 2 elements only. Let et be error probability of a worker

on depth t of the supervision tree. We need to show that for large enough l a rational worker

chooses el > ε. The superior on level 0 provides correct solutions, thus et = 0. The expected

loss Lt(et) of a worker u on level t is

Lt(et) = k f (et)+ et(1− et−1)C+(1− et)et−1C . (3.13)

Worker u minimizes their loss by choosing et that sets the derivative of the loss to 0

k f ′(et)+(1−2et−1)C = 0⇒ f ′(et) =
(2et−1−1)C

k
.

Given that f ′(x) =−1/x, the optimal value et is k
(1−2et−1)C

. The difference between et and et−1

is

et − et−1 =
k/C

1−2et−1
− et−1 =

k/C+2e2
t−1− et−1

1− et−1
. (3.14)
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We are going to find a constant ∆ > 0 such that et − et−1 > ∆ for any t ≥ 0. This

would mean that as the tree depth increases, the probability of errors by workers would steadily

increase, eventually surpassing the truthfulness threshold ε. To bound the right hand side of

(3.14), we note that 1/(1−2et−1)≤ 1 for et−1 ≥ 0. Therefore

et − et−1 ≥ k/C+2e2
t−1− et−1 . (3.15)

Note that function g(et−1) = 2e2
t−1− et−1 is monotonically decreasing on the interval [0,ε] as

ε < 1/4. Assume that that all levels workers play with a truthful strategy, that is, et < ε for any

t ≥ 0. We can further bound et− et−1 by using inequality 2e2
t−1− et−1 > 2ε2− ε and inequality

(3.15)

et − et−1 > k/C+2ε
2− ε . (3.16)

Inequality (3.12) implies that for some δ > 0, C = k f ′(ε)
2ε−1 −δ. We use it to simplify the

right hand side of (3.16)

et − et−1 > k/C+2ε
2− ε =

k
k

ε(1−2ε) −δ
− ε(1−2ε) .

For brevity, we denote ε(1−2ε) as a.

et − et−1 >
k

k
a −δ

−a =
ak

k−aδ
−a =

a2δ

k−aδ
.
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Expression a2δ

k−aδ
is greater than 0 and does not depend on the level t of the hierarchy; we denote

it as ∆.

et − et−1 > ∆ . (3.17)

The derivation of (3.17) is based on the assumption that et < ε. If we choose a hierarchy level

l such that l > ε

∆
, it follows from inequality (3.17) that el − e0 > ∆ ∗ l > ε. Because e0 = 0,

we conclude that el > ε which contradicts to our assumption that et < ε for t ≥ 0. We have

shown there exists a hierarchy level l such that el > ε and the supervision tree does not provide

incentive past depth l.

Heterogeneous worker population. We now turn to the scenario when workers have different

effort functions. We assume that workers in the supervision tree know their own effort function,

but they do not know effort function of other workers. Thus, the strategic interactions between

workers can be formulated as a game with incomplete information about effort functions. We

introduce the definition of worker proficiency and we show that if the average proficiency of

workers is sufficiently high, then all interim Bayes-Nash equilibria have the property that every

proficient worker plays truthfully.

The proficiency of a worker is determined by the effort function of the worker, and it

corresponds to the level of precision that is enforced by the supervision penalty to the worker. If

the supervision penalty C is fixed, then the effort function fu of a worker u determines whether

the worker finds it worth achiveing the target precision ε or not.

Definition 2. Given ε ∈ (0,1/2), penalty C > 0, and a worker u ∈U with effort function fu, we
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say that the proficiency σu of u is the value x for which the following equality holds:

C =
f ′u(x)k
2ε−1

(3.18)

Further, we say that the worker is proficient if σu ≤ ε.

Under natural assumptions on effort functions, equation (3.18) always has a unique

solution. First, we assume that the more one tries to approach a zero probability of mistake,

the more effort one needs to make, while having precisely zero probability would require infi-

nite effort. This assumption translates into the following conditions: lime→+0 fu(e) = +∞ and

lime→+0 f ′u(e) = −∞. Secondly, random guessing requires no effort: lime→1/2 fu(e) = 0 and

lime→1/2 f ′u(e) = 0. The two natural assumptions guarantee that the derivative of fu lies in the

(−∞,0) range. Moreover, the differentiablity and the convexity of fu implies the continuity of

f ′u [73], therefore, the continuity of f ′u and the strict convexity of fu guarantees that the deriva-

tive takes any value in that range only at one point, that is, there are no two points with the same

derivative. Thus, equation (3.18) always has a unique solution.

Definition 2 is justified by the following observation. Based on Lemma 1, value σu is

the upper bound on the best response e∗u of worker u under a supervision of a truthful worker.

Therefore, error probability e∗u of a proficient worker satisfies inequality e∗u < σu ≤ ε. This

means that a proficient worker is truthful under a truthful superior. On the other hand, if a

worker has limited proficiency, i.e. σu > ε, then, as we will show, the opposite of inequality

(3.11) holds; and in this case, according to Theorem 4, a worker with that effort function in a

supervision tree is not guaranteed to be truthful. We obtain the opposite of inequality (3.11)
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from inequality σu > ε by using the fact that f ′u is an increasing function as a derivative of a

strictly convex function and the assumption that ε < 1/2:

σu > ε⇒ f ′u(σu)> f ′u(ε)⇒
f ′u(σu)k
2ε−1

<
f ′u(ε)k
2ε−1

⇒C <
f ′u(ε)k
2ε−1

.

To reason about the diverse proficiency of workers in a population, we assume that

the worker effort functions are distributed according to a probability distribution F . We call a

population of workers proficient as a whole if the following inequality holds:

E f∼F [σu]≤ ε . (3.19)

where σu is the proficiency of a random worker.

Note that a successful incentive scheme cannot guarantee that workers with limited

proficiency have an incentive to be truthful, because it might take too much effort for such

workers to have error probability smaller than ε. The following theorem shows that all interim

Bayes-Nash equilibria have the property that every proficient worker plays with a truthful strat-

egy.

Theorem 5. Let workers be organized into a supervision tree with branching factor k and

penalty C > 0. Let ε ∈ (0,1/2) and let F be a distribution of worker effort functions such that

the population of workers is proficient as a whole, i.e. inequality (3.19) holds. If workers are

rational, then all interim Bayes-Nash equilibria have the property that every proficient worker

plays truthfully.
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Proof. In a supervision tree, the strategic choice of a player u depends only on the players placed

above u. We prove by induction of depth l = 1, . . . ,L− 1 of the tree that the best response of

worker u is to play with error probability e∗u such that e∗u < σu, where σu is the solution of

equation (3.18) with the worker’s effort function fu. Thus, by the definition of a proficient

worker, it will follow that the best response of a proficient worker u is to play with e∗u < σu ≤ ε,

i.e. to play truthfully.

At level 1, a worker u is evaluated by the supervisor who has error probability e < ε.

Conditions of Lemma 1 for worker u are satisfied with f = fu and σ = σu. Thus, the best

response of worker u is to play with e∗u < σu.

To prove the inductive step, let us consider a worker u at level l+1 and her superior w

at level l, with error probabilities eu and e∗w respectively. By the inductive assumption, e∗w < σw.

According to the first part of Lemma 1, the superior w induces loss L(eu,e∗w) to the worker u

that is defined by equation (3.7). However, worker u does not know the effort function of the

superior. Thus, the loss of worker u is computed as the expectation of L(eu,e∗w) over different

effort functions of the superior

E fw∼F L(eu,e∗w) = E fw∼F [k f (eu)+(1− eu)e∗wC+ eu(1− e∗w)C+ eue∗wD]

= k f (eu)+(1− eu)E fw∼F [e∗w]C+ eu(1−E fw∼F [e∗w])C+ euE fw∼F [e∗w]D

= L(eu,E fw∼F [e∗w]) .

We use e∗ to denote E fw∼F [e∗w]. Minimizing the loss E fw∼F L(eu,e∗w) with respect to eu is equiv-

alent to minimizing the loss L(eu,e∗). Therefore, the strategic choice e∗u of worker u in the
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presence of uncertainty about the type of the superior is equivalent to the strategic choice of

worker u with a superior that has error probability e∗. We show that e∗ < ε by using the induc-

tive assumption e∗w < σw and assumption (3.19), that the workers are proficient on average:

e∗ = E fw∼F [e∗w]< E fw∼F [σw]≤ ε .

The conditions of Lemma 1 are satisfied for the worker u with f = fu, σ = σu, and ew = e∗. It

follows from Lemma 1 that the best response of worker u is e∗u < σu. This finishes the inductive

step and the proof of the theorem.

What information do workers need? The schemes considered in this section organize workers

into hierarchies. What information do workers need to know about the hierarchy, as they set to

do their work? Do they need to be given the precise hierarchical scheme, including the names

(or identities) of their supervisors? Or can they just be told that a hierarchy exists, without being

told even what their place in it is? The interest in these questions lies in the fact that revealing

to workers the identity of those above and below them in the hierarchy could create incentives

to communicate via secondary channels and sway the outcome.

It turns out that the answer is somewhere in between: while workers do not need to

know the identities of the workers above and below them in the hierarchy, they do need to know

the level in which they are. The following pair of theorems makes this observation precise.

We denote the pure defection strategy where a worker always reports the same solu-

tion for any tasks as ξ.

Theorem 6. Assume workers are organized into a supervision tree but they are not told their
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level in the tree. Then, for each ε> 0, there are supervision trees where defecting with a constant

strategy is a Nash equilibrium with a loss smaller than any truthful strategy.

Proof. Let N and k be the number of players and the tree branching factor respectively. We

analyze strategic choices of a worker u ∈U when all other workers U\u defect and play with

strategy ξ. The worker can play a mix of the following two pure strategies. One strategy consists

in playing the fixed move. This strategy carries a cost when the worker picks the wrong outcome

and is reviewed by the supervisor; this happens with probability k/N. Thus, the expected cost of

this strategy is bound by kC/N. The other strategy consists in playing an outcome that differs

from the constant being played by defectors. Even leaving aside the cost of finding out the

truth, this strategy carries a cost (N− k)C/N. So when (N− k)C/N > kC/N, or N > 2k, it is

convenient to defect. The result is intuitive: it is convenient to defect when the probability of

being reviewed by another defector is larger than the probability of being reviewed by the single

supervisor.

The following theorem essentially says that telling workers their level in the hierarchy

is the minimum and sufficient amount of information required to ensure that collaborating is the

only Nash equilibrium.

Theorem 7. If there is a fixed upper bound k to the number of tasks that a worker is assigned,

then the smallest amount of information a worker needs to know about the hierarchy to have an

incentive to play with the truthfully strategy is Θ(log logN), where N is the number of players

in the hierarchy, and Θ() is the big-Theta notation of complexity theory.

Proof. If we can give workers Θ(log logN) information or more, then we can tell them their
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level in the hierarchy, and the induction argument in Theorem 3 applies.

Conversely, assume that we give fewer than Θ(log logN) bits of information to work-

ers, and consider the situation for N→∞. The bits given out would induce a partition C1,C2, . . . ,Cm

of the workers, where workers receiving the same bits would belong to the same class. As-

sume that the partition classes are sorted according to size, so that |C1| < |C2| < · · · < |Cm|.

As the number of bits is smaller than Θ(log logN), for every γ > 0, there are n and j so that

|C j| < γ|C j+1|. In other words, as the number of classes is less than logarithmic in N, as N

grows, there must be arbitrarily large gaps in the ratios between sizes of adjacent classes. This

implies that, for workers in C j+1 as above, the probability of being reviewed by a worker in

levels C1 ∪ ·· · ∪C j can become arbitrarily small, since those workers can check on at most

k2|C1∪ ·· ·∪C j| workers below them. Thus, defecting becomes the preferred strategy by some

of the workers if fewer than Θ(log logN) bits are communicated to the workers.

3.6.2 The Quantitative Model

In the previous section we considered hierarchical schemes in the binary-verifiable

setting. Workers report either a correct or incorrect answer in a task. We showed that hierarchi-

cal schemes provide incentives to be truthful in homogeneous worker populations if the penalty

cost C is large enough. We also extended the result to the case of heterogeneous worker popula-

tions where workers have different levels of proficiency. In this section we study a quantitative

setting in which workers can give a real number as an answer to a task. We will show that

hierarchical schemes provide incentives to be truthful and that the strength of the incentive does

not deteriorate with the depth of the hierarchy.
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Let us consider a worker u who assigns value x to a task with answer t ∈R. Evaluation

x is a random variable with variance σ2 = E(x−E[x])2 and bias b = E[x]− t. The expected error

v of the evaluation is E(x− t)2; this expected error can be represented as a sum of the variance

σ2 and squared bias b2. Indeed, by adding and subtracting E[x] within E[(x− t)2], expanding

the squared sum and using the fact that E[x−E[x]] = 0, we obtain

E[(x− t)2] = E[(x−E[x]+E[x]− t)2] = E[(x−E[x])2]+ (E[x]− t)2 = σ
2 +b2 .

The following proposition specifies the expected penalty that a worker u with variance

σ2
u and bias bu receives when evaluated by a superior w with variance σ2

w and bias bw.

Proposition 1. Let workers u,w ∈U have variances σ2
u,σ

2
w and biases bu,bw respectively. If

worker w supervises worker u by assigning a penalty according to function (3.1) with penalty

constant c > 0, then the expected penalty l(σu,bu,σw,bw) of worker u is

l(σu,bu,σw,bw) = c(σ2
u +b2

u−2bubw +σ
2
w +b2

w) . (3.20)

Proof. We use Eu, Ew to denote the expectations over the evaluation of workers u and w respec-

tively. Let x and y be evaluations to a task by workers u and w respectively. We simplify the

expected loss EuEw[c(x− y)2] by replacing expression (x− y)2 with the equivalent expression
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(x− t)2−2(x− t)(y− t)+(y− t)2, and using the independence of evaluations x and y

l(σu,bu,σw,bw) = c
(
Eu[(x− t)2]−2(Eu[x]− t)(Ew[y]− t)+Ew[(y− t)2]

)
= c(σ2

u +b2
u−2bubw +σ

2
w +b2

w) .

A worker u has control over the expected estimation error v that is the sum of σ2 and

b2. To achieve the expected error v, worker u makes effort fu(v), where fu is a strictly convex

and decreasing function defined on R+.

Let workers be organized into a supervision tree with branching factor k, and let

worker w be the parent of worker u. The expected cost of worker u is the sum of two com-

ponents: the cost of performing k tasks, and the penalty due to the supervision by worker w.

It directly follows from Proposition 1 that if superior w is unbiased, i.e. bw = 0, then the best

response has error v∗u of worker u is

v∗u = argmin
v

(k fu(v)+ cv) . (3.21)

Surprisingly, the best response of a worker to an unbiased superior does not depend on the

precision of the worker’s superior. This fact, which follows from additivity of variances of

uncorrelated random variables, allows us to reason about the best response of a worker to an

unbiased supervision without specifying the particular superior worker.

We adopt the following natural assumption on the population of workers. We assume
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that the average bias of the best response to an unbiased supervision is 0. This assumption does

not restrict individual workers to be unbiased.

Effort functions determine workers proficiency, as supervision penalty (3.1) can pro-

vide incentives to be truthful only if the cost of performing a task does not outweigh the penalty.

Definition 3. Given ε > 0 and penalty constant c > 0 of loss (3.1), a worker u with effort

function fu is proficient if the best response to an unbiased supervisor has error v∗u less than ε.

Because workers do not know each other’s effort functions, the strategic interaction

of workers in a supervision tree can be formulated as a game with incomplete information.

The following theorem shows that workers in a supervision tree have incentives to be

truthful.

Theorem 8. Let rational workers be organized into a supervision tree with branching factor k

and loss function (3.1). Let the population of workers have the property that the average bias of

the best response to an unbiased supervision is 0. Then, all interim Bayes-Nash equilibria have

the property that every proficient worker plays truthfully.

Proof. We prove by induction of depth l = 1, . . . ,L− 1 of the tree that the best response of a

worker u is to play with v∗u that is the solution of optimization problem (3.21). Thus, by the

definition of a proficient worker, it will follow that the best response of a proficient worker u is

to be truthful. At level 1, a worker u is evaluated by the supervisor who has bias 0, therefore

worker u plays with the expected error v∗u.

To prove the inductive step, let us consider a worker u at level l+1 and their superior

w at level l. According to the inductive assumption, worker w plays with v∗w that is the best re-
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sponse to an unbiased supervision. Let b∗w be a bias of worker w. According to Proposition 3.20,

superior w induces penalty c(vu−2bub∗w + v∗w) to worker u. Loss L of worker u under superior

w is

L = k fu(vu)+ cvu−2cbub∗w+ v∗w .

The expected loss L across different types of superiors is

E[L] = k fu(vu)+ cvu−2cbuE[b∗w]+E[v∗w] .

Due to the assumption on the population of workers, we have E[b∗w] = 0. Therefore, the best

response of worker u is to minimize (k fu(vu)+ cvu), i.e. to play with the error probability v∗u

(Equation 3.21). This finishes the inductive step and the proof of the theorem.

3.7 Incentives Schemes with Multiple Reviews per Item

In the incentive schemes proposed in the previous sections, many tasks will have

only one worker assigned to it. In this section, we consider the case of crowdsourcing with

redundancy, i.e., when each tasks has multiple workers assigned to it. This can be useful when

it is possible to aggregate the answers produced by the workers into a single, higher accuracy

answer.
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3.7.1 One Level Supervised Schemes

When a task is performed by multiple workers, verifying a single task i can be used

to verify all the workers in ∂i. The supervisor can leverage this in order to try to minimize

the number of tasks to be verified, while guaranteeing a worker verification probability p that

satisfies Theorem 1. We will show that when a graph G of tasks and workers is given, i.e. when

we do not have control over task allocation, then constructing the smallest subset S is N P -

hard, and it can be proved by reduction from vertex-cover. However, if we can control tasks

allocation, then we can easily construct graphs on which the set of tasks that need verification

is as small as possible.

The assignment graph is given. We first study a scenario in which the worker-task assignment

is fixed, and we must choose the subset S ⊆ I of tasks verified by the supervisor. When the

supervisor examines a task i ∈ I, she evaluates all the workers ∂i who were assigned to the task

i. Figure 3.3a illustrates a case when examining 3 tasks is enough to evaluate all the workers.

The supervisor wants to spend the least amount of effort to evaluate at least m workers.

For the case p = 1, or m = |U |, the supervisor needs to find the smallest subset of tasks such

that every worker is assigned one task from the subset. We name the problem of finding such

a set the Superior Assignment problem (abbreviated to SA). The following theorem shows that

the Supervisor Assignment Problem is N P -hard.

Theorem 9. Supervisor Assignment problem is N P -hard.

Proof. We will show that finding the smallest vertex cover for any graph is an instance of the

Supervisor Assignment problem. Thus, solving the Supervisor Assignment problem is at least
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as hard as solving Vertex Cover.

Let G = (V,E) be an arbitrary graph with vertexes V and edges E. We construct a

bipartite revision graph G′ for a set of workers U and set of items I by taking U = E and I =V :

that is, we use workers in our bipartite graph to represent the edges of the original graph. Each

worker u ∈ U is assigned to review items v1,v2, where in G the edge u connects v1 and v2.

The graph G′ is called the incidence graph [39]. It is immediate to see that a subset of vertices

V ′ ⊆V is a vertex cover for G if and only if picking all items in V ′ enables the verification of all

workers E of G′. Thus, Vertex Cover can be reduced to the Supervisor Assignment problem.

We now show that, if every worker is assigned at most k tasks, there are fast k-

approximation algorithm for SA. A k-approximation algorithm finds a subset S′ of tasks such

that |S′|< k|S|, where S is the optimal solution.

We will show that the SA problem on graph G is equivalent to the VC problem on

a hypergraph with edge size at most k. A hypergraph H = (V,F) is a set of vertices V and

hyperedges F . A hyperedge f ∈ F connects a subset of edges from V . Hypergraph H has

edge size at most k if every edge f ∈ F contains at most k nodes. There are known simple

k-approximation algorithms for VC on k-bounded hypergraphs [41].

Proposition 2. The Supervisor Assignment problem for a bipartite review graph G = (U ∪ I,E)

with degree at most k is equivalent to Vertex Cover for a hypergraph with edge size at most k.

Proof. The SA problem is immediately equivalent to a VC cover for a hypergraph that has U as

vertex set, and has I as edge set, where each edge i ∈ I connects the vertices that correspond to

the workers to which i is assigned.
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A simple k-approximation algorithm works as follows. Let G = (V ∪F,E) be a bi-

partite graph and S = /0. While set E is not empty, we randomly choose an edge (w, f ) ∈ E,

add node w to set S, and delete all edges incident to w or f . When E is empty, set S is a

k-approximation to the SA problem on graph G.

The assignment graph can be constructed. If we can construct the assignment graph, then it

is easy to ensure optimality. When all workers have only one task in common, the supervisor

can evaluate all the workers by verifying only one task. From a crowdsourcing perspective,

however, concentrating effort of all workers on one assignment has the unwelcome effect that

all other tasks receive fewer workers. If we use worker multiplicity for a task in order to achieve

higher reliability in the solution of a task, this is undesirable. A natural assumption is to require

the review graph G to be k-regular.

To construct a k-regular review graph, we proceed as follows. We select n = d |U |k e

“peg” tasks first. Each of these peg tasks will be done by a set of k non-overlapping workers,

so by verifying the n peg tasks, the supervisor is able to verify all workers (p = 1). For smaller

values of the verification probability p, the supervisor can simply choose to verify a randomly

chosen subset of the peg tasks. We assume, of course, that the workers cannot compare their

work with each other, so that they cannot infer which tasks are the peg tasks among those they

are assigned. Once the peg tasks and their reviewers are chosen, we assign the other tasks to

workers in any way that leads to k-regularity. It is easy to see that this construction is optimal,

for |U | workers doing k tasks each cannot be verified by picking fewer than n items.
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Tasks

Supervisor

Workers

1 2 3 4 5 6

U :

I  :

S={2, 4, 5}

S={2, 4, 5}

(a) An example of a graph with all 6

workers being evaluated based on a set of

3 tasks. The supervisor inspects tasks 2, 4

and 5 that connected to all workers. The

tasks and workers the supervisor reaches

out are colored.

Tasks

Supervisor

Workers

Workers

1 2 3 4 5 6 7 8

I={1, 2, 3, 4, 5, 6, 7, 8}

I  ={2, 4, 5, 7}T

(b) A supervision hierarchy that is a union of a su-

pervision tree and a bipartite graph of workers and

tasks. Every task is assigned to at least 2 workers.

The set of tasks IT in the tree is a subset of tasks I in

the bipartite graph. Every worker is assigned at least

one tasks from the set IT .

Figure 3.3: A bipartite graph evaluated by the supervisor, and a supervision hierarchy.

3.7.2 Hierarchical Supervised Schemes

A supervision hierarchy combines a bipartite graph of workers and tasks and a super-

vision tree. The supervision tree provides an incentive while the bipartite graph ensures that

every task is assigned to several workers.

Definition 4. A supervision hierarchy is a connected graph that consists of two subgraphs: a

bipartite graph G = (U ∪ I,E) and a supervision tree T with workers UT and tasks IT . The set

of tasks IT is a subset of tasks I and for every worker u ∈U there is a task i ∈ IT such that the

edge (u, i) belongs to E.

Figure 3.3b illustrates such a supervision hierarchy. The supervisor provides an in-

centive for the two immediate subordinate workers while these workers provide the incentive to

the rest of workers by performing a total of 4 tasks.

For a given bipartite graph G the task of constructing the smallest supervision hierar-
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chy is N P -hard. Indeed, the subset IT of I has the property that every worker u ∈U has at least

one task from IT . Thus finding the smallest set IT is an instance of the Supervision Assignment

problem we discussed in the previous section; and showed that it is an N P -hard problem.

Theorems 5, 8 can be extended to show that supervision hierarchies provide incentives

to be truthful for the binary-verifiable and the quantitative settings respectively. Indeed, the

theorems hold directly for workers that belong to the tree T of the supervision hierarchy. On the

other hand, every worker in graph G of the supervision hierarchy has a superior worker from

the bottom level of tree T . Thus, workers in G can be considered as one extra layer of workers

within tree T .

3.8 Conclusions

We proposed and analyzed supervision incentive schemes that ensure that the optimal

strategy for workers is to be truthful. The schemes rely on hierarchies in order to scale to

arbitrarily large sets of items and workers, while requiring only a constant amount of work on

the part of the supervisor. In the hierarchy, workers are organized in layers, and every layer

exerts an incentive over the layer below, ensuring that the optimal behavior of the workers is

sufficiently precise. We show that the truthful incentive holds even in populations of workers

with diverse proficiency, where workers can have limited proficiency, provided that there are

enough proficient workers in the crowd. Interestingly, the only information the workers need

to know about the hierarchy is their level in it: they do not need to know the identities of

their supervisors or subordinates, nor which tasks they share, and all workers perform exactly
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the same work. In particular, there are not two flavors of “normal” and “metareview” tasks.

Our schemes graciously extend from binary verifiable tasks to quantitative tasks making them

relevant to a wide range of crowdsourcing applications.
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Chapter 4

Authorship Tracking for Revisioned Content

4.1 Problem Setting and Contributions

Versioned content is abundant on the Web. Wikipedia, and wikis, constitute the most

prominent example, and they account for a large portion of total page-views. Blogs with mul-

tiple authors, and pages served by content-management systems, are another example in which

the versioning is present, but not directly exposed to the viewer. Code is another prominent

example of revisioned content, and one that is becoming common on the web, thanks to the

success of sites like GitHub, where users can share their code repositories.

We study in this paper the problem of attributing revisioned content to its author, and

more generally, to the revision where it was originally introduced. This problem is insteresting

for several reasons. The Wikipedia Reuse Policy1 requires people reusing Wikipedia material

to either provide a link to the original article and revision history, or to cite the most prominent

authors of the content. Furthermore, in the Wikipedia community it is felt that proper content
1http://en.wikipedia.org/wiki/Wikipedia:Reusing_Wikipedia_content
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attribution is an important way to acknowledge and reward contributors, and to foster partici-

pation and contributions from communities where authorship has been traditionally recognized

and rewarded, such as the academic community [30, 61]. Tracking the authorship of Wikipedia

content is also an important tool in assisting editors, and viewers, in determining the origin of

assertions, and analyzing page evolution. In code, as in wikis, authorship tracking is useful to

properly reward contributors. Furthermore, authorship tracking can be useful in determining the

reason behind implementation choices. Several revisioning systems implement “blame” meth-

ods, which attribute every line to an author/revision, but this attribution is extremely crude and

imprecise, as it cannot cope with blocks of code that are transposed from one location to another,

or from one file to another — changes that are common when code is polished or refactored.

At first glance, the attribution problem for revisioned content seems trivial: surely we

can simply compare each revision with the previous one, detect any new content, and attribute

it to the revision’s author. Unfortunately, things are not quite so simple. Content in revisioned

systems is often deleted, only to be later introduced, and it is important to be able to trace the

authorship to the first original introduction. In Wikipedia, the content of pages is frequently

removed by vandals, and re-instated in subsequent revisions: this is illustrated in Figure 4.10,

where the periodic dips in page size correspond to content deletions. One way to guard against

such attacks is to check whether the most recent revision happens to coincide with one of the

previous revisions, in which case, authorship is carried over from the previous revision. How-

ever, this ad-hoc remedy cannot cope with broader attacks. For instance, attackers could first

use a fake identity to remove the page contents, then use their main identity to restore the page

to its previous contents, except for some small, imperceptible changes that foil the revision
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equality check: the whole page content would then be attributed to them. The goal of this work

is to present algorithms that can be used on Wikipedia, with the resulting authorship informa-

tion available to visitors. Once authorship information is prominently displayed, attacks that

aim at inflating the size of one’s authorship are likely, prompting our quest for general, robust

algorithms. A more general solution also benefits code attribution, since blocks of code are

commonly moved from one branch to another, or deleted and later re-inserted.

We propose to attribute authorship of revisioned content by comparing the content

of the most recent revision, with the entire content of all previous revisions. For every symbol

(word, or character, or token) in the most recent revision, we compute all statistically significant

matches with previous content: these are the matches whose sequence of symbols is rare enough

that the match is likely to be due to a shared origin, rather than serendipitous re-invention. The

symbol is then assigned the earliest possible origin that is compatible with all the matches. We

call this approach the earliest plausible attribution approach. We show that earliest plausible

attribution yields a more natural content attribution than other approaches, including approaches

based on longest matches with previous content, or approaches inspired by the edit-analysis

work of Tichy [76]. By comparing new revisions with the full set of previous revisions, the

earliest plausible attribution approach achieves resistance to page deletions and vandalism. As

Figure 4.9 (A0 vs. A1) later in the paper indicates, the resulting attribution differs by over 75%

from the attribution computed via comparisons to the most recent revision only, the difference

being due chiefly to deletion-reinsertion attacks and other vandalism.

We introduce efficient algorithms for earliest plausible attribution. If fed all revisions

at once, the algorithms can compute the content origin in time proportional to the size of the
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revision history, which is clearly optimal. More commonly, though, revisions are created and

must be analyzed one and a time. A practical implementation must maintain a summary of all

past revisions, and process a new revision on the basis of such a summary. We show that the

algorithm we propose uses a summary of size proportional to all the past change in the previous

revisions — and this change size is typically much smaller than the total revision history size,

since a new revision is usually identical to the preceding one except for a few small changes.

The algorithm runs in time proportional to the sum of the size of the previous summary, and the

size of the most recent revision. Again, since both summary and most recent revision must be

read, this is optimal.

4.2 Related work

The WikiTrust tool computes a value of reputation for Wikipedia authors and con-

tent, as well as the revision where each word was inserted [2, 3, 1]. The attribution algorithm

achieves resistance to vandalism by comparing the most recent revision not only with the pre-

ceding one, but also with a set of “reference” revisions, consisting of recent revisions that either

have high content reputation, or that were created by a high-reputation author. The approach is

fairly effective in practice, but the attribution depends on the reputation computation: there is

no independent characterization of the attribution that is computed, and the process is compu-

tationally involved. Furthermore, it is not clear how to extend the approach beyond Wikipedia.

In [1], several text matching algorithms are evaluated for their ability to explain the

editing process in Wikipedia. Tichy-inspired algorithms [76] were found to be highly efficient,

104



and as precise as any alternative, for the problem of comparing two revisions. In contrast, in

this work we show that for the problem of comparing a revision with all the preceding ones,

the earliest plausible attribution yields more efficient algorithms, and arguably more natural

results. The problem of attributing Wikipedia content has also been studied in [29], where an

algorithm based on hierarchical content matching is proposed. When a revision is compared

with the preceding revision, matches of large sections of text (sections, paragraphs, sentences)

are evaluated first, and a finer-grained algorithm based on the Python difflib library is used to

attribute any remaining content. The resulting attribution is reported to compare favorably with

the one computed by WikiTrust.

String matching is a very well studied problem; see e.g. [40] for an in-depth overview.

The algorithms presented in this paper make use of several results on string matching, including

tries and suffix trees. Sophisticated string matching algorithms developed for genetic applica-

tions involve a two-step process: a coarse alignment is computed between the strings, followed

by a finer-grained analysis of string differences (see [40] again). This “genetic” approach is

resistant to the transcription errors that occur in gene sequencing. The algorithms developed in

this paper are based instead on exact matching of short sequences. It is an interesting open ques-

tion whether the algorithms for attribution of revisioned content could benefit from the genetic

approach.

The attribution problem considered in this paper is a special case of information

provenance problem. For an overview of information provenance, see e.g. [10, 11] for prove-

nance in databases, and [74, 59, 32] for an overview in a broader context.

A
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Paper organization. After introducing some notation and concepts, we compare in

Section 4.4 conceptual methods of defining attribution, providing justifications for our choice of

earliest plausible attribution. In 4.5 we describe an efficient algorithm for earliest plausible attri-

bution, and we prove that the algorithm is optimal. We present empirical results obtained in the

analysis of the English Wikipedia in Section 4.6, and we conclude with some discussion of the

results and possible future work in Section 4.7. All the code and data for the algorithms can be

found at https://sites.google.com/a/ucsc.edu/luca/the-wikipedia-authorship-project.

4.3 Definitions

Revisions. We model revisioned content as a sequence of revisions ρ = ρ0,ρ1,ρ2, . . ..

Each revision ρ consists in a sequence of tokens t0, t1, . . . , tm−1, taken from a set T of tokens,

where len(ρ)=m is the length of ρ. We assume that len(ρ0)= 0, so that ρ0 represents the initial,

empty revision that exists before any subsequent revision is created. For ρ = t0, t1, . . . , tm−1,

we indicate with ρ[i] the token ti, and we write ρ[i : j] for ti, ti+1, . . . , t j−1. Depending on the

application, the tokens can be individual unicode characters, or they can be words in a text,

tokens of a programming language, and so forth. Given a sequence ρ of revisions, a global

position is a pair (n,k) with n≥ 0 and 0≤ k < len(ρk). Thus, a global position denotes a token

occurrence at a particular revision. In a Wikipedia page, for instance, the global position (n,k)

may denote the k-th word of the n-th revision.

Matches. A match M = (n, i, j,n′, i′, j′) between positions [i.. j− 1] of revision ρn

and positions [i′.. j′−1] of revision ρn′ , denoted informally (and more intuitively) as M = (ρn[i :
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j] = ρn′ [i′ : j′]), consists of two revisions ρn, ρn′ , and indices 0≤ i < j ≤ len(ρn), 0≤ i′ < j′ ≤

len(ρn′), such that:

• j− i = j′− i′ > 0, so that the matched portions have equal length and are non-empty;

• for all 0 ≤ k < j− i, we have ρn[i + k] = ρn′ [i′ + k], so that tokens at corresponding

positions of ρn and ρn′ match.

Given a match M = (ρn[i : j] = ρn′ [i′ : j′]), we denote by len(M) = j− i its length. We say that

a position k is matched by M if i ≤ k < j. For a position k matched by M, we let M(n,k) =

(n′,k− i + i′): thus, we think of matches as partial functions between global positions that

relate positions filled by equal tokens. We denote by M (ρn,ρm) the set of all matches between

revisions ρn and ρm. We say that a match M = (ρn[i : j] = ρn′ [i′ : j′]) is a sub-match of M′ =

(ρn[ı̂ : ĵ] = ρn′ [ı̂′ : ĵ′]) if ı̂≥ i, ĵ ≤ j, and ı̂− i = ı̂′− i′; we say that the sub-match is proper if at

least one of the two inequalities is strict.

Interesting matches. Our interest in matches is due to the fact that a match between

a later revision and earlier one may indicate that the content of the later revision originated

in the earlier one. Not all matches correspond to a common origin of the content, however.

For instance, in English, the two-word sequence “such that” is very common, and it would

be unreasonable to assume that they have been copied from an earlier revision whenever they

appear in a later one. In order to use matches to study authorship, we need to distinguish

fortuitous matches from those that indicate shared origin. An in-depth approach would likely

require a probabilistic model of content structure, and of how content propagates from one

revision to the next. Such a model could then be used to compute, for each revision token, a
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probability distribution over the places where the content might have originated.

We follow a simpler, discrete approach, where content is attributed deterministically

to a revision of origin. Deterministic attribution leads to efficient algorithms that can scale

to very large bodies of content, such as Wikipedia. We also remark that users of authorship

information generally expect a deterministic attribution: Wikipedia visitors and editors want to

know who wrote what, and copyright is based on deterministic, not probabilistic attribution.

Probabilistic attribution algorithms, and the question of their efficient implementation at scale

and possible accuracy advantages, remain a topic for future work.

Consider a match M = (ρn[i : j] = ρk[i′ : j′]) between two revisions ρn and ρk, with

k < n. To decide whether to attribute the sequence σ = ρ[i],ρ[i+1], . . . ,ρ[ j−1] to ρn or ρk, we

use a rarity function γ : T ∗ 7→ R+: intuitively, the larger γ(σ) is, the more likely it is that the

sequence σ in ρn and ρk shares the same origin. We require that a rarity function γ satisfies the

following two conditions:

• γ( /0) = 0: the rarity of the empty sequence is zero.

• For all σ ∈ T ∗ and all t ∈ T , we have γ(σ) < γ(σt): longer sequence are strictly rarer

than shorter ones.

A simple choice is γ(σ) = len(σ): the rarity of a sequence is equal to its length. More sophis-

ticated rarity functions can be used: for instance, if we know the occurrence probability pt of

each token t, we can take γ(t0, t1, . . . , tm) = ∏
m
i=0

1
pti

. Rarity functions based on the occurrence

frequency of multi-token sequences could also be used.

Given a match M = (ρn[i : j] = ρk[i′ : j′]), we define its interest γ(M) = γ(ρn[i],ρn[i+
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1], . . . ,ρn[ j−1]) to be equal to the rarity of the matched sequence of tokens. We define the in-

teresting matches between revisions ρn and ρm, according to the rarity function γ and threshold

∆, as the set of matches of rarity at least ∆:

M (ρn,ρm | γ≥ ∆) = {M ∈M (ρn,ρm) | γ(M)≥ ∆} .

We note that if we choose γ= len, the set M (ρn,ρm | len≥ l) will consist of all matches between

ρn and ρm that have length at least l. Given a position 0≤ k < len(ρn) of revision ρn, we denote

by M [k](ρn,ρm | γ≥ ∆) the interesting matches between ρn and ρm that have interest at least ∆

as measured by γ, and that match position k of ρn.

Origin labeling. An origin labeling associates with each token the revision where

the token originated. Precisely, an origin labeling Θ for a (finite or infinite) sequence ρ =

ρ0,ρ1,ρ2, . . . of revisions is a labeling that associates with each global position (n,k) of ρ its

origin Θ(n,k) ∈ IN, with Θ(n,k)≤ n. If Θ(n,k) = n, we say that the token ρn[k] is new in ρn.

4.4 Conceptual Algorithms

In some instances of revisioned content, such as Google Docs, full information about

the edit actions by each individual user are available. In this case, the authorship can be com-

puted by observing directly the typing, cutting, pasting, etc, performed by each editor. In many

other instances, however, we can observe only the outcome of the editing process, namely, the

sequence of revisions produced by the various users. This is the case for Wikipedia, and for

code repositories, since the environments where users edit the code are independent from the
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repositories. In these cases, we must infer authorship after the fact, by comparing the result of

the editing with previous content. There is no a-priori correct way to infer authorship, as we

cannot reconstruct the mental process of the editors to tell whether they are copying or rein-

venting. One of the contributions of this paper is to introduce the notion of earliest plausible

attribution for revisioned content, showing that it leads to plausible attribution in practice. We

remark that, even when the actions of users are observable during editing, as in Google Docs,

we can never be sure whether editors are retyping a passage, copying it from paper, or reinvent-

ing it anew: earliest plausible attribution can thus be a useful notion even when edit actions are

observable in detail. In this section we define earliest plausible attribution and we compare it

with other attribution methods. The question of efficient implementation will be the subject of

the next section.

4.4.1 Comparison with preceding revision

Algorithm A0 computes the origin of tokens in a revision ρn by comparing the revi-

sion with the previous one in the sequence. Given a sequence ρ = ρ0,ρ1,ρ2, . . . of revisions,

with ρ0 = /0 as the initial empty revision, algorithm A0 computes an origin labeling Θ for ρ

proceeding inductively on the revisions. The first revision ρ0, being empty, has a null labeling.

For each subsequent revision ρn, n > 0, algorithm A0 computes all interesting matches with the

preceding revision ρn−1. Every unmatched token in ρn is assigned an origin label of n. Each

matched token is assigned the origin label of the matching position in the previous revision; if

the token had multiple matches to different positions, the token is assigned the minimum of the

origin labels of the corresponding positions.
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Algorithm A0 Matches with previous revision.
Input: A sequence ρ = ρ0,ρ1,ρ2, . . . ,ρm of revisions, with ρ0 = /0, along with a rarity function

γ and a threshold ∆.

Output: An origin labeling Θ for ρ.

1: for revisions n = 1,2,3, . . . do

2: for all positions 0≤ k < len(ρn) of ρn do

3: Let M̂ := M [k](ρn,ρn−1 | γ≥ ∆).

4: if M̂ = /0 then

5: Θ(n,k) := n

6: else

7: Θ(n,k) := min
M∈M̂ Θ(M(n,k)).

8: end if

9: end for

10: end for

One may conceive a variant algorithm, termed Algorithm A0M, where only the most

interesting match(es) for each token are considered: the idea being that the longer the match, the

more likely it is to correspond to origin. Algorithms A0 and A0M may yield different labelings,

as illustrated in Figure 4.1. In the figure, we use sequence length as the rarity function, together

with a threshold of 3, so that matches that are 3 or more tokens are considered interesting. In

labeling symbols b c in ρ3, Algorithm A0 considers two interesting matches: (ρ3[0 : 3] = ρ2[0 :

43), involving a b c, and (ρ3[1 : 6] = ρ2[4 : 9]), involving b c z z z. The first match yields

origin 1 1 for b c, the second 2 2. The origin assigned by A0 is the least of these two, namely,

1 1. Algorithm A0M, on the other hand, considers only the second match, as it is longer, and

assigns to b c origin 2 2.
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This example highlights why we prefer to consider all interesting matches, rather than

just the longest ones: even though a b c in ρ3 matches a b c in ρ1, it is assigned origin 1 2

2 according to A0M. We take the point of view that a match that is interesting (with a matched

sequence of tokens that is sufficiently rare) denotes a common origin of the content. If there is

more than one interesting match for a token position, we look at all such interesting matches as

possible explanations for the origin of the content, and we err on the side of the oldest possible

attribution, yielding the min in line 7 of Algorithm A0.

Algorithm A0M Origin via most interesting matches with previous revision.
Input: A sequence ρ = ρ0,ρ1,ρ2, . . . ,ρm of revisions, with ρ0 = /0, along with a rarity function

γ and a threshold ∆.

Output: An origin labeling Θ for ρ.

1: for revisions n = 1,2,3, . . . do

2: for all positions 0≤ k < len(ρn) of ρn do

3: Let M̂ := M [k](ρn,ρn−1 | γ≥ ∆).

4: if M̂ := /0 then

5: Θ(n,k) = n

6: else

7: Let M̃ = argmax
M∈M̂ γ(M).

8: Θ(n,k) := min
M∈M̃ Θ(M(n,k)).

9: end if

10: end for

11: end for
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4.4.2 Earliest plausible attribution

Algorithm A0 (and A0M) relies on comparisons with the immediately preceding re-

vision only. In many relevant examples of versioned content, content can be deleted from one

revision only to reappear several revisions later. For instance, the content of Wikipedia pages is

frequently deleted by vandals. If authorship is determined via a comparison with the immedi-

ately preceding revision only, then an editor who restores the contents of a Wikipedia page after

it is deleted would be attributed the authorship of all the restored content. As these periodic

acts of vandalism that destroy most of a page’s content are common on Wikipedia, authorship

algorithms that are based only on comparisons with the immediately preceding revision will

grossly mis-attribute content, as we will show experimentally in Section 4.6.

Our preferred algorithm for attribution of revisioned content, Algorithm A1, com-

pares the latest revision with all the previous revisions, looking for matches with any prior

content, rather than just content in the immediately preceding revision. We call this process

earliest plausible attribution, since the attribution it produces is the earliest that is compatible

with an explanation by interesting matches. Figures 4.2 and 4.3 provides a comparison of algo-

ρ3: a1 b1 c1 z2 z2 z2

ρ2: a1 b1 c1 x2 b2 c2 z2 z2 z2

ρ1: a1 b1 c1

(a) A0

ρ3: a1 b2 c2 z2 z2 z2

ρ2: a1 b1 c1 x2 b2 c2 z2 z2 z2

ρ1: a1 b1 c1

(b) A0M

Figure 4.1: A sequence of revisions, with origin labeled according to algorithms A0 and A0M.

We represent each revision by its list of tokens, using letters to denote tokens. The origin labels

are computed for a rarity function equal to sequence length, and threshold of 3. We write above

every token the origin that the algorithm assigns to it.
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rithm A0 and A1 in presence of a delete-and-restore attack, as common on Wikipedia, and of a

more complex attack involving content that is deleted, then gradually re-instated.

Algorithm A1 Origin via interesting matches with all preceding revisions.
Input: A sequence ρ = ρ0,ρ1,ρ2, . . . ,ρm of revisions, with ρ0 = /0, along with a rarity function

γ and a threshold ∆.

Output: An origin labeling Θ for ρ.

1: for revisions n = 1,2,3, . . . do

2: for all positions 0≤ k < len(ρn) of ρn do

3: Let M̂ :=
⋃

0<m<n M [k](ρn,ρm | γ≥ ∆).

4: if M̂ = /0 then

5: Θ(n,k) := n

6: else

7: Θ(n,k) := min
M∈M̂ Θ(M(n,k)).

8: end if

9: end for

10: end for

4.4.3 Tichy-based matching

One of the better-known algorithms for generating edit differences between revisions

is due to Tichy [76]. Since the Tichy algorithm performs well in explaining the edit history of

Wikipedia [1], it is of interest to adapt it to origin computation and compare it to A1. Given a

revision ρn = t0, t1, . . . , tm−1, the Tichy-based Algorithm A2 searches revisions ρ0, . . . ,ρn−1 for

the longest prefix of t0, t1, . . . , tm−1. If this longest prefix is, say, t0, t1, . . . , tk, with k ≤ m−1 and

γ(t0, t1, . . . , tk)> ∆ for the chosen rarity function γ and threshold ∆, then the algorithm fixes the
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ρ4: a4 b4 c4 x4 f4 g4 h4

ρ3: p3 q3

ρ2: a1 b1 c1 x2 f1 g1 h1

ρ1: a1 b1 c1 f1 g1 h1

(a) A0

ρ4: a1 b1 c1 x2 f1 g1 h1

ρ3: p3 q3

ρ2: a1 b1 c1 x2 f1 g1 h1

ρ1: a1 b1 c1 f1 g1 h1

(b) A1

Figure 4.2: A sequence of revisions, with origin labeled according to algorithms A0 and A1,

with rarity equal to length and threshold 3. This sequence illustrates a delete-and-restore event,

common on Wikipedia.

ρ6: a4 b4 c4 d4 e6 x6 w6 g6 h6 l6

ρ5: q3 r3 a4 b4 c4 d4 f5 g5

ρ4: p3 q3 r3 a4 b4 c4 d4

ρ3: p3 q3 r3

ρ2: a1 b1 c1 d1 e1 x2 f1 g1 h1 l1

ρ1: a1 b1 c1 d1 e1 f1 g1 h1 l1 m1

(a) A0

ρ6: a1 b1 c1 d1 e1 x2 w6 g1 h1 l1

ρ5: q3 r3 a1 b1 c1 d1 f5 g5

ρ4: p3 q3 r3 a1 b1 c1 d1

ρ3: p3 q3 r3

ρ2: a1 b1 c1 d1 e1 x2 f1 g1 h1 l1

ρ1: a1 b1 c1 d1 e1 f1 g1 h1 l1 m1

(b) A1

Figure 4.3: A sequence of revisions, with origin labeled according to algorithms A0 and A1,

with rarity equal to length and threshold 3. In this sequence, content is first deleted and replaced

with spam, then almost entirely restored.

origin of t0, t1, . . . , tk in ρn according to the origin of the matching tokens (taking the minimum,

in case the longest prefix appears multiple times). The algorithm then proceeds searching for

the longest prefix of the remaining unlabeled portion tk+1, tk+2, . . . , tm−1. If no longest prefix

can be found, or if the longest prefix from t0 has rarity below the threshold, then t0 is labeled as

having origin n, or Θ(n,0) := n, and the search continues from the remaining unlabeled portion

t1, t2, . . . , tm−1. The process continues until the whole of ρn has been labeled according to its

origin.

Figure 4.4 compares the origin labelings computed by Algorithms A1 and A2. We see
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Algorithm A2 Origin via Tichy matching with all preceding revisions.
Input: A sequence ρ = ρ0,ρ1,ρ2, . . . ,ρm of revisions, with ρ0 = /0, along with a rarity function

γ and a threshold ∆.

Output: An origin labeling Θ for ρ.

1: for revisions n = 1,2,3, . . . do

2: k := 0

3: while k < len(ρn) do

4: Search in ρ0, . . . ,ρn for the longest matching prefixes of tk, tk+1, . . . , tlen(ρn)−1. Let

tk, . . . , tm be the longest matched prefix, and let A = {(n1,k1), . . . ,(np,kp)} be the (pos-

sibly empty) set of pairs where the longest matches occur.

5: if A 6= /0∧ γ(tk, . . . , tm)≥ ∆ then

6: for i ∈ {0,1, . . . ,m− k} do

7: Θ(n,k+ i) := min1≤ j≤p Θ(n j,k j + i)

8: end for

9: k := m+1

10: else

11: Θ(n,k) := n

12: k := k+1

13: end if

14: end while

15: end for
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ρ4: a3 b3 c1 d1 a1 m1

ρ3: a3 b3 c2 d2 g2 h2

ρ2: c2 d2 g2 h2

ρ1: c1 d1 a1 m1

(a) A1

ρ4: a3 b3 c2 d2 a4 m4

ρ3: a3 b3 c2 d2 g2 h2

ρ2: c2 d2 g2 h2

ρ1: c1 d1 a1 m1

(b) A2

Figure 4.4: A sequence of revisions, as labeled by Algorithms A1 and A2 with rarity equal to

length and threshold 3.

that Algorithm A2 attributes to the tokens c d a m in ρ4 origins 2 2 4 4, even though these

tokens constituted the first revision ρ1. The attribution 1 1 1 1 computed by A1 seems more

appropriate.

4.4.4 Properties

Given a sequence of revisions ρ0,ρ1,ρ2, . . . and two origin labelings Θ, Θ′, we write

Θ≤Θ′ if Θ(n,k)≤Θ′(n,k) at all positions n,k of the sequence; we write Θ < Θ′ if Θ≤Θ′, and

if there is at least a position (n,k) where Θ(n,k)< Θ′(n,k). The following property establishes

that, among A0, A0M, and A1, Algorithm A1 computes the earliest attribution and A0M the

latest.

Property 1. Let ΘA0, ΘA0M, and ΘA1 be origin labelings computed by Algorithms A0, A0M,

and A1 respectively for a sequence of revisions. Then, ΘA1 ≤ΘA0 ≤ΘA0M. Moreover, there are

sequences of revisions for which each of two above inequalities is strict.

Proof. The weak inequalities follow from the fact that, in deriving the label of a token, the

matches considered by A0M are a subset of those considered by A0, which are in turn a subset

of those considered by A1. The fact that the inequalities can be strict is witnessed by Figure 4.1
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and 4.2.

If a revision occurs twice in the revision history, Algorithm A1 assigns to the later oc-

currence of the revision an origin labeling that is no greater than that of the first occurrence; the

labeling can in fact be strictly smaller. This property makes precise the fact that Algorithm A1,

as well as its efficient implementation A3 presented in the next section, are resistant to vandal-

ism. Indeed, consider a sequence ρ0, . . . ,revi, . . . ,ρk of revisions, where vandals try to “steal

authorship” of content by producing revisions ρi+1,ρi+2,ρk−1, until the page is finally restored

to its good prior state ρi = ρk. The property implies that no content in ρk becomes attributed to

any of the vandal authors of ρi+1, . . . ,ρk−1, nor to the user who restored the previous state of the

page.2 The property holds not only for entire revisions, but also for any sufficiently rare portion

of its content.

Property 2. Consider a sequence of revisions ρ0, . . . ,ρi, . . . ,ρk, and a match M = (ρi[l : m] =

ρk[l′ : m′]) that is sufficiently interesting. Let Θ be the origin labeling computed by A1. Then,

Θ(k,m+ j) ≤ Θ(i,m′+ j) for all 0 ≤ j < m− l, and there are cases where the inequality can

be strict.

Proof. The result follows from the fact that the matches for ρk[l′ : m′] include ρi[l : m]. The fact

that the inequality can be strict is illustrated in Figure 4.5.

2In fact, this statement is true only under the assumption that the entire content of ρi = ρk has a rarity above the
threshold chosen for Algorithm A1. This is the usual case in practice, and can be made the case always by including
start and end markers in each revision, and considering interesting any match that includes such end markers.
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ρ5: a3 b3 c1 d1 g2 h2

ρ4: a3 b3 c1 d1 a1 m1

ρ3: a3 b3 c2 d2 g2 h2

ρ2: c2 d2 g2 h2

ρ1: c1 d1 a1 m1

Figure 4.5: A sequence of revisions, as labeled by Algorithm A1 with rarity equal to length and

threshold 3. Note that ρ5 = ρ3, yet the origin labels for some tokens in ρ5 are smaller than the

corresponding ones in ρ3.

4.5 Efficient Algorithms

In the previous section, we presented various conceptual algorithms for attributing

origin to versioned content. The algorithms presented there are extremely inefficient, and have

conceptual value only. In this section, we examine the question of efficient implementation for

these conceptual algorithms.

Input size and change size. Given a sequence of revisions ρ = ρ0,ρ1, . . . ,ρn, the

input size for our attribution algoirthms is |ρ|= ∑
n
i=0 len(ρi) (assuming that tokens can be rep-

resented in constant space). In revisioned content, it is often the case that only a small portion

of the content is modified at each revision, so that consecutive revisions differ only in a few

tokens. It is thus insightful to study the performance of the algorithms not only as a function of

the size of the input, but also as a function of the size of the change that occurred. To this end,

given two consecutive revisions ρ, ρ′, we define ∆(ρ,ρ′) = ∑
m
i=1 |βi|+∑

m
i=1 |γi|, where β1, . . . ,βk
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and γ1, . . . ,γm are the shortest sequences so that we can write:

ρ = α0β1α1β2α2 · · ·βnαn

ρ
′ = α0γ1α1γ2α2 · · ·γnαn

In other words, we write ρ and ρ′ as composed of maximal sequences of unchanged portions of

text α0, . . . ,αm, and of portions β1, . . . ,βm in ρ that will be replaced by sequences γ1, . . . ,γm in

ρ′. We then define the change size change(ρ) of ρ0,ρ1, . . . ,ρn as change(ρ) = ∑
n−1
i=0 ∆(ρi,ρi+1).

Summary size and one-revision update. Revisioned content is produced, as the

name implies, one revision at a time. When computing the origin of the tokens in the newest

revision ρn, it would be impractical to read and re-process all previous revisions ρ0, . . . ,ρn−1.

Practical algorithms rely on a summary Sn−1 of ρ0, . . . ,ρn−1, containing all the information

that the algorithm needs to know about the preceding revisions to attribute later revisions. The

algorithms compute the origin labeling for ρn on the basis of Sn−1 and ρn, producing as output

both Sn and the origin labeling for ρn. We refer to this computation as the one-revision update.

We will thus study how the summary size, and the running time for the one-revision update

depend on the input size and change size.

4.5.1 Algorithm A3

Consider a fixed a rarity function γ and a rarity threshold ∆. We say that a sequence of

tokens t1, t2, . . . , tn is minimally interesting if γ(t1, t2, . . . , tn)≥∆, and at least one of γ(t2, . . . , tn)<

∆ or γ(t1, . . . , tn−1)< ∆ holds. When the rarity function is simply the number of tokens, and the
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rarity threshold ∆ is an integer, then the minimally interesting sequences are the sequences

consisting of ∆ tokens. We say that a match M = (ρn[i : j] = ρn′ [i′ : j′]) is minimally interesting

if ρn[i],ρn[i+ 1], . . . ,ρn[ j− 1] is minimally interesting. To obtain an efficient implementation

of Algorithm A1, we start from the observation that in Step 3 of Algorithm A1, we need to

consider only minimally interesting matches.

Lemma 1. If in Step 3 of Algorithm A1 the set M̂ is limited only to minimally interesting

matches, the labeling computed by the algorithm is unchanged.

Proof. For a token tk of ρn, let M be a match realizing the minimum in Step 7 of Algorithm A1,

and let ti, . . . , t j be the matched sequence, with i≤ k≤ j. If M is minimally interesting, the result

holds. If M is not minimally interesting, then both sub-matches for ti, . . . , t j−1 and ti+1, . . . , t j are

interesting, and tk belongs to one of them. Continuing in this fashion, we can find a submatch

M′ of M that contains tk and that is minimally interesting. Since tk would be assigned the same

origin under M or M′, the result holds.

This result suggests implementing Algorithm A1 in terms of a trie. A trie T is a

tree whose edges are labeled with tokens, and such that the edges outgoing from a node are

labeled by distinct tokens. We say that a sequence of tokens t1, t2, . . . , tm belongs to the trie

T , written t1, t2, . . . , tm ∈ T , if there is a path from the root labeled with the sequence, and

we use the sequence to refer to the node where the path ends. If the sequence t1, t2, . . . , tm is

minimally interesting, we say that the corresponding node is minimally interesting. If γ = len

and ∆ is an integer, the minimally interesting nodes are those at depth ∆ in the trie. We denote

by ⊥ the empty trie consisting only of a root node, and we denote by Ins(T ; t1, . . . , tm) the
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root

c d    d    

3 3 2

a b c    

3 2 2

b c d    

1 1 1 1 1 1

a  

2 2 2

 g   a m  

2 2 2

 g h  

Figure 4.6: Trie resulting after processing revisions ρ1,ρ2,ρ3 as in Figure 4.4.

result of creating a path labeled by t1, . . . , tm in T in the trie. In the implementation of A1, we

use tries to represent all the minimally interesting sequences of tokens that have occurred in

past revisions. Each minimally interesting node t1, . . . , tm of the trie is labeled with the origin

k1, . . . ,km = `(t1, . . . , tm) of the sequence of tokens t1, . . . , tm. This yields Algorithm A3.

Figure 4.6 illustrates the trie resulting after processing revisions ρ1,ρ2,ρ3 as in Fig-

ure 4.4, for a rarity function equal to length, and threshold 3. The leaf nodes are the minimally

interesting nodes. To save space in the trie, we omit the non-interesting nodes that have a single

child, concatenating the labels of the edges leading into and out of such nodes.

The following theorem shows that Algorithms A3 and A1 compute the same origin

labels.

Theorem 1. Algorithm A3 computes the same origin labels as Algorithm A1.

To state the proof of this theorem, consider a sequence σ = t1, . . . , tk occurring at

least once in a set of revisions ρ0, . . . ,ρm that has been labeled according to its origin by Algo-

rithm A1. For 1 ≤ j ≤ k, let p j be the minimum label that token t j is assigned in any of these
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Algorithm A3 Implementation of A1 in terms of tries.
Input: A sequence ρ = ρ0,ρ1,ρ2, . . . ,ρm of revisions, with ρ0 = /0, along with a rarity function

γ and a threshold ∆.

Output: An origin labeling Θ for ρ.

1: T :=⊥
2: for revisions n = 1,2,3, . . . do

3: for all positions 0≤ k < len(ρn) of ρn do

4: Θ(n,k) := n

5: end for

6: for all minimally interesting sequences tk, . . . , tm of ρn do

7: if tk, . . . , tm ∈ T then

8: ik, . . . , im := `(tk, . . . , tm)

9: for all j ∈ [k, . . . ,m] do

10: Θ(n, j) := min{Θ(n, j), i j}
11: end for

12: end if

13: end for

14: for all minimally interesting sequences tk, . . . , tm of ρn do

15: if tk, . . . , tm ∈ T then

16: `(tk, . . . , tm) := Θ(n,k), . . . ,Θ(n,m)

17: else

18: T := Ins(T ; tk, . . . , tm)

19: `(tk, . . . , tm) := Θ(n,k), . . . ,Θ(n,m)

20: end if

21: end for

22: end for
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occurrences. We say that p1, . . . , pk is the minimal labeling of σ in ρ0, . . . ,ρm.

Proof. The proof proceeds by induction, using the inductive hypothesys that, after processing

revisons ρ0, . . . ,ρn, the trie T contains exactly all the minimally interesting sequences occurring

in ρ0, . . . ,ρn, each labeled with its minimal labeling in ρ0, . . . ,ρn.

Assume that Algorithm A3 has processed ρ0, . . . ,ρn−1 already, and is processing ρn.

First, we show that this inductive hypothesis implies that algorithms A1 and A3 pro-

duce the same labeling. There are two directions to the argument.

• Assume that Algorithm A1 assigns origin label p to token ρn[k]. Let M = (ρn[i : j] =

ρn′ [i′ : j′]) be the minimally interesting match for which the minimum in Line 7 is real-

ized (this exists, due to Lemma 1). By induction hypothesis, the trie T will contain the

sequence ρn′ [i′ : j′] with its minimal labeling, in which the token ρn[k] is labeled with

origin p. Thus, Algorithm A3 in Steps 3–13 will assign to ρn[k] an origin no larger than

p.

• Conversely, assume that Algorithm A3 assigns origin p to token ρn[k]. Then, T must have

contained a minimally interesting sequence ρn[ j : l] = t j, . . . , tl−1, for j ≤ k < l, where tk

is labeled by p. By inducton hypothesis, p is the minimal label of tk in all occurrences

of t j, . . . , tl−1 in ρ0, . . . ,ρn−1, indicating that Algorithm A1 also labels ρn[k] with label no

greater than p.

Second, we show that once ρn is processed by A3, the induction hypothesis holds

also for ρ0, . . . ,ρn. Consider a minimally interesting sequence σ occurring in ρn (the situation

of minimally interesting sequences not occurring in ρn is unchanged). The arguments in the first
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part of this proof ensure that once Steps 3–13 have terminated, the sequence σ in ρn is labeled

according to its minimal labeling. Steps 14–21 ensure then that the sequence σ is present in the

trie T , and is labeled in it according to its minimal labeling. This completes the induction step.

The following theorem characterizes the time and space requirements for Algorithm A3.

Theorem 2. If there is an integer M such that all token sequences of length at least M are

interesting, then given a sequence ρ0,ρ1,ρ2, . . . of revisions, Algorithm A3 can perform a one-

revision update for revision ρn using a summary of size O(change(ρ0, . . . ,ρn−1)), and in time

O(len(ρn)).

Proof. Algorithm A3 uses as summary for ρ0, . . . ,ρn−1 the trie Tn−1 resulting from the process-

ing of these revisions. To prove the space requirement, we can prove by induction over n that

|Tn| ≤ K · change(ρ0, . . . ,ρn), for some fixed K ≥ 0. Note that M is a bound for the length of

any minimally interesting sequence: in fact, any interesting sequence σ longer than M has its

leftmost M tokens, and rightmost M tokens, also form interesting sequences, contradicting the

minimality of σ. Let K = M(M+1)/2 be the maximum number of sequences of length at most

M that contain a given position. Note that a single insertion or deletion going from ρn−1 to ρn

affects at most K minimally interesting sequences in ρn. Therefore, at most K ·∆(ρn−1,ρn) new

minimally interesting sequences are going to be inserted in Tn−1 in order to obtain Tn. This

leads to the space bound for the summary.

To prove the time bound for the processing of ρn, it suffices to note that there are at

most len(ρn) minimally interesting matches involving ρn, and that processing each one of them
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(including accessing the trie for retrieving the minimal labeling of any match) takes constant

time (the trie has depth at most K).

Note that the theorem implies that the processing of a sequence ρ0, . . . ,ρn of revisions

can be done in time O(|(|ρ0, . . . ,ρn)).

If the rarity of a sequence of tokens is taken to be its length, then trivially all sequences

longer than the rarity threshold are rare. Another case when the length of minimally interesting

sequences of tokens is bounded is when the rarity of a sequence of tokens t1, . . . , tk is computed

as γ(t1, . . . , tk) =∏
k
i=1

1
pki

for some token probabilities 0≤ pki ≤ 1, and if there is an upper bound

c < 1 for the probability of any token.

These results suggest that Algorithm A3 is optimal: it is not possible to label a se-

quence of revisions in time less than the input size, and it is not possible to label a new revision

storing less information about the past than all change that has occurred (except if compres-

sion techniques are used; such techniques can also be applied to the representation of our trie

summaries).

In large-scale implementations of origin analysis, the summary of a revision sequence

cannot be stored permanently in-memory: rather, it must be read from persistent storage (such as

a database) before the algorithm analyzes a new revision, and written back to persistent storage

once the analysis is done. If the time to read and write the summary is included, then the time re-

quired for analyzing revision ρn of sequence ρ0,ρ1,ρ2, . . . is in O(len(ρn)+change(ρ0, . . . ,ρn)).
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4.5.2 Tichy matching

The Tichy-based Algorithm A2 is defined in terms of longest common matches. We

can obtain an efficient implementation in terms of suffix trees, which provide the most time

efficient implementation of the longest common substring problem [40]. A suffix tree is a tree-

like data structure that can represent all the suffixes ai,ai+1,ai+2, . . . ,am, 0 ≤ i < m, of a given

string a0,a1, . . . ,am; they can be constructed in time linear in the length of the string [81, 55, 77].

The construction of suffix trees can be adapted so that Sn−1 is a suffix tree representing all the

suffixes of ρ0,ρ1, . . . ,ρn−1; see [40] for similar adaptations. This leads to Algorithm A2s. The

origin information can be associated with the suffix tree in similar fashion to what was done for

the trie; we omit the details to conserve space. The drawback of this algorithm, compared to

A3, is that the size required by the summary is proportional to the size of all previous revisions,

rather than to the change size. This because a change involving a token in the middle of a

revision of length m gives rise to m/2 new suffixes on average, each of which corresponds to

at least one new suffix tree node. Figure 4.7 illustrates this: the change from “deer” to “dear”

gives rise to three new suffixes, corresponding to nodes 8, 9, and 10.

Theorem 3. Let M = |ρ0, . . . ,ρn| and D= change(ρ0, . . . ,ρn). Algorithm A2s produces the ori-

gin labels for revision ρn in time O(M); the time for labeling the complete sequence ρ0, . . . ,ρn

is O(M2). There are some examples of input for which the running time for ρn exceeds K ·D,

for any K ≥ 0, so that the running time is not O(D). The size of Sn is O(M), and is not in O(D).

Proof. The space and time results are a consequence of the results on the construction of suffix

trees [81, 55, 77, 40]. The existence of sequences in which the summary size is proportional
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Figure 4.7: Suffix tree for two string “deer” and “dear”. Solid edges correspond to both strings;

dashed edges correspond to “deer”; dotted edges correspond to “dear”. We omit for clarity the

unique terminal symbols that are added to each string.

to the entire input size, rather than to the change size, follows from the fact that changing a

single token in a revision of length m leads to the creation of a number of new suffixes that is

proportional to m (on average, equal to m/2). These new suffixes must be represented in the

suffix tree, so that Sn is in O(|ρ0, . . . ,ρn|) but not in O(change(ρ0, . . . ,ρn)).

4.6 Experimental Results

We have produced a robust, scalable implementation of Algorithm A3 that can be ap-

plied to very large wikis, including the English Wikipedia. Each revision is parsed in a sequence

of tokens, which consists of white-space separated sequences of non-whitespace characters: to-

kens thus loosely correspond to words. This tokenization step could be improved by considering

the structure of the MediaWiki markup language. We do not use individual (unicode) charac-
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Algorithm A2s Origin via Tichy matching with all preceding revisions, implemented via suffix
trees.
Input: A sequence ρ = ρ0,ρ1,ρ2, . . . ,ρm of revisions, with ρ0 = /0, along with a rarity function

γ and a threshold ∆.

Output: An origin labeling Θ for ρ.

1: Let S0 be the empty suffix tree.

2: for revisions n = 1,2,3, . . . do

3: k := 0

4: while k < len(ρn) do

5: Search in Sn−1 for the longest matching prefixes of tk, tk+1, . . . , tlen(ρn)−1. Let tk, . . . , tm

be the longest matched prefix, and let i1, . . . , ik

6: if A = /0∨ γ(tk, . . . , tm)≥ ∆ then

7: for i ∈ {0,1, . . . ,m− k} do

8: Θ(n,k+ i) := min1≤ j≤p Θ(n j,k j + i)

9: end for

10: k := m+1

11: else

12: Θ(n,k) := n

13: k := k+1

14: end if

15: end while

16: Update Sn−1 by adding all the suffixes of of ρn, yielding Sn.

17: end for
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ters as our unit of tokenization, for two reasons. First, using words as attribution units tends to

produce more natural results, since contributors typically create or rearrange content in word

units; word-level attribution is also easier to display via coloring or other visual cues. Second,

using individual characters as tokens would lead to a larger size for the trie summary, as the trie

would grow deeper.

The algorithm uses as rarity function the length of a token sequence, and a config-

urable threshold. The algorithm does not use a rarity function that depends on token (word)

frequency, chiefly to save space by avoiding the need to store the frequency of a large number

of words; we may revisit this decision at a later time. For each wiki page P , the algorithm stores

in persistent storage the pair (n,Tn), consisting of the index n of the last revision of P that has

been processed, along with the labeled trie Tn representing the summary. When a new revision

ρm for P is produced, with m > n, the algorithm processes all revisions ρn+1, . . . ,ρm: there can

be multiple revision to analyze, since the algorithm may have been inactive at times (due to

system maintenance), or indeed, it may not have run yet on the page. Each of ρn+1, . . . ,ρm is

fed to the algorithm; the algorithm computes and stores the origin of these revisions, and finally

stores (m,Tm) associated with page P .

The code, and a demo of this implementation is available at https://sites.google.

com/a/ucsc.edu/luca/the-wikipedia-authorship-project, along with all the data used

for the experiments reported here. We provide experimental data computed on two revison

datasets:

• Dataset A: articles with more than 200 revisions in files wiki-00000066.xml.gz and wiki-

00000193.xml.gz. The dataset consists of 78k revisions in 75 articles.
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• Dataset B: articles with at least 1000 revisions occurring in files wiki-00000066.xml.gz,

wiki-00000193.xml.gz, wiki-00000134.xml.gz and wiki-00000384.xml.gz. The dataset

consists in 50 revisions.

The above *.xml.gz files were chosen at random among the first 1000 files obtained by split-

ting in 100-page portions a 2010 dump of the English Wikipedia. Unless otherwise noted, we

provide results for a rarity function equal to length, and threshold 4.

Content aging. In the editing of Wikipedia revisions, it occasionally happens that

vandals introduce vast amounts of spurious content. This content is almost immediately re-

moved by editors or non-vandal users. Yet, since our algorithms store a representation of the

entire history of each page, that spurious content would persist indefinitely in our trie summary.

This would offer an avenue to vandals for severely impacting our performance. To limit this

effects of vandalism, our implementation discards content that has not appeared in any recent

revision: this is acceptable in practice, since content that has been long removed from a page is

unlikely to be re-inserted. To this end, we label every node of the trie T used in Algorithm A3

with the node age, consisting of a pair (N,T ). The integer N and the timestamp T represents,

respectively, the most recent revision index and the most recent time when the node was tra-

versed by the algorithm. Once Algorithm A3 has processed a revision n produced at time Tn,

and before writing back the trie to persistent storage, we prune from the trie all the nodes that

have both n−N > ∆N and Tn−T > ∆T , where the thresholds ∆N and ∆T are configurable. Ta-

ble 4.8 compares the difference in attribution and size arising from different aging thresholds.

The table was obtained from dataset A.
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attribution
difference trie size

∆N = 200, ∆T = 180 days 1.3 % 70 %
∆N = 100, ∆T = 90 days 2.1 % 55 %

Figure 4.8: Attribution difference, and trie size, for various aging thresholds, as compared to no

content aging.

Attribution comparison among A0, A1, A2. Figure 4.9 plots the difference in the

attributions computed by Algorithms A0, A1, and A2, for a rarity function equal to token se-

quence length, and various values of rarity threshold. These comparisons have been done with-

out using any age-driven pruning of trie nodes in Algorithm A1, to make the comparison fair

across algorithms. The figure gives the tokens with different attribution, as percentage of the to-

tal tokens, for dataset A. As we can see, Algorithm A1 computes an attribution that is over 75%

different from the one computed by Algorithm A0. This is due to the fact that Algorithm A0

considers new any content that is re-inserted after a deletion. As an example, Figure 4.10 plots

the size of the revisions, and summary trie, for the Wikipedia article on “Dance Dance revo-

lution”; the frequent dips in revision size correspond to content deletions by vandals. From

Figure 4.9 we see also that the attribution difference between algorithms A1 and A2 is of only

a few percentage points, when the length of minimally interesting matches is 3 or more. The

advantage of Algorithm A1 over A2 lies in its efficient implementation.

Size of trie and suffix tree summaries. Figure 4.11 plots the ratio between the size of

the trie serialized in Json, and the average size of the last 10 revisions, for aging values ∆N = 100

and ∆T = 90 days and dataset B. We use the average size of the last 10 revisions, rather than the

size of the last revision, to avoid very large spikes in the ratio when the content of a revision is
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Figure 4.9: Difference between attribution by A0, A1 and A2 for length rarity function with

various threshold.

deleted by vandals. The average ratio is approximately 10; the ratio can be reduced to about 3 by

compressing the trie serializations with gzip. This is a very practical amount of storage, which

is dwarfed in the English Wikipedia by the amount of storage required to store all revisions of

every page.

In Figure 4.12 we compare the size of the trie summaries used by Algorithm A3, with

the size of the suffix tree summaries used in implementing Algorithm A2. Dataset B was used,

and no content aging was applied, to make the comparison fair. The trie sizes are tied to the

change between revisions, and since we discard text that has been dead for long, they tend to be
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Figure 4.10: Length of revisions (in number of characters) of the article “Dance Dance Revolu-

tion” compare to length of json string with the trie summary. Dips in the revision size indicate

content deletions due to vandalism.

a constant multiple of the revision size. On the other hand, the suffix tree sizes are proportional

to the total size of past revisions.

Time performance. Figure 4.13 summarizes the time performance of Algorithm A3,

as a function of revision size. In the figure, the algorithm time is the time required by steps 3–

21, as well as content aging, of A3; the serialization time is the time required for serializing and

deserializing the trie into json. As we see, these two times are of the same order of magnitude,

indicating that there is limited scope for improvement by optimizing the implementation of

steps 3–21. The figure was obtained using dataset A.

4.7 Conclusions

We have considered so far revisioned content that consists in a single revisioned en-

tity. Most revisioned content, however, consists of multiple entities: a national Wikipedia con-
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Figure 4.12: Size comparison between trie summaries for A3 and suffix tree summaries for A2.

sists of a set of pages, each of which is versioned, and a code repository similarly consists

of multiple files, each revisioned. Furthermore, in modern revisioning systems such as git

(http://git-scm.com), the various revisions are organized in branches. Since code is com-

monly copied across files, and to a lesser extent, content is moved across Wikipedia pages, an

origin analysis that spans a whole repository is often desirable.

We can perform such repository-wide analysis with the algorithms we discussed in

this paper, by considering the stream of all revisions ρ0,ρ1,ρ2, . . . in the order they are created,

regardless of the entity (page, or file, or branch) to which they belong. The content of each

135

http://git-scm.com


0 1000 2000 3000 4000 5000 6000 7000 8000
Average revision size (in words)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ec

on
ds

algorithm time
serialization time

Figure 4.13: Time performance of algorithm A3. Each point in the plot represents an article,

with the average revision size on the X axis. The times required by attribution computation, and

trie serialization and deserialization, are reported on the Y axis.

new revision will be compared with all previous content, assigning origin via matching with

corresponding occurrences. The algorithms could be improved by considering as more likely

the matches that relate different versions of the same entity, as compared to matches that relate

different entities. For software repositories, which are of moderate size, and where revisions

are typically generated at low speed (even large industrial code bases have intervals between

revisions of several seconds), such a global origin analysis would be feasible. In the English

Wikipedia, however, several revisions per second may be created. From our experimental data,

the size of a global summary would about ten times the cumulative size of the most recent

revisions of all pages, leading to a size of approximately one terabyte. This size exceeds the

RAM memory easily available in a single, low-cost host. The design of a system capable of

comparing, in real time, every revision of Wikipedia with the whole of its past history would

be challenging, and the result expensive to operate. For this reason, in our implementation we

have opted to compare new revisions only with the previous content of the page to which the
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revisions belong. If required, we will address content moved across pages via specialized tools.

Compared to the algorithm of [29], the one presented here offers a simple mathe-

matical definition of authorship, is applicable to any revisioned content, comes with compexity

bounds and robustness characterization, and is well-suited to an implementation in which the

authorship information needs to be computed on-line, as revisions are made. Unfortunately, we

became aware of the work of [29] too late to be able to present here a quantitative comparison

of how well the two algorithms match a human perception of authorship on the Wikipedia.
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