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Abstract

Game Relations, Metrics and Refinements

by

Vishwanath Raman

Game models for formal analysis have seen significant research effort over the last two

decades. For the analysis of systems with non-deterministic behavior, games are a natural

model of choice for studying both co-operative and competitive behaviors of the sources

of non-determinism. In game models where the sources of non-determinism are treated

adversarially, we have that the properties verified, or refinements synthesized, are cor-

rect against all possible realizations of non-deterministic behavior. In areas such as secu-

rity protocols, where participants are rational and are primarily concerned with achiev-

ing their own objectives, and only secondarily concerned with violating the objectives of

other participants, games are a natural model of participant behaviors. There is active

ongoing research in both the theory and applications of games for verification, composi-

tional reasoning and synthesis. In this dissertation, we first develop the theory of approx-

imate behavioral equivalence and refinement in stochastic games and next explore games

for synthesis in two different domains. The first in the automatic synthesis of fair non-

repudiation protocols, a subclass of fair exchange protocols, used in e-commerce and the

second in synthesizing resource managers that ensure progress, and hence lack of starva-

tion, in multi-threaded C programs. Our results are derived from ideas in probabilistic

systems, Markov decision processes and stochastic games.
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Chapter 1

Introduction

The last few decades have seen the emergence of formal methods for the mod-

eling and analysis of hardware and software systems. A formal model of such systems is

finite state automata, also known as labelled transition systems. A state of a system is a ver-

tex in an automaton, labels, also called actions, represent inputs and labelled edges repre-

sent state transitions. Finite state automata may be (a) deterministic; the transition relation

is a function that maps every state action pair to a unique successor, (b) non-deterministic;

the transition relation maps every state action pair to one or more successors, or (c) prob-

abilistic; where the transition relation is a function that maps every state action pair to a

probability distribution over successor states.

The formal analysis of systems can take various forms, such as (a) verifying that

a model of a system has a certain behavior, (b) checking whether two or more models can

be composed to produce some desired behavior, (c) synthesizing an implementation from

a formal specification, such that all the behaviors in the specification are also present in

1



the implementation, (d) checking whether one model simulates another, in that all the be-

haviors of the second are also present in the first or if two models are bisimilar, in that they

produce identical behaviors. The behavior of a system, given an initial state, is defined as

the set of paths that can be induced from that state; a path being a sequence of states. A

property of system behavior is then a set of desired paths. The specification of these prop-

erties requires a logic, such as LTL or CTL [Pnu77, MP91, MP95], and their verification

requires amodel checker [CE81, QS81, CES83], which is a decision procedure that checks the

validity of statements in the logic using labelled transition systems as structures.

To verify that a property ϕ holds on all paths of a system, model checking is

tantamount to an emptiness check on the automata product of the implementation and

the negated property ¬ϕ; the automata being non-empty indicates the existence of a path

along which ϕ does not hold. The problem of checking whether two or more models can

be composed to produce some desired behavior has been studied in [dAH01, dAS03]. This

has lead to the development of Interface Theories where systems are modeled in terms of

their interaction with an environment. This in turn has lead to the analysis of composabil-

ity, which asks the question “Is there an environment which can instantiate the compo-

nents of a system, satisfying a set of desired properties of system behavior?”. The problem

of synthesis is the dual of the verification problem, where we seek to use the specification

to synthesize a system that is correct by construction, satisfying all the properties of the

specification, obviating the need for verification.

2



1.1 Game models

The formal models we study in this thesis are game models. We consider multi-

player games played for an infinite number of rounds over finite state spaces. The game

models we study are therefore finite state transition systems, where at each state of the

system one or more players have a choice of moves that they may select both simulta-

neously and independently. In non-deterministic game models, given a state and a set

of player moves, one for each player, the transition relation gives a set of possible suc-

cessor states. In probabilistic game models, given a state and a set of player moves, one

for each player, the transition relation is a function that returns a distribution over the

successor states. These games, known variously as stochastic games [Sha53] or concurrent

games [dAHK98, AHK02, dAM04], generalize many common structures in computer sci-

ence, from transition systems, to Markov chains [KSK66] and Markov decision processes

[Der70]. The most general game models we study are two-player concurrent stochastic

games, where both players have a choice of moves at each state. If only one player has

a choice of moves at each state, we get a turn-based game. If only one player has a choice

of moves at all states, we get a Markov decision process also known as a labelled transi-

tion system. Given a game model, a player strategy is a mapping that given a sequence

of states representing the history of the game, specifies the move that the player should

choose at the last state of that sequence. Once the players fix their strategies, a stochastic

game reduces to a probabilistic transition system also known as a Markov chain; an ordi-

nary stochastic process. In this thesis we are concerned both in extending the theory of

refinement relations and metrics to stochastic games and in the applications of game mod-

3



els to synthesize implementation refinements that are correct by construction. We defend

the following thesis statement:

Games and refinements are central to the formal analysis of concurrent reactive systems

and hence the study of refinement relations and metrics in games and the study of correct system

realizations as refinements of game models can significantly help in the design of such systems.

1.2 Research Contribution

This thesis is a two part thesis. In the first part, we concern ourselves with extend-

ing the theory of equivalence and refinement relations from transition systems to stochastic

games. In the second part, we show the effectiveness of game models for the realization

of correct systems as component refinements, using two applications; one on synthesizing

attack-free fair non-repudiation protocols in e-commerce and another on synthesizing re-

source managers that ensure progress for multi-threaded C programs. Parts of this work

appear in [dAFMR05, dAMRS07, dAMRS08, CdAMR08, CR10].

1.2.1 Metrics and Relations in Stochastic Games

The refinement of states is expressed by a relation, called the simulation relation.

One state simulates another, if for every transition that can be taken from the second, there

exists a transition that can be taken from the first (the simulating state), such that the des-

tination states are in the same simulation relation. The simulation relation is reflexive and

transitive. If in addition the relation is symmetric, then it is called a bisimulation rela-

tion. If two states are bisimilar, then they are considered equivalent; all paths originating

4



from bisimilar states will satisfy exactly the same set of properties. The usefulness of these

relations therefore stems from their logical characterization. A logic characterizes a bisimula-

tion relation iff all formulas expressible in the logic carry the same truth value in bisimilar

states. Similarly, a logic characterizes a simulation relation iff all formulas that hold in one

state also hold in its simulating states. The classical system relations are a basic tool in the

study of boolean properties of systems, that is, the properties that yield a truth value. As an

example, if a state s of a transition system can reach a set of target states R, written s |= 3R

in temporal logic, and t can simulate s, then we can conclude t |= 3R.

In transition systems, these relations classify states qualitatively; given two states,

they are either in the relation or they are not. In the case of probabilistic systems, since

transitions are probabilistic, a natural failing of these relations is that two states that have

dissimilar transition probabilities, but where the probabilities are very close to each other

will end up not being in the relation. We would therefore like a metric, which maps every

pair of states to a real number in an interval, say the unit interval, called their state dis-

tance, such that two states that are close in their transition probabilities should be close to

each other in distance. Further, since the underlying model we consider is probabilistic,

we would like our metric to be logically characterized by a quantitative logic; where every

formula is a mapping from states to a value in the unit interval giving the maximum prob-

ability of satisfying the formula at each state. For (finite-branching) transition systems,

and for the class of properties Φ expressible in the µ-calculus [Koz83b], state equivalence

is captured by bisimulation [Mil90]; for Markov decision processes, it is captured by prob-

abilistic bisimulation [SL94]. This means that for quantitative properties, the metric pro-

5



vides a tight bound for howmuch the value of a property can differ at states of the system,

and provides thus a quantitative notion of similarity between states. Given a set Φ of prop-

erties, the metric distance of two states s and t can then be defined as supϕ∈Φ |ϕ(s)− ϕ(t)|.

System metrics play a fundamental role in the study of the quantitative behavior

of systems. As an example, if a state s of a Markov chain can reach a set of target states

R with probability 0.8, written s |= P≥0.83R, and if the metric simulation distance from

t to s is 0.3, then we can conclude t |= P≥0.53R. The simulation relation is at the ba-

sis of the notions of system refinement and implementation, where qualitative properties

are concerned. In analogous fashion, simulation metrics provide a notion of approximate

refinement and implementation for quantitative properties.

The metrics and relations are connected, in the sense that the relations are the

kernels of the metrics (the pairs of states having metric distance 0). The metrics and

relations are at the heart of many verification techniques, from approximate reasoning

(one can substitute states that are close in the metric) to system reductions (one can col-

lapse equivalent states) to compositional reasoning and refinement (providing a notion of

substitutivity of equivalents). Metrics for Markov decision processes have been studied

in [DGJP99, vBW01a, vBW01b, DGJP03, DGJP02]. We extend the results on metrics for

Markov decision processes by introducing metrics and equivalence relations for concur-

rent stochastic games, with respect to the class of properties Φ expressible in the quantita-

tive µ-calculus (qµ) [dAM04, MM04]. Our contributions are as follows:

1. We define two metrics for stochastic games which we call the a priori metric and the

a posteriori metric. The definition of the a posteriori metric coincides with the metric

6



defined in [DGJP99] for Markov decision processes.

2. We show that for concurrent games the a priori and not the a posteriori metric is

logically characterized by qµ; the a priori metric bisimulation distance between two

states s and t, denoted [s ≃g t], has the property that [s ≃g t] = supϕ∈qµ |ϕ(s)− ϕ(t)|,

where ϕ(s) and ϕ(t) are the values ϕ assumes at s and t.

3. Moreover, the a priori metric is reciprocal, that is the metric distance remains un-

changed under a change of players; a desired property of a game metric as games

with omega-regular winning conditions are determined.

4. We show that the a priori and a posteriori metrics coincide for Markov decision pro-

cesses and turn-based games and that they may not coincide for concurrent games.

There are games where the a posteriori metric is strictly greater than the a priori met-

ric, indicating that the former is too fine a metric, that may distinguish states that

have identical valuations of all formulas in qµ.

To each metric is associated a kernel: the kernel of a metric is the relation that relates the

pairs of states that have distance 0; to each metric corresponds a metric kernel relation.

The kernel of the simulation metric is probabilistic simulation; the kernel of the bisimulation

metric is probabilistic bisimulation [SL94].

1.2.2 Discounted, Average and Total Rewards

We show that the a priori metrics are the canonical metrics for stochastic games,

by showing that besides being reciprocal and being logically characterized by qµ, they
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also provide a bound for the difference in long-run average and discounted average proper-

ties across states of a system. These average rewards play a central role in the theory of

stochastic games, and in its applications to optimal control and economics [Ber95, FV97].

Thus, the a priori metrics we introduce are useful both for system verification, and for per-

formance evaluation, supporting our belief that they constitute the canonical metrics for

the study of the similarity of states in a game. We point out that it is possible to define a

discounted version [≃g]α of the a priori bisimulation metric; however, we show that this

discounted metric does not provide a bound for the difference in discounted values. We

define a total metric, which provides a bound for the difference in discounted values, av-

erage reward values and total reward values across states of a system and show that the

kernel of all the metrics we develop in this thesis coincide.

1.2.3 Algorithms for Game Metrics

We next investigate algorithms for the computation of the metrics. The metrics

can be computed in iterative fashion, following the inductive way in which they are de-

fined. A metric d can be computed as the limit of a monotonically increasing sequence of

approximations d0, d1, d2, . . . , where d0(s, t) is the difference in value that variables can

take at states s and t. For k ≥ 0, dk+1 is obtained from dk via dk+1 = H(dk), where the op-

erator H depends on the metric (bisimulation, or simulation), and on the type of system.

Our main results are as follows:

1. Metrics for turn-based games and MDPs. We show that for turn-based games and

MDPs, the one-step metric operator H for both bisimulation and simulation can
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be computed in polynomial time, via a reduction to linear programming (LP). The

key step in obtaining our polynomial-time algorithm consists in transforming the

original sup-inf non-linear optimization problem into a quadratic-size inf linear op-

timization problem that can be solved via LP. We then present PSPACE algorithms

for both the decision problem of the metric distance between two states and for the

problem of computing the approximate metric distance between two states. Our

algorithms match the complexity of the best known algorithms for the sub-class of

Markov chains [vBSW08].

2. Metrics for concurrent games. For concurrent games, our algorithms for the H oper-

ator rely on decision procedures for the theory of real closed fields, leading to an

EXPTIME procedure with time-complexity O(|G|O(|G|5)).

3. Hardness of metric computation in concurrent games. We show that computing the exact

metric distance of states in concurrent games is at least as hard as computing the

value of concurrent reachability games [EY06, dAHK07], which is known to be at

least as hard as solving the square-root-sum problem in computational geometry

[GGJ76]. These two latter problems are known to lie in PSPACE, and have resisted

many attempts to show that they are in NP.

4. Kernel of the metrics. We present polynomial time algorithms to compute the simula-

tion and bisimulation kernel of the metrics for turn-based games and MDPs. Our al-

gorithm for the bisimulation kernel of themetric runs in timeO(n4) (assuming a con-

stant number of moves) as compared to the previous knownO(n9 · log(n)) algorithm

of [ZH07] for MDPs, where n is the size of the state space. For concurrent games the
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simulation and the bisimulation kernel can be computed in timeO(|G|O(|G|3)), where

|G| is the size of a game.

For turn-based games and MDPs, the algorithms for probabilistic simulation and

bisimulation can be obtained from the LP algorithms that yield the metrics. For probabilis-

tic simulation, the algorithm we obtain coincides with the algorithm previously published

in [ZH07]. The algorithm requires the solution of feasibility-LP problems with a number

of variables and inequalities that is quadratic in the size of the system. For probabilistic

bisimulation, we are able to improve on this result by providing an algorithm that requires

the solution of feasibility-LP problems that have linearly many variables and constraints.

Precisely, as for ordinary bisimulation, the kernel is computed via iterative refinement of a

partition of the state space [Mil90]. Given two states that belong to the same partition, to

decide whether the states need to be split in the next partition-refinement step, we present

an algorithm that requires the solution of a feasibility-LP problem with a number of vari-

ables equal to the number of moves available at the states, and number of constraints linear

in the number of equivalence classes. Overall, our algorithm for bisimulation runs in time

O(n4) (assuming a constant number of moves), considerably improving theO(n9 · log(n))

algorithm of [ZH07] for MDPs, and providing for the first time a polynomial algorithm for

turn-based games.

1.2.4 Games for Synthesis

In the second part of the thesis, we explore applications of stochastic games. We

consider the synthesis of systems from a set of specifications that formally capture desired
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behaviors. Weak co-synthesis, or co-operative synthesis, considers two processes A and Bwith

objectives ϕA and ϕB, and asks whether there exist refinements, A′ of process A and B′ of

process B, such that the closed system [[A′ ‖ B′]] satisfies both ϕA and ϕB. Classical co-

synthesis, or strictly competitive synthesis, considers two processes, a proponent process A

with an objective ϕ and an opponent process B, and asks whether there exists a refinement

A′ of A, such that the closed system [[A′ ‖ B]] satisfies ϕ against all possible behaviors

of B. Assume-guarantee synthesis, introduced in [CH07], considers two processes A and B,

with objectives ϕA and ϕB and asks whether there exists refinements A′ of A and B′ of B,

such that [[A′ ‖ B]] satisfies ϕB ⇒ ϕA, [[A ‖ B′]] satisfies ϕA ⇒ ϕB and [[A′ ‖ B′]] satisfies

ϕA ∧ ϕB. We show the usefulness of game models for synthesis through two applica-

tions. The first application is the automatic synthesis of attack-free fair non-repudiation

protocols, a subclass of fair exchange protocols, used in e-commerce. We consider weak,

classical and assume-guarantee synthesis and show that classical co-synthesis fails, weak

co-synthesis generates solutions that are not attack-free and are hence unacceptable, while

assume-guarantee synthesis succeeds. The second application is the automatic synthesis of

resource managers for multi-threaded C programs that manage system resources to ensure

all threads make progress, thus providing deadlock freedom.

1.2.5 Synthesis of Fair Exchange Protocols

The traditional paper-based contract signing mechanism involves two partici-

pants with an intent to sign a piece of contractual text, that is typically in front of them.

In this case, either both of them agree and sign the contract or they do not. The mech-

anism is “fair” to both participants in that it does not afford either participant an unfair
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“advantage” over the other. In digital contract signing, ubiquitous in the internet era, an

originator sends her intent to sign a contractual text to a recipient. Over the course of a set

of messages, they then proceed to exchange their actual signatures on the contract. In this

case, it is in general difficult to ensure fairness as one of the two participants gains an ad-

vantage over the other, during the course of the exchange. If the participants do not trust

each other, then neither wants to sign the contract first and the one that signs it first may

never get a reciprocal signature from the other participant. Moreover, as these contracts

are typically signed over asynchronous networks, the communication channels may pro-

vide no guarantees on message delivery. The same situation arises in other related areas,

such as fair exchange and certified email.

Many protocols have been designed to facilitate the exchange of digital signa-

tures. The earliest exchange protocols were probabilistic. Participants transmit successive

bits of information, under the expectation that both participants have similar computation

power, to detect dishonest behavior and stop participating in the protocol. These protocols

are impractical as the number of messages exchanged may be very large, and both partic-

ipants having similar computation power may not be realistic. Even and Yacobi [EY80]

first showed that no deterministic contract signing protocol can be realized without the

involvement of a third party arbitrator who is trusted by all participants. This was for-

malized as an impossibility result in [PG99], where the authors show that fair exchange

is impossible without a trusted third party (TTP) for non-repudiation protocols. A simple

protocol with a TTP has a TTP collect all signatures and then distribute them to the partici-

pants. But this is inefficient as it involves an online TTP to facilitate every exchange, easily
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creating a bottleneck at the site of the TTP. This has lead to the development of optimistic

protocols, where two participants exchange their signatures without involving a TTP, call-

ing upon the TTP to adjudicate only when one of the two participants is dishonest. These

protocols are called fair non-repudiation protocolswith offline TTP.

A fair non-repudiation protocol is therefore a contract signing protocol, falling un-

der the category of fair exchange protocols, that ensures that at the end of the exchange of

signatures over a network, neither participant can deny having participated in the proto-

col. A non-repudiation protocol, upon successful termination, provides each participant

evidence of commitment to a contract that cannot be repudiated by the other participant. A

non-repudiation of origin (NRO) provides the recipient in an exchange, the ability to present

to an adjudicator, evidence of the senders commitment to a contract. A non-repudiation of

receipt (NRR) provides the sender in an exchange, the ability to present to an adjudicator,

evidence of the recipient’s commitment to a contract. An exchange protocol should satisfy

the following informal requirements [MGK02, GJM99]:

1. Fairness. The communication channels quality being fixed, at the end of the exchange

protocol run, either all involved parties obtain their expected items or none (even a

part) of the information to be exchangedwith respect to themissing items is received.

2. Abuse-freeness. It is impossible for a single entity at any point in the protocol to be

able to prove to an outside party that she has the power to terminate (abort) or suc-

cessfully complete the protocol.

3. Timeliness. The communication channels quality being fixed, the parties always have

the ability to reach, in a finite amount of time, a point in the protocol where they can
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stop the protocol while preserving fairness.

Some of the existing protocols in this category are the Zhou-Gollmann (ZG) pro-

tocol [ZG97], the Asokan-Shoup-Waidner (ASW) protocol [ASW98], the Garay-Jakobsson-

MacKenzie (GJM) protocol [GJM99] and the Kremer-Markowitch (KM) protocol [MK01].

Non-Repudiation protocols are difficult to design in general [ZDB00, SM02, MGK02,

KMZ02, KR03] and much literature covers the design and verification of these protocols.

While some of the literature covers the discovery of vulnerabilities in these protocols based

on the content of the exchanged messages, others have tried to find attacks based on the

sequences of messages that can be exchanged, based on the rules of the protocols. How-

ever, there is no work that focuses on automatically obtaining correct solutions of these

subtle and hard to design protocols.

We study the problem of automatically deriving correct fair non-repudiation pro-

tocols, that prevent malicious participants from gaining an unfair advantage, by modeling

the problem as an automated synthesis problem. To our knowledge this is the first appli-

cation of controller synthesis to security protocols. Our contributions are as follows:

1. We formally introduce the objectives of the participants and the trusted third party

as path formulas in linear-time temporal logic (LTL) and prove that the satisfaction

of the objectives imply the fairness and abuse-freeness properties of the protocols.

The timeliness property is also satisfied easily.

2. We show that classical (strictly competitive) co-synthesis and weak (co-operative)

co-synthesis fail, whereas assume-guarantee synthesis succeeds.

3. We show that all solutions in the set PAGS of assume-guarantee solutions are attack-
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free, i.e., any solution in PAGS prevents malicious participants from gaining an unfair

advantage.

4. We show that the ASW certified mail protocol is not in PAGS, due to known vulnera-

bilities that could have been automatically discovered. The GJM protocol is also not

in PAGS as it compromises our objective for the TTP, while providing fairness and

abuse-freeness to the agents. The KM protocol is in PAGS and it follows that it could

have been automatically generated by formalizing the problem of protocol design as

a synthesis problem.

5. The ASW, GJM and the KMprotocol are not symmetric as they do not allow the recip-

ient to abort the protocol. From our analysis of the refinements in PAGS we construct

a new and symmetric fair non-repudiation protocol that provides not just the origi-

nator but also the recipient in an exchange, the ability to abort the protocol. Given

that the TTP does not change its behavior, we show that the symmetric protocol is

attack-free.

6. Our results provide a game-theoretic justification of the need for a trusted third party.

This gives an alternative justification of the impossibility results of [EY80, PG99].

It was shown in [CH07] that the solutions of assume-guarantee synthesis can be ob-

tained through the solution of secure equilibria in graph games, and applying the results

of [CH07], given our objectives, we show that for fair non-repudiation protocols, the solu-

tions can be obtained in quadratic time.

Security protocols often contain subtle errors that sometimes take years to un-

cover. A case in point being the Needham-Schroeder public-key protocol that was believed
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secure for years before Lowe found a flaw in the protocol [Low95]. Considerable effort is

therefore spent in verifying these protocols formally, from the use of special logics such

as BAN [BAN90], a logic for the analysis of information exchange protocols, to the use of

model checking and theorem proving. The state of the art formal analysis of fair exchange

protocols uses model checking to verify a set of properties that these protocols should sat-

isfy, specified in a suitable temporal logic. The work of Shmatikov and Mitchell [SM02]

uses the finite state tool Murϕ to model the participants in a protocol, together with an

intruder model, to check a set of safety properties by state space exploration. They expose

a number of vulnerabilities that may lead to replay attacks in both the ASW protocol and

the GJM protocol. Zhou et al., show the use of belief logics to verify non-repudiation pro-

tocols [ZG98]. The works of Kremer et al., [KfR02, KMZ02, KR03, CKS06] are the first

that use game theoretic models and the logic ATL to formally specify fairness, abuse-

freeness and timeliness properties and verify them using the tool MOCHA [AHM+98].

They show that protocols can be naturally modeled as games, using ATL with Alternating

Transition Systems as structures, to discharge security properties. However these works

focus on verification and not synthesis of protocols. Armando et al., [ACC07] use a set-

rewriting formalism with LTL, to verify the ASW protocol and report a new attack on the

protocol. Louridas in [Lou00] provides several insightful guidelines for the design of non-

repudiation protocols.

The work of [AETCR08] uses multi-player games to obtain correct solutions of

multi-party rational exchange protocols in the emerging area of rational cryptography.

They eliminate the TTP by making the assumption that all agents act rationally to max-
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imize their payoffs. These protocols do not provide fairness, but do ensure that rational

parties would have no reason to deviate from the protocol. Their technique whittles down

the space of all possible rational exchange protocols to those protocols that satisfy fea-

sibility (the possibility of an exchange) and rationality (participating entities all gain at

least their individual minimum price or utility for their participation). They use simulated

annealing as their search technique. Our technique is very different from this and all pre-

vious works, as we use controller synthesis methods to construct protocols that are correct

by construction. The finite state models are typically small, so that the application of syn-

thesis techniques as we propose is both appealing and realizable in practice. Moreover,

the co-synthesis formulation also enables the automatic discovery of subtle errors in these

protocols.

1.2.6 Synthesis of Resource Managers

The second application we present is the automatic synthesis of resource man-

agers in the context of scheduling multi-threaded C programs. Embedded and reactive

software is often implemented as a set of communicating and interacting threads. The

threads most commonly rely on primitives such as mutexes and counting semaphores to

coordinate their interaction, to ensure the atomic execution of critical code regions, and to

ensure that shared data structures are correctly accessed. These mutexes and semaphores

(which we collectively term resources) are managed independently of the application code.

In this thesis, we propose the automated construction of code-awaremanagers for resources.

Such managers use their knowledge of the thread structure and resource usage to manage

resources in an efficient and deadlock-free fashion.
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The simplest resource managers, found in the implementation of just about any

thread library, use the most liberal of policies: grant a resource whenever it is available.

The liberality of this policy creates the possibility of deadlocks: the classical example is

when thread 1 requests (and is granted) a mutex A, and thread 2 requests (and is granted) a

mutex B. If the next requests are for mutex B from thread 1, and for mutex A from thread 2,

deadlock ensues. Writing software that is deadlock-free under such a simple resource

management policy is a difficult and error-prone task [SBN+97, EA03]. Monotonic locking

[PS85] ensures deadlock freedom, at the price of imposing additional bookkeeping on the

programmer. Monotonic locking also cannot be extended to counting semaphores, where

there is no notion of a particular thread “holding” a resource. Priority ceiling uses infor-

mation on the set of locks used by each thread to guarantee deadlock freedom [But04].

Like monotonic locking, however, priority ceiling cannot cope with counting semaphores.

Furthermore, when all threads have the same priority and need to get a fair share of CPU

time, priority ceiling is a most restrictive policy: it allows at most one thread to hold mu-

texes at any given time. Other algorithms, such as the banker’s algorithm [PS85], rely on a

manual analysis of the resources needed for given tasks, and again do not cover code with

semaphores.

We present an automatic static technique to synthesize code-aware resource man-

agers for multi-threaded embedded applications that guarantee deadlock freedom while

managing resources in a liberal and efficient way. Rather than synthesizing the whole

scheduler, we focus on the resource policy, i.e., the part of the scheduler responsible for

granting resources, depending on the underlying OS scheduler to resolve the remaining
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scheduling choices. Our formulation does not require special programmer annotations or

code structures, nor any change in programming style. Hence, it is directly applicable to

existing bodies of code. We model each thread as an interface automaton and take the

product of these automata to yield a game model of a system of threads. We formulate

the scheduling problem as a game between the manager and the threads, where the goal

for the manager is to avoid deadlocks while ensuring that all threads make progress. The

manager is the proponent process and the non-determinism in the thread behavior and in

the behavior of the scheduler is the opponent process. We identify two sources of non-

determinism: (a) inter-thread non-determinism that is present at each conditional branch

statement, where either one of the two branches can be taken, and (b) intra-thread non-

determinism that is caused by the OS scheduler choosing amongst the set of threads that

are ready and can make progress. A winning strategy in this game provides a refinement

of the resource manager that guarantees progress for all threads at run time as long as the

inter-thread and intra-thread non-determinism can be resolved in a fair fashion.

For our synthesis formulation we consider the objective of progress under fair-

ness assumptions on inter-thread and intra-thread non-determinism. We provide efficient

algorithms that compute winning strategies from the source code in quadratic time, while

accounting for scheduler and thread fairness. We then take a closer look at the interaction

between the resource manager and the underlying operating system scheduler, and we

show how the standard strategy obtained by solving the game can be made more efficient

in a real-world resource manager. We show how the strategies can be represented com-

pactly using BDDs, and we discuss how to implement the resource manager so that it is
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compact in terms of code size as well as efficient to execute at runtime.

In closely related work, [KY03, KNY03] study the synthesis of code-aware man-

agers for Java. The focus is deadlock avoidance, and as mentioned earlier, the question

of progress (absence of starvation) is not addressed. The problem of deadlock prevention

has been extensively studied in at least three different fields: databases, operating sys-

tems, and flexible manufacturing systems. In the latter field [Dev77, Min82, BK90, HC92,

ECM95, IMA02], it is assumed that a Petri Net model is constructed by hand. Also, most

of these works deal with processes that are terminating and/or deterministic. In contrast,

our approach and tool rely on the automated analysis of software, and we deal in de-

tail with the issues arising from code abstraction and interaction with operating-system

schedulers. Further, the use of randomization to generate efficient schedulers has not been

studied. Static compiler techniques have been used in high performance thread packages

to improve response time through better scheduling [vBCZ+03], however, the problem of

resource interaction and deadlock has not been studied. Finally, deadlock detection and

prevention methods from transactional databases do not apply in our setting, since our

applications do not have transactional semantics and rollback.

1.3 Organization

In the first part of this thesis, Part I, we focus on the theory of approximate behav-

ioral equivalence and refinement in stochastic games. We introduce background material

in Chapter 2, which can be skipped by those familiar with the area of relations in transition

systems, logics and competitive Markov decision processes. In Chapter 3, we introduce a
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set of definitions that apply to the material covered in the remainder of Part I. We present

our quantitative generalizations of the classical simulation and bisimulation relations for

stochastic games in Chapter 4. In Chapter 5 we relate metrics with various reward criteria

in stochastic games. We conclude Part I with Chapter 6 where we present algorithms to

compute the metrics and relations. In the second part of this thesis, Part II, we show two

applications of games for synthesis. The first, covered in Chapter 7 is an application of

games for the automatic synthesis of fair non-repudiation protocols as participant refine-

ments. The second, covered in Chapter 8 addresses the problem of ensuring progress, and

hence lack of starvation, in multi-threaded C programs. We conclude in Chapter 9 where

we discuss future directions for work presented in this thesis.

1.3.1 Dependencies

The background material in Chapter 2 may be skipped by readers familiar with

transition systems, simulation and bisimulation in transition systems and their logical

characterizations. Chapter 7 and Chapter 8, in the second part of this thesis are self-

contained and do not require understanding of any of the prior chapters; all that is as-

sumed is familiarity with game models. The material presented in Appendix A has proofs

of some of the results stated but not proved in Chapter 7 and may be skipped for a first

reading of this thesis. The contents of Chapter 5 and Chapter 6 require understanding of

thematerial presented in Chapter 3 and Chapter 4. Thematerial in Chapter 5 extends game

metrics to the case of discounted values, average reward values and total reward values in

stochastic games and may be skipped by a reader interested in metrics and relations from

a verification standpoint. We have the following self-contained paths in this thesis:
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− Chapter 3 → Chapter 4,

− Chapter 3 → Chapter 4 → Chapter 5,

− Chapter 3 → Chapter 4 → Chapter 6,

− Chapter 3 → Chapter 4 → Chapter 5 → Chapter 6,

− Chapter 7, and

− Chapter 8.
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Chapter 2

Background

In this chapter we introduce transition systems, logics, simulation and bisimula-

tion relations and their logical characterizations. This chapter can be skipped by readers

familiar with the mathematical foundations of formal analysis.

2.1 Labelled Transition Systems

A labelled transition system (LTS) is a formal model of a finite state process that

interacts with its environment. A process has an initial state and transitions to a successor

state based on the input it receives from its environment. Formally, an LTS is a tuple

(S, s0,A, δ), where S is a finite set of states, s0 is the initial state, A is a finite set of labels

or actions and δ : S×A 7→ 2S \ ∅ is a non-deterministic transition function, which given

a state and an action returns a non-empty set of possible successor states. If the transition

function always returns a singleton set, then the LTS is deterministic.

Example 1 Consider the labelled transition systems in Figure 2.1. In the system shown
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Figure 2.1: Labelled Transition Systems.

in Figure 2.1(a), if the process receives input a when it is at state s, then it transitions to

state t. Similarly, if the process is in state t and receives input c, then it transitions to state

u. This is an example of a deterministic LTS. The LTS in Figure 2.1(b) is non-deterministic,

in that it can transition from state s′ to either state w′ or t′ when it sees input a from the

environment. �

2.1.1 Simulation and Bisimulation

One of the most important questions one can ask in concurrency theory is

whether two processes are equivalent, in that they have the same set of behaviors. There

are two notions of equivalence. One is trace containment, where two processes are consid-

ered equivalent if they accept the same language. The two processes modeled as labelled

transition systems in Figure 2.1 are trace equivalent; they accept the strings ac and ab. A

second notion of equivalence is that of bisimulation, introduced by Milner [Mil80], which

is a stronger notion of equivalence than trace containment. Two processes are considered
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equivalent or bisimilar if at all points in their interaction with an environment, for every

labelled transition taken by one process the other can take a matching transition and vice

versa. While the labelled transition systems in Figure 2.1 are trace equivalent, they are

not bisimilar. This is because, after accepting input a from the environment, the process

modeled by LTS 1 can accept both b and c, whereas the process modeled by LTS 2 can ac-

cept either b or c depending on the manner in which the non-deterministic transition from

state s′ was resolved. Bisimulation is therefore a state equivalence property and is hence a

local property. It is a relation where states that are bisimilar are lumped into equivalence

classes such that the sets of immediate transitions that can be generated from all states in

an equivalence class coincide.

In formal verification, if we model the specification and the implementation as

labelled transition systems, then the bisimulation relation can be used to check if the im-

plementation has exactly the same set of behaviors as the specification and vice versa.

Notice that this may be too strong a notion in that we explicitly disallow (a) liberal imple-

mentations that may produce a superset of the behaviors in the specification or (b) imple-

mentations that refine a specification in that all the behaviors of an implementation are also

behaviors of the specification but not vice versa. We could therefore drop the requirement

for the specification and implementation to be bisimilar, instead seeking to verify that the

implementation is a refinement of the specification. This leads to a preorder called a simula-

tion relation. Besides checking if an implementation refines a specification, the simulation

relation can be used to check if one implementation simulates or is better than another in

that from a user’s point of view it allows more behaviors than the other. In the example of
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Figure 2.1, the LTS in Figure 2.1(a) simulates the one in Figure 2.1(b) but not the other way

around. In other words, LTS 2 refines LTS 1 but LTS 1 does not refine LTS 2.

Let (S, s0,A, δ) and (S′, s′0,A
′, δ′) be two labelled transition systems. We can de-

fine the simulation relation R using ∀ to represent for all and ∃ to represent there exists as

follows: A relation R ⊆ S× S′ is a simulation relation if (s, s′) ∈ R, also written as s � s′,

implies that ∀a ∈ A, if t ∈ δ(s, a) then ∃t′ ∈ S′ such that t′ ∈ δ′(s′, a) and t � t′.

We now present another definition of simulation, where we relax the requirement

that labelled transitions should have identical labels. We do this by introducing a set P of

predicates that are boolean valued functions, mapping every state in an LTS to either true

or false, based on whether a predicate holds in a state or not. Let Γ : S 7→ 2A \ ∅ be a

function that given a state, returns the set of all enabled actions in that state. For the set of

predicates P, we say two states s, t ∈ S have a predicate distance of 0, written s ≡ t, iff for all

predicates p ∈ P, p(s) = p(t); that is all predicates have identical values at the two states.

We can then define the simulation relation as follows: A relation R ⊆ S× S′ is a simulation

relation if s � s′ implies that,

1. s ≡ s′ and

2. ∀a ∈ Γ(s) . ∃b ∈ Γ(s′) . δ(s, a) � δ(s′, b).

In this case, what we really want is that the set of states visited in the two systems should

have identical predicate values. Since predicates are at the heart of formal specifications,

this is a more appealing definition. Going back to our example in Figure 2.1, taking the

predicate distance to be 0 for states that have the same color, we see that s′ � s but s 6� s′;

the LTS in Figure 2.1(a) simulates the one in Figure 2.1(b) but not the other way around.
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The states s and s′ are not bisimilar. For all deterministic labelled transition systems, s �

s′ and s′ � s implies s and s′ are bisimilar but this does not hold for non-deterministic

systems. We write s ≃ t if the states s and t are bisimilar.

2.1.2 Game Interpretation of Simulation

The simulation relation can be interpreted as game between a protagonist and an

antagonist on the graphs that represent labelled transition systems. Let LI and LS stand

for the labelled transition systems corresponding to an implementation and a specification

respectively. Let s and t be the initial states of LI and LS. For the implementation to

refine the specification, we require that s � t. To check if this is the case, we define a

game between a protagonist and an antagonist as follows: From s, the antagonist picks

an action leading to a state s′. From t, the protagonist picks an action leading to a state

t′ such that s′ ≡ t′; the destination states agree in the values of all predicates. The game

then proceeds to the next round played from states s′ and t′. If the game proceeds forever,

then the protagonist wins as she succeeds in matching every move of the antagonist. If

the protagonist fails to match a move of the antagonist at any point in the game, then the

antagonist wins; the implementation does not refine the specification.

While simulation in both directions implies bisimulation for deterministic sys-

tems, there are non-deterministic systems where this is not the case. To show bisimulation

in such systems, we need a variant of Ehrenfeucht-Fraı̈ssé games where the antagonist

picks an action from either state at each round of the game, while the protagonist should

select a move from the state not picked by the antagonist. Similar to the case of simulation,

if the game proceeds forever, given that the antagonist chooses states from either LI or LS
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at each round of the game, then s ≃ t and the two systems are bisimilar.

2.2 Alternating Transition Systems

Reductionism was introduced by Descartes and dates back to the times of Dem-

ocritus. It is at the heart of understanding complex processes in terms of their simpler

constituents and has influenced research in Science and Mathematics for over two millen-

nia. A reductionist approach to the design of systems has lead to the design of complex

systems by using simpler well understood components or agents. In this world of compo-

nent based design, a labelled transition system is not as effective a formal model as wewould

like, because it only deals with closed systems; the system is modeled together with its en-

vironment. Labelled transition systems thus assume that system behaviors are produced

by a set of co-operating agents. When we assume that agents co-operate, we place artificial

constraints on some of them, including the environment, to ensure the system has expected

behaviors. This suggests that we need a richer formal model to reason about properties of

sets of agents without constraining the other agents or the environment. At the very least,

we want to model open systems consisting of a component and its environment as separate

agents so that we can check properties of the component against all possible behaviors of

the environment. Generalizing this, we want to consider systems as a collection of agents

(including the environment) and check properties of arbitrary subsets of agents against all

possible and hence unconstrained behaviors of the others. Alternating transition systems

provide precisely this ability in formal analysis [AHK97].

Formally, an alternating transition system (ATS), restricted to two agents is a tu-
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ple, (S, s0,Moves, Γ1, Γ2, δ), where S is a finite set of states, s0 is the initial state, Moves is

a finite set of moves available to the agents, Γi : S 7→ Moves \ ∅ for i ∈ {1, 2} is a move

assignment that given a state returns a set of moves available to agent i at that state and

δ : S ×Moves×Moves 7→ 2S \ ∅ is a transition function, that given a state and a pair of

moves chosen by the agents, returns a subset of possible successor states. The agents select

their moves simultaneously and independently. If only one of the two agents has a choice

of moves at each state, then we get a turn-based synchronous ATS. We now present an

example from [AHK97] for turn-based synchronous alternating transition systems.

u

v

stay

request

delay

deny

open

relinquish

grant

close

enter
s

t

Figure 2.2: Alternating Transition System that models a train entering a railroad crossing.

Example 2 In Figure 2.2 is an alternating transition system that models a railroad cross-

ing. It is a turn-based synchronous process. The purple states are the train states and the

blue states are those of the controller. In state s, a train state, the gate is open and the train

has two possible moves; stay outside the gate or request permission to enter the gate. In

state t, a controller state, the controller has a choice of three moves; either grant the train
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permission to enter the gate, delay making a decision or deny the train permission to enter

the gate. In state v, a train state, the train can either choose to enter the gate or relinquish

its request to enter the gate. Finally, in state u, a controller state, the controller can either

keep the gate closed or open it for other trains. �

Unlike in the case of labelled transition systems where both the train and the

controller are assumed to co-operate, in alternating transition systems we reason about

properties that the controller can satisfy against all possible behaviors of the train. We can

therefore think of this as a zero-sum game played between the controller and the train,

where the train is not expected to be angelic and may in fact be demonic.

2.2.1 Alternating Simulation

We recall that in labelled transition systems, since we interpret all agents as co-

operating, we defined simulation in terms of the ability to match all transitions from a sim-

ulated state with at least one transition from the simulating state. In alternating simulation

[AHKV98], since we interpret the agents as being antagonistic, we extend the definition of

simulation as follows: Let (S, s0,Moves, Γ1, Γ2, δ) and (S′, s′0,Moves, Γ′
1, Γ

′
2, δ

′) be two alter-

nating transition systems. A relation R ⊆ S × S′ is an alternating simulation relation if

s � s′ implies that,

1. s ≡ s′ and

2. ∀a ∈ Γ1(s) . ∃b ∈ Γ1(s
′) . ∀c ∈ Γ2(s′) . ∃d ∈ Γ2(s) . δ(s, a, d) � δ(s′, b, c).

Notice that agent 1 picks moves first at both states before agent 2 does. The definition

therefore applies to agent 1 alternating simulation; the case for agent 2 alternating simu-
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lation is defined symmetrically and the two versions may not yield the same simulation

relation.

2.2.2 Game Interpretation of Alternating Simulation

The intuition behind alternating simulation is captured by the following game

theoretic interpretation. Let (S, s0,Moves, Γ1, Γ2, δ) and (S′, s′0,Moves, Γ′
1, Γ

′
2, δ

′) be two al-

ternating transition systems. Consider a two-player game whose positions are pairs

〈s, s′〉 ∈ S × S′ of states. The initial position of the game is 〈s0, s′0〉. The game is played

between an antagonist and a protagonist and proceeds in rounds. Each round involves the

following steps, assuming that the current position is 〈s, s′〉,

− The antagonist chooses an agent 1 move a at state s,

− The protagonist chooses an agent 1 move b at state s′,

− The antagonist chooses an agent 2 move c at state s′,

− The protagonist chooses an agent 2 move d at state s such that δ(s, a, d) ≡ δ(s′, b, c).

If the game proceeds ad infinitum, then the antagonist loses and hence the protagonist

wins. Otherwise, the game reaches a state where the protagonist is unable to pick a move

at state s as required, leading to her loss. Since the antagonist is assumed to be adversarial,

we require that, at both states, for all moves that can be selected by the antagonist, there

exist a move for the protagonist, such that the destination states are in the alternating

simulation relation.
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2.3 Logics

In our definitions of simulation and bisimulation relations we stated that two

states that are in a relation should have identical predicate values. We also stated that states

in a relation, such as the bisimulation relation, generate exactly the same set of behaviors.

Recall that we defined the behavior of a finite state system as a set of paths where each

path is a sequence of states. Since we have introduced and formalized two very successful

formal models together with simulation and bisimulation relations in those models, we

now address the question of formalizing behavior. What does it mean mathematically to

say that two states generate the same set of behaviors? The answer lies in logics. Logic

has a been studied as a discipline of philosophy since the times of Aristotle. A subfield

of logic is symbolic logic where symbolic abstractions are used to study formal inference.

Mathematical logic, an extension of symbolic logic, finds its origins in the works of George

Boole and Augustus de Morgan that lead to the framework to study the foundations of

mathematics. The connection between mathematical logic and computer science owes

its origins to Hilbert, who in 1928 posed the Entscheidungsproblem, which asked for a

procedure that could decide whether or not a formal mathematical statement was true or

false.

A logic in its simplest form consists of a set U, possibly infinite, of symbols

that include connectives →,∨,∧,¬,↔, (, ) and a finite set of generating functions F =

{ f1, f2, . . . , fn}, where 1 ≤ i ≤ n is the arity or number of arguments taken by function

fi : U
i 7→ U. The functions in F generate expressions from the set of symbols. A well formed

formula or wff is a grammatically correct expression; one that can be generated from the
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symbols and the functions in F . The set of all wffs so generated forms an inductive set. If

U is the universal set of everything, including expressions, a set C ⊆ U is an inductive set

if, given an initial set B ⊆ C and a set of generating functions F , the following conditions

hold:

− B ⊆ C, and

− C is closed under the functions in F .

An inductive set is said to be freely generated if the ranges of the functions in F and the set

B are pairwise disjoint. For example, the set of natural numbers N, with B = 0 and the

successor function S : N 7→ N, where S(n) = n + 1 for all n ∈ N is a freely generated

inductive set. We can define recursive functions on a freely generated inductive set C ⊆ U

using the recursion theorem. It states that given C and FC, a set of generating functions for

C, a set V and FV , a set of generating functions for V, and a function h : B 7→ V, there

exists a unique extension h′ of h such that h′ is a homomorphism from C (with operations

FC) to V (with operations FV). The concepts of induction and recursion are fundamental

to the study of logic and computability. For instance, given a set of boolean expressions S,

extending a truth assignment over the variables in the expressions to a truth assignment

over the expressions in S relies on the recursion theorem.

A set of expressions Σ is decidable if there is a procedure, that given an expression

ǫ, will decide whether or not ǫ ∈ Σ. A set of expressions Σ is recursively enumerable, or

RE, if there is a procedure that given an expression ǫ will answer “yes” if ǫ ∈ Σ; we can

enumerate the set of all expressions in an inductive set and check if each new expression

we form is the same as ǫ or not. If ǫ 6∈ Σ, then the procedure may not terminate; it is
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therefore said to be semi-decidable. An important result in computability theory is that if

a set of expressions Σ and its complement (with respect to the set of all expressions) are

recursively enumerable, then the set Σ is decidable (Kleene’s theorem). Therefore, if a re-

cursively enumerable set is closed under complementation, in other words it is RE and

co-RE, it is decidable. These concepts have played a critical role in various decidability re-

sults, notably the decidability of one of the most expressive decidable logics: the monadic

second order logic of n successors or SnS for short.

While mathematical logic deals with infinite structures where results such as the

compactness theorem and God̈el’s completeness theorem hold, the models that are presented to

computers are necessarily finite. This has lead to the development of finite model theory and

descriptive complexity, which is the study of computational complexity of a problem in terms

of the complexity of the logical languages used to describe the problem. There are deep

links between logic and computability. For instance, the result of Fagin states that the class

NP is precisely the set of languages expressible in the existential fragment of second-order

logic. As a substantial part of this thesis deals with metrics and the logics that character-

ize them (Logical Characterizations of Simulation and Bisimulation presented later in this

chapter), and in formalizing desired behaviors for synthesis, we now present a brief intro-

duction to logics. We begin with first order logic, cover temporal logics and conclude with

the µ-calculus and the Hennessy-Milner logic.

2.3.1 First-order Logic

First order logic is expressive enough to capture descriptive set theory, from

which most mathematical theories can be derived. First order logic consists of infinitely
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many distinct symbols, arranged as follows:

1. Logical symbols

− Parentheses: (,),

− Sentential connectives: ⇒,¬,

− Variables V = {v1, v2, . . .},

2. Parameters

− Quantifier Q: ∀,

− For each positive integer n, a possibly empty set of n-ary predicates Pn,

− Constants or 0-ary functions,

− For each positive integer n, a possibly empty set of n-ary functions fn.

F f is a set of term building functions, one for each function fn. The terms in first order logic

are then the set of all expressions built from variables and constants by zero or more appli-

cations of the functions in F f ; they are defined inductively. The atomic formulas are expres-

sions obtained by applying predicates to terms. The well formed formulas are constructed

inductively from atomic formulas and sentential connectives and parentheses using the

following set of formula generating functions, E¬(α) = (¬α), E→(α, β) = (α → β) and

Qa(α) = ∀a.α for expressions α and β. A wff is closed if it has no free variables, that is all

variables are bound to quantifiers. Closed wffs are called sentences as opposed to formulas

which have free variables. A structure A for first-order logic is a function that assigns to

the quantifier ∀ a universe U, to each n-ary predicate Pn a relation PA
n ⊆ Un of n tuples,
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to each constant symbol an element of U and to each n-ary function fn an n-ary operation

fAn : Un 7→ U. An interpretation ξ : V 7→ U, is an assignment from variables to U; an

interpretation therefore assigns values to unbound variables in a formula. A structure A is

a model of a wff ϕ iff the translation of ϕ under A over all interpretations of the unbound

variables in ϕ is true, written |=A ϕ. If ϕ is true under all structures, then ϕ is considered

valid in first-order logic. We say that a set of wffs Γ logically implies a wff ϕ, written Γ |= ϕ,

if in every structure, every interpretation ξ that satisfies every member of Γ also satisfies ϕ

with the same interpretation ξ; in other words every model of every member of Γ is also a

model of ϕ. For a complete treatment of the material presented in this subsection we refer

the reader to [End01].

2.3.2 LTL, CTL and ATL

In the remainder of this section, we confine ourselves to finite structures, such as

the LTS andATS that we introduced earlier. Since LTS andATS are effectivemodels of non-

terminating systems, suchmodels have a finite set of states generating a set of infinite paths

that constitute the behavior of the system. A single path is then a particular computation

of the system and is simply a sequence of visited states. The predicates in these models are

subsets of states where they evaluate to true. This implies that the predicates may change

in truth value along a path. Therefore, to describe the behavior of a system modeled as an

LTS or an ATS, we require a logic that can describe paths in terms of the predicates that

may change in value along a given path. Since paths evolve over time, the logics used to

describe them are called temporal logics [MP91, MP95, AHK97]. The logics LTL, CTL and

ATL are particular temporal logics with varying expressive power. These logics are also
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called modal logics as they have modalities that qualify the truth value of formulas.

The logic LTL, or Linear Temporal Logic, is a temporal logic that is used to describe

sets of paths. LTL consists of a finite set of predicates, logical connectives such as ⇒ and

¬ and modalities , 2, 3, U and R that are defined below. Taking Φ as the set of all well-

formed formulas in LTL, for wffs ϕ1, ϕ2 ∈ Φ, the modalities in LTL have the following

meaning:

1. ϕ1 is satisfied by a path if ϕ1 holds in the next state of the path.

2. 2ϕ1 is satisfied by a path if ϕ1 holds in all states of the path; this property is referred

to as a safety property.

3. 3ϕ1 is satisfied by a path if ϕ1 holds in at least one state of the path; this property is

referred to as a reachability property.

4. ϕ1U ϕ2 is satisfied by a path if ϕ1 holds at all states of the path at least until ϕ2 holds.

5. ϕ1Rϕ2 is satisfied by a path if ϕ2 holds at all states until and including the state

where ϕ1 holds.

An LTL formula is satisfied by a path iff it is satisfied at the first state of the path. There

are no explicit quantifiers in LTL with all formulas being implicitly universally quantified.

Example 3 Consider two states s, t in an LTS with a transition from state s to t with state

t being absorbing; the system transitions from s to t and then remains in t forever. If a

predicate p holds in t and not in s, then for all paths of the LTS, 2p is not satisfied whereas

3p is satisfied. �
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The logic LTL can be used to express many interesting properties of transition

systems. For example a liveness property, expressed as 23win, for a predicate win, is sat-

isfied if in all paths, win holds infinitely often. Similarly a fairness property, expressed as

23request ⇒ 23grant, for predicates request and grant, is satisfied if in all paths where

request is true infinitely often, we have grant is also true infinitely often. A safety prop-

erty can be used to express that something good always happens or something bad never

happens. A reachability property can be used to express that something good happens

eventually. A liveness property can be used to express that something good happens in-

finitely often. A fairness property can be used to express that, if a request for a resource is

true infinitely often, then so is a grant of that request; the request could be for a mutex in

a multi-threaded program for example, in which case satisfaction of the property implies

that for every such request the mutex is granted eventually.

If we consider the set of all computation paths of an LTS, then we can represent

them as a tree, that is rooted at a distinguished starting state and contains all computa-

tion paths that start at that state. The logic CTL, or Computation Tree Logic, also called a

branching-time temporal logic, describes properties of computation trees of an LTS. It is a

state logic, in that all formulas are state formulas, as opposed to LTL which is a path logic.

Similar to LTL, it consists of a set of predicates, logical connectives and path modalities. In

addition, it includes the path quantifiers ∀ for universal quantification and ∃ for existential

quantification. All quantified path formulas are state formulas and all modalities must be

immediately preceded by a path quantifier. CTL then consists of all state formulas that

can be generated from the atomic propositions, logical connectives, path modalities and
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quantifiers. For example, given a wff ϕ, satisfaction of the CTL formula ∀3ϕ requires that

a state satisfying ϕ be visited in all computation paths. Similarly, satisfaction of the CTL

formula ∃3ϕ requires that there exists a path that visits a state satisfying ϕ.

While LTL and CTL are logics that can be used to describe properties of labelled

transition systems, the logic ATL, or Alternating-Time Temporal Logic, can be used to de-

scribe properties of alternating transition systems. We recall that an LTS is a model for

closed systems, whereas an ATS is a model for open systems, such as a set of components

interacting with an unknown, possibly adversarial environment. Given a set Σ of com-

ponents including the environment, for a set A ⊆ Σ, with ϕ being a set of computations

expressed in LTL, given a state s of the ATS, consider a game between a protagonist and

an antagonist that starts in state s. At each round, the protagonist resolves the choices

controlled by the components in A (internal non-determinism) and the antagonist resolves

the choices controlled by components in Σ \ A (external non-determinism). If the result-

ing infinite path is in the set of computations ϕ, then the protagonist wins, otherwise the

antagonist wins. If the protagonist has a winning strategy such that she can ensure the

computation path is in ϕ against all possible ways of resolving external non-determinism,

we say that the path satisfies the ATL formula 〈〈A〉〉ϕ at state s. The path quantifier 〈〈A〉〉

is therefore the set of all computation paths that can be forced by the components in A

against all possible behaviors of the components in Σ \ A. While CTL provides either uni-

versal or existential path quantifiers that assume co-operative behaviors, ATL generalizes

the path quantifiers by subsets of components. The existential path quantifier in CTL is

generalized to 〈〈Σ〉〉 and the universal path quantifier is generalized to 〈〈∅〉〉. Therefore
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the universal path quantifier exactly corresponds to a single component 〈〈∅〉〉 and the ex-

istential path quantifier corresponds to a single component 〈〈{sys}〉〉. For example, taking

Σ = {a, b, c}, and the starting state as s, the ATL formula 〈〈a〉〉3ϕ is satisfied, if component

a has a strategy against components b and c such that all paths starting at s satisfy ϕ. Sim-

ilarly, ¬〈〈b, c〉〉2ϕ is satisfied if the coalition of b and c do not have a strategy against a to

ensure all computation paths satisfy ϕ. The logic ATL is better suited for compositional

reasoning than CTL. If a component a of a system satisfies the CTL formula ∃3ϕ, we can-

not conclude that any composite system that includes a will also satisfy ∃3ϕ. But if the

ATL formula 〈〈a〉〉3ϕ is satisfied by a, then any composite system that includes a satisfies

the CTL formula ∃3ϕ.

2.3.3 µ-calculus

To facilitate introducing the µ-calculus, we first present some preliminaries

[AN01]. A set L and an order relation ≤ forms a lattice (L,≤), if for every pair of ele-

ments a, b ∈ L, there exists a least upper bound written as a ∨ b and a greatest lower bound

written as a∧ b such that a∨ b ∈ L and a∧ b ∈ L. In general, for a subset X ⊆ L, we define

∨

X = x∗ ∈ L | ∀y ∈ X . ∀z ∈ L . ((y ≤ x∗) and (y ≤ z ⇒ x∗ ≤ z)). Similarly for a subset

X ⊆ L, we define
∧

X = x∗ ∈ L | ∀y ∈ X . ∀z ∈ L . ((y ≥ x∗) and (y ≥ z ⇒ x∗ ≥ z)). A

lattice (L,≤) is a complete lattice iff for all subsets X ⊆ L,
∨

X ∈ L and
∧

X ∈ L. Consider

a function f : L 7→ L. The function is monotonically increasing iff for all a, b ∈ L such that

a ≤ b, we have f (a) ≤ f (b). Similarly a function g : L 7→ L is monotonically decreasing

iff for all a, b ∈ L such that a ≥ b, we have f (a) ≥ f (b). We have the following theorem

due to Bronisław Knaster and Alfred Tarski.
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Theorem 1 (Knaster-Tarski) All monotonic functions on a complete lattice have a fixed point.

As a direct consequence of the theorem, we have, for a monotonically increasing

function f : L 7→ L over a complete lattice (L,≤), there exists a least fixpoint a ∈ L

such that f (a) = a. Similarly for a monotonically decreasing function g : L 7→ L over

a complete lattice (L,≤), there exists a greatest fixpoint b ∈ L such that g(b) = b. We

remark that, given a set L, the partially ordered set (2L,⊆) of power sets of L, ordered by

subset inclusion, forms a complete lattice. Therefore, any monotonically defined function

f : 2L 7→ 2L has a fixed point. These are some of the most fundamental results at the

heart of formal analysis. We now have all the ingredients to present the µ-calculus. The

µ-calculus [Koz83b, SE89] is defined as follows:

1. A set P of propositions,

2. A set V of variables,

3. Logical connectives ¬, ∨ and ∧,

4. 〈A〉p and [A]p, where A ⊆ Σ is a subset of program letters (components) and p is

any formula and

5. µX. f (X) and νX. f (X), where f (X) is any formula that is syntactically monotone

in the variable X, i.e., all occurrences of X in f (X) fall under an even number of

negations.

The operators µ and ν are the least and greatest fixpoint operators respectively. The sen-

tences in the logic are the set of closed formulas; formulas where all variables are bound
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to either a least or a greatest fixpoint operator. Further, the sentences of the µ-calculus are

interpreted over non-deterministic LTS. Let S be the states of an LTS. Since all propositions

and variables are subsets of states, the underlying algebraic structure is that of a complete

lattice (2S,⊆). Given that all formulas in the scope of a fixpoint operator are monotone, by

Theorem 1, the fixpoints always exist. The modal µ-calculus is a decidable logic that can

be used to specify all ω-regular properties. The ω-regular languages, which are regular

languages of infinite words, are the most general class of languages that subsume the set

of all temporal languages we have presented so far. The µ-calculus therefore subsumes all

temporal logics.

Example 4 Consider an LTS, with set of states S and a set R ⊆ S of desired states that we

would like to reach from an initial state s0 ∈ S. Let pre : 2S 7→ 2S be a state set transformer,

that given a set of states T ⊆ S, returns the set of states in S that can reach T after one

transition. It is easy to verify that pre is non-decreasing and hence monotone. If we take

X = R, the set of desired reachability states, then X = µX.pre(X) is precisely the set of

states from which we can reach a state in R. If s0 ∈ X, we conclude that there exists a path

from s0 to reach a state in R.

2.3.4 Hennessy-Milner Logic

To facilitate the presentation of logical characterizations of simulation and bisim-

ulation we present the following logic due to Hennessy and Milner [HM85].

ϕ ::= T | ¬ϕ |
∧

i∈N

ϕ | 〈a〉ϕ .
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The formula T is satisfied at every state of an LTS. The modal formula 〈a〉ϕ is

satisfied by a state s ∈ S, if there exists an a labelled transition from s to a state t ∈ S, such

that ϕ is satisfied at t.

2.3.5 Logical Characterizations of Simulation and Bisimulation

The usefulness of a simulation or a bisimulation relation stems from its logical

characterization. For two bisimilar states s and t, all formulas in a suitable logic, given

a variable interpretation, should have identical truth values. For LTS, the bisimulation

relation is characterized by the Hennessy-Milner Logic. Given an LTS with set of states

S, if s ≃ t, then for all ϕ ∈ HML, s |= ϕ implies t |= ϕ and vice versa. Given an LTS

with set of states S, if s � t, then for all ϕ ∈ HML, s |= ϕ implies t |= ϕ. Therefore,

the logic HML logically characterizes the simulation and bisimulation relations in labelled

transition systems.

From the result of [AHKV98], the logic ATL logically characterizes alternating

simulation. Given an ATS with set of states S, if s � t, then for all ϕ ∈ ATL, s |= ϕ implies

t |= ϕ.

2.4 Probabilistic Systems and Games

A probabilistic labelled transition system (PLTS) is a formal model of a finite state

process that interacts with its environment. Formally, a PLTS is a tuple (S, s0,A, δ), where

S is a finite set of states, s0 is the initial state, A is a finite set of labels or actions and

δ : S×A 7→ Dist(S) is a probabilistic transition function, that given a state s and an action
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a returns a probability distribution δ(s, a) over S. We can think of a probabilistic system

as a single player game, where the player is the environment, or the controller, and the

system is probabilistic; for every action a chosen by the controller at a state s ∈ S, the

system transitions to a state t ∈ S such that δ(s, a)(t) > 0. The system in this case can be

thought of as a second player, but one who has a single action at every state of the system.

We remark that, if the controller fixes her strategy such that whenever the system is in a

state s, she always chooses the same action a ∈ A at s, then the PLTS reduces to a Markov

Chain which is an ordinary stochastic process. A generalization of probabilistic systems is

then a two-player turn-based game structure, where the set of states S is partitioned into

controller states and system states. At every controller state, the environment chooses an

action and at every system state, the system chooses an action. The transition function re-

turns a distribution over the set of states S for every state and player action. A concurrent

game structure generalizes a turn-based game structure where both players have a choice

of moves at each state. Given a state and a pair of moves, chosen simultaneously and inde-

pendently by the two players, the transition function returns a distribution over the set of

states S. We define game structures formally in the next section of this thesis. We conclude

this chapter by illustrating that in concurrent games, it may be necessary for a player to

pick lotteries over her moves at a state to guarantee positive transition probabilities. We

show through the following example, called matching pennies, that by using deterministic

strategies, player 1 cannot achieve her objective with positive probability.

Example 5 (Matching Pennies) Consider the concurrent game structure in Figure 2.3.

Both players have moves {a, b} at state s. If both players pick matching moves, then the
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Figure 2.3: The need for randomized strategies.

destination state is t, otherwise it is u. The transitions are deterministic. If player 1 wants

to reach state t from state s with positive probability, then by using pure strategies, she

can never ensure that the game transitions to state t; the transition probability she can

guarantee is 0. This is because, for every player 1 pure move at s, there exists a move for

player 2 such that the destination state is u and not t; player 1 picks a and player 2 picks

b or player 1 picks b and player 2 picks a. If player 1 randomizes and picks either a or

b with equal probability, then she can guarantee a transition to state t with probability 1
2 .

This example illustrates that lotteries over pure moves, also called mixed moves, may be

necessary to ensure positive transition probabilities in concurrent games. �
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Part I

Game Relations and Metrics

46



Chapter 3

Definitions

We will develop metrics for game structures over a set S of states. We start with

some preliminary definitions.

For a finite set A, let Dist(A) = {p : A 7→ [0, 1] | ∑a∈A p(a) = 1} denote the set of

probability distributions over A. We say that p ∈ Dist(A) is deterministic if there is a ∈ A

such that p(a) = 1.

For a set S, a valuation over S is a function f : S 7→ [0, 1] associating with every

element s ∈ S a value 0 ≤ f (s) ≤ 1; we let F be the set of all valuations. For c ∈ [0, 1],

we denote by c the constant valuation such that c(s) = c at all s ∈ S. We order valuations

pointwise: for f , g ∈ F , we write f ≤ g iff f (s) ≤ g(s) at all s ∈ S; we remark that F ,

under ≤, forms a complete lattice.

Given a, b ∈ IR, we write a⊔ b = max{a, b}, and a⊓ b = min{a, b}; we also let a⊕

b = min{1,max{0, a+ b}} and a⊖ b = max{0,min{1, a− b}}. We extend ⊓,⊔,+,−,⊕,⊖

to valuations by interpreting them in pointwise fashion.
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A directed metric is a function d : S2 7→ IR≥0 which satisfies d(s, s) = 0 and d(s, t) ≤

d(s, u) + d(u, t) for all s, t, u ∈ S. We denote by M ⊆ S2 7→ IR the space of all metrics; this

space, ordered pointwise, forms a lattice which we indicate with (M,≤). Given a metric

d ∈ M, we denote by d̆ its opposite version, defined by d̆(s, t) = d(t, s) for all s, t ∈ S; we

say that d is symmetrical if d = d̆.

3.1 Game Structures

We assume a fixed, finite set V of observation variables. 1 A (two-player, con-

current) game structure G = 〈S, [·],Moves, Γ1, Γ2, δ〉 consists of the following components

[AHK02, dAHK98]:

− A finite set S of states.

− A variable interpretation [·] : V × S 7→ [0, 1], which associates with each variable

v ∈ V a valuation [v].

− A finite setMoves of moves.

− Two move assignments Γ1, Γ2: S 7→ 2Moves \ ∅. For i ∈ {1, 2}, the assignment Γi

associates with each state s ∈ S the nonempty set Γi(s) ⊆ Moves of moves available

to player i at state s.

− A probabilistic transition function δ: S ×Moves×Moves 7→ Dist(S), that gives the

probability δ(s, a1, a2)(t) of a transition from s to t when player 1 plays move a1 and

1The only reason why we assume a fixed set of variables, rather than specifying one set for each game
structure, is notational convenience: later, when introducing logics for games, it will be simple to ensure that
the logic formulas refer to the same set of variables as the games on which they are evaluated.
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player 2 plays move a2.

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and indepen-

dently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor state

t ∈ Swith probability δ(s, a1, a2)(t). We denote by τ(s, a1, a2) = {t ∈ S | δ(s, a1, a2)(t) > 0}

the set of destination states when actions a1, a2 are chosen at s. The propositional distance

p(s, t) between two states s, t ∈ S is the maximum difference in the valuation of any vari-

able and is defined as follows:

p(s, t) = max
v∈V

|[v](s)− [v](t)| .

The kernel of the propositional distance naturally induces an equivalence on states: for

states s, t, we let s ≡ t if p(s, t) = 0. In the following, unless otherwise noted, the definitions

refer to a game structure with components G = 〈S, [·],Moves, Γ1, Γ2, δ〉. For player i ∈

{1, 2}, we write ∼i = 3− i for the opponent. We also consider the following subclasses of

game structures.

− Turn-based game structures. A game structure G is turn-based if we can write S as the

disjoint union of two sets: the set S1 of player 1 states, and the set S2 of player 2 states,

such that s ∈ S1 implies |Γ2(s)| = 1, and s ∈ S2 implies |Γ1(s)| = 1, and further, there

is a special variable turn ∈ V , such that [turn](s) = 1 iff s ∈ S1, and [turn](s) = 0 iff

s ∈ S2: thus, the variable turn indicates whose turn it is to play at a state.

− Markov decision processes. A game structure G is a Markov decision process (MDP)

[Der70] if only one of the two players has a choice of moves. For i ∈ {1, 2}, we

say that a structure is an i-MDP if ∀s ∈ S, |Γ∼i(s)| = 1. For MDPs, we omit the (sin-
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gle) move of the player without a choice of moves, and write δ(s, a) for the transition

function.

− Deterministic game structures. A game structure G is deterministic if, for all s ∈ S,

a1 ∈ Moves, and a2 ∈ Moves, there exists a t ∈ S such that δ(s, a1, a2)(t) = 1; we

denote such t by τ(s, a1, a2). We sometimes call probabilistic a general game structure,

to emphasize the fact that it is not necessarily deterministic.

Note that MDPs can be seen as turn-based games by setting [turn] = 1 for 1-MDPs and

[turn] = 0 for 2-MDPs.

Pure andmixedmoves. Amixed move is a probability distribution over themoves available

to a player at a state. We denote by Di(s) = Dist(Γi(s)) the set of mixed moves available

to player i ∈ {1, 2} at s ∈ S. The moves inMoves are called pure moves, in contrast to mixed

moves. We extend the transition function to mixed moves. For s ∈ S and x1 ∈ D1(s),

x2 ∈ D2(s), we write δ(s, x1, x2) for the next-state probability distribution induced by the

mixed moves x1 and x2, defined for all t ∈ S by

δ(s, x1, x2)(t) = ∑
a1∈Γ1(s)

∑
a2∈Γ2(s)

δ(s, a1, a2)(t) x1(a1) x2(a2) .

In the following, we sometimes restrict the moves of the players to pure moves. We iden-

tify a pure move a ∈ Γi(s) available to player i ∈ {1, 2} at a state s with a deterministic

distribution that plays a with probability 1.

The deterministic setting. The deterministic setting is obtained by considering determinis-

tic game structures, with players restricted to playing pure moves.
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Moves and strategies. A mixed move is a probability distribution over the moves available

to a player at a state. We denote by Di(s) ⊆ Dist(Moves) the set of mixed moves available

to player i ∈ {1, 2} at s ∈ S, where:

Di(s) = {D ∈ Dist(Moves) | D(a) > 0 implies a ∈ Γi(s)} .

The moves in Moves are called pure moves. We extend the transition function to mixed

moves by defining, for s ∈ S and x1 ∈ D1(s), x2 ∈ D2(s),

δ(s, x1, x2)(t) = ∑
a1∈Γ1(s)

∑
a2∈Γ2(s)

δ(s, a1, a2)(t) · x1(a1) · x2(a2) .

A path σ of G is an infinite sequence s0, s1, s2, ... of states in s ∈ S, such that for all k ≥ 0,

there are mixed moves xk1 ∈ D1(sk) and xk2 ∈ D2(sk) with δ(sk, x
k
1, x

k
2)(sk+1) > 0. We write

Σ for the set of all paths, and Σs the set of all paths starting from state s.

A strategy for player i ∈ {1, 2} is a function πi : S
+ 7→ Dist(Moves) that associates

with every non-empty finite sequence σ ∈ S+ of states, representing the history of the

game, a probability distribution πi(σ), which is used to select the next move of player i;

we require that for all σ ∈ S∗ and states s ∈ S, if πi(σs)(a) > 0, then a ∈ Γi(s). A strategy

is a stationary strategy, also known as a memoryless strategy, if πi(σs) = πi(s) for all s ∈ S;

the move selected by player i at every state of the game is independent of history. We write

Πi for the set of strategies for player i. Once the starting state s and the strategies π1 and

π2 for the two players have been chosen, the game is reduced to an ordinary stochastic

process, denoted Gπ1,π2
s , which defines a probability distribution on the set Σ of paths. We

denote by Prπ1,π2
s (·) the probability of a measurable event (sets of paths) with respect to

this process, and denote by E
π1,π2
s (·) the associated expectation operator. For k ≥ 0, we let

Xk : Σ → S be the random variable denoting the k-th state along a path.
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One-step expectations and predecessor operators. Given a valuation f ∈ F , a state s ∈ S,

and two mixed moves x1 ∈ D1(s) and x2 ∈ D2(s), we define the expectation of f from s

under x1, x2:

E
x1,x2
s ( f ) = ∑

t∈S

δ(s, x1, x2)(t) f (t) .

For a game structure G, for i ∈ {1, 2} we define the valuation transformer Prei : F 7→ F by,

for all f ∈ F and s ∈ S,

Prei( f )(s) = sup
xi∈Di(s)

inf
x∼i∈D∼i(s)

E
x1,x2
s ( f ) .

Intuitively, Prei( f )(s) is the maximal expectation player i can achieve of f after one step

from s: this is the classical “one-day” or “next-stage” operator of the theory of repeated

games [FV97]. We also define a deterministic version of this operator, in which players are

forced to play pure moves:

PreΓ
i ( f )(s) = max

xi∈Γi(s)
min

x∼i∈Γ∼i(s)
E

x1,x2
s ( f ) .

3.2 Quantitative µ-calculus

We consider the set of properties expressed by the quantitative µ-calculus (qµ).

As discussed in [Koz83a, dAM04, MM04], a large set of properties can be encoded in qµ,

spanning from basic properties such as maximal reachability and safety probability, to the

maximal probability of satisfying a general ω-regular specification.

Syntax. The syntax of quantitative µ-calculus is defined with respect to the set of obser-

vation variables V as well as a set MVars of calculus variables, which are distinct from the
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observation variables in V . The syntax is given as follows:

ϕ ::= c | v | V | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊕ c | ϕ ⊖ c | pre1(ϕ) | pre2(ϕ) | µV. ϕ | νV. ϕ

for constants c ∈ [0, 1], observation variables v ∈ V , and calculus variables V ∈ MVars.

In the formulas µV. ϕ and νV. ϕ, we furthermore require that all occurrences of the bound

variable V in ϕ occur in the scope of an even number of occurrences of the complement

operator ¬. A formula ϕ is closed if every calculus variable V in ϕ occurs in the scope of

a quantifier µV or νV. From now on, with abuse of notation, we denote by qµ the set of

closed formulas of qµ. A formula is a player i formula, for i ∈ {1, 2}, if ϕ does not contain

the pre∼i operator; we denote with qµi the syntactic subset of qµ consisting only of closed

player i formulas. A formula is in positive form if the negation appears only in front of

observation variables, i.e., in the context ¬v; we denote with qµ+ and qµ+
i the subsets of

qµ and qµi consisting only of positive formulas.

We remark that the fixpoint operators µ and ν will not be needed to achieve our

results on the logical characterization of game relations. They have been included in the

calculus because they allow the expression of many interesting properties, such as safety,

reachability, and in general, ω-regular properties. The operators ⊕ and ⊖, on the other

hand, are necessary for our results.

Semantics. A variable valuation ξ: MVars 7→ F is a function that maps every variable

V ∈ MVars to a valuation in F . We write ξ[V 7→ f ] for the valuation that agrees with ξ

on all variables, except that V is mapped to f . Given a game structure G and a variable

valuation ξ, every formula ϕ of the quantitative µ-calculus defines a valuation [[ϕ]]Gξ ∈ F
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(the superscript G is omitted if the game structure is clear from the context):

[[c]]ξ = c

[[v]]ξ = [v]

[[V]]ξ = ξ(V)

[[¬ϕ]]ξ = 1− [[ϕ]]ξ

[[ϕ{⊕⊖}c]]ξ = [[ϕ]]ξ{
⊕
⊖}c

[[ϕ1 {
∨
∧} ϕ2]]ξ = [[ϕ1]]ξ {

⊔
⊓} [[ϕ2]]ξ

[[prei(ϕ)]]ξ = Prei([[ϕ]]ξ)

[[{µ
ν}V. ϕ]]ξ = { inf

sup}{ f ∈ F | f = [[ϕ]]ξ[V 7→ f ]}

where i ∈ {1, 2}. The existence of the fixpoints is guaranteed by the monotonicity and

continuity of all operators and can be computed by Picard iteration [dAM04]. If ϕ is closed,

[[ϕ]]ξ is independent of ξ, and we write simply [[ϕ]].

We also define a deterministic semantics [[·]]Γ for qµ, in which players can select

only pure moves in the operators pre1, pre2. [[·]]Γ is defined as [[·]], except for the clause

[[prei(ϕ)]]Γξ = PreΓ
i ([[ϕ]]Γξ ) .

Example 6 Given a set T ⊆ S, the characteristic valuation T of T is defined by T(s) = 1 if

s ∈ T, and T(s) = 0 otherwise. With this notation, the maximal probability with which

player i ∈ {1, 2} can ensure eventually reaching T ⊆ S is given by [[µV.(T∨prei(V))]], and

the maximal probability with which player i can guarantee staying in T forever is given by

[[νV.(T ∧ prei(V))]] (see, e.g., [dAM04]). The first property is called a reachability property,

the second a safety property.

54



3.3 Discounted Quantitative µ-calculus

A discounted version of the µ-calculus was introduced in [dAHM03]; we call this

dµ. We define it here for completeness. The discounted calculus dµ is derived from qµ by

multiplying every application of the pre operator by a discount factor in the interval [0, 1].

If the discount factor of a pre operator is less than 1, then each additional application of

the operator in a fixpoint iteration carries less weight.

Syntax. The syntax of the discounted quantitative µ-calculus is defined with respect to the

set of observation variables V as well as a setMVars of calculus variables,which are distinct

from the observation variables in V . The syntax is given as follows:

ϕ ::= c | v | V | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊕ c | ϕ ⊖ c |

α · pre1(ϕ) | α · pre2(ϕ) | (1− α) + α · pre1(ϕ) | (1− α) + α · pre2(ϕ) |

µV. ϕ | νV. ϕ

for constants c ∈ [0, 1], observation variables v ∈ V , calculus variables V ∈ MVars, and

parameters α from some fixed set Λ.

Semantics. A variable valuation ξ : MVars 7→ F is a function that maps every variable

V ∈ MVars to a valuation in F . We write ξ[V 7→ f ] for the valuation that agrees with ξ

on all variables, except that V is mapped to f . A parameter valuation P : Λ 7→ [0, 1] is a

function that maps every parameter α ∈ Λ to a real-valued discount factor in the interval

[0, 1]. Given a real r ∈ [0, 1], the parameter valuation P is r-bounded if P(α) ≤ r for all

parameters α ∈ Λ. Given a game structure G, a variable valuation ξ, and a parameter

valuation P , every formula ϕ of the discounted quantitative µ-calculus defines a valuation
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[[ϕ]]Gξ,P ∈ F (the superscript G is omitted if the game structure is clear from the context):

[[c]]ξ,P = c

[[v]]ξ,P = [v]

[[V]]ξ,P = ξ(V)

[[¬ϕ]]ξ,P = 1− [[ϕ]]ξ,P

[[ϕ{⊕⊖}c]]ξ,P = [[ϕ]]ξ,P{
⊕
⊖}c

[[ϕ1 {
∨
∧} ϕ2]]ξ,P = [[ϕ1]]ξ,P {⊔⊓} [[ϕ2]]ξ,P

[[α · prei(ϕ)]]ξ,P = P(α) · Prei([[ϕ]]ξ,P )

[[(1− α) + α · prei(ϕ)]]ξ,P = (1−P(α)) + P(α) · Prei([[ϕ]]ξ,P )

[[{µ
ν}V. ϕ]]ξ,P = { inf

sup}{ f ∈ F | f = [[ϕ]]ξ[V 7→ f ],P}

where i ∈ {1, 2}. The existence of the fixpoints is guaranteed by the monotonicity and

continuity of all operators and can be computed by Picard iteration [dAM04]. The re-

gion [[ϕ]]ξ,P is in general not boolean even if the game structure is turn-based determin-

istic, because the discount factors introduce real numbers. The discounted µ-calculus

is closed under negation: if we define the negation of a formula ϕ inductively using

¬(α · pre1(ϕ′)) = (1− α) + α · pre2(¬ϕ′) and ¬((1− α) + α · pre1(ϕ′)) = α · pre2(¬ϕ′),

then [[¬ϕ]]ξ,P = 1− [[ϕ]]ξ,P . This generalizes the duality 1− pre1( f ) = pre2(1− f ) of the

undiscounted pre operators.
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Chapter 4

Relations and Metrics

In this chapter we present metrics and relations in stochastic games and their log-

ical characterization. We are interested in developing ametric on states of a game structure

that captures an approximate notion of equivalence: states close in the metric should yield

similar values to the players for any winning objective. Specifically, we are interested in

defining a bisimulation metric [≃g] ∈ M such that for any game structure G and states s, t

of G, the following continuity property holds:

[≃g](s, t) = sup
ϕ∈qµ

|[[ϕ]](s)− [[ϕ]](t)| . (4.1)

In particular, the kernel of the metric, that is, states at distance 0, are equivalent: each

player can get exactly the same value from either state for any objective. Notice that in

defining the metric independent of a player, we are expecting our metrics to be reciprocal,

that is, invariant under a change of player. Reciprocity is expected to hold since the under-

lying games we consider are determined—for any game, the value obtained by player 2 is

one minus the value obtained by player 1— and yields canonical metrics on games.
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Thus, our metrics will generalize equivalence and refinement relations that have

been studied on MDPs and in the deterministic setting. To underline the connection be-

tween classical equivalences and the metrics we develop, we write [s ≃g t] for [≃g](s, t),

so that the desired property of the bisimulation metric can be stated as

[s ≃g t] = sup
ϕ∈qµ

|[[ϕ]](s)− [[ϕ]](t)| .

Metrics of this type have already been developed for Markov decision processes (MDPs)

[vBW01a, DGJP03]. Our construction of metrics for games starts from an analysis of these

constructions.

4.1 Metrics for MDPs

We consider the case of 1-MDPs; the case for 2-MDPs is symmetrical. Throughout

this subsection, we fix a 1-MDP 〈S, [·],Moves, Γ1, Γ2, δ〉. Before we present the metric corre-

spondent of probabilistic simulation, we first rephrase classical probabilistic (bi)simulation

on MDPs [LS92, JS90, SL94, SL95] as a fixpoint of a relation transformer. As a first step, we

lift relations between states to relations between distributions. Given a relation R ⊆ S× S

and two distributions p, q ∈ Dist(S), we let p ⊑R q if there is a function ∆ : S× S → [0, 1]

such that:

− ∆(s, s′) > 0 implies (s, s′) ∈ R;

− p(s) = ∑s′∈S ∆(s, s′) for any s ∈ S;

− q(s′) = ∑s∈S ∆(s, s′) for any s′ ∈ S.
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To rephrase probabilistic simulation, we define the relation transformer F : 2S×S 7→ 2S×S

as follows. For all relations R ⊆ S× S and s, t ∈ S, we let (s, t) ∈ F(R) iff

s ≡ t ∧ ∀x1∈D1(s) . ∃y1∈D1(t) . δ(s, x1) ⊑R δ(t, y1), (4.2)

for all states s, t ∈ S. Probabilistic simulation is the greatest fixpoint of (4.2); probabilistic

bisimulation is the greatest symmetrical fixpoint of (4.2).

To obtain ametric equivalent of probabilistic simulation, we lift the above fixpoint

from relations (subsets of S2) to metrics (maps S2 7→ IR). We lift (4.2) to metrics, defining

a metric transformer H1MDP
post : M 7→ M. For all d ∈ M, let D(δ(s, x1), δ(t, y1))(d) be the

distribution distance between δ(s, x1) and δ(t, y1) with respect to the metric d. We will show

later how to define such a distribution distance. For s, t ∈ S, we let

H1MDP
post (d)(s, t) = p(s, t) ⊔ sup

x1∈D1(s)

inf
y1∈D1(t)

D(δ(s, x1), δ(t, y1))(d) . (4.3)

In this definition, the ∀ and ∃ of (4.2) have been replaced by sup and inf, respectively. Since

equivalent states should have distance 0, the simulation metric in MDPs is defined as the

least (rather than greatest) fixpoint of (4.3) [vBW01a, DGJP03]. Similarly, the bisimulation

metric is defined as the least symmetrical fixpoint of (4.3).

For a distance d ∈ M and two distributions p, q ∈ Dist(S), the distribution distance

D(p, q)(d) is a measure of how much “work” we have to do to make p look like q, given

that moving a unit of probability mass from s ∈ S to t ∈ S has cost d(s, t). More precisely,

D(p, q)(d) is defined via the trans-shipping problem, as the minimum cost of shipping the

distribution p into q, with edge costs d. Thus, D(p, q)(d) is the solution of the following
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linear programming (LP) problem over the set of variables {λs,t}s,t∈S:

Minimize ∑
s,t∈S

d(s, t)λs,t

subject to ∑
t∈S

λs,t = p(s), ∑
s∈S

λs,t = q(t), λs,t ≥ 0 .

Equivalently, we can define D(p, q)(d) via the dual of the above LP problem [vBW01a].

Given a metric d ∈ M, let C(d) ⊆ F be the subset of valuations k ∈ F such that k(s) −

k(t) ≤ d(s, t) for all s, t ∈ S. Then the dual formulation is:

Maximize ∑
s∈S

p(s) k(s)− ∑
s∈S

q(s)k(s) (4.4)

subject to k ∈ C(d) .

The constraint C(d) on the valuation k, states that the value of k across states cannot differ

by more than d. This means, intuitively, that k behaves like the valuation of a qµ formula:

as we will see, the logical characterization implies that d is a bound for the difference in

valuation of qµ formulas across states. Indeed, the logical characterization of the metrics

is proved by constructing formulas whose valuation approximate that of the optimal k.

Plugging (4.4) into (4.3), we obtain:

H1MDP
post (d)(s, t) = p(s, t) ⊔ sup

x1∈D1(s)

inf
y1∈D1(t)

sup
k∈C(d)

(

E
x1
s (k) − E

y1
t (k)

)

. (4.5)

We can interpret this definition as follows. State t is trying to simulate state s (this is a

definition of a simulation metric). First, state s chooses a mixed move x1, attempting to

make simulation as hard as possible; then, state t chooses a mixed move y1, trying to

match the effect of x1. Once x1 and y1 have been chosen, the resulting distance between s

and t is equal to the maximal difference in expectation, for moves x1 and y1, of a valuation
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k ∈ C(d). We call the metric transformer H1MDP
post the a posteriori metric transformer: the

valuation k in (4.5) is chosen after the moves x1 and y1 are chosen. We can define an a priori

metric transformer, where k is chosen before x1 and y1:

H1MDP
prio (d)(s, t) = p(s, t) ⊔ sup

k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

(

E
x1
s (k) − E

y1
t (k)

)

. (4.6)

Intuitively, in the a priori transformer, first a valuation k ∈ C(d) is chosen. Then, state

t must simulate state s with respect to the expectation of k. State s chooses a move x1,

trying to maximize the difference in expectations, and state t chooses a move y1, trying to

minimize it. The distance between s and t is then equal to the difference in the resulting

expectations of k.

Theorem 2 below states that for MDPs, a priori and a posteriori simulation met-

rics coincide. In the next section, we will see that this is not the case for games.

Theorem 2 For all MDPs, H1MDP
post = H1MDP

prio .

Proof. Consider two states s, t ∈ S, and a metric d ∈ M. We have to prove that

sup
k

sup
x1

inf
y1

[Ex1
s (k) − E

y1
t (k)] = sup

x1

inf
y1

sup
k

[Ex1
s (k) − E

y1
t (k)] . (4.7)

In the left-hand side, we can exchange the two outer sups. Then, noticing that

the difference in expectation is bi-linear in k and y1 for a fixed x1, that y1 is a probability

distribution, and that k is chosen from a compact convex subset, we apply the generalized

minimax theorem [Sio58] to exchange supk infy1 into infy1 supk, thus obtaining the right-

hand side. �
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The metrics defined above are logically characterized by qµ. Precisely, let [∼] ∈ M be the

least symmetrical fixpoint of H1MDP
prio = H1MDP

post . Then, Lemma 5.24 and Corollary 5.25 of

[DGJP03], (originally stated for H1MDP
post ) state that for all states s, t of a 1-MDP, we have

[s ∼ t] = sup
ϕ∈qµ

|[[ϕ]](s)− [[ϕ]](t)| .

4.2 Metrics for Concurrent Games

We now extend the simulation and bisimulation metrics from MDPs to general

game structures. As we shall see, unlike for MDPs, the a priori and the a posteriori metrics

do not coincide over games. In particular, we show that the a priori formulation satisfies

both a tight logical characterization as well as reciprocity while, perhaps surprisingly, the

more natural a posteriori version does not.

A posteriori metrics are defined via the metric transformer H⊑1
: M 7→ M as

follows, for all d ∈ M and s, t ∈ S:

H⊑1
(d)(s, t) = p(s, t) ⊔ sup

x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

D(δ(s, x1, x2), δ(t, y1, y2), d)

= p(s, t) ⊔ sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

sup
k∈C(d)

(

E
x1,x2
s (k) − E

y1,y2
t (k)

)

.

(4.8)

A priori metrics are defined by bringing the supk outside. Precisely, we define a metric
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transformer H�1
: M 7→ M as follows, for all d ∈ M and s, t ∈ S:

H�1
(d)(s, t) = p(s, t) ⊔ sup

k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

(

E
x1,x2
s (k) − E

y1,y2
t (k)

)

= p(s, t) ⊔ sup
k∈C(d)

[

sup
x1∈D1(s)

inf
x2∈D2(s)

E
x1,x2
s (k) − sup

y1∈D1(t)

inf
y2∈D2(t)

E
y1,y2
t (k)

]

= p(s, t) ⊔ sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t)
)

. (4.9)

First, we show that H�1
and H⊑1

are monotonic in the lattice of metrics (M,≤).

Lemma 1 The functions H�1
and H⊑1

are monotonic in the lattice of metrics (M,≤).

Proof. For d, d′ ∈ M, d ≤ d′ implies C(d) ⊆ C(d′), and hence supk∈C(d)(Pre1(k)(s) −

Pre1(k)(t)) ≤ supk∈C(d′)(Pre1(k)(s)− Pre1(k)(t)). This shows the monotonicity of H�1
.

The monotonicity of H⊑1
can be shown in a similar fashion. From d ≤ d′, reason-

ing as before we obtain

sup
k∈C(d)

(

E
x1,x2
s (k) − E

y1,y2
t (k)

)

≤ sup
k∈C(d′)

(

E
x1,x2
s (k) − E

y1,y2
t (k)

)

.

The result then follows from the monotonicity of the operators supx1∈D1(s)
, infy1∈D1(t)

,

supy2∈D2(t)
, infx2∈D2(s)

. �

On the basis of this lemma, we can define the least fixpoints of H�1
and H⊑1

,

which will yield our game simulation and bisimulation metrics.

Definition 1 A priori metrics:

− The a priori simulation metric [�1] is the least fixpoint of H�1
.

− The a priori bisimulation metric [≃1] is the least symmetrical fixpoint of H�1
.
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A posteriori metrics:

− The a posteriori game simulation metric [⊑1] is the least fixpoint of H⊑1
.

− The a posteriori game bisimulation metric [∼=1] is the least symmetrical fixpoint of H⊑1
.

By exchanging the roles of the players, we define the metric transformers H�2 and H⊑2 ,

and the metrics [�2], [≃2], [⊑2], [∼=2].

We note that the a posteriori simulation metric [⊑1] has been introduced in

[dAHM03, Maj03]. We also note that the a posteriori bisimulation metric [∼=i] can be de-

fined as the least fixpoint of H∼=i
: M 7→ M, defined for all d ∈ M and i ∈ {1, 2} by

H∼=1
(d) = H⊑1

(d) ⊔Opp(H⊑1
(d)), (4.10)

where Opp(d) = d̆ denotes the opposite of a metric d. Similarly, the a priori bisimulation

metric [≃i] can be defined as the least fixpoint of H≃i
: M 7→ M, defined for all d ∈ M

and i ∈ {1, 2} by

H≃1
(d) = H�1

(d) ⊔Opp(H�1
(d)) . (4.11)

We wish to show that the metrics of Definition 1 can be computed via Picard iteration. To

this end, it is necessary to show that the operators H⊑1
and H�1

on the lattice (M,≤) are

upper semi-continuous. In fact, a very similar proof shows that the operators are lower

semi-continuous, and thus, continuous; we omit the proof of this more general fact as it is

not required for the desired result about the applicability of Picard iteration.

Lemma 2 The operators H�1
and H⊑1

on the lattice (M,≤) are upper semi-continuous.
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Proof. Let D ⊆ M be an arbitrary set of distances, and let d∗ = supD; note that d∗ exists,

as (M,≤) is a complete lattice.

We first prove the result for H�1
. We need to prove that H�1

(supD) =

supd∈D H�1
(d), which we abbreviate H�1

(supD) = supH�1
(D). In one direction,

H�1
(supD) ≥ supH�1

(D) follows from the monotonicity of H�1
(Lemma 1). In the other

direction, we will show that for all ǫ > 0, there is d ∈ D such that |H�1
(d∗)− H�1

(d)| ≤ ǫ,

where for d, d′ ∈ M, |d − d′| is the 1-norm distance between d and d′. For convenience,

let G(k) ∈ M be defined as G(k)(s, t) = Pre1(k)(s) − Pre1(k)(t), so that we can write

H�1
(d) = p(s, t) ⊔ supk∈C(d) G(k).

Given ǫ > 0, choose d ∈ D such that for all s, t ∈ S, we have d(s, t)/d∗(s, t) ≥

1− ǫ/4 if d∗(s, t) > 0, and d(s, t) = 0 if d∗(s, t) = 0. Note that for all k ∈ C(d∗), we have

(1− ǫ/4)k ∈ C(d) and |k − (1− ǫ/4)k| ≤ ǫ/4, as |k| ≤ 1. Thus, d ∈ D is such that for

all k ∈ C(d∗), there is k′ ∈ C(d) with |k − k′| ≤ ǫ/4. In other words, d is such that the

Hausdorff distance between C(d∗) and C(d) is at most ǫ/4. We now prove that for this d,

we have

| sup
k∈C(d∗)

G(k) − sup
k∈C(d)

G(k)| ≤ ǫ . (4.12)

In fact, let k∗ ∈ C(d∗) be such that

|G(k∗) − sup
k∈C(d∗)

G(k)| ≤ ǫ/2 . (4.13)

and let k′ ∈ C(d) be such that |k∗ − k′| ≤ ǫ/4. For s, t ∈ S, we have by definition

G(k∗)(s, t) = Pre1(k
∗)(s)− Pre1(k

∗)(t); let

x1(s) = arg sup
x∈D1(s)

inf
y∈D2(s)

E
x,y
s (k∗) .
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By employing x1(s) at all s ∈ S, player 1 can guarantee

|G(k′)(s, t)− G(k∗)(s, t)| ≤ ǫ/2,

which together with (4.13) leads to (4.12). In turn, (4.12) yields the result.

We can prove the result for H⊑1
following a similar argument. Precisely, in one

direction, H⊑1
(supD) ≥ supH⊑1

(D) follows from the monotonicity of H⊑1
(Lemma 1). In

the other direction, we will show that for all ǫ > 0, there is d ∈ D such that |H⊑1
(d∗) −

H⊑1
(d)| ≤ ǫ, where for d, d′ ∈ M, |d− d′| is the 1-norm distance between d and d′. Again,

let d be such that the Hausdorff distance between C(d∗) and C(d) is at most ǫ/2. For such

a d, we have that for all s, t ∈ S, and x1 ∈ D1(s), y1 ∈ D1(t), x2 ∈ D2(s), y2 ∈ D2(t),

∣

∣

∣
sup

k∈C(d∗)

(

E
x1,x2
s (k) − E

y1,y2
t (k)

)

− sup
k∈C(d)

(

E
x1,x2
s (k) − E

y1,y2
t (k)

)

∣

∣

∣
≤ ǫ,

and this leads easily to the result. �

This result implies that we can compute [�1] as the fixpoint of H�1
via Picard

iteration; we denote by dn = Hn
�1

(0) the n-iterate of this. Similarly, we can compute [⊑1]

as the fixpoint of H⊑1
via Picard iteration.

Theorem 3 The following assertions hold, for i ∈ {1, 2}:

1. Let d0 = d′0 = 0, and for n ≥ 0, let

dn+1 = H�i
(dn) and d′n+1 = H⊑i

(d′n) . (4.14)

We have limn→∞ dn = [�i] and limn→∞ d′n = [⊑i].

2. Let b0 = b′0 = 0, and for n ≥ 0, let

bn+1 = H�i
(bn) ⊔Opp(H�i

(bn)) and b′n+1 = H⊑i
(b′n) ⊔Opp(H⊑i

(b′n)) . (4.15)
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We have limn→∞ bn = [≃i] and limn→∞ b′n = [∼=i].

Proof. The statements follow from the definitions of the metrics, and from Lemmas 1 and 2.

�

We now show some basic properties of these metrics. First, we show that the a

priori fixpoints give a (directed) metric, i.e., they are non-negative and satisfy the triangle

inequality. We also prove that the a priori and a posteriori metrics are distinct. We then

focus on the a priori metrics, and show, through our results, that they are the natural

metrics for concurrent games.

Theorem 4 For all game structures G, and all states s, t, u of G, we have,

1. [s �1 t] ≥ 0 and [s �1 u] ≤ [s �1 t] + [t �1 u].

2. [s ⊑1 t] ≥ 0 and [s ⊑1 u] ≤ [s ⊑1 t] + [t ⊑1 u].

Proof. We prove the following statement: if d ∈ M is a directed metric, then:

1. H�1
(d) is a directed metric;

2. H⊑1
(d) is a directed metric.

The theorem then follows by induction on the Picard iteration with which the a priori and

a posteriori metrics can be computed (Theorem 3). We prove the result first for the a priori

metric.

First, from d′ = H�1
(d) and p(s, t) ≥ 0 for all s, t ∈ S, we immediately have d′ ≥ 0

(where inequalities are interpreted in pointwise fashion).
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To prove the triangle inequality, we observe that p(s, t) + p(t, u) ≥ p(s, u) for all

s, t, u ∈ S. Also,

sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t)
)

+ sup
k∈C(d)

(

Pre1(k)(t)− Pre1(k)(u)
)

≥ sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t) + Pre1(k)(t)− Pre1(k)(u)
)

= sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(u)
)

.

Thus, we obtain

H�1
(d)(s, t) + H�1

(d)(t, u)

=
(

p(s, t) ⊔ sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t)
))

+
(

p(t, u) ⊔ sup
k∈C(d)

(

Pre1(k)(t)− Pre1(k)(u)
))

≥
(

p(s, u) ⊔ sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(u)
))

= H�1
(d)(s, u),

leading to the result.

For the a posteriori metric, let d′ = H⊑1
(d); again, we can prove d′ ≥ 0 as in

the a priori case. To prove the triangle inequality for d′, for s, t ∈ S, and for distributions

x1 ∈ D1(s) and y1 ∈ D1(t), it is convenient to let

G(x1, y1)(s, t) = sup
y2∈D2(t)

inf
x2∈D2(s)

sup
k∈C(d)

(

E
x1,x2
s (k) − E

y1,y2
t (k)

)

,

With this notation, for s, t, u ∈ S, we have

H⊑1
(d)(s, u) = p(s, u) ⊔ sup

x1∈D1(s)

inf
z1∈D1(u)

G(x1, z1)(s, u) . (4.16)

Intuitively, the quantity G(x1, z1)(s, u) is the distance between s and u computed in the

2-MDP obtained when player 1 plays x1 at s and z1 at u. As a consequence of Theorem 2
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(interpreted over 2-MDPs), and of the previous proof for the a-priori case, we have that

G(x1, z1)(s, u) ≤ G(x1, y1)(s, t) + G(y1, z1)(t, u) . (4.17)

for all x1 ∈ D1(s), y1 ∈ D1(t), and z1 ∈ D1(u). This observation will be useful in the

following.

For any ǫ > 0, let x∗1 realize the sup in (4.16) within ǫ, that is,

inf
z1∈D1(u)

G(x∗1 , z1)(s, u) ≥ sup
x1∈D1(s)

inf
z1∈D1(u)

G(x1, z1)(s, u)− ǫ, (4.18)

and let z∗1 realize the inf of the left-hand side of (4.18) also within ǫ. Intuitively, x∗1 is the

player-1 distribution at s that is hardest to imitate from u, and z∗1 is the best imitation of x∗1

available at u. In the same fashion, let y∗1 realize the inf within ǫ in infy1∈D1(t)
G(x∗1 , y1)(s, t),

and let z′1 realize the inf within ǫ in infz1∈D1(u) G(y∗1 , z1)(t, u). In intuitive terms, y∗1 is the

imitator of x∗1 in t, and z′1 is the imitator of y∗1 in u.

We consider two cases. If p(s, u) = 1, then we are sure that the triangle inequality

d′(s, u) ≤ d′(s, t) + d′(t, u), (4.19)

holds. Otherwise, note that

d′(s, u) ≤ G(x∗1 , z
∗
1)(s, u) + 2ǫ . (4.20)

Since x∗1 is not necessarily the distribution at s that is hardest to imitate from t, and since

y∗1 is not necessarily the distribution at t that is hardest to imitate from u, we also have:

d′(s, t) ≥ G(x∗1 , y
∗
1)(s, t)− ǫ d′(t, u) ≥ G(y∗1 , z

′
1)(t, u)− ǫ . (4.21)

Since the triangle inequality holds for MDPs, as stated by (4.17), we have

G(x∗1 , z
′
1)(s, u) ≤ G(x∗1 , y

∗
1)(s, t) + G(y∗1 , z

′
1)(t, u) ≤ d′(s, t) + d′(t, u) + 2ǫ . (4.22)
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Since z∗1 is the best imitator of x∗1 at u, we also have

G(x∗1 , z
∗
1)(s, u)− ǫ ≤ G(x∗1 , z

′
1)(s, u), (4.23)

which together with (4.22) yields

G(x∗1 , z
∗
1)(s, u) ≤ d′(s, t) + d′(t, u) + 3ǫ . (4.24)

From the choice of x∗1 , this finally leads to

d′(s, u) ≤ d′(s, t) + d′(t, u) + 5ǫ,

for all ǫ > 0, which yields the desired triangle inequality (4.19). �

4.2.1 A priori and a posterioriMetrics are Distinct.

First, we show that a priori and a posteriori metrics are distinct in general: the a

priori metric never exceeds the a posteriori one, and there are concurrent games where it

is strictly smaller. Intuitively, this can be explained as follows. Simulation entails trying to

simulate the expectation of a valuation k, as we see from (4.8), (4.9). It is easier to simulate

a state s from a state t if the valuation is known in advance, as in a priori metrics (4.9), than

if the valuation k is chosen after all the moves have been chosen, as in a posteriori metrics

(4.8).

As a special case, we shall see that equality holds for turn-based game structures,

in addition to MDPs as we have seen in the previous subsection.

Theorem 5 The following assertions hold.

1. For all game structures G, and for all states s, t of G, we have [s �1 t] ≤ [s ⊑1 t].
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δ(t, ∗, ∗)(w) f g

b 1/9 5/9

c 4/9 8/9

δ(t, ∗, ∗)(u) f g

b 8/9 4/9

c 5/9 1/9

δ(s, ∗, ∗)(w) f g

a 1/3 2/3

δ(s, ∗, ∗)(u) f g

a 2/3 1/3

0

0

1

1

b, f c, f b, g c, g

a, f a, g

δ(∗, ∗, ∗)(w)

δ(∗, ∗, ∗)(u)

1
9

1
9

1
3

1
3

4
9

4
9

5
9

5
9

2
3

2
3

8
9

8
9

Figure 4.1: A game that shows that the a priori and the a posteriori metrics may not coin-
cide. The tables above show the transition probabilities from states t and s to states w and
u for pure moves of the two players. The row player is player 1 and the column player
is player 2. The line below is the two dimensional probability simplex that shows the
transition probabilities induced by convex combinations of pure moves of the two players.

2. There is a game structure G, and states s, t of G, such that [s �1 t] = 0 and [s ⊑1 t] > 0.

3. For all turn-based game structures, we have [�1] = [⊑1].

Proof. The first assertion is a consequence of the fact that, for all functions f : IR2 7→ IR, we

have supx infy f (x, y) ≤ infy supx f (x, y). By repeated applications of this, we can show

that, for all d ∈ M, we have H�(d) ≤ H⊑(d) (with pointwise ordering). The result then

follows from the monotonicity of H� and H⊑.

For the second assertion, we give an example where a priori distances are strictly

less than a posteriori distances. Consider a game with states S = {s, t, u,w}. States u and
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w are sink states with p(u,w) = 1; states s and t are such that p(s, t) = 0. At states s and

t, player 2 has moves { f , g}. Player-1 has a single move {a} at state s, and moves {b, c}

at state t. The moves from s and t lead to u and w with transition probabilities indicated

in Figure 4.1. In the figure, the point b, f indicates the probability of going to u and w

when the move pair (b, f ) is played, with δ(s, b, f )(u) + δ(s, b, f )(w) = 1; similarly for the

other move pairs. The thick line segment between the points a, f and a, g represents the

transition probabilities arising when player 1 plays move a, and player 2 plays a mixed

move (a mix of f and g).

We show that, in this game, we have [s ⊑1 t] > 0. Consider the metric d where

d(u,w) = 1 (recall that p(u,w) = 1, and note the other distances do not matter, since u, w

are the only two destinations). We need to show

∀y1 ∈ D1(t).∃y2 ∈ D2(t).∀x2 ∈ D2(s).∃k ∈ C(d).
(

E
a,x2
s (k) − E

y1,y2
t (k)

)

> 0 . (4.25)

Consider anymixedmove y1 = αb+(1− α)c, where b, c are themoves available to player 1

at t, and 0 ≤ α ≤ 1. If α ≥ 1
2 , choose move f from t as y2, and choose k(w) = 1, k(u) = 0.

Otherwise, choose move g from t as y2, and choose k(w) = 0, k(u) = 1. With these

choices, the transition probability δ(t, y1, y2) will fall outside of the segment [(a, f ), (a, g)]

in Figure 4.1. Thus, with the choice of k above, we ensure that the difference in (4.25) is

always positive.

To show that in the game we have [s �1 t] = 0, it suffices to show (given that

[s �1 t] ≥ 0) that

∀k ∈ C(d).∃y1 ∈ D1(t).∀y2 ∈ D2(t).∃x2 ∈ D2(s).
(

E
a,x2
s (k) − E

y1,y2
t (k)

)

≤ 0 .
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If k(u) = k(w), the result is immediate. Assume otherwise, that k(u) < k(w), and choose

y1 = c. For every y2, the distribution over successor states (and of k-expectations) will be in

the interval [(c, f ), (c, g)] in Figure 4.1. By choosing x2 = f , we have that E
a, f
s (k) < E

c,y2
t (k)

for all y2 ∈ D2(t), leading to the result. Similarly if k(u) > k(w), by choosing y1 = b,

the distribution over successor states (and of k-expectations) will now be in the interval

[(b, f ), (b, g)]. By choosing x2 = g, we have that E
a,g
s (k) < E

b,y2
t (k) for all y2 ∈ D2(t), again

leading to the result.

The last assertion of the theorem is proved in the same way as Theorem 2. �

4.3 Reciprocity of a prioriMetric

The previous theorem establishes that the a priori and a posteriori metrics are in

general distinct. We now prove that it is the a priori metric, rather than the a posteriori

one, that enjoys reciprocity, and that provides a (quantitative) logical characterization of

qµ. We begin by considering reciprocity.

Theorem 6 The following assertions hold.

1. For all game structures G, we have [�1] = [�2], and [≃1] = [≃2].

2. There is a concurrent game structure G, with states s and t, where [⊑1] 6= [⊒2].

3. There is a concurrent game structure G, with states s and t, where [∼=1] 6= [∼=2].
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Proof. For the first assertion, it suffices to show that, for all d ∈ M, and states s, t ∈ S, we

have H�1
(d)(s, t) = H�2(d̆)(t, s). We proceed as follows:

sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t)
)

(4.26)

= sup
k∈C(d)

(

−Pre2(1− k)(s) + Pre2(1− k)(t)
)

(4.27)

= sup
k∈C(d̆)

(

Pre2(k)(t)− Pre2(k)(s)
)

. (4.28)

The step from (4.26) to (4.27) uses Pre1(k)(s) = 1− Pre2(1− k)(s) [vNM44, dAM04], and

the step from (4.27) to (4.28) uses the change of variables k → 1− k.

For the second assertion, consider again the game of Figure 4.1. We will show

that [t ⊑2 s] = 0. Together with [s ⊑1 t] > 0, as shown in the proof of Theorem 5, this leads

to the result. To obtain the result, we will prove that for all d, we have:

∀y2 ∈ D2(t).∃x2 ∈ D2(s).∃y1 ∈ D1(t).∀k ∈ C(d).
(

E
y2,y1
t (k) − E

x2,a
s (k)

)

= 0 .

where we have used the fact that player 1 at s plays x1 = a. Any mixed move y2 ∈ D2(t)

can be written as y2 = α f + (1− α)g for 0 ≤ α ≤ 1. Choose y1 = αc + (1− α)b, and

x2 = α
(2

3
f +

1

3
g
)

+ (1− α)
(1

3
f +

2

3
g
)

.

Under this choice of mixed moves, we have:

δ(t, y1, y2)(w) =
4

9
α2 + α(1− α) +

5

9
(1− α)2 =

5

9
−

1

9
α

δ(s, x1, x2)(w) = α
(2

3
·
1

3
+

1

3
·
2

3

)

+ (1− α)
(2

3
·
2

3
+

1

3
·
1

3

)

=
5

9
−

1

9
α .

As the probabilities of transitions to w are equal from t and s, we obtain that for all

k ∈ C(d), we have E
y2,y1
t (k) − E

x2,a
s (k) = 0, as desired.
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For the third assertion, we consider a modified version of the game depicted in

Figure 4.1, obtained by adding two new moves to player 2 at state t, namely f ′ and g′. We

define the transition probabilities of these new moves by

δ(t, ∗, f ′) = δ(s, a, f ) δ(t, ∗, g′) = δ(s, a, g) .

To prove [s ⊑1 t] > 0, we can proceed as in the proof of Theorem 5, noting that we can

choose y2 as in that proof (this is possible, as player 2 at t has more moves available in the

modified game). This leads to [s ∼=1 t] > 0.

To show that [s ∼=2 t] = 0, given the transition structure of the game, it suffices to

show that [s ⊑2 t] = 0 and [t ⊑2 s] = 0. To show that [s ⊑2 t] = 0, we show that for all d,

we have:

∀x2 ∈ D2(s).∃y2 ∈ D2(t).∀y1 ∈ D1(t).∀k ∈ C(d).
(

E
x2,a
s (k) − E

y2,y1
t (k)

)

= 0 .

We can write any mixed move x2 ∈ D2(s) as x2 = α f + (1− α)g. We can then choose

y2 = α f ′ + (1− α)g′, and since at t under f ′, g′ the transition probabilities do not depend

on the mixed move y1 chosen by player 1, we have that the transition probabilities from s

and t match for all 0 ≤ α ≤ 1.

To show that [t ⊑2 s] = 0, we need to show that:

∀y2 ∈ D2(t).∃x2 ∈ D2(s).∃y1 ∈ D1(t).∀k ∈ C(d).
(

E
y2,y1
t (k) − E

x2,a
s (k)

)

= 0 .

Any mixed move y2 ∈ D2(t) can be written as

y2 = γ
[

α f + (1− α)g
]

+ (1− γ)
[

β f ′ + (1− β)g′
]

,
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for some α, β,γ ∈ [0, 1]. We choose x2 and y1 as follows:

x2 = αγ
[2

3
f +

1

3
g
]

+ (1− α)γ
[1

3
f +

2

3
g
]

+ (1− γ)
[

β f + (1− β)g
]

y1 = αc + (1− α)b .

With these mixed moves, we have δ(s, a, x2) = δ(t, y1, y2), leading to the result. �

As a consequence of this theorem, we write [≃g] in place of [≃1] = [≃2], to emphasize that

the player 1 and player 2 versions of game equivalence metrics coincide.

4.4 Logical Characterization of a priori Metric

We now prove that qµ provides a logical characterization for the a priori metrics.

We first state and prove two lemmas that lead to the desired result. The proof of the

lemmas use ideas from [Maj03] and [DGJP03]. We recall from Theorem 3 that we can

compute [�1] via Picard iteration, with dn = Hn
�1

(0) being the n-iterate.

We prove the existence of a logical characterization via a sequence of the follow-

ing two lemmas. The first lemma proves that a priori metrics provide a bound for the

difference in value of qµ-formulas.

Lemma 3 The following assertions hold for all game structures.

1. For all ϕ ∈ qµ+
1 , and for all s, t ∈ S, we have [[ϕ]](s)− [[ϕ]](t) ≤ [s �1 t].

2. For all ϕ ∈ qµ, and for all s, t ∈ S, we have |[[ϕ]](s)− [[ϕ]](t)| ≤ [s ≃g t].

Proof. We prove the first assertion. The proof is by induction on the structure of a (possibly

open) formula ϕ ∈ qµ+
1 . Call a variable valuation ξ bounded if, for all variables V ∈ MVars
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and states s, t, we have that ξ(V)(s) − ξ(V)(t) ≤ [s �1 t]. We prove by induction that for

all s, t ∈ S, for all bounded variable valuations ξ, we have [[ϕ]]ξ(s) − [[ϕ]]ξ(t) ≤ [s �1 t].

For clarity, we sometimes omit writing the variable valuation ξ.

The base case for constants is trivial, and the case for observation variables fol-

lows since [s ≡ t] ≤ [s �1 t]. The case for variables V ∈ MVars follows from the assump-

tion of bounded variable valuations. For ϕ1 ∨ ϕ2, assume the induction hypothesis for ϕ1,

ϕ2, and note that

(

[[ϕ1]](s) ⊔ [[ϕ2]](s)
)

−
(

[[ϕ1]](t) ⊔ [[ϕ2]](t)
)

≤
(

[[ϕ1]](s)− [[ϕ1]](t)
)

⊔
(

[[ϕ2]](s)− [[ϕ2]](t)
)

≤ [s �1 t] .

The proof for ∧ is similar. For ϕ1 ⊕ c and ϕ1 ⊖ c, we have by induction hypothesis that

[[ϕ1]](s)− [[ϕ1]](t) ≤ [s �1 t], and so the “shifted versions” also satisfy the same bound.

For the induction step for pre1, assume the induction hypothesis for ϕ, and note

that we can choose k ∈ C([�1]) such that k(s) = [[ϕ]](s) at all s ∈ S. We have, for all s, t ∈ S,

[[pre1(ϕ)]](s)− [[pre1(ϕ)]](t) ≤ sup
k∈C([�1])

(

Pre1(k)(s)− Pre1(k)(t)
)

≤ [s �1 t] . (4.29)

where the last inequality follows by noting that [�1] is a fixpoint of H�1
.

The proof for the fixpoint operators is performed by considering their Picard iter-

ates. We consider the case µZ.ϕ, the proof for νZ.ϕ is similar. Let ξ be a bounded variable

valuation. Then, the variable valuation ξ0 = ξ[Z 7→ 0] is also bounded, and by induction

hypothesis, the formula ϕ when evaluated in the variable valuation ξ0 satisfies

[[ϕ]]ξ0(s) − [[ϕ]]ξ0(t) ≤ [s �1 t] . (4.30)
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Now consider the variable valuation ξ1 = ξ[Z 7→ [[ϕ]]ξ0 ]. From Equation (4.30), we get that

ξ1 is bounded, and again, by induction hypothesis, we have that [[ϕ]]ξ1(s) − [[ϕ]]ξ1(t) ≤

[s �1 t]. In general, for k ≥ 0, consider the variable valuation ξk+1 = ξ[Z 7→ [[ϕ]]ξk ]. By the

above argument, each variable valuation ξk is bounded, and so for every k ≥ 0, we have

[[ϕ]]ξk(s) − [[ϕ]]ξk(t) ≤ [s �1 t] . (4.31)

Taking the limit, as k → ∞, we have that

lim
k→∞

([[ϕ]]ξk(s)− [[ϕ]]ξk(t)) = [[µZ.ϕ]]ξ(s)− [[µZ.ϕ]]ξ(t) ≤ [s �1 t] . (4.32)

The proof of the second assertion can be done along the same lines, using the

symmetry of ≃g. The proof is again by induction on the structure of the formula. In

particular, (4.29) can be proved for either player: for n ≥ 0 and i ∈ {1, 2},

[[prei(ϕ)]](s)− [[prei(ϕ)]](t) ≤ sup
k∈C([≃g])

(

Prei(k)(s)− Prei(k)(t)
)

≤ [s ≃g t] .

Negation can be dealt with by noting that [[¬ϕ]](s) − [[¬ϕ(t)]] = [[ϕ]](t) − [[ϕ(s)]], and by

using the symmetry of ≃g; the other cases are similar. �

The second lemma states that the qµ formulas can attain the distance computed

by the simulation metric.

Lemma 4 The following assertions hold for all game structures G, and for all states s, t of G.

[s �1 t] ≤ sup
ϕ∈qµ+

1

([[ϕ]](s)− [[ϕ]](t))

[s ≃g t] ≤ sup
ϕ∈qµ

|[[ϕ]](s)− [[ϕ]](t)|
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Proof. We show by induction on n that dn(s, t) ≤ supϕ∈qµ([[ϕ]](s) − [[ϕ]](t)). The base case

is trivial. For the induction step, the distance is:

di+1(s, t) = sup
k∈C(di)

(

Pre1(k)(s)− Pre1(k)(t)
)

. (4.33)

The challenge is to show that, for all s, t ∈ S, we can construct a formula ψst that witnesses

the distance within an arbitrary ε > 0:

di+1(s, t) − ε ≤ [[ψst]](s)− [[ψst]](t) . (4.34)

To this end, let k⋆ be the value of k that realizes the sup in (4.33) within ε/4. By induction

hypothesis, for each pair of states s′ and t′ we can choose ϕ′
s′t′ such that

di(s
′, t′) − ε/4 ≤ [[ϕ′

s′t′ ]](s
′) − [[ϕ′

s′t′ ]](t
′) . (4.35)

Let ϕs′t′ be a shifted version of ϕ′
s′t′ , such that ϕs′t′(s

′) = k⋆(s′):

ϕs′t′ = ϕ′
s′t′ ⊕ (k⋆(s′) − [[ϕ′

s′t′ ]](s
′)) . (4.36)

We now prove that:

[[ϕs′t′ ]](s
′) = k⋆(s′) (4.37)

[[ϕs′t′ ]](t
′) ≤ k⋆(t′) + ε/4 . (4.38)

Equality (4.37) is immediate from (4.36). We prove (4.38) as follows. We can rewrite (4.35)

as

[[ϕ′
s′t′ ]](t

′) − ε/4 ≤ [[ϕ′
s′t′ ]](s

′) − di(s
′, t′) . (4.39)

Since k⋆ ∈ C(di), we have k⋆(s′) − k⋆(t′) ≤ di(s
′, t′), or

k⋆(t′) − k⋆(s′) ≥ −di(s
′, t′) . (4.40)

79



Plugging this relation into (4.39), we obtain

[[ϕ′
s′t′ ]](t

′) − ε/4 ≤ [[ϕ′
s′t′ ]](s

′) + k⋆(t′) − k⋆(s′) . (4.41)

Plugging this relation into (4.36) evaluated at t′, we obtain

[[ϕs′t′ ]](t
′) − ε/4 ≤ [[ϕ′

s′t′ ]](s
′) + k⋆(t′) − k⋆(s′) ⊕

(

k⋆(s′) − [[ϕ′
s′t′ ]](s

′)
)

,

or

[[ϕs′t′ ]](t
′) − ε/4 ≤ k⋆(t′) −

(

k⋆(s′) − [[ϕ′
s′t′ ]](s

′)
)

⊕
(

k⋆(s′) − [[ϕ′
s′t′ ]](s

′)
)

≤ k⋆(t′),

which proves (4.38). Define now ϕs′ =
∧

t′ ϕs′t′ . From (4.37) and (4.38) we have

[[ϕs′ ]](s
′) = k⋆(s′) (4.42)

[[ϕs′ ]](t
′) ≤ k⋆(t′) + ε/4 . (4.43)

Define then ϕ =
∨

s′ ϕs′ . From (4.42), (4.43), we have that

k⋆(s′) ≤ [[ϕ]](s′) ≤ k⋆(s′) + ε/4 . (4.44)

for all s′ ∈ S. As formula ψst, we propose thus to take the formula pre(ϕ). From (4.44), we

have that |[[ψst]](s) − Pre1(k
⋆)(s)| ≤ ε/4, and similarly, |[[ψst]](t) − Pre1(k

⋆)(t)| ≤ ε/4. By

comparison with (4.33), and by the fact that k⋆ realizes the sup within ε/4, we finally have

(4.34), as desired. �

From these two lemmas, we can conclude that [[qµ]] provides a logical characteri-

zation for the a priori metrics, as stated by the next theorem.

Theorem 7 The following assertions hold for all game structures G, and for all states s, t of G:

[s �1 t] = sup
ϕ∈qµ+

1

([[ϕ]](s)− [[ϕ]](t)) [s ≃g t] = sup
ϕ∈qµ

|[[ϕ]](s)− [[ϕ]](t)|
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We note that, due to Theorem 5, an analogous result does not hold for the a pos-

teriori metrics. Together with the lack of reciprocity of the a posteriori metrics, this is a

strong indication that the a priori metrics, and not the a posteriori ones, are the “natural”

metrics on concurrent games.

Our metrics are not characterized by the probabilistic temporal logic PCTL [HJ94,

ASB+95]. In fact, the values of PCTL formulas can change from true to false when certain

probabilities cross given thresholds, so that PCTL formulas can have different boolean

values on games that are very close in transition probabilities, and hence, very close in

our metric. Quantitative metrics such as the ones developed in this paper are suited to

quantitative-valued formulas, such as those of qµ.

4.5 The Kernel

The kernel of the metric [≃g] defines an equivalence relation ≃g on the states

of a game structure: s ≃g t iff [s ≃g t] = 0. We call this the game bisimulation relation.

Notice that by the reciprocity property of ≃g, the game bisimulation relation is canonical:

≃1 = ≃2 = ≃g. Similarly, we define the game simulation preorder s �1 t as the kernel of the

directed metric [�1], that is, s �1 t iff [s �1 t] = 0. Alternatively, it is possible to define �1

and ≃g directly. Given a relation R ⊆ S× S, let B(R) ⊆ F consist of all valuations k ∈ F

such that, for all s, t ∈ S, if sRt then k(s) ≤ k(t). We have the following result.

Theorem 8 Given a game structure G, the relation �1 (resp. ≃1) can be characterized as the

largest (resp. largest symmetrical) relation R such that, for all states s, t with sRt, we have s ≡ t
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and

∀k ∈ B(R).∀x1 ∈ D1(s).∃y1 ∈ D1(t).∀y2 ∈ D2(t).∃x2 ∈ D2(s).
(

E
y1,y2
t (k) ≥ E

x1,x2
s (k)

)

.

(4.45)

Proof. The proof proceeds by induction on the computation of the fixpoint relation R. We

first present the case for �1. Call Rn the n-th iterate of the simulation relation R, and let dn

be the n-th iterate of [�1], as in Theorem 3. We prove by induction that, for all states s, t ∈ S,

we have sRnt iff dn(s, t) = 0. We define d0(s, t) = p(s, t). The base case is then immediate

because sR0t iff d0(s, t) = 0. Consider the induction step, for n ≥ 0, and consider any

states s, t ∈ S. Assume first that dn+1(s, t) > 0: then, it is easy to show that we can find

a value for k in (4.45) that witnesses (s, t) 6∈ Rn+1, since the constraints on k due to B(Rn)

are weaker than those due to C(dn). Conversely, assume that there is a k ∈ B(Rn) that

witnesses (s, t) 6∈ Rn+1. Then, by scaling all k values so that they are all smaller than the

smallest non-zero value of dn(s′, t′) for any s′, t′ ∈ S, we can find a k′ ∈ C(dn) which also

witnesses dn+1(s, t) > 0, as required.

The case for ≃g is analogous, due to the similarity of the Picard iterations (4.14)

for �1 and (4.15) for ≃g. �

We note that the above theorem allows the computation of ≃g via a partition-

refinement scheme. From the logical characterization theorem, we obtain the following

corollary.

Corollary 1 For any game structure G and states s, t of G, we have s ≃g t iff [[ϕ]](s) = [[ϕ]](t)

holds for every ϕ ∈ qµ and s �1 t iff [[ϕ]](s) ≤ [[ϕ]](t) holds for every ϕ ∈ qµ+
1 .
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4.6 Relation between Game Metrics and (Bi-)simulation Metrics

The a priori metrics assume an adversarial relationship between the players. We

show that, on turn-based games, the a priori bisimulation metric coincides with the classi-

cal bisimulation metric where the players cooperate.

We define such “cooperative” simulation and bisimulation metrics [�12] and

[≃12] as the metric analog of classical (bi)simulation [Mil90, SL94]. We define the met-

ric transformers H�12
: M 7→ M and H≃12

: M 7→ M, for all metrics d ∈ M and s, t ∈ S,

by:

H�12
(d)(s, t) = p(s, t) ⊔ sup

k∈C(d)

sup
x1∈D1(s)

sup
x2∈D2(s)

inf
y2∈D2(t)

inf
y1∈D1(t)

{E
x1,x2
s (k) − E

y1,y2
t (k)} .

H≃12
(d)(s, t) = H�12

(d)(s, t) ⊔ H�12
(d)(t, s) .

The metrics [�12] and [≃12] are defined as the least fixed points of H�12
and H≃12

respec-

tively. The kernel of these metrics define the classical probabilistic simulation and bisimu-

lation relations.

Theorem 9 The following assertions hold.

1. On turn-based game structures, [≃g] = [≃12].

2. There is a deterministic game structure G and states s, t in G such that [s ≃g t] > [s ≃12 t].

3. There is a deterministic game structure G and states s, t in G such that [s ≃g t] < [s ≃12 t].

Proof. For the first part, since we have turn-based games, only one player has a choice of

moves at each state. We say that a state s belongs to player i ∈ {1, 2} if player ∼i has
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u v

∗, ∗∗, ∗

a, a

a, a

a, b

a, b

b, b b, a

s

t

Figure 4.2: [s ≃g t] = 1
2 and [s ≃12 t] = 0

u v

a, aa, a

a, a

a, a
a, b

b, bb, a

s

t

Figure 4.3: [s ≃g t] = 0 but [s ≃12 t] = 1.

only one move at s. First, notice that due to the presence of the variable turn, the metric

distance between states belonging to different players is always 1, for all the metrics we

consider. Thus, we focus on the metric distances between states belonging to the same

player. Consider two player 1 states s, t ∈ S. From the definitions of H�1
and H�12

, for

d ∈ M, by dropping the moves of player 2, it is easy to see that H�1
(d) = H�12

(d), and

H≃g(d) = H≃12
(d). Since this holds for any d ∈ M, it holds for the fixpoints, [≃g] and

[≃12].

The second part is proved by the game in Figure 4.2, where p(s, t) = 0 and

p(u, v) = 1. The latter yields [u ≃g v] = 1. Since player 1 has no choice of moves at state s,

the maximum probability with which player 1 can guarantee a transition to either state u

or state v is 0. But from state t, by playing moves a, b with probability 1
2 each, player 1 can

guarantee reaching states u and v with probability 1
2 , which implies that over all k ∈ C(d),

given that d(u, v) = 1 from [u ≃g v] = 1, the maximum k expectation that player 1 can
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u v

a, a

a, aa, a

a, a

a, b

s

t

Figure 4.4: [s �1 t] = 0 and [s �12 t] = 1. Also, [t �1 s] = 1 and [t �12 s] = 0.

guarantee is 1
2 . Therefore [s ≃g t] = 1

2 . But if player 2 co-operates, then [s ≃12 t] = 0.

The third part is proved by the game in Figure 4.3 where again p(s, t) = 0 and

p(u, v) = 1. Since the players don’t have any moves to transition to state v from state t,

[s ≃12 t] = 1, whereas [s ≃g t] = 0. �

If we consider Markov decision processes (MDPs), we have that on i-MDPs, the

metric �i coincides with �12, since player ∼i has no moves, for i ∈ {1, 2}. On the other

hand, the metric �∼i provides no information on �12.

Theorem 10 The following assertions hold.

1. For i-MDPs we have [�i] = [�12].

2. There is a deterministic 2-MDP G with states s, t such that [s �1 t] < [s �12 t].

3. There is a deterministic 2-MDP G with states s, t such that [s �1 t] > [s �12 t].

Proof. From the definitions of H�1
and H�12

, restricted to MDPs, where only one player

has a choice of moves, the first assertion follows.

The second and third assertions are proved by the deterministic 2-MDP in Fig-

ure 4.4, where again p(s, t) = 0 and p(u, v) = 1. For the second assertion we note that

since d(u, v) = 1, for any choice of k ∈ C(d), player 1 cannot get a higher expectation of k
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from state s when compared to state t, because at state s, player 2 always has a move that

will lead to a state yielding a lower k expectation. Therefore, [s �1 t] = 0. Further, for

k(v) = 1 and k(u) = 0, which satisfies the constraints on k, we have no moves for either

player from state t, which implies [s �12 t] = 1.

We prove the third assertion by showing that, for the 2-MDP of Figure 4.4, we

have [t �1 s] > [t �12 s] (which is the third assertion, with s and t exchanged). Note that

when player 2 cooperates, the expectation of any k ∈ C(d) from state s is always at least as

much as the expectation from state t. Thus [t �12 s] = 0. Finally, there exists a k ∈ C(d),

with k(u) = 1 and k(v) = 0, for which [t �1 s] = 1, which completes the proof. �

4.7 Decidability

We now show that the metrics are computable to any degree of precision. This

follows since the definition of the distance between two states of a given game, as the least

fixpoint of the metric transformer (4.9), can be written as a formula in the theory of reals,

which is decidable [Tar51]. Since the distance between two states may not be rational, we

can only guarantee an approximate computation in general.

Without loss of generality, we assume that the states of G are labeled {s1, . . . , sn}

for some n ∈ IN. The construction is standard (see, e.g., [dAM04]), we recapitulate the

main steps. We denote by R the real-closed field (IR,+, ·, 0, 1,≤) of the reals with addition

and multiplication. An atomic formula is an expression of the form p > 0 or p = 0 where p

is a (possibly) multi-variate polynomial with integer coefficients. An elementary formula is
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constructed from atomic formulas by the grammar

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∀x.ϕ,

where a is an atomic formula, ∧ denotes conjunction, ∨ denotes disjunction, ¬ denotes

complementation, and ∃ and ∀ denote existential and universal quantification respectively.

Wewrite ϕ → ϕ′ as shorthand for ¬ϕ∨ ϕ′. The semantics of elementary formulas are given

in a standard way [CK73]. A variable x is free in the formula ϕ if it is not in the scope of a

quantifier ∃x or ∀x. An elementary sentence is a formula with no free variables. The theory

of real-closed fields is decidable [Tar51].

We introduce additional atomic formulas as syntactic sugar: for polynomials p1

and p2, we write p1 = p2 for p1 − p2 = 0, p1 > p2 for p1 − p2 > 0, and p1 ≥ p2 for

p1 − p2 = 0∨ p1 − p2 > 0. Also, we write p1 ≤ p2 for p2 ≥ p1 and p1 < p2 for p2 > p1. Let

~x,~y denote vectors of variables, where the dimensions of the vectors will be clear from the

context. For ∼∈ {=,≤,≥}, we write ~x ∼ ~y for the pointwise ordering, that is, if
∧

i xi ∼ yi.

A subset C ⊆ IRm is definable in R if there exists an elementary formula ϕC(~x) such that for

any ~x0 ∈ IRm, we have ϕC(~x0) holds in R iff ~x0 ∈ C. A function f : IRk → IRm is definable

in R if there exists an elementary formula ϕ f (~y,~x) with free variables ~y, ~x such that for all

constants ~y0 ∈ IRm and ~x0 ∈ IRk the formula ϕ f (~y0,~x0) is true in R iff ~y0 = f (~x0). We start

with some simple observations about definability.

Lemma 5 (a) If functions f1 : IRk → IRm and f2 : IRk → IRm are definable in R then so are the

functions

( f1 − f2)(~x) = f1(~x) − f2(~x)

( f1 ⊔ f2)(~x) = f1(~x) ⊔ f2(~x)
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(b) If f : IRk+l → IRm is definable in R, and C ⊆ IRk is definable in R, then (supC f ) : IRl → IRm

defined as

(sup
C

f )(~y) = sup
~x∈C

f (~x,~y)

is definable in R.

Proof. For part (a), let ϕ1(~y,~x) and ϕ2(~y,~x) be formulas defining f1 and f2 respectively.

Then, f1 − f2 is defined by the formula

∃~z1.∃~z2.(ϕ1(~z1,~x) ∧ ϕ2(~z2,~x) ∧~y = ~z1 −~z2),

and f1 ⊔ f2 is defined by the formula

∃~z1.∃~z2.(ϕ1(~z1,~x) ∧ ϕ2(~z2,~x) ∧
∧

i

[(~z1,i ≥ ~z2,i ∧~yi = ~z1,i) ∨ (~z1,i <~z2,i ∧~yi = ~z2,i)]) .

For part (b), let ϕ f (~z,~x,~y) define f , where ~x is of dimension k, ~y of dimension l, and ~z

of dimension m, respectively. Let ψC(~x) define C. Then, the following formula with free

variables~z, ~y (call it ϕ(~z,~y)) states that~z is an upper bound of f (~x,~y) for all ~x ∈ C:

∀~x1.∀~z1.(ψC(~x1) ∧ ϕ f (~z1,~x1,~y) → ~z1 ≤ ~z),

and supC f is defined by the formula with free variables~z, ~y given by:

ϕ(~z,~y) ∧ ∀~z1.(ϕ(~z1,~y) → ~z ≤ ~z1) .

�

Theorem 11 Let G be a game structure and s, t states of G. For all rationals v, and all ǫ > 0, it

is decidable if |[s �1 t] − v| < ǫ and if |[s ≃g t] − v| < ǫ. It is decidable if s �1 t and if s ≃g t.
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Proof. First, we use a result of Weyl [Wey50] that the minmax value of a matrix game with

payoffs in IR can be written as an elementary formula in the theory of real-closed fields.

This implies that for any state s, the function Pre1(~k)(s) is definable in R. Also, for d ∈ M,

the set C(d) is definable in R (since conjunctions of linear constraints are definable in R).

Hence, by Lemma 5(a) and (b), we have that sup~k∈C(d)

(

Pre1(~k)(s)−Pre1(~k)(t)
)

is definable

for any metric d ∈ M, and states s and t of G. By another application of Lemma 5(a), we

have that the function

H�1
(d)(s, t) = (s ≡ t) ⊔ sup

~k∈C(d)

(

Pre1(~k(s)− Pre1(~k)(t)
)

.

is definable for d ∈ M and states s and t of G.

Consider the set of free variables {y(s, t), d(s, t) | s, t ∈ S}, where d is a vector

of n2 free variables defining the metric d, and where y is a vector of n2 variables. Let

ϕ(y, d) be a formula in R, with free variables in the above set, such that ϕ(y, d) is true iff

y(s, t) = H�1
(d)(s, t) holds for all s, t ∈ S. Then the formula ϕ∗(y) with free variables y,

defined as:

∃d.(ϕ(y, d) ∧ y = d),

defines a fixpoint of H�1
(d). Finally, the formula ψ(y), given by

ϕ∗(y) ∧ ∀y′.(ϕ∗(y′) → y ≤ y′) .

defines the least fixpoint of H�1
(again, y′ = {y′(s, t) | s, t ∈ S} is a matrix of n2 variables,

and y ≤ y′ iff y(s, t) ≤ y′(s, t) for all s, t ∈ S). Thus, ψ(y) is true iff y(s, t) = [s �1 t] for all

s, t ∈ S.

While this shows that [s �1 t] is algebraic, there are game structures G with all

transition probabilities being rational, but with states s and t of G such that [s �1 t] is
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irrational. So, we use the formula above to approximate the value of [s �1 t] to within a

constant ǫ. For states s, t and rationals v, ǫ, we have that |[s �1 t] − v| < ǫ iff ∃y.(ψ(y) ∧

|y(s, t)− v| < ǫ) is valid, and this can be decided since R is decidable.

A similar construction shows that the question whether |[s ≃g t] − v| < ǫ, is

decidable for states s, t and rationals v, ǫ: we ensure that y is a symmetric fixpoint by

conjoining to ϕ∗(y) constraints y(s, t) = y(t, s) for all states s, t.

If the formula ∃y.(ψ(y) ∧ y(s, t) = 0), where we assert that the distance between

s and t is zero, is valid, we can conclude that s �1 t. This implies that the relation s �1 t is

decidable for any game structure G and states s and t of G. A similar construction for ≃g

shows that the relation s ≃g t is also decidable for any game structure G and states s, t of

G. �

4.8 Discussion

Our derivation of �i and ≃g, for i ∈ {1, 2}, as kernels of metrics, seems some-

what abstruse: most equivalence or similarity relations have been defined, after all, with-

out resorting to metrics. We now point out how a generalization of the usual defini-

tions [SL94, AHKV98, DGJP99, DGJP03], suggested in [dAHM03, Maj03], fails to produce

the “right” relations. Furthermore, the flawed relations obtained as a generalization of

[SL94, AHKV98, DGJP99, DGJP03] are no simpler than our definitions, based on kernel

metrics. Thus, our study of game relations as kernels of metrics carries no drawbacks

in terms of leading to more complicated definitions. Indeed, we believe that the metric

approach is the superior one for the study of game relations.
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We outline the flawed generalization of [SL94, AHKV98, DGJP99, DGJP03] as pro-

posed in [dAHM03, Maj03], explaining why it would seem a natural generalization. The

alternating simulation of [AHKV98] is defined over deterministic game structures. Player-

i alternating simulation, for i ∈ {1, 2}, is the largest relation R satisfying the following

conditions, for all states s, t ∈ S: s R t implies s ≡ t and ∀xi ∈ Γi(s) . ∃yi ∈ Γi(t) . ∀y∼i ∈

Γ∼i(t) . ∃x∼i ∈ Γ∼i(s) . τ(s, x1, x2) R τ(t, y1, y2).

The MDP relations of [SL94], later extended to metrics by [DGJP99, DGJP03], rely

on the fixpoint (4.2), where sup plays the role of ∀, inf plays the role of ∃, and R is replaced

by distribution equality modulo R, or ⊑R. This strongly suggests — incorrectly — that

equivalences for general games (probabilistic, concurrent games) can be obtained by taking

the double quantifier alternation ∀∃∀∃ in the definition of alternating simulation, changing

all ∀ into sup, all ∃ into inf, and replacing R by ⊑R. The definition that would result is as

follows. We parameterize the new relations by a player i ∈ {1, 2}, as well as by whether

mixed moves or only pure moves are allowed. For a relation R ⊆ S× S, for M ∈ {Γ,D},

for all s, t ∈ S and i ∈ {1, 2} consider the following conditions:

− (loc) s R t implies s ≡ t.

− (M-i-altsim) s R t implies

∀xi ∈ Mi(s) . ∃yi ∈ Mi(t) . ∀y∼i ∈ M∼i(t) . ∃x∼i ∈ M∼i(s) . δ(s, x1, x2) ⊑R δ(t, y1, y2);

We then define the following relations:

− For i ∈ {1, 2} and M ∈ {Γ,D}, player-i M-alternating simulation ⊑M
i is the largest

relation that satisfies (loc) and (M-i-altsim).
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− For i ∈ {1, 2} and M ∈ {Γ,D}, player-i M-alternating bisimulation ∼=M
i is the largest

symmetrical relation that satisfies (loc) and (M-i-altsim).

Over deterministic game structures, the definitions of ⊑Γ
i and ∼=Γ

i coincide with the alter-

nating simulation and bisimulation relations of [AHKV98]. In fact, ⊑Γ
i and

∼=Γ
i capture the

deterministic semantics of qµ, and thus in some sense generalize the results of [AHKV98] to

probabilistic game structures.

Theorem 12 For any game structure G and states s, t of G, the following assertions hold:

1. s ∼=Γ
i t iff [[ϕ]]Γ(s) = [[ϕ]]Γ(t) holds for every ϕ ∈ qµi.

2. s ⊑Γ
i t iff [[ϕ]]Γ(s) ≤ [[ϕ]]Γ(t) holds for every ϕ ∈ qµ+

i .

The following lemma states that ⊑D
i and ∼=D

i are the kernels of [⊑i] and [∼=i],

connecting thus the result of combining the definitions of [SL94] and [AHKV98] with a

posteriori metrics.

Lemma 6 For all game structures G, all players i ∈ {1, 2}, and all states s, t of G, we have

s ⊑D
i t iff [s ⊑i t] = 0, and s ∼=D

i t iff [s ∼=i t] = 0.

We are now in a position to prove that neither the Γ-relations not the D-relations

are the “canonical” relations on general concurrent games, since neither characterizes [[qµ]].

In particular, the D-relations are too fine, and the Γ-relations are incomparable with the

relations�i and≃g, for i ∈ {1, 2}. We prove these negative results first for theD-relations.

They follow from Theorem 5 and 7.

Theorem 13 The following assertions hold:
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1. For all game structures G, all states s, t of G, and all i ∈ {1, 2}, we have that s ⊑D
i t implies

s �i t, and s ∼=D
i t implies s ≃i t.

2. There is a game structure G, and states s, t of G, such that s �i t but s 6⊑
D
i t.

3. There is a game structure G, and states s, t of G, such that [[ϕ]](s) = [[ϕ]](t) for all ϕ ∈ qµ,

but s 6∼=D
i t for some i ∈ {1, 2}.

We now turn our attention to the Γ-relations, showing that they are incomparable

with �i and ≃g, for i ∈ {1, 2}.

Theorem 14 The following assertions hold:

1. There exists a deterministic game structure G and states s, t of G such that s ⊑Γ
1 t but s 6�1 t,

and s ∼=Γ
1 t but s 6≃g t.

2. There exists a turn-based game structure G and states s, t of G such that s �1 t but s 6⊑Γ
1 t.

and s ≃g t but s 6∼=
Γ
1 t.

Proof. The first assertion is proved via the deterministic game in Figure 4.5, where p(s, t) =

0 and p(u, v) = 1 and Γ1(s) = Γ2(s) = {a, b} and Γ1(t) = Γ2(t) = {a, b, c}. In the figure, we

use the variables x and y to represent moves: if player 1 and player 2 moves coincide, u is

the successor state, otherwise it is v. Thus, the game from s is the usual “penny-matching”

game; the game from t is a version of “penny-matching” with 3-sided pennies.

It can be seen that s ⊑Γ
1 t. On the other hand, we have s 6�1 t. Indeed, from

state s, by playing both a and b with probability 1
2 , player 1 can ensure that the probability

of a transition to u is 1
2 . On the other hand, from state t, player 1 can achieve at most
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u v

∗, ∗∗, ∗

x = y

x = y

x 6= y

x 6= y

s

t

Figure 4.5: s ⊑Γ
1 t but s 6�1 t and s ∼=Γ

1 t but s 6≃g t

u v

∗, ∗∗, ∗

a, ∗

a, ∗

a, ∗

a, ∗

b, ∗

b, ∗

b, ∗

b, ∗

c, ∗ 1
2

1
2

s

t

Figure 4.6: s �1 t but s 6⊑
Γ
1 t and s ≃g t but s 6∼=

Γ
1 t.

probability 1
3 of reaching u (this maximal probability is achieved by playing all of a, b, c

with probability 1
3 ). The result then follows using Theorem 7.

The second assertion is proved via the game in Figure 4.6. We have s 6⊑Γ
1 t: clearly,

player-1’s move c at state s cannot be mimicked at t when the game is restricted to pure

moves. On the other hand, we have s �1 t: since the move c at s can be imitated via the

mixed move that plays both a and b at t with probability 1
2 each, all qµ formulas have the

same value, under [[·]], at s and t, and the result follows once more using Theorem 7.

�

Finally, we remark that, in view of Theorem 8, the definitions of the relations �i

and ≃g for i ∈ {1, 2} are no more complex than the definitions of ⊑D
1 , ⊑

Γ
1 ,
∼=D

1 , and
∼=Γ

1 .
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Chapter 5

Discounted, Average and Total

Rewards

In this chapter we show that the undiscounted a priori metrics we developed in

Chapter 4 also provide a bound for the difference in discounted and average values across

states of a game structure. We claim that given these results, in addition to the reciprocity

and the logical characterization, the a priori metrics are the canonical metrics in stochastic

games. We therefore refer to the a priori metrics simply as game metrics. We introduce

discounted game simulation and bisimulationmetrics and show that the discountedmetrics

do not provide a bound for the difference in discounted values across states of a game. We

then introduce a new total reward metric that provides a bound for the discounted values,

average reward values and total reward values across states of a game and conclude by

showing that the kernels of the undiscounted game metrics, the discounted game metrics

and the total reward metric coincide.
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We begin by generalizing valuations from functions that return values in the unit

interval to those that return values in a fixed, non-singleton real interval [θ1, θ2]. Given a

set of states S, a valuation over S is a function f : S 7→ [θ1, θ2] associating with every state

s ∈ S a value θ1 ≤ f (s) ≤ θ2; we let F be the set of all valuations. For c ∈ [θ1, θ2], we

denote by c the constant valuation such that c(s) = c at all s ∈ S. We order valuations

pointwise: for f , g ∈ F , we write f ≤ g iff f (s) ≤ g(s) at all s ∈ S; we remark that F ,

under ≤, forms a lattice. Given a, b ∈ IR, the definitions of a ⊔ b, a ⊓ b, a ⊕ b and a ⊖ b

carry over from Chapter 3. We extend ⊔,⊓,+,−,⊕,⊖ to valuations by interpreting them

in pointwise fashion.

Metrics for the discounted quantitative µ-calculus. We call dµα the discounted µ-calculus

with all discount parameters ≤ α. We define the discounted metrics via an α-discounted

metric transformer Hα
� : M 7→ M, defined for all d ∈ M and all s, t ∈ S by:

Hα
�1

(d)(s, t) = p(s, t) ⊔ α · sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t)
)

. (5.1)

Again, Hα
�1

is continuous and monotonic in the lattice (M,≤). The α-discounted simulation

metric [�1]
α is the least fixpoint of Hα

�1
, and the α-discounted bisimulation metric [≃1]

α is the

least symmetrical fixpoint of Hα
�1
. The following result follows easily by induction on the

Picard iterations used to compute the distances [dAHM03]; for all states s, t ∈ S and a

discount factor α ∈ [0, 1),

[s �1 t]
α ≤ [s �1 t] [s ≃1 t]

α ≤ [s ≃1 t] . (5.2)

Using techniques similar to the undiscounted case, we can prove that for every game struc-

ture G and discount factor α ∈ [0, 1), the fixpoint [�i]
α is a directed metric and [≃i]

α is a
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metric, and that they are reciprocal, i.e., [�1]
α = [�2]α and [≃1]

α = [≃2]α. Given the dis-

counted bisimulation metric coincides for the two players, we write [≃g]α instead of [≃1]
α

and [≃2]α. We now state without proof that the discounted µ-calculus provides a logical

characterization of the discounted metric. The proof is based on induction on the structure

of formulas, and closely follows the result for the undiscounted case. Let dµα (respectively,

dµα,+
1 ) consist of all discounted µ-calculus formulas (respectively, all discounted µ-calculus

formulas with only the Pre1 operator and all negations before atomic propositions). It fol-

lows that for all game structures G and states s, t ∈ S,

[s �1 t]
α = sup

ϕ∈dµα,+
1

([[ϕ]](s)− [[ϕ]](t)) [s ≃g t]
α = sup

ϕ∈dµα

|[[ϕ]](s)− [[ϕ]](t)| . (5.3)

Metric kernels. The kernel of the metric [≃g] ([≃g]α) defines an equivalence relation ≃g

(≃α
g) on the states of a game structure: s ≃g t (s ≃g t)α iff [s ≃g t] = 0 ([s ≃g t]α = 0);

the relation ≃g is called the game bisimulation relation and the relation ≃α
g is called the

discounted game bisimulation relation. Similarly, we define the game simulation preorder s �1

t as the kernel of the directed metric [�1], that is, s �1 t iff [s �1 t] = 0. The discounted

game simulation preorder is defined analogously.

5.1 Bounds for Average and Discounted Payoff Games

In this chapter, we show that the game bisimulation metric also provides a bound

for the difference in average and discounted value of games. This lends further support

for the game bisimulation metric, and its kernel, the game bisimulation relation, being the

canonical game metrics and relations.
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5.1.1 Discounted Payoff Games

Let π1 and π2 be strategies of player 1 and player 2 respectively. Let α ∈ [0, 1) be

a discount factor. The α-discounted payoff vα
1(s,π1,π2) for player 1 at a state s for a variable

r ∈ V and the strategies π1 and π2 is defined as

vα
1(s,π1,π2) = (1− α) ·

∞

∑
n=0

αn · E
π1,π2
s

(

[r](Xn)
)

, (5.4)

where Xn is a random variable representing the n-th state of the game. The discounted

payoff for player 2 is defined as vα
2(s,π1,π2) = −vα

1(s,π1,π2). Thus, player 1 wins (and

player 2 loses) the “discounted sum” of the valuations of r along the path, where the dis-

count factor weighs future rewards with the discount α. Given a state s ∈ S, we are in-

terested in finding the maximal payoff vα
i (s) that player i can ensure against all opponent

strategies, when the game starts from state s ∈ S. This maximal payoff is given by:

wα
i (s) = sup

πi∈Πi

inf
π∼i∈Π∼i

vi(s,πi,π∼i) .

These values can be computed as the limit of the sequence of α-discounted, n-step rewards,

for n → ∞. For i ∈ {1, 2}, we define a sequence of valuations wα
i (0)(s), w

α
i (1)(s), w

α
i (2)(s),

. . . as follows: for all s ∈ S and n ≥ 0:

wα
i (n + 1)(s) = (1− α) · [r](s) + α · Prei(w

α
i (n))(s) . (5.5)

where the initial valuation wα
i (0) is arbitrary. Shapley proved that wα

i = limn→∞ wα
i (n)

[Sha53].
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5.1.2 Average Payoff Games

Let π1 and π2 be strategies of player 1 and player 2 respectively. The average

payoff v1(s,π1,π2) for player 1 at a state s for a variable r ∈ V and the strategies π1 and

π2 is defined as

v1(s,π1,π2) = lim inf
n→∞

1

n

n−1

∑
k=0

E
π1,π2
s

(

[r](Xk)
)

, (5.6)

where Xk is a random variable representing the k-th state of the game. The reward for

player 2 is v2(s,π1,π2) = −v1(s,π1,π2). A game structure G with average payoff is called

an average reward game. The average value of the game G at s for player i ∈ {1, 2} is

defined as

wi(s) = sup
πi∈Πi

inf
π∼i∈Π∼i

vi(s,πi,π∼i) .

Mertens and Neyman established the determinacy of average reward games, and showed

that the limit of the discounted value of a game as all the discount factors tend to 1 is the

same as the average value of the game: for all s ∈ S and i ∈ {1, 2}, we have limα→1 w
α
i (s) =

wi(s) [MN81]. It is easy to show that the average value of a game is a valuation. The

average reward at a state is the average of the stream of expected rewards starting at that

state. We present the following example to illustrate average reward values in games.

Example 7 (The Big Match) Consider the game in Figure 5.1. This game, called the Big

Match, was introduced by Blackwell and Ferguson in [BF68], where a complete average

reward analysis of this game can be found. Player 1 has moves {a, b} and player 2 has

moves {c, d} in state s. The states t and u are absorbing. The reward for transitioning

to state t for player 1 is 1 and the reward for transitioning to state u for player 1 is −1.
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u

∗, ∗

∗, ∗

b, c

a, d

b, d

a, c

s

t

(1)

(1)

(−1)

(−1)

Payoffs at s c d

a −1 1

b 1 −1

Figure 5.1: Example that illustrates the long-run average values of a game.

We analyze wi, the player 1 average reward value of the game. The player 1 objective

is to maximize the average reward value at every state, assuming the game starts in that

state, while the player 2 objective is to minimize it. The immediate rewards at state s

based on move choices are shown in the table in Figure 5.1. The stream of rewards for

a game starting at state t is 1, 1, 1, . . ., giving us wi(n)(t) = 1
n (n · 1) = 1, which in the

limit yields 1; therefore wi(t) = 1. Similarly the average reward at state u for player 1

is wi(u) = −1. Blackwell and Ferguson in [BF68] show that in this game, there are no

stationary optimal strategies for player 1 whereas a stationary strategy that chooses moves

c and d with probability 1
2 is player 2 optimal. Consider the game where player 2 has

fixed his strategy to his optimal strategy. If player 1 chooses the pure strategy a at state

s, then the game remains in state s and the immediate reward at each step is 1
2 · (−1) +

1
2 · (1) = 0. If player 1 chooses move a with probability λ and move b with probability

(1 − λ), with λ ∈ [0, 1), then the game transitions to either state t or u at some step n

with equal probability of λn · (1− λ) · 1
2 . There are exactly two paths in this game, s+tω
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and s+uω, each occurring with equal probability. Therefore, for all strategies of player 1,

given player 2 plays his optimal strategy, the average reward after n steps at state s is

λn · 1
2 · 1 + λn · 1

2 · (−1) + λn−1 · (1− λ) · 1
2 · 1 + λn−1 · (1− λ) · 1

2 · (−1) = 0, which in the

limit is 0. Therefore, wi(s) = 0, wi(t) = 1 and wi(u) = −1 in this game. �

5.1.3 Metrics for Discounted and Average Payoffs

We show that the game simulation metric [�1] provides a bound for discounted

and long-run rewards. The discounted metric [�1]
α on the other hand does not provide

such a bound as the following example shows.

s t s′ t′

2 5 2.1 8

Figure 5.2: Example that shows that the discounted metric may not be an upper bound for
the difference in the discounted value across states.

Example 8 Consider a game consisting of four states s, t, s′, t′, and a variable r, with

[r](s) = 2, [r](s′) = 2.1, [r](t) = 5, and [r](t′) = 8 as shown in Figure 5.2. All play-

ers have only one move at each state, and the transition relation is deterministic. Con-

sider a discount factor α = 0.9. The 0.9-discounted metric distance between states s′

and s, is [s′ ≃g s]0.9 = 0.9 · (8 − 5) = 2.7. For the difference in discounted values be-

tween the states we proceed as follows. Using formulation 5.5, taking wα(0)(t) = 5,

since state t is absorbing, we get wα(1)(t) = (1 − 0.9) · 5 + 0.9 · 5 = 5 which leads to

wα(n)(t) = 5 for all n ≥ 0. Similarly wα(n)(t′) = 8 for all n ≥ 0. Therefore, the differ-

ence in discounted values between s and s′, again using 5.5, is given by: wα(s′) − wα(s) =

(1− 0.9) · (2.1− 2) + 0.9 · (8− 5) = 2.71.
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In the following we consider player 1 rewards (the case for player 2 is identical).

Theorem 15 The following assertions hold.

1. For all game structures G, α-discounted rewards wα
1 , for all states s, t ∈ S, we have, (a)

wα
1(s)− wα

1(t) ≤ [s �1 t] and (b) |wα
1(s) − wα

1(t)| ≤ [s ≃g t].

2. There exists a game structure G, states s, t ∈ S, such that for all α-discounted rewards wα
1 ,

wα
1(t)− wα

1(s) > [t ≃g s]α.

Proof. We first prove assertion (1)(a). As the metric can be computed via Picard iteration,

we have for all n ≥ 0:

[s �n
1 t] = p(s, t) ⊔ sup

k∈C([�n−1
1 ])

(Pre1(k)(s)− Pre1(k)(t)), (5.7)

where Xj is a random variable representing the j-th state of the game. We prove by induc-

tion on n ≥ 0 that wα
1(n)(s) − wα

1(n)(t) ≤ [s �n
1 t]. For all s ∈ S, taking wα

1(0)(s) = [r](s),

the base case follows. Assume the result holds for n− 1 ≥ 0. We have:

wα
1(n)(s)− wα

1(n)(t) = (1− α) · [r](s) + α · Pre1(w
α(n− 1))(s)−

(1− α) · [r](t) − α · Pre1(w
α(n− 1))(t)

= (1− α) ·
(

[r](s)− [r](t)
)

+

α ·
(

Pre1(w
α(n− 1))(s)− Pre1(w

α(n− 1))(t)
)

≤ (1− α) · p(s, t) + α · [s �n
1 t] ≤ [s �n

1 t],

where the last step follows by (5.7), since by the induction hypothesis we have wα
1(n− 1) ∈

C([�n−1
1 ]). This proves assertion (1)(a). Given (1)(a), from the definition of [s ≃g t] = [s �1

t] ⊔ [t �1 s], (1)(b) follows.
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The example shown in Figure 5.2 proves the second assertion. �

Using the fact that the limit of the discounted reward, for a discount factor that

approaches 1, is equal to the average reward, we obtain that the metrics provide a bound

for the difference in average values as well.

Corollary 2 For all game structures G and states s and t, we have (a) w(s) − w(t) ≤ [s �1 t]

and (b) |w(s) − w(t)| ≤ [s ≃g t].

5.1.4 Metrics for Total Rewards

The total reward vT1 (s,π1,π2) for player 1 at a state s for a variable r ∈ V and the

strategies π1 ∈ Π1 and π2 ∈ Π2 is defined as [FV97]:

vT1 (s,π1,π2) = lim inf
n→∞

1

n

n−1

∑
k=0

k

∑
j=0

E
π1,π2
s

(

[r](Xj)
)

. (5.8)

The payoff vT2 (s,π1,π2) for player 2 is defined by replacing [r] with −[r] in (5.8). The total-

reward value of the game G at s for player i ∈ {1, 2} is defined analogously to the average

value, via,

wT
i (s) = sup

πi∈Πi

inf
π∼i∈Π∼i

vTi (s,π1,π2) .

The total reward at a state is the Cesàro average of the stream of expected rewards starting

at that state; it is the average of the partial sums of expected rewards starting at that state.

We illustrate the total reward values in game structures using the following example.

Example 9 (The Bad Match) Consider the game in Figure 5.3, called the Bad Match

[FV97]. In the Big Match, the total reward value does not exist for player 1 at state s

whereas in the BadMatch the total reward values exist at all states. Consider the BigMatch
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u

v

∗, ∗

∗, ∗

∗, ∗
b, c

a, d

b, d

a, c

s

t

(1)

(−1)

(2)

(2)

(−2)

(−2)

(0)

Payoffs at s c d

a −2 2

b 1 −1

Figure 5.3: Example that illustrates the total reward values of a game.

and the player 1 total reward objective, supπi∈Πi
infπ∼i∈Π∼i

vTi (s,π1,π2), where player 1

chooses her move before player 2. Suppose player 1 chooses move a at s, then by choosing

move c, player 2 forces the game to remain in state s while ensuring an endless stream

of player 1 payoffs of −1, which is player 2’s gain of 1. Suppose player 1 plays a with

probability λ and b with probability (1− λ) for λ ∈ [0, 1). If player 2 now chooses move

d, then the game will eventually transition to state u, generating a finite stream of player 1

payoffs of 1 initially followed by an endless stream of player 1 payoffs of −1. Therefore,

supπi∈Πi
infπ∼i∈Π∼i

vTi (s,π1,π2) = −∞. On the other hand, if player 2 plays first, then by

choosing c and dwith probability 1
2 , he ensures an immediate expected payoff of 0 at every

step of the game, like in the average reward analysis of the Big Match. We have:

−∞ = sup
πi∈Πi

inf
π∼i∈Π∼i

vTi (s,π1,π2) 6= inf
π∼i∈Π∼i

sup
πi∈Πi

vTi (s,π1,π2) = 0 .

Therefore, the total reward does not exist in state s for player 1. Now consider the Bad

Match, shown in Figure 5.3, where player 1 has moves {a, b} and player 2 has moves {c, d}

in state s. The state v is absorbing. Every transition to state t is followed by a transition
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back to state s and similarly for state u. The rewards for various transitions are shown

in the figure. We analyze wT
i , the player 1 total reward value of the game. Similar to the

analysis of the Big Match, it is easy to check that the average reward values are 0 at all

states of the game in Figure 5.3. Moreover, it has been shown that Player 2 has a stationary

optimal strategy, which is to choose moves c and d with probability 1
2 [FV97] whereas

player 1 has no stationary optimal strategies. The total reward for either player at state v is

0. From state s, a transition to state t results in a player 1 payoff of−2, which is regained in

the subsequent transition from t to s. Similarly, a transition to state u results in a player 1

payoff of 2, which is relinquished in the subsequent transition from u to s. Consider the

game where player 2 has fixed his strategy to his optimal strategy. For a game that starts

in state s, if player 1 chooses move a at all times, then the paths (st)+ and (su)+ occur with

equal probability. It is easy to check that the total expected reward for every step of the

game at state s in this case is 0, which in the limit gives a total reward value of 0. If player 1

chooses move a with probability λ and move b with probability (1 − λ), for λ ∈ [0, 1),

given player 2 plays his optimal strategy, the set of paths is characterized by (s[t|u])+vω;

the game eventually transitions to state v which is absorbing, yielding a stream of payoffs

that has a finite non-zero prefix followed by an endless stream of 0 payoffs, which in the

limit gives wT
i (s) = 0. Given wT

i (s) = 0, we have wT
i (t) = 2, which is the reward for

starting at state t and similarly wT
i (u) = −2, which is the reward for starting at state u. �

While the game simulation metric [≃g] provides an upper bound for the differ-

ence in discounted reward across states, as well as for the difference in average reward

across states, it does not provide a bound for the difference in total reward. We now in-
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troduce a new metric, the total reward metric, [⊲⊳g], which provides such a bound. For a

discount factor α ∈ [0, 1), we define a metric transformer Hα
�1

: M 7→ M as follows. For

all d ∈ M and s, t ∈ S, we let:

Hα
�1

(d)(s, t) = p(s, t) + α · sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t)
)

. (5.9)

The metric [�1]
α (resp. [⊲⊳1]

α) is obtained as the least (resp. least symmetrical) fixpoint of

(5.9). We write [�1] for [�1]
1, and [⊲⊳1] for [⊲⊳1]

1. These metrics are reciprocal, i.e., [�1]
α =

[�2]α and [⊲⊳1]
α = [⊲⊳2]α. If α < 1 we get the discounted total reward metric and if α = 1

we get the undiscounted total reward metric. While the discounted total reward metric is

bounded, the undiscounted total reward metric may not be bounded. The total metrics

provide bounds for the difference in discounted, average, and total reward between states.

Theorem 16 The following assertions hold.

1. For all game structures G, for all discount factors α ∈ [0, 1), for all states s, t ∈ S,

(a) [s�1 t]
α ≤ (θ2 − θ1)/(1− α), (b) [s�1 t]

α ≤ [s�1 t],

(c) wα
1(s) − wα

1(t) ≤ [s�1 t]
α, (d) w1(s) − w1(t) ≤ [s�1 t],

(e) wT
1 (s)− wT

1 (t) ≤ [s�1 t].

2. There exists a game structure G and states s, t ∈ S such that, [s�1 t] = ∞.

Proof. For assertion (1)(a), notice that p(s, t) ≤ (θ2 − θ1). Consider the n-step Picard iterate

towards the metric distance. We have,

[s�
n
1 t]

α ≤
n

∑
i=0

αi · (θ2 − θ1) .
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In the limit this yields [s �1 t]
α ≤ (θ2 − θ1)/(1− α). Assertion (1)(b) follows by induction

on the Picard iterations that realize the metric distance. For all n ≥ 0, [s �n
1 t]

α ≤ [s �n
1 t].

Assertion (1)(c) follows by the definition of the discounted total reward metric where we

have replaced the ⊔ with a +. By induction, for all n ≥ 0, from the proof of Theorem 15

we have,

wα
1(n)(s)− wα

1(n)(t) ≤

(1− α) · p(s, t) + α · (Pre1(w
α
1(n− 1))(s)− Pre1(w

α
1(n− 1))(t)) ≤

[s�
n
1 t]

α .

For assertion (1)(d), towards an inductive argument on the Picard iterates that realize the

metric, for all n ≥ 0, we have [s �n
1 t] ≤ [s�n

1 t], which in the limit gives [s �1 t] ≤ [s�1 t].

This leads to w1(s) − w1(t) ≤ [s �1 t], using Corollary 2. This proves assertion (1)(d). We

nowprove assertion (1)(e) by induction and show that for all n ≥ 0, wT
1 (n)(s)−wT

1 (n)(t) ≤

[s�n
1 t]. As the metric can be computed via Picard iteration, we have for all n ≥ 0:

[s�
n
1 t] = p(s, t) + sup

k∈C([�n−1
1 ])

(Pre1(k)(s)− Pre1(k)(t)) . (5.10)

We define a valuation transformer u : F 7→ F as u(0) = [r] and for all n > 0 and state

s ∈ S as,

u(n)(s) = [r](s) + Pre1(u(n− 1))(s)

We take wT
1 (0) = u(0) = [r] and for n > 0, from the definition of total rewards (5.8), we

get the n-step total reward value at a state s ∈ S in terms of u as,

wT
1 (n)(s) =

1

n
·

n

∑
i=1

u(i)(s) .
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Notice that wT
1 (n)(s) ≤ u(n) for all n ≥ 0. When n = 0, the result is immediate by the

definition of wT
1 (0), noticing that [s �0

1 t] = p(s, t). Assume the result holds for n− 1 ≥ 0.

We have:

wT
1 (n)(s)− wT

1 (n)(t) =
1

n
·

n

∑
i=1

u(i)(s)−
1

n
·

n

∑
i=1

u(i)(t)

=
1

n
·

n

∑
i=1

(u(i)(s)− u(i)(t))

=
1

n
·

n

∑
i=1

(([r](s)− [r](t))+

(Pre1(u(i− 1))(s)− Pre1(u(i− 1))(t))) (5.11)

≤
1

n
·

n

∑
i=1

[s�
i
1 t] (5.12)

≤ [s�
n
1 t], (5.13)

where (5.12) follows from (5.11) by (5.10), since by our induction hypothesis we have

wT
1 (i) ≤ u(i) ∈ C([�i

1]) for all 0 ≤ i < n and (5.13) follows from (5.12) from the mono-

tonicity of the undiscounted total reward metric. To prove assertion (2), consider the game

structure on the left hand side in Figure 5.2. The total reward at state s is unbounded;

wT
1 (s) = 2 + 5 + . . . = ∞ Now consider a modified version of the game, with identi-

cal structure and with states s′ and t′ corresponding to s and t of the original game. Let

[r](t′) = 0. In the modified game, wT
1 (s′) = 2. From result (1)(e), since wT

1 (s) = ∞ and

wT
1 (s′) = 2, we have [s�1 s

′] = ∞. �

It is a very simple observation that the quantitative µ-calculus does not provide a

logical characterization for [�α
1 ] or [�1]. In fact, all formulas of the quantitative µ-calculus

have valuations in the interval [θ1, θ2], while as stated in Theorem 16, the total reward

can be unbounded. The difference is essentially due to the fact that our version of the
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quantitative µ-calculus lacks a “+” operator. It is not clear how to introduce such a +

operator in a context sufficiently restricted to provide a logical characterization for [�α
1 ];

above all, it is not clear whether a canonical calculus, with interesting formal properties,

would be obtained.

5.1.5 Metric Kernels

We now show that the kernels of all the metrics defined in the paper coincide: an

algorithm developed for the game kernels �1 and ≃g, compute the kernels of the corre-

sponding discounted and total reward metrics as well.

Theorem 17 For all game structures G, states s and t, all discount factors α ∈ [0, 1), the follow-

ing statements are equivalent:

(a) [s �1 t] = 0 (b) [s �1 t]
α = 0 (c) [s�1 t]

α = 0 .

Proof. We prove (a) ⇒ (b) ⇒ (c) ⇒ (a). We assume 0 < α < 1. Assertion (a) implies that

p(s, t) = 0 and supk∈C([�1])
(Pre1(k)(s) − Pre1(k)(t)) ≤ 0; Since C([�1]

α) ⊆ C([�1]) from

(5.2), (b) follows. We prove (b) ⇒ (c) by induction on the Picard iterations that compute

[s �1 t]α and [s �1 t]
α. The base case is immediate. Assume that for all states s and t,

[s �n−1
1 t]α = 0 implies [s �n−1

1 t]α = 0. Towards a contradiction, assume [s �n
1 t]α = 0 but

[s �n
1 t]

α > 0. Then there must be k ∈ C([�n−1
1 ]α) such that Pre1(k)(s) − Pre1(k)(t) > 0.

By our induction hypothesis, there exists a δ > 0 such that k′ = δ · k ∈ C([�n−1
1 ]α). Since

Pre is multi-linear, the player optimal responses in Pre1(k)(s) remain optimal for k′. But

this means (Pre1(k
′)(s) − Pre1(k

′)(t)) > 0 for k′ ∈ C([�n−1
1 ]α), leading to [s �n t]α > 0; a

contradiction. Therefore, (b) ⇒ (c). In a similar fashion we can show that (c) ⇒ (a). �
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Chapter 6

Algorithms

In this chapter we present algorithms for computing the metrics and the kernels

of the metrics, which are the simulation and bisimulation relations, for MDPs, turn-based

games and concurrent games. We begin with turn-based games and MDPs.

6.1 Algorithms for Turn-Based Games and MDPs

In this section, we present algorithms for computing the metric and its kernel for

turn-based games andMDPs. We first present a polynomial time algorithm to compute the

operator H�i
(d) that gives the exact one-step distance between two states, for i ∈ {1, 2}.

We then present a PSPACE algorithm to decide whether the limit distance between two

states s and t (i.e., [s �1 t]) is at most a rational value r. Our algorithm matches the

best known bound known for the special class of Markov chains [vBSW08]. Finally, we

present improved algorithms for the important case of the kernel of the metrics. Since

by Theorem 17 the kernels of the metrics introduced in this paper coincide, we present
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our algorithms for the kernel of the undiscounted metric. For the bisimulation kernel our

algorithm is significantly more efficient compared to previous algorithms.

6.1.1 Algorithms for the Metrics

For turn-based games and MDPs, only one player has a choice of moves at a

given state. We consider two player 1 states. A similar analysis applies to player 2

states. We remark that the distance between states in Si and S∼i is always θ2 − θ1

due to the existence of the variable turn. For a metric d ∈ M, and states s, t ∈ S1,

computing H�1
(d)(s, t), given that p(s, t) is trivially computed by its definition, en-

tails evaluating the expression, supk∈C(d)

(

Pre1(k)(s) − Pre1(k)(t)
)

, which is the same as,

supk∈C(d) supx∈D1(s)
infy∈D1(t)

(E
x
s (k) − E

y
t (k)), since Pre1(k)(s) = supx∈D1(s)

(E
x
s (k)) and

Pre1(k)(t) = supy∈D1(t)
(E

y
t (k)) as player 1 is the only player with a choice of moves at

state s. By expanding the expectations, we get the following form,

sup
k∈C(d)

sup
x∈D1(s)

inf
y∈D1(t)

(

∑
u∈S

∑
a∈Γ1(s)

δ(s, a)(u) · x(a) · k(u)−

∑
v∈S

∑
b∈Γ1(t)

δ(t, b)(v) · y(b) · k(v)

)

. (6.1)

We observe that the one-step distance as defined in (6.1) is a sup-inf non-linear (quadratic)

optimization problem. We now present two lemmas by which we transform (6.1) to an inf

linear optimization problem, which we solve by linear programming (LP). The first lemma

reduces (6.1) to an equivalent formulation that considers only pure moves at state s. The

second lemma further reduces (6.1), using duality, to a formulation that can be solved

using LP.
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Lemma 7 For all turn-based game structures G, for all player i states s and t, given a metric

d ∈ M, the following equality holds,

sup
k∈C(d)

sup
x∈Di(s)

inf
y∈Di(t)

(E
x
s (k) − E

y
t (k)) = sup

a∈Γi(s)

inf
y∈Di(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) .

Proof. We prove the result for player 1 states s and t, with the proof being identical for

player 2. Given a metric d ∈ M, we have,

sup
k∈C(d)

sup
x∈D1(s)

inf
y∈D1(t)

(E
x
s (k) − E

y
t (k)) = sup

k∈C(d)

( sup
x∈D1(s)

E
x
s (k) − sup

y∈D1(t)

E
y
t (k))

= sup
k∈C(d)

( sup
a∈Γ1(s)

E
a
s(k) − sup

y∈D1(t)

E
y
t (k)) (6.2)

= sup
k∈C(d)

sup
a∈Γ1(s)

inf
y∈D1(t)

(E
a
s(k) − E

y
t (k))

= sup
a∈Γ1(s)

sup
k∈C(d)

inf
y∈D1(t)

(E
a
s(k) − E

y
t (k)) (6.3)

= sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) (6.4)

For a fixed k ∈ C(d), since pure optimal strategies exist at each state for turn-based games

and MDPs, we replace the supx∈D1(s)
with supa∈Γ1(s)

yielding (6.2). Since the difference

in expectations is multi-linear, y ∈ D1(t) is a probability distribution and C(d) is a com-

pact convex set, we can use the generalized minimax theorem [Sio58], and interchange the

innermost sup inf to get (6.4) from (6.3). �

The proof of Lemma 7 is illustrated using the following example.

Example 10 Consider the example in Figure 6.1. In the MDPs shown in the figure, every

move leads to a unique successor state, with the exception of move e ∈ Γ1(s), which leads

to states u and v with equal probability. Assume the variable valuations are such that
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s

u v

bc
e

(a) MDP 1

t

u v

bc

(b) MDP 2

Figure 6.1: An example illustrating the proof of Lemma 7.

all states are at a propositional distance of 1. Without loss of generality, assume that the

valuation k ∈ C(d) is such that k(u) > k(v). By the linearity of expectations, for move

c ∈ Γ1(s), E
c
s(k) > E

x
s (k) for all x ∈ D1(s). Similar arguments can be made for k(u) < k(v).

This gives an informal justification for step (6.2) in the proof; given a k ∈ C(d), there exist

pure optimal strategies for the single player with a choice of moves at each state. While we

can use pure moves at states s and t if k ∈ C(d) is known, the principle difficulty in directly

computing the left hand side of the equality arises from the uncountably many values

for k; the distance is the supremum over all possible values of k. In the final equality, step

(6.4), and hence by this theorem, we have avoided this difficulty, by showing an equivalent

expression that picks a k ∈ C(d) to show the difference in distributions induced over states.

Aswe shall see, this enables computing the one-stepmetric distance using a trans-shipping

formulation. We remark that while we can use pure moves at state s, we cannot do so at

state t in the right hand side of step (6.4) of the proof. Firstly, the proof of the theorem

depends on y ∈ D1(t) being convex. Secondly, if we could restrict our attention to pure

moves at state t, then we can replace infy∈D1(t)
with inf f∈Γ1(t)

on the right hand side. But

this yields too fine a one-step distance. Consider move e at state s. We see that neither c nor
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b at state t yield distributions over states that match the distribution induced by e. We can

then always pick k ∈ C(d) such that E
e
s(k) − E

f
t (k) > 0. If we choose y ∈ D1(t) such that

y(b) = y(c) = 1
2 , we match the distribution induced by move e from state s, which implies

that for any choice of k ∈ C(d), E
e
s(k)−E

y(b)=y(c)= 1
2

t (k) = 0. Intuitively, the right hand side

of the equality can be interpreted as a game between a protagonist and an antagonist, with

the protagonist picking y ∈ D1(t), for every pure move a ∈ Γ1(s), to match the induced

distributions over states. The antagonist then picks a k ∈ C(d) to maximize the difference

in induced distributions. If the distributions match, then no choice of k ∈ C(d) yields a

difference in expectations bounded away from 0. �

From Lemma 7, given d ∈ M, we can write the player 1 one-step distance be-

tween states s and t as follows,

OneStep(s, t, d) = sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) . (6.5)

Hence we compute for all a ∈ Γ1(s), the expression,

OneStep(s, t, d, a) = inf
y∈D1(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)),

and then choose the maximum, i.e., maxa∈Γ1(s) OneStep(s, t, d, a). We now present a lemma

that helps reduce the above inf− sup optimization problem to a linear program. We first

introduce some notation. We denote by λ the set of variables λu,v, for u, v ∈ S. Given

a ∈ Γ1(s), and a distribution y ∈ D1(t), we write λ ∈ Φ(s, t, a, y) if the following linear

constraints are satisfied:

(1) for all v ∈ S : ∑
u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S : ∑
v∈S

λu,v = ∑
b∈Γ1(t)

y(b) · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0 .
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Lemma 8 For all turn-based game structures and MDPs G, for all d ∈ M, and for all s, t ∈ S,

the following assertion holds:

sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) = sup

a∈Γ1(s)

inf
y∈D1(t)

inf
λ∈Φ(s,t,a,y)

(

∑
u,v∈S

d(u, v) · λu,v

)

.

Proof. Since duality always holds in LP, from the LP duality based results of [vBW01a], for

all a ∈ Γ1(s) and y ∈ D1(t), the maximization over all k ∈ C(d) can be re-written as a

minimization problem as follows:

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) = inf

λ∈Φ(s,t,a,y)

(

∑
u,v∈S

d(u, v) · λu,v

)

.

The formula on the right hand side of the above equality is the trans-shipping formulation,

which solves for the minimum cost of shipping the distribution δ(s, a) into δ(t, y), with

edge costs d. The result of the lemma follows. �

Using the above result we obtain the following LP for OneStep(s, t, d, a) over the

variables: (a) {λu,v}u,v∈S, and (b) yb for b ∈ Γ1(t):

Minimize ∑
u,v∈S

d(u, v) · λu,v subject to (6.6)

(1) for all v ∈ S : ∑
u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S : ∑
v∈S

λu,v = ∑
b∈Γ1(t)

yb · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0; (4) for all b ∈ Γ1(t) : yb ≥ 0; (5) ∑
b∈Γ1(t)

yb = 1 .

Example 11 We now use the MDPs in Figure 6.2(a) and 6.2(b) to compute the simu-

lation distance between states using the results in Lemma 7 and Lemma 8. In the fig-

ure, states of the same color have a propositional distance of 0 and states of different

colors have a propositional distance of 1; p(s, s′) = p(t, t′) = p(u, u′) = p(v, v′) =
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p(t′,w′) = 0. In MDP 1, shown in Figure 6.2(a), δ(s, a)(t) = δ(t, b)(v) = δ(t, c)(u) = 1 and

δ(t, f )(u) = δ(t, f )(v) = 1
2 . In MDP 2, shown in Figure 6.2(b), δ(s′, a)(w′) = δ(s′, b)(t′) =

1, δ(t′, c)(u′) = 1
2 − ǫ, δ(t′, c)(v′) = 1

2 + ǫ, δ(w′, e)(u′) = δ(w′, f )(v′) = 1 − ǫ and

δ(w′, e)(v′) = δ(w′, f )(u′) = ǫ.

s

t

u v

a

bc
f

(a) MDP 1

a b

c
e

s′

w′ t′

u′ v′

f

(b) MDP 2

Figure 6.2: An example used to compute the simulation metric between states. States of
the same color have a propositional distance of 0.

t w′ t′

Γ1(t) x ∈ D1(w
′) Cost x ∈ D1(t

′) Cost

b x( f ) = 1 ǫ x(c) = 1 1
2 − ǫ

c x(e) = 1 ǫ x(c) = 1 1
2 + ǫ

f x( f ) = x(e) = 1
2 0 x(c) = 1 ǫ

Table 6.1: The moves from states w′ and t′ that minimize the trans-shipping cost for each
a ∈ Γ1(t) and the corresponding costs.

In Table 6.2, we show the simulation metric distance between states of the MDPs

in Figure 6.2(a) and Figure 6.2(b). Consider states t and t′. c is the only move available to
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[�] s′ t′ w′ u′ v′

s ǫ 1 1 1 1

t 1 1
2 + ǫ ǫ 1 1

u 1 1 1 0 1

v 1 1 1 1 0

Table 6.2: The simulation metric distance between states in MDP 1 and states in MDP 2.

u

v

u′

v′0

0

1

1

0

1

1
2 + ǫ

1
2 − ǫ

(a) [t � t′] = 1
2 + ǫ

t

w′

t′
1

1
2 + ǫ

ǫ

0

1

(b) [s � s′] = ǫ

Figure 6.3: The trans-shipping formulation that gives the metric distances between states.

player 1 from state t′ and it induces a transition probability of 1
2 + ǫ to state v′ and 1

2 − ǫ

to state u′. For the pure move c at state t, the induced transition probabilities and edge

costs in the trans-shipping formulation are shown in Figure 6.3(a). It is easy to see that the

trans-shipping cost in this case is 1
2 + ǫ; shown in Table 6.1 along the row corresponding to

move c from state t and column corresponding to state t′. Similarly, the trans-shipping cost

for the moves b and f from state t are 1
2 − ǫ and ǫ respectively. The metric distance [t � t′],

which is the maximum over these trans-shipping costs is then 1
2 + ǫ. Now consider the

states t and w′. In Table 6.1, we show for each pure move a ∈ Γ1(t), the move x ∈ D1(w
′)

that minimizes the trans-shipping cost together with the minimum cost. In this case it is
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easy to see that [t � w′] = ǫ. Given [t � t′] = 1
2 + ǫ and [t � w′] = ǫ, we can calculate the

distance [s � s′] from the trans-shipping formulation shown in Figure 6.3(b); the minimum

cost is ǫ that entails choosing move a from state s′, giving us [s � s′] = ǫ. �

Theorem 18 For all turn-based game structures and MDPs G, given d ∈ M, for all states

s, t ∈ S, we can compute H�1
(d)(s, t) in polynomial time by the Linear Program (6.6).

For all states s, t ∈ S, iteration of OneStep(s, t, d) converges to the exact dis-

tance. However, in general, there are no known bounds for the rate of convergence.

We now present a decision procedure to check whether the exact distance between two

states is at most a rational value r. We first show how to express the predicate d(s, t) =

OneStep(s, t, d). We observe that since H�1
is non-decreasing, we have OneStep(s, t, d) ≥

d(s, t). It follows that the equality d(s, t) = OneStep(s, t, d) holds iff for every a ∈ Γ1(s),

of which there are finitely many, all the linear inequalities of LP (6.6) are satisfied, and

d(s, t) = ∑u,v∈S d(u, v) · λu,v holds. It then follows that d(s, t) = OneStep(s, t, d) can be

written as a predicate in the theory of real closed fields. Given a rational r, two states s

and t, we present an existential theory of reals formula to decide whether [s �1 t] ≤ r.

Since [s �1 t] is the least fixed point of H�1
, we define a formula Φ(r) that is true iff, in the

fixpoint, [s �1 t] ≤ r, as follows:

∃d ∈ M.[(
∧

u,v∈S

OneStep(u, v, d) = d(u, v)) ∧ (d(s, t) ≤ r)] .

If the formula Φ(r) is true, then there exists a fixpoint d, such that d(s, t) is bounded by r,

which implies that in the least fixpoint d(s, t) is bounded by r. Conversely, if in the least

fixpoint d(s, t) is bounded by r, then the least fixpoint is a witness d for Φ(r) being true.
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Since the existential theory of reals is decidable in PSPACE [Can88], we have the following

result.

Theorem 19 (Decision complexity for exact distance). For all turn-based game structures

and MDPs G, given a rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in

PSPACE.

Approximation. Given a rational ǫ > 0, using binary search and O(log( θ2−θ1
ǫ )) calls to

check the formula Φ(r), we can obtain an interval [l, u] with u− l ≤ ǫ such that [s �1 t]

lies in the interval [l, u].

Corollary 3 (Approximation for exact distance). For all turn-based game structures and

MDPs G, given a rational ǫ, and two states s and t, an interval [l, u] with u − l ≤ ǫ such that

[s �1 t] ∈ [l, u] can be computed in PSPACE.

6.1.2 Algorithms for the Kernel

The kernel of the simulation metric �1 can be computed as the limit of the series

�0
1, �

1
1, �

2
1, . . . , of relations. For all s, t ∈ S, we have (s, t) ∈�0

1 iff s ≡ t. For all n ≥ 0, we

have (s, t) ∈�n+1
1 iff OneStep(s, t, 1�n

1
) = 0. Checking the condition OneStep(s, t, 1�n

1
) = 0,

corresponds to solving an LP feasibility problem for every a ∈ Γ1(s), as it suffices to replace

the minimization goal γ = ∑u,v∈S 1�n
1
(u, v) · λu,v with the constraint γ = 0 in the LP (6.6).

We note that this is the same LP feasibility problem that was introduced in [ZH07] as part

of an algorithm to decide simulation of probabilistic systems in which each label may lead

to one or more distributions over states.
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For the bisimulation kernel, we present a more efficient algorithm, which also

improves on the algorithms presented in [ZH07]. The idea is to proceed by partition re-

finement, as usual for bisimulation computations. The refinement step is as follows: given

a partition, two states s and t belong to the same refined partition iff every pure move

from s induces a probability distribution on equivalence classes that can be matched by

mixed moves from t, and vice versa. Precisely, we compute a sequence Q0, Q1, Q2, . . . ,

of partitions. Two states s, t belong to the same class of Q0 iff they have the same variable

valuation (i.e., iff s ≡ t). For n ≥ 0, since by the definition of the bisimulation metric given

in (4.11), [s ≃g t] = 0 iff [s �1 t] = 0 and [t �1 s] = 0, two states s, t in a given class of

Qn remain in the same class in Qn+1 iff both (s, t) and (t, s) satisfy the set of feasibility LP

problems OneStepBis(s, t,Qn) as given below:

OneStepBis(s, t,Q) consists of one feasibility LP problem for each a ∈ Γ(s). The
problem for a ∈ Γ(s) has set of variables {xb | b ∈ Γ(t)}, and set of constraints:

(1) for all b ∈ Γ(t) : xb ≥ 0, (2) ∑
b∈Γ(t)

xb = 1,

(3) for all V ∈ Q : ∑
b∈Γ(t)

∑
u∈V

xb · δ(t, b)(u) ≥ ∑
u∈V

δ(s, a)(u) .

In the following theorem we show that two states s, t ∈ S are n + 1 step bisimilar

iff OneStepBis(s, t,Qn) and OneStepBis(t, s,Qn) are feasible.

Theorem 20 For all turn-based game structures and MDPs G, for all n ≥ 0, given two states

s, t ∈ S and an n-step bisimulation partition of states Qn such that ∀V ∈ Qn, ∀u, v ∈ V,

[u ≃g v]n = 0, the following holds,

[s ≃g t]
n+1 = 0 iff OneStepBis(s, t,Qn) and OneStepBis(t, s,Qn) are both feasible.
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Proof. We proceed by induction on n. Assume the result holds for all iteration steps up to

n and consider the case for n + 1. In one direction, if [s ≃g t]n+1 = 0, then [s �1 t]n+1 =

[t �1 s]n+1 = 0 by the definition of the bisimulation metric. We need to show that given

[s �1 t]n+1 = 0, OneStepBis(s, t,Qn) is feasible. The proof is identical for [t �1 s]n+1 = 0.

From the definition of the n+ 1 step simulation distance, given p(s, t) = 0 by our induction

hypothesis, we have,

∀b ∈ Γ1(s) inf
x∈D1(t)

sup
k∈C(dn)

(E
b
s(k) − E

x
t (k)) ≤ 0 . (6.7)

Consider a player 1 move a ∈ Γ1(s). Since we can interchange the order of the inf and sup

by the generalized minimax theorem in infx∈D1(t)
supk∈C(dn)(E

a
s(k) − E

x
t (k)), the optimal

values of x ∈ D1(t) and k ∈ C(dn) exist and only depend on a. Let xa and ka be the optimal

values of x and k that realize the inf and sup in infx∈D1(t)
supk∈C(dn)(E

a
s(k)−E

x
t (k)). Using

xa and ka in (6.7) we have:

E
xa
t (ka) ≥ E

a
s(ka)

∑
u∈S

δ(t, xa)(u) · ka(u) ≥ ∑
v∈S

δ(s, a)(v) · ka(v)

∑
V∈Qn

∑
u∈V

δ(t, xa)(u) · ka(u) ≥ ∑
V∈Qn

∑
v∈V

δ(s, a)(v) · ka(v) (6.8)

∑
V∈Qn

∑
u∈V

δ(t, xa)(u) ≥ ∑
V∈Qn

∑
v∈V

δ(s, a)(v) (6.9)

∀V ∈ Qn.

(

∑
u∈V

δ(t, xa)(u) ≥ ∑
u∈V

δ(s, a)(u)

)

, (6.10)

where (6.9) follows from (6.8) by noting that for all V ∈ Qn, for all states u, v ∈ V,

dn(u, v) = dn(v, u) = 0, by our hypothesis, leading to k(u) − k(v) ≤ dn(u, v) = 0 and

k(v) − k(u) ≤ dn(v, u) = 0, which implies k(u) = k(v) for all k ∈ C(dn). To show
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(6.10) follows from (6.9), assume towards a contradiction that there exists a V ′ ∈ Qn

such that ∑u∈V′ δ(t, xa)(u) < ∑u∈V′ δ(s, a)(u). Then there must be a V ′′ ∈ Qn such that

∑u∈V′′ δ(t, xa)(u) > ∑u∈V′′ δ(s, a)(u) since δ(t, xa) is a probability distribution and the sum

of the probability mass allocated to each equivalence class should be 1. Further, for all

V ∈ Qn, for all u, v ∈ V, we have dn(u, v) = dn(v, u) = 0 and for all u ∈ V and for all

w ∈ S \ V, we have dn(u,w) = dn(w, u) = 1. Therefore, we can pick a feasible k′ ∈ C(dn)

such that k′(v) > 0 for all v ∈ V ′′ and k′(v) = 0 for all other states. Using k′ we get

E
a
s(k

′) − E
xa
t (k′) > 0 which means ka is not optimal, contradicting (6.7).

In the other direction, assume that OneStepBis(s, t,Qn) is feasible. We need to

show that [s �1 t]n+1 = 0. Since OneStepBis(s, t,Qn) is feasible, there exists a distribution

xa ∈ D1(t) for all a ∈ Γ1(s) such that, ∀V ∈ Qn.(∑u∈V δ(t, xa)(u) ≥ ∑v∈V δ(s, a)(v)). By

our induction hypothesis, this implies that for all k ∈ C(dn), we have (E
a
s(k)−E

xa
t (k)) ≤ 0

and in particular supk∈C(dn)(E
a
s(k) − E

xa
t (k)) ≤ 0. Since p(s, t) = 0 by our hypothesis and

we have shown,

∀a ∈ Γ1(s) inf
x∈D1(t)

sup
k∈C(dn)

(E
a
s(k) − E

x
t (k)) ≤ 0,

we have, from Lemma 7,

[s �1 t]
n+1 = p(s, t) ⊔ sup

a∈Γ1(s)

inf
x∈D1(t)

sup
k∈C(dn)

(E
a
s(k) − E

x
t (k)) = 0.

In a similar fashion, if OneStepBis(t, s,Qn) is feasible then [t �1 s]n+1 = 0, which leads to

[s ≃g t]n+1 = 0 by the definition of the bisimulation metric, as required. �

Complexity. The number of partition refinement steps required for the computation of

both the simulation and the bisimulation kernel is bounded by O(|S|2) for turn-based

games and MDPs, where S is the set of states. At every refinement step, at most O(|S|2)
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state pairs are considered, and for each state pair (s, t) at most |Γ(s)| LP feasibility prob-

lems needs to be solved. Let us denote by LPF(n,m) the complexity of solving the feasibil-

ity of m linear inequalities over n variables. We obtain the following result.

Theorem 21 For all turn-based game structures and MDPs G, the following assertions hold:

1. the simulation kernel can be computed in O
(

n4 ·m · LPF(n2 + m, n2 + 2n + m + 2)
)

time;

2. the bisimulation kernel can be computed in O
(

n4 ·m · LPF(m, n + m + 1)
)

time;

where n = |S| is the size of the state space, and m = maxs∈S |Γ(s)|.

Remark 1 The best known algorithm for LPF(n,m) works in time O(n2.5 · log(n)) [Ye06]

(assuming each arithmetic operation takes unit time). The previous algorithm for the

bisimulation kernel checked two way simulation and hence has the complexity O(n4 ·m ·

(n2 + m)2.5 · log(n2 + m)), whereas our algorithm works in time O(n4 ·m ·m2.5 · log(m)).

For most practical purposes, the number of moves at a state is constant (i.e., m is con-

stant). For the case when m is constant, the previous best known algorithm worked in

O(n9 · log(n)) time, whereas our algorithm works in time O(n4).

6.2 Algorithms for Concurrent Games

In this section we first show that the computation of the metric distance is at least

as hard as the computation of optimal values in concurrent reachability games. The exact

complexity of the latter is open, but it is known to be at least as hard as the square-root sum

problem, which is in PSPACE but whose inclusion in NP is a long-standing open problem

[EY07, GGJ76]. Next, we present algorithms based on a decision procedure for the theory
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of real closed fields, for both checking the bounds of the exact distance and the kernel of

the metrics.

6.2.1 Reduction of Reachability Games to Metrics

We will use the following terms in the result. A proposition is a boolean observa-

tion variable, and we say a state is labeled by a proposition q iff q is true at s. A state t is

absorbing in a concurrent game, if both players have only one action available at t, and the

next state of t is always t (it is a state with a self-loop). For a proposition q, let3q denote the

set of paths that visit a state labeled by q at least once. In concurrent reachability games,

the objective is 3q, for a proposition q, and without loss of generality all states labeled by

q are absorbing states.

Theorem 22 Consider a concurrent game structure G, with a single proposition q, such that

all states labeled by q are absorbing states. We can construct in linear-time a concurrent game

structure G′, with one additional state t′, such that for all s ∈ S, we have

[s �1 t
′] = sup

π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3q) .

Proof. The concurrent game structure G′ is obtained from G by adding an absorbing

state t′. The states that are not labeled by q, and the additional state t′, are labeled by

its complement ¬q. Observe there is only one proposition sequence from t′, and it is

(¬q)ω. To prove the desired claim we show that for all s ∈ S we have [s �1 t′] =

supπ1∈Π1
infπ2∈Π2

Prπ1,π2
s (3q). From a state s in G the possible proposition sequences can

be expressed as the following ω-regular expression: (¬q)ω ∪ (¬q)∗ · qω. Since the proposi-

tion sequence from t′ is (¬q)ω, the supremum of the difference in values over qµ formulas
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at s and t′ is obtained by satisfying the set of paths formalized as (¬q)∗ · qω at s. The set of

paths defined as (¬q)∗ · qω is the same as reaching q in any number of steps, since all states

labeled by q are absorbing. Hence,

sup
ϕ∈qµ+

([[ϕ]](s)− [[ϕ]](t′)) = [[µX.(q ∨ Pre1(X))]](s) .

It follows from the results of [dAM04] that for all s ∈ S we have,

[[µX.(q ∨ Pre1(X))]](s) = sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3q) .

From the above equalities and the logical characterization in Theorem 7, we obtain the

desired result. �

6.2.2 Algorithms for the Metrics

We first prove a lemma that helps to obtain reduced-complexity algorithms for

concurrent games. The lemma states that the distance [s �1 t] is attained by restricting

player 2 to pure moves at state t, for all states s, t ∈ S.

Lemma 9 For all concurrent game structures G and all metrics d ∈ M, we have,

sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

(E
x1,x2
s (k))− E

y1,y2
t (k))

= sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
b∈Γ2(t)

inf
x2∈D2(s)

(E
x1,x2
s (k) − E

y1,b
t (k)) . (6.11)
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Proof. To prove our claim we fix k ∈ C(d), and player 1 mixed moves x ∈ D1(s), and

y ∈ D1(t). We then have,

sup
y2∈D2(t)

inf
x2∈D2(s)

(E
x,x2
s (k)) − E

y,y2
t (k)) = inf

x2∈D2(s)

E
x,x2
s (k) − inf

y2∈D2(t)

E
y,y2
t (k) (6.12)

= inf
x2∈D2(s)

E
x,x2
s (k) − inf

b∈Γ2(t)

E
y,b
t (k) (6.13)

= sup
b∈Γ2(t)

inf
x2∈D2(s)

(E
x,x2
s (k) − E

y,b
t (k)),

where (6.13) follows from (6.12) since the decomposition on the rhs of (6.12) yields two

independent linear optimization problems; the optimal values are attained at a vertex of

the convex hulls of the distributions induced by pure player 2 moves at the two states.

This easily leads to the result. �

We now present algorithms for metrics in concurrent games. Due to the reduction

from concurrent reachability games, shown in Theorem 22, it is unlikely that we have an

algorithm in NP for the metric distance between states. We therefore construct statements

in the theory of real closed fields, firstly to decide whether [s �1 t] ≤ r, for a rational r, so

that we can approximate the metric distance between states s and t, and secondly to decide

if [s �1 t] = 0 in order to compute the kernel of the game simulation and bisimulation

metrics.

The statements improve on the complexity that can be achieved by a direct trans-

lation from the definition of the game simulation metric to the theory of real closed fields.

The complexity reduction is based on the observation that using Lemma 9, we can replace

a sup operator with finite conjunction, and therefore reduce the quantifier complexity of

the resulting formula. Fix a game structure G and states s and t of G. We proceed to con-
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struct a statement in the theory of reals that can be used to decide if [s �1 t] ≤ r, for a

given rational r.

In the following, we use variables x1, y1 and x2 to denote a set of variables {x1(a) |

a ∈ Γ1(s)}, {y1(a) | a ∈ Γ1(t)} and {x2(b) | b ∈ Γ2(s)} respectively. We use k to denote

the set of variables {k(u) | u ∈ S}, and d for the set of variables {d(u, v) | u, v ∈ S}. The

variables α, α′, β, β′ range over reals. For convenience, we assume Γ2(t) = {b1, . . . , bl}.

First, notice that we can write formulas that state that a variable x is a mixed

move for a player at state s, and k is a constructible predicate (i.e., k ∈ C(d)):

IsDist(x, Γ1(s)) ≡
∧

a∈Γ1(s)

x(a) ≥ 0∧
∧

a∈Γ1(s)

x(a) ≤ 1∧ ∑
a∈Γ1(s)

x(a) = 1

kBounded(k, d) ≡
∧

u∈S

[

k(u) ≥ θ1 ∧ k(u) ≤ θ2

]

∧
∧

u,v∈S

(k(u) − k(v) ≤ d(u, v)) .

In the following, we write bounded quantifiers of the form “∃x1 ∈ D1(s)” or “∀k ∈ C(d)”

which mean respectively ∃x1.IsDist(x1, Γ1(s)) ∧ · · · and ∀k.kBounded(k, d) → · · · .

Let η(k, x1, x2, y1, b) be the polynomial E
x1,x2
s (k)−E

y1,b
t (k). Notice that η is a poly-

nomial of degree 3. We write a = max{a1, . . . , al} for variables a, a1, . . . , al for the formula

(a = a1 ∧
l

∧

i=1

a1 ≥ ai) ∨ . . . ∨ (a = al ∧
l

∧

i=1

al ≥ ai) .

We construct the formula for game simulation in stages. First, we construct a formula

Φ1(d, s, t, k, x, α) with free variables d, k, x, α such that Φ1(d, s, t, k, x1, α) holds for a valua-

tion to the variables iff

α = inf
y1∈D1(t)

sup
b∈Γ2(t)

inf
x2∈D2(s)

(E
x1,x2
s (k) − E

y1,b
t (k)) .
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We use the following observation to move the innermost inf ahead of the sup over the

finite set Γ2(t) (for a function f ):

sup
b∈Γ2(t)

inf
x2∈D2(s)

f (b, x2, x) = inf
x
b1
2 ∈D2(s)

. . . inf
x
bl
2 ∈D2(s)

max( f (b1, x
b1
2 , x), . . . , f (bl , x

bl
2 , x)) .

The formula Φ1(d, s, t, k, x1, α) is given by:

∀y1 ∈ D1(t).∀x
b1
2 ∈ D2(s) . . . x

bl
2 ∈ D2(s).∀w1 . . .wl .∀a.∀α′.

∃ŷ1 ∈ D1(t).∃x̂
b1
2 ∈ D2(s) . . . x̂

bl
2 ∈ D2(s).∃ŵ1 . . . ŵl .∃â.


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






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
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



















(

w1 = η(k, x1, x
b1
2 , y1, b1)

)

∧ · · · ∧

(

wl = η(k, x1, x
bl
2 , y1, bl)

)

∧

(

a = max{w1, . . . ,wl}
)
































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


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




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























∧








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
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
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




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

































(

ŵ1 = η(k, x1, x̂
b1
2 , ŷ1, b1)

)

∧ · · · ∧

(

ŵl = η(k, x1, x̂
bl
2 , ŷ1, bl)

)

∧

(

â = max{ŵ1, . . . , ŵl} ∧ â ≥ α′(s, t)
)















































→ (α ≥ α′)

























.

Using Φ1, we construct a formula Φ(d, s, t, α) with free variables d ∈ M and α ∈ M such

that Φ(d, s, t, α) is true iff:

α = sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
b∈Γ2(t)

inf
x2∈D2(s)

(E
x1,x2
s (k) − E

y1,b
t (k)) .
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The formula Φ is defined as follows:

∀k ∈ C(d).∀x1 ∈ D1(s).∀β.∀α′.

[ Φ1(d, s, t, k, x1, β) → (β(s, t) ≤ α)∧

(∀k′ ∈ C(d).∀x′1 ∈ D1(s).∀β′.Φ1(d, s, t, k
′, x′1, β′) ∧ β′(s, t) ≤ α′) → α ≤ α′

]

. (6.14)

Finally, given a rational r, we can check if [s �1 t] ≤ r by checking if the following sentence

is true:

∃d ∈ M.∃a ∈ M.[(
∧

u,v∈S

Φ(d, u, v, a(u, v)) ∧ (d(u, v) = a(u, v))) ∧ (d(s, t) ≤ r)] . (6.15)

The above sentence is true iff in the least fixpoint, d(s, t) is bounded by r. Like in the

case of turn-based games and MDPs, given a rational ǫ > 0, using binary search and

O(log( θ2−θ1
ǫ )) calls to a decision procedure to check the sentence (6.15), we can compute

an interval [l, u] with u− l ≤ ǫ, such that [s �1 t] ∈ [l, u].

Complexity. Note that Φ is of the form ∀∃∀, because Φ1 is of the form ∀∃, and appears

in negative position in Φ. The formula Φ has (|S| + |Γ1(s)| + 3) universally quantified

variables, followed by (|S| + |Γ1(s)| + 3 + 2(|Γ1(t)| + |Γ2(s)| · |Γ2(t)| + |Γ2(t)| + 2)) exis-

tentially quantified variables, followed by 2(|Γ1(t)|+ |Γ2(s)| · |Γ2(t)|+ |Γ2(t)|+ 1) univer-

sal variables. The sentence (6.15) introduces |S|2 + |S|2 existentially quantified variables

ahead of Φ. The matrix of the formula is of length at most quadratic in the size of the

game, and the maximum degree of any polynomial in the formula is 3. We define the size

of a game G as: |G| = |S| + T, where T = ∑s,t∈S ∑a,b∈Moves |δ(s, a, b)(t)|. Using the com-

plexity of deciding a formula in the theory of real closed fields [Bas99], which states that a

formula with i quantifier blocks, where each block has li variables, of p polynomials, has a

time complexity bound of O(pO(Π(li+1))), we get the following result.
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Theorem 23 (Decision complexity for exact distance). For all concurrent game structures

G, given a rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in time

O(|G|O(|G|5)).

Approximation. Given a rational ǫ > 0, using binary search and O(log( θ2−θ1
ǫ )) calls to

check the formula 6.15, we can obtain an interval [l, u] with u− l ≤ ǫ such that [s �1 t] lies

in the interval [l, u].

Corollary 4 (Approximation for exact distance). For all concurrent game structures G, given

a rational ǫ, and two states s and t, an interval [l, u] with u− l ≤ ǫ such that [s �1 t] ∈ [l, u] can

be computed in time O(log( θ2−θ1
ǫ ) · |G|O(|G|5)).

In contrast, the formula to check whether [s �1 t] ≤ r, for a rational r, as implied by the

definition of H�1
(d)(s, t), that does not use Lemma 9, has five quantifier alternations due

to the inner sup, which when combined with the 2 · |S|2 existentially quantified variables

in the sentence (6.15), yields a decision complexity of O(|G|O(|G|7)).

6.2.3 Computing the Kernels

Similar to the case of turn-based games and MDPs, the kernel of the simulation

metric �1 for concurrent games can be computed as the limit of the series �0
1, �

1
1, �

2
1, . . . ,

of relations. For all s, t ∈ S, we have (s, t) ∈�0
1 iff s ≡ t. For all n ≥ 0, we have (s, t) ∈�n+1

1

iff the following sentence Φs is true:

∀a.Φ(dn, s, t, a) → a = 0,
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where Φ is defined as in (6.14) and at step n in the iteration, the distance between any pair

of states u, v ∈ S is defined as follows,

∀u, v ∈ S. dn(u, v) =























0 if (s, t) ∈ �n
1

1 if (s, t) 6∈ �n
1

.

To compute the bisimulation kernel, we again proceed by partition refinement. For a set

of partitionsQ0,Q1, . . ., where (s, t) ∈ V for V ∈ Qn implies (s, t) ∈≃n
1 , (s, t) ∈≃

n+1 iff the

following sentence Φb is true for the state pairs (s, t) and (t, s):

∀a.Φ(dn, s, t, a) → a = 0,

where Φ is again as defined in (6.14) and at step n in the iteration, the distance between

any pair of states u, v ∈ S is defined as follows,

∀u, v ∈ S. dn(u, v) =























0 if (s, t) ∈ ≃n
1

1 if (s, t) 6∈ ≃n
1

.

Complexity. In the worst case we need O(|S|2) partition refinement steps for computing

both the simulation and the bisimulation relation. At each partition refinement step the

number of state pairs we consider is bounded by O(|S|2). We can check if Φs and Φb are

true using a decision procedure for the theory of real closed fields. Therefore, we need

O(|S|4) decisions to compute the kernels. The partitioning of states based on the decisions

can be done by any of the partition refinement algorithms, such as [PT87].

Theorem 24 For all concurrent game structures G, states s and t, whether s �1 t can be decided

in O(|G|O(|G|3)) time, and whether s ≃g t can be decided in O(|G|O(|G|3)) time.
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Part II

Games for Synthesis
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Chapter 7

Protocol Synthesis

In this chapter we present an application of game models for synthesis. We

study the problem of automatically synthesizing attack-free fair non-repudiation protocols

as participant refinements. We show that classical co-synthesis fails and weak co-synthesis

generates solutions that are not attack-free. We then formulate and solve the synthesis

problem using assume-guarantee synthesis and prove that the assume-guarantee refine-

ments are attack-free. We provide an alternate characterization of the refinements that

are solutions to assume-guarantee synthesis and show that the Kremer-Markowitch fair

non-repudiation protocol is a solution to assume-guarantee synthesis whereas the Asokan-

Shoup-Waidner protocol and the Garay-Jakobsson-MacKenzie protocol are not. We pro-

vide a game-theoretic justification of the need for a trusted third party and conclude by

presenting a new symmetric attack-free fair non-repudiation protocol.

133



7.1 Fair Non-Repudiation Protocols

In this section we introduce fair non-repudiation protocols. We first define a pro-

tocol model and an attack model. We then introduce the agents and the trusted third party

that participate in fair exchange protocols, the messages that they may send and receive,

and the channels over which they communicate. Finally, we introduce a set of predicates

that are set by the agents and the trusted third party, based on messages sent or received.

A protocol model. Let V be a finite set of variables that take values in some domain Dv.

A valuation f over the variables V is a function f : V 7→ Dv that assigns to each variable

v ∈ V, a value f (v) ∈ Dv; we take F as the set of all valuations. Let M be a finite set

of messages that are exchanged between a set A = {Ai | 0 ≤ i ≤ n} of participants.

We define each participant as a tuple, Ai = (Li,Vi,Λi, δi) where Li is a finite set of line

numbers, Vi ⊆ V is a set of variables, Λi : Fi 7→ 2M is a message assignment, that given a

valuation f ∈ Fi, where Fi is the set of valuations on Vi, returns the set of messages that

can be sent by Ai at f ; this set includes all messages that can be composed by Ai based

on what she knows in the valuation f . We take V =
⋃n

i=0Vi and assume that the sets Vi

form a partition of V. An Ai transition function is δi : Li ×Fi ×M 7→ Li ×Fi, that given

a line number, a valuation over Vi and a message either sent or received by Ai, returns the

next line number of Ai and an updated valuation. The participants may send messages

simultaneously and independently. We interpret the elements of A as the most general

participants in an exchange and the interaction between the elements of A as the most

general exchange program. Every participant in an exchange has her own specification to

satisfy. We take the specification of a participant as a set of desired sequences of messages.
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A realization of an exchange protocol is a restriction of the most general exchange

program that consists of the set A′ = {A′
i | 0 ≤ i ≤ n} of participants, with behaviors re-

stricted by the rules of the protocol. We take A′
i = (L′i,Vi,Λ

′
i, δ

′
i), where L′i ⊆ Li; Vi is

the same set of variables as in Ai; for every valuation f ∈ Fi we have Λ′
i( f ) ⊆ Λi( f );

and δ′i : L
′
i ×Fi ×M 7→ L′i ×Fi is the transition function, that given a line number in L′i,

a valuation over Vi and a move either sent or received by A′
i returns the next line num-

ber of A′
i and an updated valuation such that, for l ∈ L′i, v ∈ Fi and m ∈ M, we have

δ′i(l, v,m) = δi(l, v,m). We define a protocol instance (also called a protocol run) as any se-

quence of messages generated by the participants in A′.

An attack model. We define an attack on a protocol as the behavior of a subset of protocol

participants such that the resulting sequence of messages is in their specification but not

in the specification of at least one of the other participants. Formally, let Y ⊆ A be a

subset of the most general participants with (A \Y)′ being the remaining participants, that

follow the rules of the protocol. A protocol has a Y-attack if the most general participants

in Y can generate a message sequence, given (A \ Y)′ follow the protocol, that is not in

the specification of at least one participant in (A \ Y)′ but is in the specifications of all

participants in Y. A protocol is attack-free, if there exists no Y-attack for all Y ∈ 2A.

Agents. An agent in a two-party exchange protocol is one of the two participating entities

signing an online contract. Based on whether an agent proposes a contract or accepts a

contract originating from another agent, we get two roles that an agent can play; that of

an originator of a contract, designated by O or the recipient of a contract, designated by R.

Agents communicate with each other over channels.
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Trusted third party (TTP). The trusted third party or TTP is a participant who is trusted by

the agents and adjudicates and resolves disputes. It is known that a fair exchange protocol

cannot be realized without the TTP [EY80, PG99]. We model the TTP explicitly as a par-

ticipant, define her objective and using our formulation give a game-theoretic justification

that the TTP is necessary. Agents and the TTP communicate with each other over channels.

Messages. A message is an encrypted stream of bytes; we treat each message as an atomic

unit. We are not concerned with the exact contents of each message, but in what each

message conveys. We define the set M of messages as follows:

− m1 is a message that may be sent by O to R. The intent of this message is to convey

O’s desire to sign a contract with a recipient R.

− m2 is a message that may be sent by R upon receiving m1 to O. This conveys R’s

intent to sign the contract sent by O.

− m3 is a message that may be sent by O to R upon receivingm2 and contains the actual

signature of O.

− m4 is a message that contains the actual signature of R and may be sent by R to O

upon receiving m3.

− aO1 is a message that may be sent by O to the TTP and conveys O’s desire to abort the

protocol.

− aO2 (resp. aR2 ) is a message that may be sent by the TTP to O (resp. R) that confirms

the abort by including an abort token for O (resp. R).
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− rO1 (resp. rR1 ) is a message that may be sent by O (resp. R) to the TTP and conveys O’s

(resp. R’s) desire to get the TTP to resolve a protocol instance by explicitly request-

ing the TTP to adjudicate. We do not specify the content of rO1 or rR1 but make the

assumption that the TTP needs m1 to recover the protocol for R and similarly needs

m2 to recover the protocol for O.

− rO2 (resp. rR2 ) is a message that may be sent by the TTP to O (resp. R) and contains a

universally verifiable signature in lieu of the signature of R (resp. O).

The messages that each participant can send in a state depends on what the participant

knows in that state. We assume that every recipient can check if the message she receives

contains what she expects and that it originates from the purported sender. Since our con-

cern in this paper is not to synthesize messages impervious to attacks, we assume this task

can be accomplished by the use of appropriate cryptographic primitives. We remark that

primitives such as private contract signatures (PCS) introduced by Garay et al., in [GJM99],

can be used with protocols that are synthesized using our technique to ensure such prop-

erties as the designated verifier property. In our formulations, we consider a reasonable TTP

that satisfies the following restrictions on behavior:

1. The TTP will never send a message unless it receives an abort or a resolve request.

2. The TTP processes messages in a first-in-first-out fashion.

3. If the first message received by the TTP is an abort request, then the TTP will even-

tually send an abort token.

4. If the first message received by the TTP is a resolve request, then the TTP will even-
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tually send an agent signature.

Channels. A channel is used to deliver amessage. There are three types of channels that are

typically modeled in the literature. We present them here in decreasing order of reliability:

1. An operational channel delivers all messages within a known, finite amount of time.

2. A resilient channel eventually delivers all messages, but there is no fixed finite bound

on the time to deliver a message.

3. An unreliable channel may not deliver all messages eventually.

An operational channel is impractical as the protocols are typically executed over asyn-

chronous networks. We model the channels between the agents as unreliable and those

between the agents and the TTP as resilient as in prevailing models; messages sent to the

TTP and by the TTP will be eventually delivered. We do not model the channels explicitly,

but synthesize protocols irrespective of channel behavior. In particular, unreliable chan-

nels may never deliver messages and messages sent to the TTP may arrive in any order at

the TTP.

Scheduler. The scheduler is not explicitly part of any fair exchange protocol. The protocol

needs to provide all agents the ability to send messages asynchronously. This implies

that the agents can choose their actions simultaneously and independently. We model this

behavior by using a fair scheduler that assigns each participant a turn and we synthesize

refinements against all possible behaviors of a fair scheduler.

Predicates. We introduce the following set of predicates.
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− M1 is set by O, when she sends message m1 to R.

− EOO, referred to as the Evidence Of Origin, is set by Rwhen eitherm1 or r
R
2 is received.

− EOR, referred to as the Evidence of Receipt, is set by Owhen eitherm2 or r
O
2 is received.

− EOOO
k and EOOTTP

k are referred to asO’s signature. EOOO
k is set by R when R receives

m3 and EOOTTP
k is set by R when he receives rR2 .

− EORR
k and EORTTP

k are referred to as R’s signature. EORR
k is set by O when O receives

m4 and EORTTP
k is set by O when she receives rO2 .

− AO is set by O and indicates that aO2 has been received.

− AR is set by R and indicates that aR2 has been received.

− ABR is set by the TTP when an abort request, aO1 is received.

− RES is set by the TTP when a resolve request, rO1 or rR1 , is received.

All predicates are monotonic in that once they are set, they remain set for the duration

of a protocol instance [SM02]. We distinguish between a signature sent by an agent and

the signature sent by the TTP as a replacement for an agent’s signature in the predicates.

Distinguishing these signatures enables modeling TTP accountability [SM02]. The non-

repudiation of origin for R, denoted by NRO, means that R has received both O’s intent to

sign a contract and O’s signature on the contract so that O cannot deny having signed the

contract to a third party. Formally, NRO is defined as: NRO = EOO∧ (EOOO
k ∨ EOOTTP

k ).

The non-repudiation of receipt for O, denoted by NRR, means that O has received both the
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intent and signature of R on a contract so that R cannot deny having signed the contract to

a third party. Formally, NRR is defined as: NRR = EOR∧ (EORR
k ∨ EORTTP

k ).

7.2 LTL Specifications for Protocol Requirements

In this section, we define specifications for fair non-repudiation protocols, spec-

ifications for the agents and the TTP and show that satisfaction of the specifications of

the agents and the TTP imply satisfaction of the specifications of the protocols. We first

formally define the properties that are required to be satisfied by fair non-repudiation pro-

tocols. In our specifications, we use the usual LTL notations 2 and 3 to denote always

(safety) and eventually (reachability) specifications, respectively.

Fairness. Informally, fairness for O can be stated as “For all protocol instances if the non-

repudiation of origin (NRO) is ever true, then eventually the non-repudiation of receipt (NRR) is

also true” [KR03]. The fairness property for O is expressed by the LTL formula

ϕO
f = 2(NRO ⇒ 3NRR) .

Similarly, the fairness property for R is expressed by the LTL formula ϕR
f = 2(NRR ⇒

3NRO). We say that a protocol is fair, if in all instances of the protocol, fairness for both O

and R holds. Hence the fairness requirement for the protocol is expressed by the formula

ϕ f = ϕO
f ∧ ϕR

f . (7.1)

Abuse-freeness. The definition of abuse-freeness as given in [GJM99], is the following:

“An optimistic contract signing protocol is abuse-free if it is impossible for a single player at any

point in the protocol to be able to prove to an outside party that he has the power to terminate
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(abort) or successfully complete the contract”. In [CKS01], the authors introduce a property

called balance and in [KfR02], the authors show that balance implies abuse-freeness. We

translate balance for O as the following LTL formula

ϕO
b = 2((NRO∧AR) ⇒ 3NRR) .

Similarly, the balance property for R is expressed by the LTL formula ϕR
b = 2((NRR ∧

AO) ⇒ 3NRO). We say a protocol is balanced and hence abuse-free [KfR02], if in all

instances of the protocol, balance for both O and R holds. Hence the balance requirement

for the protocol is expressed by the formula

ϕb = ϕO
b ∧ ϕR

b . (7.2)

The following lemma shows that given the above definitions of fairness and balance, fair-

ness implies balance.

Lemma 10 (Fairness implies balance) We have ϕ f ⇒ ϕb.

Proof. For all paths that satisfy ϕ f , we have, either 3NRO and 3NRR are both satisfied or

3NRO and 3NRR are both violated. In either case, it is easy to see that both ϕO
b and ϕR

b

are satisfied and hence ϕb is satisfied as well. �

While protocols that ensure fairness are also balanced by Lemma 10, as noted

by the authors of [KfR02], a protocol that satisfies balance may not be abuse-free if the

availability of partial information to either agent is considered to be a problem. Specifically,

in all protocol instances where EOO or EOR is true, but NRO and NRR are both false, one

or both agents have the other agent’s intent to sign the contract, compromising abuse-

freeness if they can prove this intent to anyone other than the TTP. We note that by the
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use of PCS, which provides the designated verifier property, neither agent can prove the

other agent’s intent to sign the contract to anyone other than the TTP. Therefore, ensuring

abuse-freeness requires the use of PCS.

Timeliness. Informally, timeliness is defined as follows: “A protocol respects timeliness, if

both agents always have the ability to reach, in a finite amount of time, a point in the protocol where

they can stop the protocol while preserving fairness”. We do not model timeliness in this paper

as the cases in the literature where timeliness is compromised involve the lack of an abort

subprotocol. Since we explicitly include the capability to abort the protocol, our solution

provides timeliness as guaranteed by existing protocols. Alternatively, timeliness could

be explicitly modeled in the specifications of the agents and the TTP, but in the interest

of keeping the objectives simpler so that we convey the more interesting idea of using

assume-guarantee synthesis, we avoid modeling timeliness explicitly.

Signature exchange. A protocol is an exchange protocol if it enables the exchange of sig-

natures. For an exchange protocol to be a non-repudiation protocol, at the end of every

run of the protocol, either the agents have their respective non-repudiation evidences or if

they do not have their non-repudiation evidences, then they should have the abort token.

We now present the specifications for the agents and the trusted third party and

show that satisfaction of these objectives implies that the protocols we synthesize provide

fairness and balance.

Specification for the originator O. The objective of the originator O is expressed as fol-

lows:

− In all protocol instances, she eventually sends the evidence of origin. This is ex-
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pressed by the LTL formula ϕ1
O = 3M1.

− In all protocol instances, one of the following statements should be true:

1. (a) The originator eventually gets the recipient’s signature EORR
k or, (b) she

eventually gets the recipient’s signature EORTTP
k and never gets the abort token

AO. This is expressed by the LTL formula

ϕ2
O = (3EORR

k ∨ (3EORTTP
k ∧2¬AO)) .

2. (a) The originator eventually gets the abort token and, (b) the recipient never

gets her signature EOOO
k and never gets her signature EOOTTP

k from the TTP.

This is expressed by the LTL formula

ϕ3
O = 3AO∧ (2¬EOOO

k ∧2¬EOOTTP
k ) = 3AO∧2(¬EOOO

k ∧ ¬EOOTTP
k ) .

The objective ϕO of O can therefore be expressed by the following LTL formula

ϕO = ϕ1
O ∧2(ϕ2

O ∨ ϕ3
O) . (7.3)

There are two interpretations of the abort token in the literature. On the one hand the abort

token was never intended to serve as a proof that a protocol instance was not successfully

completed; it was to guarantee that the TTP would never resolve a protocol after it has

been aborted. On the other hand, there is mention of the abort token being used by the

recipient to prove that the protocol was aborted. We take the position that the abort token

may be used to ensure TTP accountability as noted in [SM02] and hence include it in the

objective of O. If the TTP misbehaves and issues both EORTTP
k and AO, we claim that

the objective ϕO of the originator should be violated, but in this case, she has the power
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to prove that the TTP misbehaved by presenting both EORTTP
k and AO to demonstrate

inconsistent behavior. While having both EORTTP
k and AO is a violation of ϕO, having both

EORR
k and AO is not a violation of ϕO; once O receives EORR

k , we take it that the objective

ϕO is satisfied. While having both EORR
k and EORTTP

k may be interpreted as O having

inconsistent signatures, we do not consider this to be a violation of O’s objective; given the

nature of asynchronous networks it may well be the case that both these evidences arrive

eventually, one from the TTP and the other from R, as O did not wait long enough before

sending rO1 .

Specification for the recipient R. The objective of the recipient R can be expressed as

follows:

− In all protocol instances, if he gets the evidence of origin EOO, then one of the fol-

lowing statements should be true:

1. (a) The recipient eventually gets the originator’s signature EOOO
k or, (b) he even-

tually gets the originator’s signature EOOTTP
k and never gets the abort token AR.

This is expressed by the LTL formula

ϕ1
R = (3EOOO

k ∨ (3EOOTTP
k ∧2¬AR)) .

2. (a) The recipient eventually gets the abort token and, (b) the originator never

gets his signature EORR
k and never gets his signature EORTTP

k from the TTP.

This is expressed by the LTL formula

ϕ2
R = 3AR∧ (2¬EORR

k ∧2¬EORTTP
k ) = 3AR∧2(¬EORR

k ∧ ¬EORTTP
k ) .
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The objective ϕR can therefore be expressed by the LTL formula

ϕR = 2(EOO ⇒ (ϕ1
R ∨ ϕ2

R)) . (7.4)

If the TTP misbehaves and issues both EOOTTP
k and AR, we claim that the objective ϕR

of the recipient should be violated, but in this case he has the power to prove that the

TTP misbehaved by presenting both EOOTTP
k and AR. Similar to the case of O, once R

receives EOOO
k , the objective ϕR is satisfiedwhether or not abort tokens or non-repudiation

evidences are issued by the TTP.

Specification for the trusted third party TTP. The objective of the trusted third party is to

treat both agents symmetrically and be accountable to both agents. It can be expressed as

follows:

− In all protocol instances, if the abort request aO1 or a resolve request rO1 or rR1 is re-

ceived, then eventually the TTP sends the abort token AO or the abort token AR or

the originator’s signature EOOTTP
k or the recipient’s signature EORTTP

k . This can be

expressed by the LTL formula

ϕ1
TTP = 2((ABR∨ RES) ⇒ (3AO∨3AR∨3EOOTTP

k ∨3EORTTP
k )) .

− In all protocol instances, if the originator’s signature EOOTTP
k has been sent to the

recipient, then the originator should eventually get the recipient’s signature EORTTP
k

and the agents should never get the abort token. This can be expressed by the LTL

formula

ϕ2
TTP = 2(EOOTTP

k ⇒ (3EORTTP
k ∧2(¬AO∧ ¬AR))) .
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− Symmetrically, in all protocol instances, if the recipient’s signature EORTTP
k has been

sent to the originator, then the recipient should eventually get the originator’s signa-

ture EOOTTP
k and the agents should never get the abort token. This can be expressed

by the LTL formula

ϕ3
TTP = 2(EORTTP

k ⇒ (3EOOTTP
k ∧2(¬AO∧ ¬AR))) .

− In all protocol instances, if the originator gets the abort token AO, then the recipi-

ent should eventually get the abort token AR and the originator should never get

the recipient’s signature EORTTP
k and the recipient should never get the originator’s

signature EOOTTP
k . This can be expressed by the LTL formula

ϕ4
TTP = 2(AO ⇒ (3AR∧2(¬EOOTTP

k ∧ ¬EORTTP
k ))) .

− Symmetrically, in all protocol instances, if the recipient gets the abort token AR, then

the originator should eventually get the abort token AO and the originator should

never get the recipient’s signature EORTTP
k and the recipient should never get the

originator’s signature EOOTTP
k . This can be expressed by the LTL formula

ϕ5
TTP = 2(AR ⇒ (3AO∧2(¬EOOTTP

k ∧ ¬EORTTP
k ))) .

The objective ϕTTP of the TTP is then defined as:

ϕTTP = ϕ1
TTP ∧ ϕ2

TTP ∧ ϕ3
TTP ∧ ϕ4

TTP ∧ ϕ5
TTP . (7.5)

We remark that the specifications of the participants in our protocol model are sequences of

messages. Using predicates that are set when messages are sent or received by the agents
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or the TTP, we transform those informal specifications into formal objectives using the

predicates and LTL. The following theorem shows that the objectives we have introduced

(7.3), (7.4) and (7.5) imply fairness (9.1) and balance (7.2).

Theorem 25 (Objectives imply fairness and balance) The following assertions hold:

1. Objectives imply fairness: ϕO ∧ ϕR ∧ ϕTTP ⇒ ϕ f , and

2. Objectives imply balance and hence abuse-freeness: ϕO ∧ ϕR ∧ ϕTTP ⇒ ϕb.

Proof. For assertion (1), assume towards a contradiction that there exists a path that satisfies

ϕO ∧ ϕR ∧ ϕTTP but does not satisfy ϕ f . We consider the case when the path does not

satisfy the first conjunct ϕO
f = 2(NRO ⇒ 3NRR) (a similar argument applies to the

second conjunct). If the path does not satisfy ϕO
f , then there is a suffix of the path, where

EOO ∧ (EOOO
k ∨ EOOTTP

k ) holds but EOR ∧ (EORR
k ∨ EORTTP

k ) does not hold at all states

of the suffix. It follows that the path satisfies

32(EOO∧ (EOOO
k ∨ EOOTTP

k ) ∧ (¬EOR∨ (¬EORR
k ∧ ¬EORTTP

k ))) . (7.6)

Consider the objective ϕ2
O = (3EORR

k ∨ (3EORTTP
k ∧ 2¬AO)). Since all predicates are

monotonic, i.e., once they are set to true in a given protocol instance, they remain set to

true for the remainder of that instance, we can rewrite ϕ2
O as follows:

ϕ2
O = 32(EORR

k ∨ (EORTTP
k ∧ ¬AO)) .

Similarly, we can rewrite ϕ3
O as follows:

ϕ3
O = 32(AO∧ ¬EOOO

k ∧ ¬EOOTTP
k ) .

147



If a path satisfies (7.6), then it also satisfies 32(EOOO
k ∨ EOOTTP

k ). By the monotonicity

of the predicates, we have 32(EOOO
k ∨ EOOTTP

k ) is equivalent to 32EOOO
k ∨32EOOTTP

k .

We consider the following cases to complete the proof:

1. Case 1. Path satisfies 32EOOO
k . If the path satisfies 32EOOO

k , then the path does

not satisfy ϕ3
O. We now show that the path also does not satisfy ϕ2

O. Since the

path satisfies 32EOOO
k , it must be the case that message m2 was received by O,

as otherwise O will not send EOOO
k . This implies that the path satisfies 32EOR.

Since the path satisfies both 32EOR and (7.6), it follows that the path must satisfy

32(¬EORR
k ∧ ¬EORTTP

k ). Hence the path does not satisfy 32EORR
k and 32EORTTP

k

leading to the path violating ϕ2
O. Since the path does not satisfy both ϕ2

O and ϕ3
O, it

does not satisfy ϕO, which is a contradiction.

2. Case 2. Path satisfies 32EOOTTP
k . If the path satisfies 32EOOTTP

k , then either O or R

must have sent the resolve request. If the TTP resolves the protocol only to the agent

that sends the resolve request and not the other, then the path does not satisfy ϕTTP,

leading to a contradiction. For ϕTTP to hold, the TTP must have sent both EOOTTP
k

and EORTTP
k , which given the channels between the agents and the TTP are resilient

implies, (a) EOR must have been set by O upon receiving EORTTP
k leading to the

path satisfying 32EOR and (b) the path satisfies 32EORTTP
k . Since the path satisfies

32EOR and 32EORTTP
k , it cannot satisfy (7.6), leading to a contradiction.

For assertion (2), by assertion (1) and Lemma 10, we have ϕO ∧ ϕR ∧ ϕTTP ⇒

ϕ f ⇒ ϕb as required. �
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7.3 Co-synthesis

In this section we first define processors, schedulers and specifications for fair

exchange protocols. Next we define traditional co-operative [CE82] and strictly com-

petitive [PR89, RW87] versions of the co-synthesis problem; we refer to them as weak

co-synthesis and classical co-synthesis, respectively. We then define a formulation of co-

synthesis introduced in [CH07] called assume-guarantee synthesis.

Variables, valuations, and traces. Let X be a finite set of variables such that each variable

x ∈ X has a finite domainDx. A valuation f on X is a function f : X →
⋃

x∈X Dx that assigns

to each variable x ∈ X a value f (x) ∈ Dx. We write F [X] for the set of valuations on X.

A trace on X is an infinite sequence (v0, v1, v2, . . .) ∈ F [X]ω of valuations on X. Given

a valuation f [X] ∈ F [X] and a subset Y ⊆ X of the variables, we denote by f [X] ↓ Y

the restriction of the valuation f [X] to the variables in Y. Similarly, for a trace τ(X) =

(v0, v1, v2, . . .) on X, we write τ(X) ↓ Y = (v0 ↓ Y, v1 ↓ Y, v2 ↓ Y, . . .) for the restriction

of τ(X) to the variables in Y. The restriction operator is lifted to sets of valuations, and to

sets of traces.

Processes and refinement. Let Moves be a finite set of moves. For i ∈ {1, 2, 3}, a process is

defined by the tuple Pi = (Xi, Γi, δi) where,

1. Xi is a finite set of variables of process Pi with X =
⋃3

i=1 Xi being the set of all process

variables,

2. Γi : Fi[Xi] → 2Moves \∅ is a move assignment that given a valuation in Fi[Xi], returns

a non-empty set of moves, where Fi[Xi] is the set of valuations on Xi, and
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3. δi : Fi[Xi] ×Moves → 2Fi [Xi ] \ ∅ is a non-deterministic transition function.

The set of process variables X may be shared between processes. The processes only

choose amongst available moves at every valuation of their variables as determined by

their move assignment. The transition function maps a present valuation and a process

move to a nonempty set of possible successor valuations such that each successor valuation

has a unique pre-image. The uniqueness of the pre-image is a property of fair exchange

protocols; unique messages convey unique content and generate unique valuations.

A refinement of process Pi = (Xi, Γi, δi) is a process P
′
i = (X′

i , Γ
′
i, δ

′
i) such that:

1. Xi ⊆ X′
i ,

2. for all valuations fi[X
′
i ] on X′

i , we have Γ′
i( fi[X

′
i ]) ⊆ Γi( fi[X

′
i ] ↓ Xi), and

3. for all valuations fi[X
′
i ] on X′

i and for all moves a ∈ Γ′
i( fi[X

′
i ]), we have δ′i( fi[X

′
i ], a) ↓

Xi ⊆ δi( fi[X
′
i ] ↓ Xi, a).

In other words, the refined process P′
i has possibly more variables than the original process

Pi, at most the same moves as the moves of the original process Pi at every valuation, and

every possible update of the variables in Xi given Γ′
i by P′

i is a possible update by Pi. We

write P′
i � Pi to denote that P′

i is a refinement of Pi. Given refinements P′
1 of P1, P

′
2 of P2

and P′
3 of P3, we write X′ = X′

1 ∪ X′
2 ∪ X′

3 for the set of variables of all refinements, and we

denote the set of valuations on X′ by F [X′].

Schedulers. Given processes Pi, where i ∈ {1, 2, 3}, a scheduler Sc for Pi chooses at each

computation step whether it is process P1’s turn, process P2’s turn or process P3’s turn to

update her variables. Formally, the scheduler Sc is a function Sc : F [X]∗ → {1, 2, 3} that
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maps every finite sequence of global valuations (representing the history of a computation)

to i ∈ {1, 2, 3}, signaling that process Pi is next to update her variables. The scheduler Sc

is fair if it assigns turns to P1, P2 and P3 infinitely often; i.e., for all traces (v0, v1, v2, . . .) ∈

F [X]ω, there exist infinitely many ji ≥ 0, such that Sc(v0, . . . , vj1) = 1, Sc(v0, . . . , vj2) = 2

and Sc(v0, . . . , vj3) = 3. Given three processes P1 = (X1, Γ1, δ1), P2 = (X2, Γ2, δ2) and

P3 = (X3, Γ3, δ3), a scheduler Sc for P1, P2 and P3, and a start valuation v0 ∈ F [X], the set

of possible traces is:

[[(P1 ‖ P2 ‖ P3 ‖ Sc)(v0)]] = {(v0, v1, v2, . . .) ∈ F [X]ω | ∀j ≥ 0. Sc(v0, . . . , vj) = i;

vj+1 ↓ (X \ Xi) = vj ↓ (X \ Xi);

vj+1 ↓ Xi ∈ δi(vj ↓ Xi, a) for some a ∈ Γi(vj ↓ Xi))} .

Note that during turns of one process Pi, the values of the private variables X \ Xi of the

other processes remain unchanged. We define the projection of traces to moves as follows:

(v0, v1, v2, . . .) ↓ Moves = {(a0, a1, a2, . . .) ∈ Movesω | ∀j ≥ 0. Sc(v0, . . . , vj) = i;

vj+1 ↓ Xi ∈ δi(vj ↓ Xi, aj); aj ∈ Γi(vj ↓ Xi)} .

Specifications. A specification ϕi for process Pi is a set of traces on X; that is, ϕi ⊆ F [X]ω.

We consider only ω-regular specifications [Tho97]. We define boolean operations on spec-

ifications using logical operators such as ∧ (conjunction) and ⇒ (implication).

The input to the co-synthesis problem is given as follows: for i ∈ {1, 2, 3}, pro-

cesses Pi = (Xi, Γi, δi), specifications ϕi for process i, and a start valuation v0 ∈ F .

Weak co-synthesis. The weak co-synthesis problem is defined as follows: do there exist

refinements P′
i = (X′

i , Γ
′
i, δ

′
i) and a valuation v′0 ∈ F ′, such that,
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1. P′
i � Pi and v′0 ↓ X = v0, and

2. For all fair schedulers Sc for P′
i we have,

[[(P′
1 ‖ P′

2 ‖ P′
3 ‖ Sc)(v′0)]] ↓ X ⊆ (ϕ1 ∧ ϕ2 ∧ ϕ3).

Classical co-synthesis. The classical co-synthesis problem is defined as follows: do there

exist refinements P′
i = (X′

i , Γ
′
i, δ

′
i) and a valuation v′0 ∈ F ′, such that,

1. P′
i � Pi and v′0 ↓ X = v0, and

2. For all fair schedulers Sc for P′
i we have,

(a) [[(P′
1 ‖ P2 ‖ P3 ‖ Sc)(v′0)]] ↓ X ⊆ ϕ1;

(b) [[(P1 ‖ P′
2 ‖ P3 ‖ Sc)(v′0)]] ↓ X ⊆ ϕ2;

(c) [[(P1 ‖ P2 ‖ P′
3 ‖ Sc)(v′0)]] ↓ X ⊆ ϕ3.

Assume-Guarantee synthesis. The assume-guarantee synthesis problem is defined as fol-

lows: do there exist refinements P′
i = (X′

i , Γ
′
i, δ

′
i) and a valuation v′0 ∈ F ′, such that,

1. P′
i � Pi and v′0 ↓ X = v0, and

2. For all fair schedulers Sc for P′
i we have,

(a) [[(P′
1 ‖ P2 ‖ P3 ‖ Sc)(v′0)]] ↓ X ⊆ (ϕ2 ∧ ϕ3) ⇒ ϕ1;

(b) [[(P1 ‖ P′
2 ‖ P3 ‖ Sc)(v′0)]] ↓ X ⊆ (ϕ1 ∧ ϕ3) ⇒ ϕ2;

(c) [[(P1 ‖ P2 ‖ P′
3 ‖ Sc)(v′0)]] ↓ X ⊆ (ϕ1 ∧ ϕ2) ⇒ ϕ3;

(d) [[(P′
1 ‖ P′

2 ‖ P′
3 ‖ Sc)(v′0)]] ↓ X ⊆ (ϕ1 ∧ ϕ2 ∧ ϕ3).
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7.4 Protocol Co-synthesis

In this section, we present our results on synthesizing fair non-repudiation proto-

cols. We first introduce the protocol synthesis model and show that classical co-synthesis

fails andweak co-synthesis generates unacceptable solutions. We provide a game theoretic

justification of the need for a TTP by showing that without the TTP neither classical co-

synthesis nor assume-guarantee synthesis can be used to synthesize fair non-repudiation

protocols. We define the set PAGS of assume-guarantee refinements and prove that the

refinements are attack-free. We then present an alternate characterization of the set PAGS

and show that the Kremer-Markowitch (KM) non-repudiation protocol with offline TTP,

proposed in [MK01, KMZ02, KR03], is included in PAGS whereas the ASW certified mail

protocol and the GJM protocol are not. Finally, we systematically analyze refinements of

the most general agents and the TTP with respect to their membership in PAGS and show

the KM protocol can be automatically generated.

The protocol synthesis model. Our protocol model defined in Section 7.1 leads to a pro-

tocol synthesis model based on processes defined in Section 7.3. We take the originator O,

the recipient R, the trusted third party TTP as processes with variables XO, XR and XTTP

and with objectives ϕO, ϕR and ϕTTP respectively. We do not model the set of channels

explicitly but reason against all possible behaviors of unreliable channels. The set of traces

[[O ‖ R ‖ TTP ‖ Sc]], given Sc is a fair scheduler, is then the joint behavior of the most

general agents and the most general TTP, subject to the constraint that they can only send

messages based on what they know at every valuation of their variables. A protocol is a

refinement O′ � O, R′ � R and TTP′ � TTP, where each participant has a restricted set

153



NRO

EOO

EOR

NRR

EOR

NRR

EOO

NRO

ι

ι

ι ι

ι

ι

ι

ι

ι

m1! m2!

m3! m4!

m1?

m2? m3?

m4?

aO1 !

aO1 !

aO1 !

aO1 !

aO1 !

aO1 !

rO1 !
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rR1 !

rR1 !

rR1 !

r∗1 !

r∗1 !

a∗2?

r∗2?

Figure 7.1: An interface automaton that shows the states and enabled moves of the agents
O (on the left) and R (on the right). Move ι is the idle move. The states with no outgoing
edges are terminal. We consider the most liberal behaviors of the agents wherein the abort
and resolve messages can be sent from all states where the agents have the data they need
to send those messages. The predicates are monotonic and are shown in the first state at
which they hold. In states that can be either agent state, we use the ∗ in the messages
a∗2 , r

∗
1 , r

∗
2 to denote one of O or R. Abort or resolve requests can be sent from the states

marked terminal, but they have no bearing on the outcome of the protocol and hence we
omit them.

of moves at every valuation of the process variables; the restrictions constituting the rules

of the protocol. We take a protocol state as a valuation over the process variables. By an

abuse of notation, we take the set of all messages that can be sent by each process as moves

of that process. We get the following moves for the agents and the trusted third party:

1. MovesO = {ι,m1,m3, a
O
1 , r

O
1 };

2. MovesR = {ι,m2,m4, r
R
1 }; and
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3. MovesTTP = {ι, aO2 , a
R
2 , [a

O
2 , a

R
2 ], rO2 , r

R
2 , [r

O
2 , r

R
2 ]}.

We assume that at every state, the agents and the TTP may choose the idle action ι which

does nothing. The TTP move [aO2 , a
R
2 ] results in the TTP sending messages aO2 to O and aR2

to R. The TTP can choose to send them in any order; all that is guaranteed is that both

messages will be sent by the TTP. Similarly for the TTP move [rO2 , r
R
2 ]. In Figure 7.1 we

show an interface automaton for an agent. Since an agent can act either as an originator

or a recipient, we show the actions available to the agent in both roles in the figure. The

moves for the trusted third party are shown in Table 7.1; these include the moves for the

TTP in the ASW certified mail protocol [ASW98], the GJM protocol [GJM99] and the KM

protocol [MK01]. We show moves for the TTP with and without a persistent database; it is

trivially the case that TTP accountability cannot be satisfied without a persistent database.

We therefore do not consider the absence of a persistent database in the rest of this paper.

We assume that every message at least includes the name of the sender, is signed with

the private key of the sender and encrypted with the public key of the recipient. We take

X = XO ∪ XR ∪ XTTP as a set of boolean variables, where,

− XO = {M1, EOR,M3, EORR
k , EORTTP

k , ABRO, RESO, AO},

− XR = {EOO,M2, EOOO
k ,M4, EOOTTP

k , RESR, AR} and

− XTTP = {ABR,RES, AO
2 , A

R
2 ,R

O
2 ,R

R
2 }.

The variables M1, M3, ABRO and RESO are set by O when she sends m1, m3, a
O
1 and rO1

respectively. The variables M2, M4 and RESR are set by R when he sends m2, m4 and rR1

respectively. The variables AO
2 , A

R
2 , R

O
2 and RR

2 are set by the TTP when she sends aO2 , a
R
2 ,
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Agent moves Enabled TTP moves

Without DB With a persistent DB

ASW GJM KM

O sends aO1 aO2 [aO2 , a
R
2 ] If R has recovered, If recovered, If aborted or

invite O to recover then rO2 recovered, then

else aO2 else aO2 ι else [aO2 , a
R
2 ]

O sends rO1 rO2 [rO2 , r
R
2 ] If aborted, If aborted, If aborted or

else rO2 then aO2 recovered, then

else rO2 ι else [rO2 , r
R
2 ]

R sends rR1 rR2 [rO2 , r
R
2 ] If aborted, If aborted, If aborted or

else rR2 then aR2 recovered, then

else rR2 ι else [rO2 , r
R
2 ]

Table 7.1: In this table we list the choices of moves available to the trusted third party. Each
row begins with a message sent by an agent to the TTP followed by the choices available
to the TTP in all subsequent states. The TTP moves for the ASW, GJM and KM protocols
are shown.

rO2 and rR2 respectively; the variables AO
2 and AR

2 are both set by the TTP when she sends

[aO2 , a
R
2 ] and similarly the variables RO

2 and RR
2 are both set by the TTP when she sends

[rO2 , r
R
2 ]. The remaining variables of the agents and the TTP are set when messages are

received as defined in Section 7.1. By an abuse of notation, we represent every state of the

protocol by the set of variables that are set to true in that state; for example a valuation f =

{M1, EOO,M2, EOR} corresponds to the state of the protocol after messages m1 and m2

have been received. f ↓ XR = {EOO,M2} corresponds to the restriction of the valuation f
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to the variables of process R; all that R knows in this state is that he has receivedm1 and has

sent m2. We take v0 as the initial valuation where all variables are false. We assume that

the refinements O′ � O, R′ � R and TTP′ � TTP have the same variables as the processes

O, R and TTP respectively, and assume all traces begin with the initial valuation v0.

7.4.1 Failure of Classical and Weak Co-Synthesis

In this subsection we show that classical co-synthesis fails while weak co-

synthesis generates solutions that are not attack-free and are hence unacceptable. We first

tackle classical co-synthesis. In order to show failure of classical co-synthesis we need to

show that one of the following conditions:

1. [[(O′ ‖ R ‖ TTP ‖ Sc)]] ⊆ ϕO;

2. [[(O ‖ R′ ‖ TTP ‖ Sc)]] ⊆ ϕR;

3. [[(O ‖ R ‖ TTP′ ‖ Sc)]] ⊆ ϕTTP,

can be violated. We show that for all refinements R′ of the recipient R, that is, for every

sequence ofmoves ending in amove chosen by R′, there exist moves for the other processes

O, TTP and Sc, and a behavior of the the channels, to extend that sequence such that the

objective ϕR is violated. Since R should satisfy his objective against all possible behaviors

of the channels, to show failure of classical co-synthesis it suffices to fix the behavior of all

channels. We assume the channels eventually deliver all messages.

Theorem 26 (Classical co-synthesis fails for R) For all refinements R′ � R, the following

assertion holds:

[[O ‖ R′ ‖ TTP ‖ Sc]] 6⊆ ϕR.

157



Proof. We consider every valuation of the process variables and the set of all possible

moves that can be selected by R at each valuation. This defines all possible refinements

of R. Since every valuation is the result of a finite sequence of moves (messages) chosen

(sent) by the agents and the TTP, it suffices to consider all possible finite sequences of

messages received, ending in a message chosen by R. Let τ = (v0, v1, . . . , vn) be a finite

sequence of valuations seen in a partial protocol run, where v0 is the starting valuation.

Let σ = τ ↓ Moves = 〈a0, a1, . . . , an−1〉 be the corresponding sequence of n moves seen in

the run. At the beginning of a protocol run, we have σ = ∅. In the following, on a case

by case basis, we show the sequence of moves seen in a partial protocol run, ending in a

move chosen by R, followed by moves for O, TTP and Sc that leads to a violation of ϕR.

− R1: 〈m1, ι〉

◦ Whenever Sc schedules O, she chooses the idle action ι. Since EOO is true, as

long as O does not abort the protocol but chooses to remain idle, ϕR is violated.

◦ ϕR and ϕO are violated but ϕTTP is satisfied.

− R2: 〈m1,m2〉

◦ Sc schedules O; O sends rO1 to TTP;

◦ Sc schedules TTP; TTP resolves the protocol for O and sends rO2 ;

◦ Sc schedules O; O aborts the protocol by sending aO1 ;

◦ Sc schedules TTP; TTP sends [aO2 , a
R
2 ] with R having no option of obtaining O’s

signature;

◦ ϕR and ϕTTP are violated but ϕO is satisfied.
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− R3: 〈m1, r
R
1 〉

◦ Sc schedules TTP; TTP resolves and sends [rO2 , r
R
2 ];

◦ Sc schedules O; O sends aO1 to TTP;

◦ Sc schedules TTP; TTP sends [aO2 , a
R
2 ];

◦ ϕR, ϕTTP and ϕO are violated.

− R4: 〈m1,m2, r
R
1 〉

◦ Sc schedules TTP; TTP resolves and sends [rO2 , r
R
2 ];

◦ Sc schedules O; O sends aO1 to TTP;

◦ Sc schedules TTP; TTP sends aR2 ;

◦ ϕR and ϕTTP are violated but ϕO is satisfied.

�

It is easy to verify that the sequences in the proof are exhaustive. From the agent

interface automaton shown in Figure 7.1 we can extract all the partial sequences of moves

ending in a move of R and similarly for O. In all of the above cases, ϕR is violated. In all of

the above cases ϕR ∧ ϕTTP is also violated. This shows that for all counter moves of O and

the TTP, violation of the specification of R also violates the specification of O or the TTP.

Since O and the TTP co-operate, O never sends m3, instead choosing to use the TTP to get

her non-repudiation evidence while denying R the ability to get his evidence.

The following example illustrates that given our objectives, given a reasonable

TTP as defined in Section 7.1, weak co-synthesis yields solutions that are not attack-free

and are hence unacceptable.
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Example. (Weak co-synthesis generates unacceptable solutions) Consider a refinement

O′, R′ and TTP′, that generates the following sequence of messages: 〈m1,m2, r
O
1 , r

O
2 , r

R
1 , r

R
2 〉;

the agents sendm1 andm2 and then resolve the protocol individually. We assume that TTP′

needs both m1 and m2 to resolve the protocol for either O or R. The trace corresponding to

this sequence satisfies weak co-synthesis. But then this behavior of the TTP, that assumes

co-operative agent behavior, is not attack-free. There exists a Y-attack for Y = {O,R} as

follows: after resolving the protocol, if O decides to send m3 and R responds with m4, we

get the following message sequence: 〈m1,m2, r
O
1 , r

O
2 ,m3,m4〉. In this case, the objectives ϕO

and ϕR are satisfied but the objective ϕTTP is violated; a reasonable TTPwill only sendmes-

sages in response to abort and resolve requests and thus needs rR1 to satisfy ϕTTP. Similarly,

taking Y = {R}, consider the following Y-attack where R exploits the fact that a reasonable

TTP responds with rR2 when she receives rR1 . If R sends a resolve request immediately after

receiving m1 we get the message sequence 〈m1, r
R
1 , r

R
2 〉. In this case ϕR is satisfied, but ϕO

and ϕTTP are violated. The only way to satisfy ϕO and ϕTTP is if O′ sends rO1 , which she

cannot do, as she does not know the contents of m2. This is an attack on the ASW certified

mail protocol that compromises fairness for O [KR03]. Therefore, we see that while there

exist solutions that satisfy weak co-synthesis, they may not be attack-free. �

7.4.2 The Need for a TTP

We now provide a justification of the need for a TTP in fair non-repudiation pro-

tocols, given our synthesis objective. While this follows from [EY80, PG99], our proof

gives an alternative game-theoretic proof through synthesis. We present the following the-

orem which shows that if we remove the TTP, then both classical and assume-guarantee
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synthesis fail to synthesize a fair non-repudiation protocol.

Theorem 27 (Classical and assume-guarantee synthesis fail without the TTP) For all

refinements O′ � O, the following assertions hold:

1. Classical co-synthesis fails: [[O′ ‖ R ‖ Sc]] 6⊆ ϕO.

2. Assume-Guarantee synthesis fails:

(a) [[O′ ‖ R ‖ Sc]] 6⊆ (ϕR ⇒ ϕO) or,

(b) [[O′ ‖ R ‖ Sc]] ⊆ (ϕR ⇒ ϕO); [[R′ ‖ O ‖ Sc]] ⊆ (ϕO ⇒ ϕR); and

[[O′ ‖ R′ ‖ Sc]] 6⊆ (ϕO ∧ ϕR).

Proof. We note that as the TTP is not involved, AO, AR, EOOTTP
k and EORTTP

k are always

false. The agent objectives then simplify to,

ϕO = 3M1 ∧3EORR
k ; ϕR = 2(EOO ⇒ 3EOOO

k ) .

For assertion 1, consider an arbitrary refinement O′ � O. We show a witness trace in

[[O′ ‖ R ‖ Sc]] that violates ϕO. If O
′ does not send m1 in the initial protocol state v0, then

we have a witness trace that trivially violates ϕO and hence [[O′ ‖ R ‖ Sc]] 6⊆ ϕO. Assume

O′ sends m1 and the channel between O and R eventually delivers all messages. Consider

a partial trace ending in protocol state {M1, EOO,M2, EOR}; messages m1 and m2 have

been received. The only choice of moves for O′ in this state of the protocol are ι or m3. If O
′

chooses ι, then the trace does not satisfy ϕO and hence [[O′ ‖ R ‖ Sc]] 6⊆ ϕO. If O
′ chooses

m3 and upon receiving m3 if R decides to stop participating in the protocol by choosing ι,

then the trace satisfies ϕR but violates ϕO and hence [[O′ ‖ R ‖ Sc]] 6⊆ ϕO.
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For assertion 2, consider an arbitrary refinement O′ � O. If O′ does not send

m1 in the initial protocol state v0, we have a witness trace that trivially violates ϕO but

satisfies ϕR. Therefore, the trace does not satisfy ϕR ⇒ ϕO and [[O′ ‖ R ‖ Sc]] 6⊆ (ϕR ⇒

ϕO). Assume the channels eventually deliver all messages and as in the proof of assertion

1, consider a partial trace ending in protocol state {M1, EOO,M2, EOR}. To produce a

witness trace we have the following cases based on the move chosen by O′:

− Case 1. O′ chooses ι. Since O′ chooses ι, she does not send her signature EOOO
k . There-

fore, the trace does not satisfy ϕR. Since R sends m4 only in response to m3, O does

not get EORR
k from R in this case. Therefore, the trace does not satisfy ϕO either

and hence satisfies ϕO ⇒ ϕR and ϕR ⇒ ϕO but does not satisfy ϕO ∧ ϕR. This

leads to, [[O′ ‖ R ‖ Sc]] ⊆ (ϕO ⇒ ϕR) and [[O′ ‖ R ‖ Sc]] ⊆ (ϕR ⇒ ϕO) but

[[O′ ‖ R ‖ Sc]] 6⊆ (ϕO ∧ ϕR)

− Case 2. O′ chooses m3. Since m3 is eventually delivered, R gets his non-repudiation

evidence and the trace satisfies ϕR. If R now stops participating in the protocol

and chooses the idle move ι instead of sending m4, then O does not get her non-

repudiation evidence and the trace does not satisfy ϕO. We therefore have a witness

trace that does not satisfy ϕR ⇒ ϕO. This leads to, [[O
′ ‖ R ‖ Sc]] 6⊆ (ϕR ⇒ ϕO)

�

If the agents co-operate, then a refinement O′ � O that sends m1 and then m3

upon receiving m2 and similarly a refinement R′ � R that sends m2 and m4 upon receiving

m1 and m3 respectively, is a solution to the weak co-synthesis problem. The sequence of

messages in this case is precisely 〈m1,m2,m3,m4〉 which is the main protocol in all the fair
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exchange protocols we have studied. The problem arises when either O or R are dishonest

and try to cheat the other agent.

7.4.3 Assume-Guarantee Solutions are Attack-Free

In this subsection we show that assume-guarantee solutions are attack free; no

coalition of participants can violate the objective of at least one of the other participants

while satisfying their own objectives. Let P′ = (O′, R′, TTP′) be a tuple of refinements of

the agents and the TTP. For two refinements P′ = (O′, R′, TTP′) and P′′ = (O′′, R′′, TTP′′),

we write P′ � P′′ if O′ � O′′, R′ � R′′ and TTP′ � TTP′′. Given P = (O,R, TTP), the most

general behaviors of the agents and the TTP, let PAGS be the set of all possible refinements

P′ � P that satisfy the conditions of assume-guarantee synthesis. For a refinement P′ =

(O′, R′, TTP′) to be in PAGS, we require that the refinements O′ � O, R′ � R and TTP′ �

TTP satisfy the following conditions:

For all fair schedulers Sc, for all possible behaviors of the channels,

1. [[(O′ ‖ R ‖ TTP ‖ Sc)]] ⊆ (ϕR ∧ ϕTTP) ⇒ ϕO;

2. [[(O ‖ R′ ‖ TTP ‖ Sc)]] ⊆ (ϕO ∧ ϕTTP) ⇒ ϕR;

3. [[(O ‖ R ‖ TTP′ ‖ Sc)]] ⊆ (ϕO ∧ ϕR) ⇒ ϕTTP;

4. [[(O′ ‖ R′ ‖ TTP′ ‖ Sc)]] ⊆ (ϕO ∧ ϕR ∧ ϕTTP).

We now characterize the smallest restriction on the refinements TTP′ � TTP that satisfy

the implication condition,

[[(O ‖ R ‖ TTP′ ‖ Sc)]] ⊆ (ϕO ∧ ϕR) ⇒ ϕTTP . (7.7)
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In order to characterize the smallest restriction on TTP′ we first define the following con-

straints on the TTP and prove that they are both necessary and sufficient to satisfy (7.7).

AGS constraints on the TTP. We say that a refinement TTP′ � TTP satisfies the AGS

constraints on the TTP, if TTP′ satisfies the the following constraints:

1. Abort constraint. If the first request received by the TTP is an abort request, then her

response to that request should be [aO2 , a
R
2 ];

2. Resolve constraint. If the first request received by the TTP is a resolve request, then

her response to that request should be [rO2 , r
R
2 ];

3. Accountability constraint. If the first response from the TTP is [x, y], then for all subse-

quent abort or resolve requests her response should be in the set {ι, x, y, [x, y]}.

We assume a reasonable TTP, as defined in Section 7.1; in particular she only responds

to abort or resolve requests. In the following lemma, in assertion 1 we show that for all

refinements TTP′ � TTP that satisfy the AGS constraints on the TTP, we have TTP′ is invi-

olable , i.e., neither agent can violate the objective ϕTTP, and hence satisfies the implication

condition (7.7); in assertion (2) we show that if TTP′ does not satisfy the AGS constraints

on the TTP, the implication condition (7.7) is not satisfied.

Lemma 11 For all refinements TTP′ � TTP, the following assertions hold:

1. if TTP′ satisfies the AGS constraints on the TTP, then

[[O ‖ R ‖ TTP′ ‖ Sc]] ⊆ ϕTTP ⊆ (ϕO ∧ ϕR) ⇒ ϕTTP.
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2. if TTP′ does not satisfy the AGS constraints on the TTP, then

[[O ‖ R ‖ TTP′ ‖ Sc]] 6⊆ (ϕO ∧ ϕR) ⇒ ϕTTP.

Proof. For assertion 1, consider an arbitrary TTP′ � TTP that satisfies the AGS constraints

on the TTP. We consider the following cases of sets of traces of [[O ‖ R ‖ TTP′ ‖ Sc]] for the

proof:

− Case 1. Neither agent aborts nor resolves the protocol. In these traces, since the TTP is

neither sent an abort nor a resolve request, ϕTTP is satisfied trivially. Therefore, all

these traces satisfy (ϕO ∧ ϕR) ⇒ ϕTTP.

− Case 2. The first request to the TTP is an abort request. For the set of traces where the first

request to the TTP is an abort request, given TTP′ satisfies the AGS constraints on the

TTP, by the abort constraint, the response of the TTP to this request is [aO2 , a
R
2 ]. For

all subsequent abort or resolve requests, by the accountability constraint, the TTP

responds with a move in set {ι, aO2 , a
R
2 , [a

O
2 , a

R
2 ]}. This implies that both agents get

the abort token and neither agent gets non-repudiation evidences. Therefore, ϕTTP is

satisfied for all these traces and hence (ϕO ∧ ϕR) ⇒ ϕTTP is also satisfied.

− Case 3. The first request to the TTP is a resolve request. Similar to the proof of Case 2, in

the set of traces where the first request to the TTP is a resolve request, by the resolve

constraint, the TTP responds to this request with move [rO2 , r
R
2 ]. Since the response

of the TTP to all subsequent abort or resolve requests is in the set {ι, rO2 , r
R
2 , [r

O
2 , r

R
2 ]},

by the accountability constraint, the agents get their non-repudiation evidences and

neither gets the abort token. Therefore, ϕTTP is satisfied for all these traces and hence
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(ϕO ∧ ϕR) ⇒ ϕTTP is also satisfied and the result follows.

For assertion 2, consider an arbitrary TTP′ � TTP that does not satisfy the AGS

constraints on the TTP. We assume a reasonable TTP and consider violation of the AGS

constraints on the TTP on a case by case basis. For each case we produce a witness trace

that violates the implication condition (ϕO ∧ ϕR) ⇒ ϕTTP. We proceed as follows:

− Case 1. The abort constraint is violated. To produce a witness trace we consider a partial

trace that ends in protocol state {M1, ABRO}; O requests the TTP to abort the protocol

after sending message m1 but before it is received. Since TTP′ violates the abort

constraint, the only choice of moves for TTP′ are ι or aO2 . This leads to the following

cases:

◦ Case (a). TTP′ chooses ι. It is trivially the case that ϕTTP is violated for this trace

as ϕ1
TTP is violated. At this stage in the protocol, there exists a behavior of O, R

and the channel between O and R, where the channel delivers all messages and

the agents co-operate and complete the protocol by exchanging their signatures.

Therefore, ϕO ∧ ϕR is satisfied but ϕTTP is violated. Therefore, the trace does not

satisfy (ϕO ∧ ϕR) ⇒ ϕTTP.

◦ Case (b). TTP′ chooses aO2 . Since the channel between the agents and the TTP is

resilient, O eventually receives her abort token AO. At this stage in the protocol,

there exists a behavior of O, R and the channel between O and R such that the

channel delivers all messages and the agents exchange their signatures, leading

to the satisfaction of ϕO ∧ ϕR but a violation of ϕ4
TTP and hence ϕTTP. Therefore,

the trace does not satisfy (ϕO ∧ ϕR) ⇒ ϕTTP.
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− Case 2. The resolve constraint is violated. To produce a witness trace we consider a

partial trace that ends in protocol state {M1, EOO,M2, EOR,RESO}; O resolves the

protocol after messages m1 and m2 have been received. Since TTP′ violates the re-

solve constraint, the only choice of moves for TTP′ are ι or rO2 . An argument similar

to the argument for cases 1(a) and 1(b) again leads to the satisfaction of ϕO ∧ ϕR but

a violation of ϕTTP.

− Case 3. The accountability constraint is violated. To produce a wit-

ness trace we consider a partial trace that ends in protocol state

{M1, EOO,M2, EOR,ABRO, RESR, AO
2 , A

R
2 , AO,AR}; O aborts the protocol and

R resolves the protocol after messages m1 and m2 have been received. The TTP

receives the abort request before the resolve request and aborts the protocol by

sending [aO2 , a
R
2 ]. Since TTP′ violates the accountability constraint, the only choice

of moves for TTP′ to the resolve request from R are rR2 or [rO2 , r
R
2 ]. The leads to the

following cases:

◦ Case (a). TTP′ chooses rR2 . This violates ϕ4
TTP and ϕ5

TTP and hence violates ϕTTP.

At this stage in the protocol, there exists a behavior of O, R and the channel

between O and R such that the agents exchange their signatures and complete

the protocol thus satisfying ϕO ∧ ϕR. Therefore, this trace does not satisfy the

implication condition (ϕO ∧ ϕR) ⇒ ϕTTP.

◦ Case (b). TTP′ chooses [rO2 , r
R
2 ]. This violates ϕ4

TTP and ϕ5
TTP and hence violates

ϕTTP. An argument similar to Case 2(a) leads to a violation of (ϕO ∧ ϕR) ⇒ ϕTTP

for this trace.
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As we have shown witness traces that do not satisfy the implication condition (ϕO ∧

ϕR) ⇒ ϕTTP when TTP′ violates any of the AGS constraints on the TTP, the result

follows.

�

In the following theorem we show that all refinements P′ ∈ PAGS are attack-free;

no subset of participants can violate the objective of at least one of the other participants

while satisfying their own objectives.

Theorem 28 All refinements P′ ∈ PAGS are attack-free.

Proof. We show that for all refinements P′ ∈ PAGS there exists no Y-attack for all Y ⊆

{O,R, TTP}. Let P′ = (O′, R′, TTP′) and A = {O,R, TTP} be the set of participants. We

have the following cases:

− Case 1. |Y| = 0. In this case Y = ∅ and (A \ Y)′ = {O′, R′, TTP′}. Since (A \ Y)′

are the refinements in P′ which is in PAGS, by the weak co-synthesis condition, the

objectives ϕO, ϕR and ϕTTP are satisfied. Therefore there is no Y-attack in this case.

− Case 2. |Y| = 1. We first show that there is no Y-attack for Y = {O}. The case

of Y = {R} is similar. By Lemma 11 (assertion 2), for all refinements P′ ∈ PAGS,

the refinement TTP′ must satisfy the AGS constraints on the TTP. This implies, by

Lemma 11 (assertion 1), neither O nor R can violate ϕTTP. Since ϕTTP cannot be vio-

lated, a Y-attack in this case must generate a trace where ϕR is violated but ϕO is sat-

isfied. But this violates the implication condition, ϕO ∧ ϕTTP ⇒ ϕR, contradicting the

assumption that P′ ∈ PAGS. We now show that there is no Y-attack for Y = {TTP}.
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Since we assume the TTP is reasonable, in all traces where neither agent sends an

abort nor a resolve request to the TTP, the TTP cannot violate the agent objectives. In

all traces where the first request from the agents is an abort request, given a reason-

able TTP, since the trace satisfies ϕTTP, it must be the case that the response to that

request is [aO2 , a
R
2 ]. Similarly, for resolve requests. If the first response of the TTP is

[x, y], then the only responses that satisfy ϕTTP, to all subsequent abort and resolve

requests, are in the set {ι, x, y, [x, y]}. This implies that either the agents get abort

tokens or non-repudiation evidences but never both, which implies ϕO and ϕR are

satisfied in all these traces. Therefore there is no Y-attack in this case as well.

− Case 3. |Y| = 2. Since P′ ∈ PAGS, by the implication conditions of assume-guarantee

synthesis, there cannot be a Y-attack where |Y| = 2.

− Case 4. |Y| = 3. It is trivially the case that there is no Y-attack as (A \Y)′ = ∅.

Since we have shown that for all refinements P′ ∈ PAGS, for all Y ⊆ A, there is no Y-attack

in P′, we conclude that all refinements in PAGS are attack-free. �

We now present the following theorem that establishes conditions for any refine-

ment in PAGS to be an attack-free fair non-repudiation protocol.

Theorem 29 (Fair non-repudiation protocols) For all refinements P′ ∈ PAGS, if [[O′ ‖ R′ ‖

TTP′ ‖ Sc]] ∩ (3NRO∧3NRR) 6= ∅, then P′ is an attack-free fair non-repudiation protocol.

Proof. Consider an arbitrary refinement P′ = (O′, R′, TTP′) ∈ PAGS. Since P′ ∈ PAGS,

by Theorem 28, it is attack-free. Further, by the weak co-synthesis condition, we have

[[O′ ‖ R′ ‖ TTP′ ‖ Sc]] ⊆ (ϕO ∧ ϕR ∧ ϕTTP) and hence by Theorem 25, we have [[O′ ‖ R′ ‖
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TTP′ ‖ Sc]] ⊆ ϕ f ∩ ϕb. Thus P
′ satisfies fairness and balance and hence is fair and abuse-

free. Since [[O′ ‖ R′ ‖ TTP′ ‖ Sc]] ∩ (3NRO ∧ 3NRR) 6= ∅, the refinement P′ enables

an exchange of signatures and hence is an exchange protocol. Given NRO and NRR are

non-repudiation evidences for R and O respectively, we conclude that P′ is an attack-free

fair non-repudiation protocol. �

7.4.4 Analysis of Existing Fair Non-Repudiation Protocols as PAGS Solutions

In this subsection we analyze existing fair non-repudiation protocols and check if

they are solutions to assume-guarantee synthesis. To facilitate the analysis, we first present

an alternate characterization of the set PAGS of assume-guarantee refinements. We then

show that the KM non-repudiation protocol with offline TTP is in PAGS whereas the ASW

certified mail protocol and the GJM protocol are not. Finally, we present a systematic

exploration of refinements leading to the KM protocol. Towards an alternate characteriza-

tion of PAGS, we begin by defining constraints on O, similar to the AGS constraints on the

TTP that ensure satisfaction of the implication condition for O. We then define maximal

and minimal refinements that satisfy all the implication conditions of assume-guarantee

synthesis and introduce a bounded idle time requirement to ensure satisfaction of weak co-

synthesis.

AGS constraints on O. Given P = (O,R, TTP), the most general behaviors of the agents

and the TTP, we say a refinement P′ � P satisfies the AGS constraints on O, if the following

conditions hold:

1. aO1 6∈ ΓO′(v0);
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2. EOOO
k 6∈ ΓO′({M1, EOR,ABRO}); and

3. aO1 6∈ ΓO′({M1, EOR,M3}).

In the Appendix, we show that these constraints are both necessary and sufficient restric-

tions on themoves of O that satisfy the implication condition (ϕR∧ ϕTTP) ⇒ ϕO of assume-

guarantee synthesis. We also show that all refinements R′ � R satisfy the implication

condition (ϕO ∧ ϕTTP) ⇒ ϕR of assume-guarantee synthesis.

The maximal refinement P∗. We define the maximal refinement P∗ = (O∗, R∗, TTP∗) as

follows:

1. O∗ � O satisfies the AGS constraints on O and for all O′ that satisfy the constraints,

we have O′ � O∗;

2. R∗ = R; and

3. TTP∗ � TTP satisfies the AGS constraints on the TTP and for all TTP′ that satisfy the

constraints, we have TTP′ � TTP∗.

We show in the Appendix the correspondence between P∗ and the smallest re-

striction on the moves of O and the TTP so that P∗ is a witness to PAGS. While there are

restrictions on O and the TTP, there are no restrictions on R.

The minimal refinement P∗. We present the smallest refinement P∗ = (O∗, R∗, TTP∗) in

PAGS, as the largest restriction on the moves of O, R and the TTP, as follows:

1. P∗ � P∗;

2. MovesO∗ = {m1, a
O
1 };
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3. MovesR∗ = {ι};

4. O∗ satisfies the AGS constraints on O; and

5. TTP∗ satisfies the AGS constraints on the TTP.

If m1 6∈ MovesO∗ , then ϕO cannot be satisfied as O∗ does have the ability to initiate a proto-

col instance. If aO1 6∈ MovesO∗ , then ϕO cannot be satisfied whether or not m1 is delivered,

as R∗ has no choice of moves other than ι. If O∗ does not satisfy the AGS constraints on O

and sends aO1 in the initial state of the protocol v0, then the resulting trace trivially violates

ϕO while satisfying ϕR ∧ ϕTTP.

The bounded idle time requirement. We say that a refinement P′ satisfies bounded idle

time if O and the TTP in P′ choose the idle move ι, when scheduled by Sc, at most b times

for a finite b ∈ N. We prove that satisfaction of the bounded idle time requirement is

both necessary and sufficient to ensure satisfaction of the weak co-synthesis condition of

assume-guarantee synthesis, for all refinements that satisfy the AGS constraints on the TTP

and the AGS constraints on O, in the Appendix.

Alternate characterization of PAGS. We now use P∗ and P∗ to provide an alternate charac-

terization of the set PAGS. We first define the following set of refinements P:

P = {P′ = (O′, R′, TTP′) | P′ satisfies bounded idle time; P∗ � P′ � P∗;

TTP′ satisfies the AGS constraints on the TTP} .

The following lemma states that the set P and the set PAGS coincide. We present the lemma

here and prove it in the Appendix.
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Protocol 1: THE KM, ASW AND GJM MAIN PROTOCOL

1 O sends m1 to R;

2 R sends m2 to O;

3 if (R does not send m2 on time) then

4 O sends aO1 to the TTP;

5 else

6 O sends m3 to R;

7 if (O does not send m3 on time) then

8 R sends rR1 to the TTP;

9 else

10 R sends m4 to O;

11 if (R does not send m4 on time) then

12 O sends rO1 to the TTP;

Figure 7.2: The main protocol in the KM, ASW and GJM protocols.
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Lemma 12 (Alternate characterization of PAGS) We have P = PAGS.

The KM non-repudiation protocol. The KM protocol, like the ASW and GJM protocols

consists of a main protocol, an abort subprotocol and a resolve subprotocol. The main

protocol is the same as in the ASW and GJM protocols and is defined in terms of messages

in Protocol 1. The abort subprotocol and the resolve subprotocol are defined in Table 7.1.

Let PKM = (OKM, RKM, TTPKM) correspond to the agent and TTP refinements in the KM

protocol. Since O does not abort the protocol in state v0 and in state {M1, EOR,M3} in

OKM, it follows that O∗ � OKM � O∗. It is easy to verify that R∗ � RKM � R∗ and

TTP∗ � TTPKM � TTP∗. Moreover, TTPKM satisfies the AGS constraints on the TTP and

PKM satisfies bounded idle time. Therefore PKM ∈ P and hence by Lemma 12, PKM ∈ PAGS.

The ASW certified mail protocol. The ASW certified mail protocol differs from the

KM protocol in its abort and resolve sequences. To define the abort protocol, the TTP

needs a move reqO that can be used to request O to resolve a protocol instance if R has

already resolved it. The abort and resolve subprotocols are defined in Table 7.1. Let

PASW = (OASW , RASW , TTPASW) correspond to the agent and TTP refinements in the ASW

certified mail protocol. Since TTPASW neither has move [aO2 , a
R
2 ] nor [rO2 , r

R
2 ], TTPASW does

not satisfy the AGS constraints on the TTP and hence by Lemma 11 (assertion 2), we have

PASW 6∈ PAGS. Moreover, the ASW certified mail protocol is not attack-free as shown by

the following attacks [KR03]: Consider a behavior of the channels that deliver all mes-

sages and the sequence of messages 〈m1, r
R
1 , r

R
2 , a

O
1 , req

O〉. This is a valid sequence in the

ASW protocol. In this sequence a malicious R decides to resolve the protocol after receiv-

ing m1 and thus succeeds in getting EOOTTP
k . When OASW attempts to abort the protocol,
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TTPASW expects her to resolve the protocol as R has already resolved it, but OASW can-

not do so as she does not have m2. Therefore, ϕO is violated; OASW cannot abort or re-

solve the protocol, neither can she get R’s signature. Consider the sequence of messages

〈m1,m2, r
O
1 , r

O
2 , a

O
1 , a

O
2 〉. This is an attack that compromises fairness for R; in the words of

[KR03] the protocol designers did not foresee that O could resolve the protocol and then

abort it. This violates ϕR and TTP accountability, violating ϕTTP, while satisfying ϕO.

The GJM protocol. The GJM protocol differs in the abort and resolve sequences as shown

in Table 7.1. Garay et al., introduced the notion of abuse-freeness and invented private

contract signatures or PCS, a cryptographic primitive that ensures abuse-freeness and op-

tionally TTP accountability [GJM99]. Further, the GJM protocol is faithful to the informal

definition of fairness in that, when a protocol instance is aborted, neither agent gets partial

information that can be used to negotiate a contract with a third party. This is ensured by

the use of PCS which provides the designated verifier property; only R can verify the authen-

ticity of a message signed by O and vice versa. The use of PCS in addition to the fixes to the

original protocol proposed in [SM02] ensure that the protocol is free from replay attacks,

is fair and abuse-free. Let PGJM = (OGJM, RGJM, TTPGJM) correspond to the agent and

TTP refinements in the GJM protocol. Since TTPGJM neither has move [aO2 , a
R
2 ] nor [rO2 , r

R
2 ],

TTPGJM does not satisfy the AGS constraints on the TTP and hence by Lemma 11 (assertion

2), we have PGJM 6∈ PAGS. PGJM does not provide TTP inviolability and is not attack-free by

our definition. Consider the message sequence g = 〈m1,m2,m3, r
O
1 , r

O
2 〉; agent R does not

send his final signature but goes idle and stops participating in the protocol after receiving

O’s signature. OGJM resolves the protocol by sending rO1 and gets EORTTP
k . In this case,
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while the objectives of O and R are satisfied, the TTP cannot satisfy ϕTTP unless RGJM co-

operates and sends a resolve request rR1 after having satisfied his objective, which he may

never do; it is rather unrealistic to expect that he will. Precisely, g ∈ [[O ‖ R ‖ TTPGJM ‖ Sc]]

and g 6∈ (ϕO ∧ ϕR) ⇒ ϕTTP.

Theorem 30 The refinement corresponding to the KM non-repudiation protocol is in PAGS and

the refinements corresponding to the ASW certified mail protocol and the GJM protocol are not in

PAGS.

Computation. We can obtain the solution of assume-guarantee synthesis by solving graph

games with secure equilibria [CHJ06]. In fact, the refinements that satisfy assume-guarantee

synthesis precisely correspond to secure equilibrium strategies of players in the game. This

result was presented in [CH07]. All the objectives we consider in this paper are boolean

combinations of Büchi (23) and co-Büchi (32) objectives. It follows from [CH07] that

secure equilibria with combinations of Büchi and co-Büchi objectives can be solved in

polynomial time. This gives us a polynomial time algorithm for the assume-guarantee

synthesis of fair exchange protocols.

From PAGS to PKM. We now first present a systematic exploration of the refinements of

P = (O,R, TTP), the most general behavior of the agents and the TTP, leading to the KM

protocol. We consider the following refinements, that we assume satisfy bounded idle time

and the AGS constraints on the TTP, and study their properties:

1. P∗ = (O∗, R∗, TTP∗); the minimal refinement.

2. P1 = (O1, R1, TTP1) with
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MovesO1
= MovesO∗ ∪ {ι,m3},MovesR1

= MovesR∗ ∪ {m2,m4} and TTP1 = TTP∗.

3. P2 = (O2, R2, TTP2) with

MovesO2
= MovesO1

∪ {rO1 },MovesR2
= MovesR1

and TTP2 = TTP∗.

4. P3 = (O3, R3, TTP3) with

MovesO3
= MovesO2

\ {aO1 },MovesR3
= MovesR1

∪ {rR1 } and TTP3 = TTP∗.

5. P∗ = (O∗, R∗, TTP∗); the maximal refinement.

Analysis of the refinement P∗. It is easy to check that while P∗ ∈ PAGS, it always ends

aborted as aO1 is the only choice of moves for O∗ after m1 is sent. It is not an exchange

protocol as it does not enable an exchange of signatures.

Analysis of the refinement P1. In this case, the agents do not have the ability to resolve

the protocol. The objectives of the agent and the TTP then reduce to,

ϕO = 3M1 ∧2(3EORR
k ∨ (3AO∧2¬EOOO

k )),

ϕR = 2(EOO ⇒ (3EOOO
k ∨ (3AR∧2¬EORR

k )),

ϕTTP = 2(ABR ⇒ (3AO∨3AR)) ∧2(AO ⇒ 3AR) ∧2(AR ⇒ 3AO) .

The agent moves that extend partial protocol runs such that the implication conditions of

assume-guarantee synthesis are satisfied in all resulting traces is shown in Table 7.2. Each

row in the table corresponds to a protocol state and the moves available to O1 and R1 at

that state, such that the implication conditions of assume-guarantee synthesis are satisfied

in all resulting traces. For example, in the row corresponding to 〈m1〉, we have two move

choices for O1, one that selects ι and the other that selects aO1 ; O1 can choose to wait for
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Delivered message sequences Moves for O1 and R1

Choices for O1 Choices for R1

〈〉 m1 m1 ι ι ι

〈m1〉 ι aO1 ι m2 either ι or m2

〈m1,m2〉 aO1 aO1 ι ι ι

〈m1,m2,m3〉 ∅ ∅ ι m4 ι

Table 7.2: The moves that satisfy the objectives of assume-guarantee synthesis for O1 and
R1 are shown in this table at relevant protocol states represented by message sequences,
when the agents have no ability to resolve the protocol.

R to send m2 or choose aO1 . A similar interpretation is attached to the moves of R1. We

have P∗ � P1 � P∗. As P1 satisfies bounded idle time and the AGS constraints on the

TTP, P1 ∈ P and hence, by Lemma 12, P1 ∈ PAGS. The refinement P1, while attack-free, is

not a fair non-repudiation protocol as it does not enable an exchange of non-repudiation

evidences. The protocol always ends up aborted as aO1 is the only move that satisfies ϕO for

O in state {M1, EOO} against all behaviors of R and the TTP; once O1 sends her signature

in m3, there is no move available to O1 such that satisfaction of ϕR ∧ ϕTTP is guaranteed to

satisfy ϕO, as R may decide to stop participating in the protocol.

Analysis of the refinement P2. In this case, R has no ability to resolve the protocol. It is

easy to verify that P∗ � P2 � P∗. Therefore, P2 ∈ P and hence, by Lemma 12, P2 ∈ PAGS.

This protocol is a fair non-repudiation protocol that satisfies fairness, balance and timeli-

ness. If O does not send m3, then R2 has no choice of moves. But since P2 satisfies bounded

idle time, O2 will eventually either abort or resolve the protocol. As TTP2 satisfies the AGS
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Delivered message sequences Moves for O3 and R3

Choices for O3 Choices for R3

〈〉 m1 m1 ι ι ι

〈m1〉 ι ι m2 rR1 either m2 or r
R
1

〈m1,m2〉 m3 rO1 ι rR1 either ι or rR1

〈m1,m2,m3〉 ι rO1 ι m4 rR1

Table 7.3: The moves that satisfy the objectives of assume-guarantee synthesis for O3 and
R3 are shown in this table at relevant protocol states represented by message sequences,
when the agents have no ability to abort the protocol.

constraints on the TTP, either both agents get abort tokens or they get their respective

non-repudiation evidences eventually.

Analysis of the refinement P3. Since O has no ability to abort the protocol, while both

agents have the ability to resolve it, the predicates AO and AR are always false. The agent

and TTP objectives then reduce to,

ϕO = 3M1 ∧2(3EORR
k ∨3EORTTP

k ),

ϕR = 2(EOO ⇒ (3EOOO
k ∨3EOOTTP

k )),

ϕTTP = 2(RES ⇒ (3EOOTTP
k ∨3EORTTP

k )) ∧2(EOOTTP
k ⇒ 3EORTTP

k )∧

2(EORTTP
k ⇒ 3EOOTTP

k ) .

The moves of the agents that satisfy the objectives of assume-guarantee synthesis at select

protocol valuations represented by message sequences are shown in Table 7.3. It is easy

to verify that as P∗ 6� P3 � P∗, P3 6∈ P and hence by Lemma 12, P3 6∈ PAGS. Since TTP3
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satisfies the AGS constraints on the TTP, P3 is a fair non-repudiation protocol similar to

the ZG optimistic non-repudiation protocol, but it does not satisfy timeliness [KMZ02] as

O does have the ability to abort the protocol. If message m1 is not delivered, then O has

no choice of moves to satisfy ϕO, while ϕR ∧ ϕTTP are satisfied trivially. Balance does not

apply in this case as there are no abort moves.

Analysis of the refinement P∗. In the maximal refinement P∗ = (O∗, R∗, TTP∗), since TTP∗

satisfies the AGS constraints on the TTP, if her first response to an abort or resolve request

is [x, y], she can choose any move in {ι, x, y, [x, y]} for all subsequent abort or resolve re-

quests. Consider a refinement PKM = (OKM, RKM, TTPKM) � P∗, where OKM and RKM

correspond to O∗ and R∗ and TTPKM � TTP∗ such that TTPKM goes idle after her first

response to an abort or resolve request. PKM is then the KM protocol. We remark that

given the choices of moves for the TTP after her first response as suggested by assume-

guarantee synthesis, choosing ι satisfies the informal notion of efficiency. This refinement

ensures fairness, balance and timeliness.

7.5 A Symmetric Fair Non-Repudiation Protocol

In this section we present a symmetric fair non-repudiation protocol that gives R

the ability to abort the protocol, assuming that the channels between the agents and the

TTP are operational. If we enhance the ability of R by including an abort move aR1 without

enhancingO and the TTP, then assume-guarantee synthesis fails. By enhancing bothO and

the TTP, using assume-guarantee analysis, we design a new fair non-repudiation protocol

that (a) has no Y-attack for all Y ⊆ {O,R}; and (b) that provides R the ability to abort. We
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show that if the TTP does not change her behavior, while satisfying her objective, then the

protocol is attack-free.

In the KM, ASW andGJMprotocols, R cannot abort the protocol. While the ability

of O to abort the protocol after sending m1 is required in the event m1 is not delivered or if

R does not send m2, it can be used to abort the protocol even if all channels are resilient or

if O decides not to sign the contract after receiving m2. The protocols give O the ability to

postpone abort decisions but deny R a similar ability. While this does not violate fairness

or abuse-freeness as per prevailing definitions, it is not equitable to both agents. If R does

not want to participate in a protocol instance, then the only choice of moves for R is ι and

not m2; O will then eventually abort the protocol. Once m2 has been sent, if R decides not

to participate in the protocol and not be held responsible for signing the contract, he has

no choice of moves. If he decides to ignore m3, then O will resolve the protocol resulting

in non-repudiation evidences being issued to O, using which she can claim R is obligated

by the contract.

Consider the following refinement Ps = (Os, Rs, TTPs) with P∗ � Ps defined as

follows:

− MovesOs
= MovesO∗ ∪ {resO};

− MovesRs = MovesR∗ ∪ {aR1 }; and

− MovesTTPs = MovesTTP∗ ∪ {reqO}.

The move reqO may be sent by TTPs only after receiving an abort request from R. The

move resO may be sent by Os only after receiving reqO. We present the main protocol and

the abort subprotocol for our symmetric fair non-repudiation protocol in Protocol 2 and
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Protocol 3; the resolve subprotocol is identical to the one in the KM protocol and shown in

Protocol 4.

To facilitate the assume-guarantee analysis of Ps, we present the following en-

hanced AGS constraints on the TTP that is both necessary and sufficient to ensure TTP invi-

olability (neither agent can violate ϕTTP):

1. Abort constraint. If the first request received by the TTP is aO1 , then her response to

that request should be [aO2 , a
R
2 ]; If the first request received by the TTP is aR1 , then her

response to that request should be reqO;

2. Resolve constraint. If the first request received by the TTP is a resolve request, then

her response to that request should be [rO2 , r
R
2 ]; If the TTP receives resO in response

to reqO within bounded idle time, then her response should be [rO2 , r
R
2 ], otherwise it

should be [aO2 , a
R
2 ].

3. Accountability constraint. If the first response from the TTP is [x, y] or the first response

from the TTP is reqO and the next response is [x, y], then for all subsequent abort or

resolve requests her response should be in the set {ι, x, y, [x, y]}.

The enhanced AGS constraints on the TTP are required both to satisfy the implication

condition (ϕO ∧ ϕR) ⇒ ϕTTP and the condition for weak co-synthesis, (ϕO ∧ ϕR ∧ ϕTTP).

Since TTPs waits for a bounded number of turns before sending abort tokens to both agents

after sending reqO, we require that (a) the channels between the agents and the TTP are

operational, and (b) the time taken to deliver messages reqO and resO be subsumed by

the bound on idle time chosen by the TTP between sending reqO and abort tokens. As

there is no bound on the time taken to deliver messages on resilient channels, the above
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Protocol 2:MAIN PROTOCOL OF OUR SYMMETRIC NON-REPUDIATION PROTOCOL

1 O sends m1 to R;

2 if (R does not want to participate) then

3 R sends aR1 to the TTP;

4 else

5 R sends m2 to O;

6 if (R does not send m2 on time) then

7 O sends aO1 to the TTP;

8 else

9 O sends m3 to R;

10 if (O does not send m3 on time) then

11 if (R does not want to participate) then

12 R sends aR1 to the TTP;

13 else

14 R sends rR1 to the TTP;

15 else

16 R sends m4 to O;

17 if (R does not send m4 on time) then

18 O sends rO1 to the TTP;

Figure 7.3: Main protocol of our Symmetric Non-Repudiation Protocol

183



Protocol 3: ABORT SUBPROTOCOL. X ∈ {O,R}

1 X sends aX1 to TTP;

2 if (the protocol has been aborted or resolved) then

3 TTP goes idle;

4 else

5 if (X = R) then

6 TTP sends reqO to O;

7 if (O sends resO on time) then

8 TTP marks this protocol instance as resolved in its persistent DB;

9 TTP sends [rO2 , r
R
2 ] to O and R;

10 else

11 TTP marks this protocol instance as aborted in its persistent DB;

12 TTP sends [aO2 , a
R
2 ] to O and R;

13 else

14 TTP marks this protocol instance as aborted in its persistent DB;

15 TTP sends [aO2 , a
R
2 ] to O and R;

Figure 7.4: The abort sub-protocol of our symmetric fair non-repudiation protocol.
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Protocol 4: RESOLVE SUBPROTOCOL. X ∈ {O,R}

1 X sends rX1 to TTP;

2 if (the protocol has been aborted or resolved) then

3 TTP goes idle;

4 else

5 TTP marks this protocol instance as resolved in its persistent DB;

6 TTP sends [rO2 , r
R
2 ] to O and R;

Figure 7.5: The resolve sub-protocol of our symmetric fair non-repudiation protocol.

AGS constraints on the TTP cannot be enforced without operational channels. Consider

a partial trace that ends in protocol state {M1, EOO,M2, EOR,M3}; messages m1 and m2

have been received and m3 has been sent. If R now aborts the protocol and the TTP sends

reqO to O, then resilient channels can delay delivering either reqO or resO sufficiently for the

TTP to abort the protocol. In this case if m3 is eventually delivered, ϕO is violated whereas

ϕR∧ ϕTTP is satisfied. In the following lemmawe show that in Ps, O cannot violate ϕR while

satisfying ϕO, R cannot violate ϕO while satisfying ϕR and O and R cannot violate ϕTTP

while satisfying their objectives. That is, in the refinement Ps we have [[O ‖ R ‖ TTPs ‖

Sc]] ⊆ (ϕO ∧ ϕR) ⇒ ϕTTP, and [[O ‖ Rs ‖ TTP ‖ Sc]] ⊆ (ϕO ∧ ϕTTP) ⇒ ϕR. However, it is

not the case that [[Os ‖ R ‖ TTP ‖ Sc]] ⊆ (ϕR ∧ ϕTTP) ⇒ ϕO. But if the TTP is fixed then the

implication condition holds, i.e., [[Os ‖ R ‖ TTPs ‖ Sc]] ⊆ ϕR ⇒ ϕO ⊆ (ϕR ∧ ϕTTP) ⇒ ϕO.

It follows that under the assumption that the TTP does not change her behavior, while

satisfying her objective, the symmetric protocol is attack-free. We present the following
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lemma and prove it in the Appendix.

Lemma 13 For the refinement Ps = (Os,Rs,TTPs), if the channels between the agents and the

TTP are operational, then there exists no Y-attack for all Y ⊆ {O,R}.

The assumption that the bound on idle time of the TTP between sending reqO and

abort tokens subsume the time taken for the delivery of messages reqO and resO can easily

be enforced before the beginning of a protocol; O agrees to participate in the protocol with

a given TTP, only if the bound chosen by the TTP is satisfactory. We point out that in

state {EOO,M2}, if R sends an abort request, he still needs O’s co-operation to abort the

protocol. Since she has m2, she can launch recovery if she so desires by composing resO

when she receives reqO. But this is identical to the ability of O in aborting the protocol after

she sends m1. R can resolve the protocol as soon as he receives m1 and thus hold O as a

signatory to the contract even if she decided to abort the protocol after sending m1. The

protocol is therefore symmetrical to both O and R. In addition, we claim that this version

of the protocol provides better quality of service in terms of timeliness; O does not have to

wait after sending m1 for R to send m2, in protocol instances where R has no desire to sign

the contract. The following theorem states that if the TTP does not change her behavior,

then the refinement Ps is an attack-free fair non-repudiation protocol. The proof is in the

Appendix.

Theorem 31 If the TTP does not change her behavior, then the refinement Ps = (Os,Rs,TTPs)

is an attack-free fair non-repudiation protocol.

From PAGS to Ps. We can systematically analyze refinements leading to Ps. Similar to

the case of synthesizing the KM non-repudiation protocol, we now present the steps that
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explore refinements leading to Ps. We assume the TTP satisfies the AGS constraints on

the TTP and all refinements satisfy bounded idle time. The analyzed refinements are as

follows:

1. P∗ = (O∗, R∗, TTP∗); the minimal refinement.

2. P1 = (O1, R1, TTP1) with

MovesO1
= MovesO∗ ∪ {ι,m3},MovesR1

= MovesR∗ ∪ {m2,m4} and TTP1 = TTP∗.

3. P2 = (O2, R2, TTP2) with

MovesO2
= MovesO1

∪ {rO1 },MovesR2
= MovesR1

and TTP2 = TTP∗.

4. P3 = (O3, R3, TTP3) with

MovesO3
= MovesO2

\ {aO1 },MovesR3
= MovesR1

∪ {rR1 } and TTP3 = TTP∗.

5. P∗ = (O∗, R∗, TTP∗); the maximal refinement.

6. Ps = (Os, Rs, TTPs) with

MovesOs
= MovesO∗ ∪ {resO},MovesRs = MovesR∗ ∪ {aR1 } and

MovesTTPs = MovesTTP∗ ∪ {reqO}.
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Chapter 8

Resource Manager Synthesis

In this chapter, we present our second application of games for synthesis. We

show the automatic synthesis of resource managers, that manage the runtime allocation of

mutexes and semaphores in multi-threaded C programs, such that there are no deadlocks

and all threads make progress. We begin by illustrating the advantages of code-aware

managers. Consider the threads in Figure 8.1. Thread 1 and Thread 2 can lead to a dead-

lock under a standard, most liberal resource manager. On the other hand, the code-aware

manager we construct is able to differentiate, in Thread 1, between the requests for the

mutex a occurring on the then and else branches of the if statement (during code analysis,

information about the location of resource manager calls is added to the calls themselves).

When Thread 1 holds mutex a, and Thread 2 requests mutex b, the request is granted if

Thread 1 is in the else branch, and denied otherwise. Similarly, when Thread 2 holds the

mutex b, and Thread 1 requests the mutex a, the request is granted if Thread 1 is in the else

branch, and denied otherwise. In all cases, the code-aware manager guarantees deadlock
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while ( 1 ) {

i f ( exp ) {

mutex lock ( a ) ;

mutex lock (b ) ;

/ / c r i t i c a l r e g i o n

mutex unlock (b ) ;

mutex unlock ( a ) ;

} else {

mutex lock ( a ) ;

mutex lock ( c ) ;

/ / c r i t i c a l r e g i o n

mutex unlock ( c ) ;

mutex unlock ( a ) ;

}

}

(a) Thread 1

while ( 1 ) {

mutex lock (b ) ;

mutex lock ( a ) ;

/ / c r i t i c a l r e g i o n

mutex unlock ( a ) ;

mutex unlock (b ) ;

}

(b) Thread 2

Figure 8.1: Two fragments of C code.

freedom while managing resources in a fair and liberal manner.

8.1 Thread Resource Interfaces

8.1.1 Resources

A resource is a non-sharable, reusable quantity. For our purposes, a resource x

is an integer-valued variable together with a set of actions {wx!, gx?, rx!} on x. Intuitively,
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these actions correspond to communications between the threads that manipulate the re-

source and the resource manager, and have the following meaning:

− wx!: a thread requests the resource x (“want x”).

− gx?: the resource manager grants the resource x to a thread (“get x”).

− rx!: the thread releases the resource x (“release x”).

Given a set R of resources, the set of actions on R is Acts[R] = {wx!, gx?, rx! | x ∈ R} ∪ {ε}.

The output actions over R are given by ActsO[R] = {wx!, rx! | x ∈ R} ∪ {ε}, and correspond

to communication from the thread to the resource manager. In addition, we have a special

action ε which is needed in Definition 4 below. The input actions over R are given by

ActsI [R] = {gx? | x ∈ R}, and correspond to communication from the resource manager

to the thread. We consider two types of resources: mutexes and (counting) semaphores. A

mutex is a resource that takes value in {0, 1} and starts from the initial value 1; a mutex

can only be released by the same thread that acquired it (as in POSIX). A semaphore, on

the other hand, can be initialized to any integer, and can be released and acquired without

constraints, except that its value can never become negative.

8.1.2 Thread Interfaces

We model the behavior of threads by thread interfaces. Thread interfaces model

only the resource manipulation aspect of threads, and abstract out all data manipulation.

Definition 2 A thread interface I = (R, S, E, sinit,λ) consists of a set R of resources, a finite

control-flow graph (S, E) with E ⊆ S × S, an initial state sinit ∈ S, and an action label

λ : E → Acts[R] \ {ε} mapping each edge to a resource action, such that
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(a) Thread interface 1
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(b) Thread interface 2

Figure 8.2: The thread interfaces corresponding to the code in Figure 8.1.

− each wx! edge leads to a state whose only outgoing edge is labeled with gx?;

− each gx? edge starts from a state whose incoming edges are all labeled with wx!.

Intuitively, the conditions on a thread interface guarantee that a “want” action is immedi-

ately followed by the corresponding “get” action; moreover, a “get” action has no sib-

lings. We say that a state s is final if it has no successors. For s ∈ S, let Isucc(s) =

{t ∈ S | (s, t) ∈ E ∧ λ(s, t) ∈ ActsI [R]} be the set of input successors of s, and let

Osucc(s) = {t ∈ S | (s, t) ∈ E ∧ λ(s, t) ∈ ActsO[R]} be the set of output successors of s. We

carry subscripts over to components, so that an interface Ii will consist of (Ri, Si, Ei, s
init
i ,λi);

similarly, we carry subscripts to Isucc and Osucc.

Example 12 Consider the POSIX interface formutexeswith functions mutex lock(x) and
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mutex unlock(x). Each call mutex lock(x) is represented by the pair of actions wx! and

gx?; a (nonblocking) call mutex unlock(x) is represented by the action rx!. Similarly, for a

counting semaphore y, the function sem wait(y) corresponds to the two actions wy! and

gy?, and the function sem post(y) corresponds to the release action ry!. For example, our

tool extracts the resource interfaces of Figure 8.2 from the code in Figure 8.1. �

8.1.3 Systems

Syntax

Given a set R of resources, a resource valuation is a function ν : R 7→ N mapping

each resource to a natural number value. For a valuation ν and x ∈ R, we denote by

ν[x := k] the valuation obtained from ν by assigning the value k ∈ N to x. A system is a set

of resources, an initial resource valuation of the resources, and a tuple of (a fixed number

of) thread interfaces.

Definition 3 A system is a tuple I = (R, ν0, (I1, . . . , In)), consisting of a set R of resources,

a mapping ν0 : R 7→ N assigning an initial value to each resource, and of n > 0 thread

interfaces I1, . . . , In. We require that Ri ⊆ R, for 1 ≤ i ≤ n, and that if x ∈ R is a mutex,

ν0(x) = 1.

Semantics

Given a system, we can define its semantics using a joint interface, obtained by

constructing the product of the interfaces, annotated with the values of the resources at

the states. The joint interface models the execution of a multi-threaded system on a single
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processor.

Definition 4 Given a system I = (R, ν0, (I1, . . . , In)), its joint interface is a tuple MI =

(R, S, E, sinit,λ, θ), where R is as in I , and:

− S = (∏i Si) × (R 7→ N);

− sinit = (sinit1 , . . . , sinitn , ν0);

− E ⊆ S × S, and λ : E 7→ Acts[R], θ : E 7→ {0, . . . , n} are defined as follows. Let

s = (s1, . . . , sn, ν) ∈ S; we have (s, t) ∈ E, λ(s, t) = α, and θ(s, t) = i iff there is s′i ∈ Si

such that (si, s
′
i) ∈ Ei, λi(si, s

′
i) = α, and for t = (s1, . . . , si−1, s

′
i, si+1, . . . , sn, ν

′) we

have:

[resource grant] if α = gx?, then ν(x) > 0 and ν′ = ν[x := ν(x) − 1];

[resource request] if α = wx!, then ν′ = ν; and

[resource release] if α = rx!, then ν′ = ν[x := ν(x) + 1]; further, if x is a mutex, then

ν(x) = 0.

Moreover, let s be a state that has no successors according to the above rules. Then, we

add a self-loop (s, s) ∈ E and we set λ(s, s) = ε and θ(s, s) = 0.

Let s ∈ S and s = (s1, . . . , sn, ν); for all i = 1, . . . , n, we set loci(s) = si. We let Osucc, Isucc

refer to MI , and for 1 ≤ i ≤ n, we let Osucci, Isucci refer to Ii.

In MI , edges labeled with the special action ε are a technical addition, used to ensure that

all finite paths can be extended to infinite ones.

The portion of the joint interface MI that is reachable from its initial state sinit may not be

finite, as the value of resources could grow beyond bounds. Of course, if all resources are
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mutexes (which take values 0 and 1), the state space is finite. In general, a coverability tree

algorithm for Petri nets can check for boundedness, but this check is expensive.

Theorem 32 Let MI = (R, S, E, sinit,λ, θ) be the joint interface of a system I . The problem of

deciding whether the portion of S that is reachable in (S, E) is finite is EXPSPACE-hard.

Proof. If all resources in R are mutexes, then clearly they can assume only the values 0, 1

at any state reachable from sinit. The second result is by a reduction to the boundedness

problem for Petri Nets. �

In the following, we only consider systems I such that the reachable portion of MI is

finite. In our tool CYNTHESIS we avoid solving the question of whether the portion of the

joint interface reachable from the initial state is finite. Rather, we simply take as input the

maximum value to consider for any semaphore; this value is usually well known to the

programmer. If we find a reachable state where the value of a semaphore is greater than

this maximum, we stop and report the problem.

8.2 The Scheduling Game

In this section, unless otherwise noted, we consider a fixed system I =

(R, ν0, (I1, . . . , In)), which gives rise to a joint interface MI = (R, S, E, sinit,λ, θ).

A joint interface evolves by the interaction between three entities: the threads,

the resource manager, and the scheduler. From a given state, if there are any outgoing

edges labeled by input actions, the resource manager can choose to follow one of them:

this corresponds to granting a resource to a thread. Once the input edge has been followed

(and the resource granted), the resource manager still retains control at the destination
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state. From a given state, if there are any edges labeled by output actions that leave the

state, the resource manager can also elicit to return control to the threads. At this point,

which output action occurs next depends on two factors. The underlying operating-system

scheduler, using its own policy (such as time-sharing with round robin), selects which

of the ready threads execute on the CPU. In addition, each thread has its own internal

nondeterminism, which determines which output action the thread generates next. Thus,

we identify three types of nondeterminism in the joint interface.

1. Resource manager nondeterminism, due to the resource manager choosing an input

edge, or choosing to wait for an output action.

2. Inter-thread nondeterminism, due to the operating-system scheduler resolving thread

interleaving.

3. Intra-thread nondeterminism, which determines which of several possible output ac-

tions a thread will do.

Resource manager.

The goal is to synthesize a resource manager that ensures that all threads make

progress, unless they terminate. In order to define the goal, we introduce the following

predicates over edges of MI : for 1 ≤ i ≤ n, the predicate progressi is true over an edge

(s, t) ∈ E if θ(s, t) = i, and the predicate finali is true over an edge (s, t) ∈ E if the thread i

is in a final state in s. Notice that for all thread interfaces, the set of final states is absorbing.

Therefore, finali being true over an edge (s, t) ∈ E, implies that it remains true along all

paths that originate at s; this means that2 f inali holds on all paths that originate at s. Using
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temporal logic notation, the goal can therefore be written as a generalized Büchi condition

over the edges:

φ
goal
I =

n
∧

i=1

23(progressi ∨ finali).

Our aim is to synthesize a resource manager that satisfies the goal φ
goal
I . We first describe

the two sources of non-determinism that the resource manager plays against.

Inter-thread non-determinism.

This non-determinism is due to the scheduler. If there are two or more threads

that are waiting to issue output actions, then which one gets to do so depends on the

underlying OS scheduler. If two threads want to get a resource, which thread gets to call

the OS primitive to acquire the resource is decided by the scheduler. Similarly, if a thread

wants to release a resource, whether or not it does so again depends on the scheduler.

Intra-thread non-determinism.

This non-determinism has two origins. The first is the environment: often, the

behavior of a thread in an embedded system reacts to inputs (input timings, or input val-

ues) received from the environment. The second is abstraction: our thread interface is an

abstraction of the actual thread behavior that disregards variable values. In particular, the

outcome of control-flow statements such as loop tests, and if-then-else, is modeled as intra-

thread non-determinism. Assuming that intra-thread non-determinism is resolved in an

arbitrary way may easily lead to declaring the manager synthesis problem to be infeasi-

ble.1 In fact, whenever a thread can execute a loop while holding a resource, the arbitrary

1Recall that our goal is to schedule correct software, rather than to perform software verification.
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resolution of intra-thread non-determinism introduces the possibility that the loop never

terminates.

The synthesis objective.

while ( 1 ) {

i f ( exp ) {

mutex lock ( a ) ;

x = 1 ;

/ / c r i t i c a l r e g i o n

mutex unlock ( a ) ;

} else {

mutex lock ( b ) ;

mutex lock ( c ) ;

x = 1 ;

/ / c r i t i c a l r e g i o n

mutex unlock ( b ) ;

while ( x != 2)

;

mutex unlock ( c ) ;

}

}

(a) Thread 1

while ( 1 ) {

i f ( ! exp ) {

mutex lock ( b ) ;

mutex lock ( c ) ;

x = 2 ;

/ / c r i t i c a l r e g i o n

mutex unlock ( b ) ;

while ( x != 1)

;

mutex unlock ( c ) ;

} else {

mutex lock (d ) ;

x = 2 ;

/ / c r i t i c a l r e g i o n

mutex unlock (d ) ;

}

}

(b) Thread 2

while ( 1 ) {

mutex lock ( b ) ;

mutex lock ( c ) ;

/ / c r i t i c a l r e g i o n

mutex unlock ( c ) ;

mutex unlock ( b ) ;

}

(c) Thread 3

Figure 8.3: A system of three threads to illustrate the assumptions on the sources of non-
determinacy and the goal of the resource manager.

We first show that the automatic synthesis of a resource manager given the
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goal φ
goal
I will fail against arbitrary resolution of the inter-thread and intra-thread non-

determinism. We then use fairness assumptions on inter-thread and intra-thread non-

determinism and derive a synthesis objective that satisfies φ
goal
I , given these fairness as-

sumptions. Consider the system of three threads in Figure 8.3. If we assume that the

scheduler never schedules Thread 3, then the wb! action from Thread 3 never takes place.

In this case, irrespective of the resource manager policy, φ
goal
I is not satisfied. We need to

restrict the inter-thread non-determinism and we do so by placing a fairness assumption

on the underlying operating system scheduler: more precisely, if a thread is infinitely of-

ten ready to execute, it will make progress infinitely often. We introduce a predicate readyi,

for 1 ≤ i ≤ n, which is true over an edge (s, t) ∈ E iff (i) (s, t) is labeled with an output

action, and (ii) there is (s, t′) ∈ E with θ(s, t′) = i. Intuitively, (i) means that the resource

manager decided to let the scheduler schedule some thread, and (ii) means that thread i

was among the threads that could have generated the next output. With this notation, the

fairness assumption on the scheduler is:

φinter
I =

n
∧

i=1

(23readyi ⇒ 23progressi).

We now show that even if we assume that inter-thread non-determinism is resolved sat-

isfying φinter
I , the goal of the resource manager can still be violated: more precisely, the

resource manager cannot ensure that φinter
I ⇒ φ

goal
I . Assume that the conditional expres-

sion exp in Thread 1 and Thread 2 is always false. Thread 1 releases resource b and waits

till Thread 2 acquires it before releasing resource c. Similarly, Thread 2 releases resource

b and waits till Thread 1 acquires it before releasing resource c. There is no way to re-

solve intra-thread non-determinism in this case to ensure that Thread 3 can make progress
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for any policy followed by the resource manager. Notice that even if we assume that the

scheduler is fair and that Thread 3 is scheduled infinitely often, it cannot make progress

because resource b is always held by either Thread 1 or Thread 2. Therefore the resource

manager cannot ensure that φinter
I ⇒ φ

goal
I .

We need to restrict intra-thread non-determinism and we do so by placing a fair-

ness constraint on intra-thread non-determinism: if each choice is presented infinitely of-

ten, then each choice outcome is followed infinitely often. For all threads 1 ≤ i ≤ n, all

u, v ∈ Si, and all (s, t) ∈ E, we introduce the predicates fromu
i (s, t)

def
= (loci(s) = u) and

takeu,vi (s, t)
def
=

(

(loci(s) = u) ∧ (loci(t) = v)
)

. The fairness assumption for intra-thread

non-determinism can then be written as

φintra
I =

n
∧

i=1

∧

u∈Si

∧

v∈Osucci(u)

(23fromu
i ⇒ 23takeu,vi ).

This entails that the conditional expression exp takes both values infinitely often. With this

assumption, Thread 1 (Thread 2) will enter the then (else) branch of the conditional state-

ment infinitely often. This implies that either Thread 1 is holding resource a or Thread 2 is

holding resource d infinitely often. The resource manager strategy is as follows:

− If both Thread 1 and Thread 2 are holding resources a and d, then a winning strategy

for the resource manager would be to assign resources b and c to Thread 3.

− If Thread 1 is holding resource a and Thread 2 is holding resources b and c. Then

a winning strategy for the resource manager would be to wait till Thread 2 re-

leases both b and c and then allocate these resources to Thread 3, thus ensuring that

Thread 3 enters its critical region.
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− If Thread 2 is holding resource d and Thread 1 is holding resources b and c, then a

strategy similar to the one above will ensure that Thread 3 enters its critical region.

Therefore, the objective for resource manager synthesis requires fairness assumptions on

both inter-thread and intra-thread non-determinism. Formally, the objective for the re-

source manager is:

φ2 = (φinter
I ∧ φintra

I ⇒ φ
goal
I ) . (8.1)

8.2.1 Stochastic Games

We base the synthesis of the resource manager on stochastic games. As we will

see in detail later, we use probabilities both to approximate the above types of nondeter-

minism, and to be able to generate manager strategies that are memoryless, but that may

require randomization [CdAH04]. Given a finite set A, we denote by Dist(A) the set of

probability distributions over A. For d ∈ Dist(A) we let Supp(d) = {a ∈ A | d(a) > 0}.

Given a ∈ A we denote by δ(a) ∈ Dist(A) the probability distribution that associates

probability 1 with a, and 0 to all other elements of A. We also denote by Uniform(A) the

probability distribution that associates probability 1/|A| to every element of A.

Definition 5 A two-player game G = (S,Moves, Γ1, Γ2, δ, φ) consists of a set of states S, of

a set of moves Moves, of two mappings Γ1, Γ2 : S 7→ 2Moves \ ∅ associating to each state

s and player i ∈ {1, 2} the set of moves Γi(s) that player i can play at s, a (probabilistic)

destination function δ : S ×Moves2 7→ Dist(S), which associates with each s ∈ S and

m1 ∈ Γ1(s), m2 ∈ Γ2(s), a probability distribution δ(s,m1,m2) over the successor state.

Finally, the winning condition φ is a measurable subset of Sω.
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For i ∈ {1, 2}, we say that G is an i-Markov decision process (i-MDP) [Der70] if |Γ3−i(s)| = 1

at all s ∈ S; 1-MDPs are also called simply MDPs. A strategy for player i ∈ {1, 2} in a

game G = (S,Moves, Γ1, Γ2, δ) is a mapping πi : S
+ 7→ Dist(Moves), such that for all σ ∈ S∗

and s ∈ S, we have πi(σs)(m) > 0 implies m ∈ Γi(s). We denote by Π1, Π2 the set of

strategies for players 1 and 2 respectively. Once the strategies π1 and π2 are fixed, the

game is reduced to an ordinary stochastic process, and the probabilities of all measurable

events (which include all ω-regular properties [Tho90]) are defined (see e.g. [FV97]). We

say that a state s ∈ S is winning if there is π1 ∈ Π1 such that, for all π2 ∈ Π2, we have

Prπ1,π2
s (φ) = 1. As we use randomized strategies, winning with probability 1 is the natural

notion of winning. We denote by Win(G) the set of winning states. A winning strategy is

a strategy that wins from all winning states, that is, a strategy π1 ∈ Π1 such that, for all

s ∈ Win(G) and all π2 ∈ Π2, we have Prπ1,π2
s (φ) = 1. The size of a game is defined by

|G| = ∑s∈S ∑m1∈Γ1(s) ∑m2∈Γ2(s) | Supp(δ(s,m1,m2))|.

8.2.2 The Scheduling Game

Since our aim is to derive strategies that resolve resource manager nondetermin-

ism, we formulate the resource manager synthesis problem as a game played on the joint

interface by the resource manager against a team consisting of the threads and the sched-

uler. Again, unless otherwise noted, we refer to a system I = (R, ν0, (I1, . . . , In)) which

gives rise to a joint interface MI = (R, S, E, sinit,λ, θ).

Definition 6 The two-player game corresponding to a system I consists of a tuple G2 =

(S,Moves, Γ1, Γ2, δ, φ
2), where Moves = S ∪ {⊥} and φ2 = (φinter

I ∧ φintra
I ) ⇒ φ

goal
I . The sets
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of moves for player 1 (representing the resource manager) and player 2 (representing the

inter and intra-thread nondeterminism) are as follows, for all s ∈ S:

• If Osucc(s) 6= ∅, then Γ1(s) = Isucc(s) ∪ {⊥} and Γ2(s) = Osucc(s).

• If Osucc(s) = ∅, then Γ1(s) = Isucc(s) and Γ2(s) = {⊥}.

The destination function is given by the following rules, where ∗ represents a wildcard,

and s ∈ S:

• For t ∈ Isucc(s), we have δ(s, t, ∗) = δ(t);

• for t ∈ Osucc(s), we have δ(s,⊥, t) = δ(t).

The manager synthesis problem can thus be phrased as the problem of finding a winning

strategy in G2. We say that the system is schedulable if sinit ∈ Win(G2). One can see that

this goal is upward-closed, so that memoryless, but randomized, strategies suffice to win

the game [CdAH04].

8.2.3 Practical Solution of the Scheduling Game

The best known algorithms to compute a winning strategy in G2 take time ex-

ponential in the winning condition, and in our case, the size of the winning condition is

proportional to the sum of the sizes (numbers of states) of all thread interfaces in I [Tho95].

Thus, this approach leads to an inefficient algorithm. Instead, we show that we can exploit

the special structure of the joint interface and solve the synthesis problem in a more effi-

cient way, consisting of two steps. We consider two simplified versions of G2:

1. A game G2.5, resulting from resolving all intra-thread nondeterminism in G2 in a

purely randomized fashion.
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2. An MDP G1.5, resulting from resolving both the intra-thread and the inter-thread

nondeterminism in G2 in a purely randomized fashion.

We show that we can construct in quadratic time in |G2| a winning strategy for the MDP

G1.5 which is also a winning strategy of the game G2.5. We show that this winning strategy,

under many cases of practical importance, is also a winning strategy for the original game

G2. In all cases, we show that it is possible to check efficiently whether the strategy for

game G2.5 works also for G2 — and in our experience, this has been always the case in the

examples we have studied so far.

Definition 7 Given the game G2 = (S,Moves, Γ1, Γ2, δ, φ
2), the games G2.5 =

(S,Moves′, Γ1, Γ
′
2, δ

′, φ2.5) and G1.5 = (S,Moves, Γ1, Γ
′′
2 , δ

′′, φ1.5) are obtained as follows. We

have Moves′ = Moves ∪ {1, . . . , n}, φ2.5 = φinter
I ⇒ φ

goal
I , and φ1.5 = φ

goal
I . The functions

Γ′
2, δ

′ and Γ′′
2 , δ

′′ coincide with Γ2, δ, except that:

− For all s ∈ S such that |Osucc(s)| > 1, we let Γ′
2(s) = {i | ∃t ∈ Γ2(s) . θ(s, t) = i}, and

for i ∈ Γ′
2(s), we let δ′(s,⊥, i) = Uniform({t ∈ Γ2(s) | θ(s, t) = i}).

− For all s ∈ S, we let Γ′′
2 = {⊥}, and we let δ′′(s,⊥,⊥) = Uniform(Osucc(s)).

First, we show how to construct the most liberal winning strategy for game G1.5; infor-

mally, this is the strategy that, among the winning ones, plays with positive probability

the largest possible sets of moves.

A memoryless strategy π ∈ Π1 gives rise to a graph (S, Eπ), where Eπ = {(s, t) |

π(s)(t) > 0 or π(s)(⊥) > 0 and λ(s, t) ∈ ActsO[R]}. A maximal end component (MEC) of

G1.5 is a maximal subgraph (C, F) of (S, E) such that: there is a memoryless strategy π
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such that C is a closed (no outgoing edge) and strongly connected component of (S, Eπ),

and such that F = {(s, t) ∈ Eπ | s ∈ C} [dA97]. We say that thread k is finished in a state s if

lock(s) is final in Ik. Notice that if a thread k is finished at some state of a MEC, it is finished

at all states of the MEC. We say that a MEC (C, F) is fair iff, for every thread 1 ≤ k ≤ n,

either k is finished in C, or there is (s, t) ∈ F with θ(s, t) = k. Let W be the union of all

sets of states belonging to fair end components. It can be shown that a state is winning

in G1.5 iff it can reach W with probability 1 [CdAH04]; we denote by Win(G1.5) the set of

winning states of G1.5. By the results of [dA97, dAHK98], this set can be computed in time

quadratic in |G1.5|.

The most liberal winning strategy π∗ for G1.5 is the strategy that selects uniformly

at random among moves of player 1 that lead only to winning states. Precisely, for s ∈

Win(G1.5), we let π∗(s) = Uniform({m ∈ Γ1(s) | ∀t ∈ S.(δ′′(s,m,⊥)(t) > 0 ⇒ t ∈

Win(G1.5))}). π∗ is arbitrarily defined on states s ∈ S \Win(G1.5).

Theorem 33 The strategy π∗ is winning in G1.5, and can be computed in time O(|G1.5|2).

In the next section, we present some technical lemmas, that are later used to show the

relationships between the different versions of the scheduling game.

8.2.4 Properties

In order to argue that π∗ is winning not only in G1.5, but also in G2.5, we need to

develop some properties of π∗ and MI . First, we state a simple property of MI .

Lemma 14 In MI , there is no loop made entirely of input edges, and there is no loop made entirely

of output edges.
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Proof. The first statement is due to the fact that each input edge decreases the value of a

resource. The second statement is due to the fact that resource requests (wx!) are immedi-

ately followed by an input edge, and resource releases (rx!) increase the value of a resource.

�

We now show that, in MI , input and output moves commute, as they are independent. In

the following, we write s
x
−→
i

t to signify that (s, t) ∈ E, λ(s, t) = x and θ(s, t) = i.

Lemma 15 For all s, s1, s2 ∈ S, if s
α!
−→
i

s1 and s
β?
−→
j

s2, then there is t ∈ S such that s2
α!
−→
i

t and

s1
β?
−→
j

t.

Proof. First, notice that i 6= j, as input edges have no siblings in their respective thread (see

Definition 2). Second, the value of each resource in s1 is at least as much as it is in s. Thus,

there is a state t such that s1
β?
−→
j

t. In s2, the value of a certain resource is lower than it is s.

However, output edges are not affected by the value of the resources, so there is a state t′

such that s2
α!
−→
i

t′, and by construction of MI , we have t = t′. �

The following lemma states an equivalent commutativity property for outputs belonging

to different threads.

Lemma 16 For all s, s1, s2 ∈ S, if s
α!
−→
i

s1 and s
β!
−→
j

s2, with i 6= j, then there is t ∈ S such that

s2
α!
−→
i

t and s1
β!
−→
j

t.

Proof. Since output edges can either decrease resource usage (in the case of resource release

actions), or leave resource usage unchanged (in the case of resource request actions), α! will

still be enabled from s2, and β! will be enabled from s1; moreover, by construction of MI ,

we have s2
α!
−→
i

t and s1
β!
−→
j

t for the same t. �
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s1 s2 sm−1

smt1 t2

α! α!

β1?

β1?

β2?

β2?s

t

Figure 8.4: Outputs cannot link winning states to losing ones.

The following lemma shows that, in G1.5, an edge labeled with an output cannot connect a

winning state to a losing state.

Lemma 17 Let s ∈ Win(G1.5) and s
α!
−→
i

t. Then, t ∈ Win(G1.5).

Proof. Suppose that, starting from s, we keep following winning inputs, as long as there is

a winning input in the current state. By Lemma 14, we must eventually reach a state sm−1

that has no winning inputs. By repeated applications of Lemma 15, the output α! is still

enabled in sm−1.

Summarizing, as illustrated in Figure 8.4, we can find a path σ = ss1 . . . sm such

that (i) all states in σ are winning, (ii) all edges in σ except the last one are labeled with

inputs, and (iii) the last edge (sm−1, sm) is labeled with α!.

Again by repeated applications of Lemma 15, from t we can mimic the path σ, by

taking similar input edges, finally reaching sm. We obtain the conclusion that t can reach

the winning state sm by means of input edges only. So, t itself is a winning state. �

In the following, we say that a path is in Win(G1.5) to mean that it is a path in G1.5 made

entirely of winning states. We now introduce a binary relation “⊑” over the set of winning

states of G1.5. For all s, s′ ∈ Win(G1.5), let s ⊑ s′ if and only if there is a path σ inWin(G1.5)
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that goes from s to s′ using only output edges. The following lemma shows that if s ⊑ s′

and an input edge is winning from s, the corresponding input edge from s′ is also winning.

Lemma 18 Let s ⊑ s′. For all t ∈ Win(G1.5) such that s
α?
−→
i

t there is t′ ∈ Win(G1.5) such that

s′
α?
−→
i

t′ and t ⊑ t′.

Proof. Let σ be a path from s to s′ inWin(G1.5) that contains only outputs edges. By repeated

applications of Lemma 15, we can take a similar path σ′ from t, leading to a state t′ such

that t ⊑ t′. Moreover, by construction s′
α?
−→
i

t′. By applying Lemma 17 to all edges in σ′ we

obtain that, since t is winning, t′ is also winning. �

The following lemma will be instrumental in showing that π∗ is a winning strategy also in

G2.5.

Lemma 19 There is p > 0 such that, for all s ∈ Win(G1.5), if in Win(G1.5) there is an acyclic

path from s to a state s′, then using π∗ in G2.5, for all player 2 strategies, with probability at least

p, starting from s the game reaches a state t′ such that s′ ⊑ t′.

Proof. Let ρ be the path from s to s′; the proof is by induction on the length of ρ. Fix

an arbitrary strategy of player 2. For |ρ| = 0, the result trivially holds. As induction

hypothesis, assume that there is a path ρ from s to s′ in Win(G1.5), and assume that using

π∗ in G2.5 we can reach from s a state t′ such that s′ ⊑ t′ with positive probability. Let σ be

the sequence of output actions leading from s′ to t′, and let θ be the path from s to t′. We

will show that, if we prolong ρ by one step, reaching s′′, then we can prolong θ by 0 or more

steps, obtaining a path θ′′ to t′′, such that s′′ ⊑ t′′, and such that θ′′ is followedwith positive

bounded probability in G2.5. Notice that, due to Lemma 16, outputs of different threads
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commute. Hence, we can consider the ordering in σ restricted to outputs belonging to the

same thread. Equivalently, rather than σ, we can reason about the collection of sequences

of output actions {σi}i=1..n, where σi represents the sequence of actions of thread i along σ.

There are then three cases, depending on the step s′s′′:

− Assume that s′
α?
−→
i

s′′, for some α and i ∈ {1, . . . , n}. By Lemma 18, there is also

a winning step t′
α?
−→
i

t′′, and a path from s′′ to t′′ that uses the sequence of output

actions σ. As π∗ takes this step with positive probability, this leads to the result.

− Assume that s′
α!
−→
i

s′′, for some α and i ∈ {1, . . . , n}; assume also that α does not

appear in σi. By Lemma 16, from t′, the same output α is enabled, so that π∗ will play

with positive probability action ⊥, and in G2.5 some output β will occur. If β belongs

to thread i, then with positive probability (according to the randomized resolution of

intra-thread nondeterminism) it must be β = α, and the destination state t′′ will be

related to s′′ again by σ. If β does not belong to thread i, we add β to σ. By Lemma 16

we have that output α is still enabled from the destination state after β, so that π∗ will

again play ⊥ from the destination with positive probability. Eventually, an output

belonging to thread i will occur, as by Lemma 14 there cannot be an infinite path

consisting entirely of output actions.

− Assume that s′
α!
−→
i

s′′, for some α and i ∈ {1, . . . , n}; assume also that α appears in σi.

Then, with positive probability (due to the resolution of inter-thread nondetermin-

ism), α will be the first action of σi. We remove α from σi, obtaining a shorter σ′; we

have that s′′ ⊑ t′, and s′′ and t′ are related by σ′.
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The existence of a constant bound p > 0 derives from the fact that the length of ρ, and the

size of σ, are bounded, as is the number of ways in which intra-thread nondeterminism

can be resolved. �

8.2.5 Comparing Games

We now proceed to prove that the strategy π∗ is also a winning strategy for G2.5.

Theorem 34 The strategy π∗ is winning in game G2.5, and Win(G1.5) = Win(G2.5).

Proof. For i ∈ {1, . . . , n} and s ∈ Win(G1.5), we say that thread i is enabled in s if there is an

edge (s, t) ∈ E such that θ(s, t) = i and t ∈ Win(G1.5). Note that this definition is correct,

as by Lemma 17 output edges are always winning.

For i ∈ {1, . . . , n} and s∗ ∈ Win(G1.5), we have to prove that, using π∗ in G2.5

and starting from s∗, with positive probability a state is reached where thread i is enabled.

Since this is true of every winning state s∗, and since the game stays forever in the set of

winning states, it follows that the probability of enabling thread i infinitely often, ensuring

that it is also taken infinitely often, is in fact 1.

If in s∗ the next action of thread i is an output, then by Lemma 17 it is available

directly from s∗. Thus, assume in the following that the next action of thread i in s∗ is an

input. Since s∗ is winning in G1.5, there is a path in Win(G1.5) from s∗ to a state t∗ where

thread i is enabled. By applying Lemma 19 to states s = s∗ and s′ = t∗, we obtain that in

G2.5 from s∗ with positive probability a state t′ is reached such that t∗ ⊑ t′, and therefore

thread i is enabled in t′. �
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Figure 8.5: Thread interface from Example 13.

The previous result, which depends in a crucial way on the structural properties of G2.5 (it

is certainly not valid for an arbitrary two-person game), enables us to compute in quadratic

time a winning strategy for game G2.5. We now show how to use this result for G2.5 also

for our original problem G2.

Our first result concerns systems where all resources are mutexes (called mutex-

only systems), and where the threads satisfy the periodically mutex-free (PMF) assumption.

Informally, this assumption states that, if the intra-thread nondeterminism is resolved

in a fair fashion, then the thread is infinitely often not holding any mutex. In practice,

threads in mutex-only systems invariably satisfy the PMF assumption. To make this pre-

cise, consider a fixed thread interface Ii = (Ri, Si, Ei, s
init
i ,λi), for 1 ≤ i ≤ n. A path

in Ii is a path in the graph (Si, Ei). We say that an infinite path is fair iff it satisfies

∧

u∈Si

∧

v∈Osucci(u) 23fromu
i ⇒ 23takeu,vi . Moreover, for a finite path σ and a resource x ∈ R,

let decr(x, σ) = |{(s, t) ∈ σ | λi(s, t) = gx?}|, incr(x, σ) = |{(s, t) ∈ σ | λi(s, t) = rx!}|, and

balance(x, σ) = incr(x, σ) − decr(x, σ). We say that Ii is mutex-correct if for all finite traces σ
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and all mutexes x ∈ Ri, it holds balance(x, σ) ∈ {−1, 0}.

Definition 8 We say that a thread is periodically mutex free (PMF) if it only uses mutexes,

it is mutex-correct, and in all fair paths σ, there exist infinitely many prefixes σ′ of σ that

satisfy balance(x, σ′) = 0 for all mutexes x.

For mutex-only systems consisting of threads satisfying the PMF assumption (called, for

short, PMF systems), the strategy π∗ is winning also in G2. Hence, for PMF systems we can

derive resource managers in time quadratic in |G2|.

Theorem 35 For PMF systems, π∗ is winning in game G2, and Win(G1.5) = Win(G2).

Proof. By Theorem 34, we have that π∗ is winning in game G2.5. We show that for all

i ∈ {1, . . . , n} and s∗ ∈ Win(G2.5), using π∗ in G2 and starting from s∗, with positive

probability a state is reached where thread i is enabled. Similar to the proof of Theorem 34,

since this is true of every winning state s∗, and since the game stays forever in the set of

winning states, it follows that the probability of enabling thread i infinitely often, ensuring

that it is also taken infinitely often, is in fact 1.

Consider an arbitrary strategy of player 2 such that φintra
I ∧ φinter

I holds. By the

definition of PMF systems, for all i ∈ {1, . . . , n}, for all fair infinite paths σ, there exists

infinitely many occurrences of a state where i is not holding any resource. In G2.5, by

the resolution of intra-thread non-determinism, for all paths σ starting at s∗, we have that

they are fair and that for all threads i ∈ {1, . . . , n}, since there exists infinitely many oc-

currences of a state where i is not holding any resource, we can reach a state t∗i , where

thread i is enabled with positive probability. This implies that in G2, given φintra
I holds,
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ensuring all paths are fair, starting at state s∗, the state t∗i , where thread i is enabled, is

visited with positive probability as required. Therefore, for PMF systems, π∗ is winning

in G2. Further, since Win(G1.5) = Win(G2.5) by Theorem 34, and we have shown that

Win(G2.5) = Win(G2), we conclude Win(G1.5) = Win(G2). �

The next example shows that π∗ may not be winning in G2, when the system is not PMF.

Notice that a rather special thread structure is required for this to happen.

Example 13 Consider the 5-mutex, 3-thread system ({a, b, c, d, e}, ν0, (I1, I2, I3)) where I1

is as in Figure 8.6(a), I2 is as in Figure 8.6(b), and I3 is as in Figure 8.5. First, at all times

after thread 1 reaches state 2, it will always own at least one mutex among {a, b, c}. Sim-

ilarly, thread 2 will always own at least one of {a, d, e}. For this reason, the system is not

PMF. However, the initial state (0, 0, 0, ν0) of G1.5 is winning. Clearly, threads 1 and 2 can

make infinite progress, since they only share mutex a, and they both release said mutex

periodically. It remains to show that under the most general winning strategy π∗, thread

3 is allowed to perform its critical region (i.e. state 6) with probability 1. In G1.5 (and G2.5)

the nondeterminism that threads 1 and 2 exhibit in state 2 is resolved by a uniform distri-

bution. So, while making infinite progress, with probability 1 those threads will acquire

mutexes b and d at the same time, thus leaving mutexes c and e free. At that point, as soon

as mutex a is released, thread 3 can safely execute its critical region, by acquiring mutexes

a, c, e.

On the other hand, in game G2 threads 1 and 2 can cooperate in order to never

release both c and e at the same time. When thread 1 is in state 2, thread 2 can only be in

state 6 or 11 (because those are the only states where thread 2 does not hold a). So, player 2
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Figure 8.6: Thread interfaces from Example 13.

213



can choose to acquire c when thread 2 is in 6 (thus holding d) and acquire b when thread

2 is in 11 (thus holding e). This ensures that c and e are never free at the same time. Now,

consider a state where a is free. Giving a to thread 3 inevitably leads to a deadlock, because

thread 3 needs c and e before releasing a, and either of them is currently owned and will

not be released before a is. �

Our next result, useful for threads that may use semaphores, enables us to establish

whether the strategy π∗ is winning also for G2. To develop the result, note that the game

G2, once player 1 fixes strategy π∗, is a 2-MDP. For such 2-MDPs, we can compute in poly-

nomial time the set of winning states for player 2 with respect to the complementary goal

¬φ2 using an algorithm that is a modified version of the algorithm proposed in [CdAH05]

for Streett MDPs. This leads to the following result.

Theorem 36 We can check in time O
(

|G2|2 · n · ∑
n
i=1 |Ei|

)

whether the strategy π∗ is winning

in G2.

In our experience, the strategy π∗ is almost invariably winning in G2; indeed, the only

counterexamples we have been able to construct are based on threads with fairly special

structure, where inter-thread communication can be used to synchronize the usage of re-

sources by threads in particular ways. Therefore, we claim that in most cases, we can

construct a resource manager strategy in time quadratic in |G2|.
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8.3 Towards Efficient Resource Managers

The strategy π∗, even when winning, may not be an efficient strategy in prac-

tice. According to it, the resource manager would issue ⊥ (wait for a resource request or

release) with positive probability when there are input moves that are available and win-

ning. First, this potentially reduces CPU utilization. In fact, other things being equal, it

is better to grant immediately as many resource requests as possible: this ensures that the

OS scheduler has the widest choice of threads to execute on the CPU, helping to avoid

idle time when all available threads are blocked, e.g., waiting for I/O. More importantly,

as a consequence of how we abstract thread interfaces, there is no guarantee that a thread

whose next action is an output will issue that output within a short amount of time. For

instance, the next resource request may be issued only after some user input has occurred.

In this section, we propose several improvements to π∗, aimed at reducing the

number of times when the manager issues ⊥ when input actions are available.

Maximal progress and critical progress strategies. The simplest idea consists in issuing

⊥ only in the states S! = {s ∈ S | π∗(s)(⊥) = 1} where ⊥ is the only winning move:

this corresponds to waiting for output moves only when no resource can be granted. This

idea leads to the maximal progress strategy πp, defined by πp(s) = δ(⊥) for s ∈ S!, and

πp(s) = Uniform(Supp(π∗(s)) \ {⊥}) otherwise. Unfortunately, the maximal progress

strategy is not always winning, as the following example demonstrates.

Example 14 Consider the 3-thread system ({a, b}, {a 7→ 1, b 7→ 1}, (I1, I2, I3)) where I1

and I2 are as in Figure 8.7(a), while I3 is as in Figure 8.7(b). Figure 8.7(c) shows a fragment

of the corresponding joint interface. Let us analyze this fragment as part of G2, and assume
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that player 1 employs πp. One can check that, starting from the initial state (0, 0, 0, ν0),

player 2 can steer the game to state (5, 1, 1, ν), where ν = {a 7→ 0, b 7→ 1}. At this point,

all of the edges, except for the dashed ones, can be taken under πp. The objective for the

player 1 is to reach one of the states labeled as “good”, as in those states thread 3 can make

progress without risking a deadlock. However, player 2 can steer the game away from

the two good states, thus reaching (1, 5, 1, ν) with certainty. Since (1, 5, 1, ν) is symmetrical

w.r.t. (5, 1, 1, ν), this strategy enables player 2 to keep thread 3 starving forever. Thus, πp

is not a winning strategy in this game. The same applies to G2.5, since the threads under

consideration have no inter-thread non-determinism.

It should be noted that the situation is different in G1.5. Since all output edges

happen uniformly at random, πp is winning in this case, as state (0, 0, 1, ν0) is eventually

reached with probability 1. �

The example above suggests that sometimes, as in state (5, 1, 1, ν), it is necessary to wait for

output actions, even when there are resources that are ready to be granted. The problem of

waiting for outputs, as mentioned earlier, is that in general there is no guarantee that the

outputs will be generated in a timely fashion. However, in mutex-only systems, we can

assume that when a thread holds a mutex it will generate an output in a timely fashion,

either to release the mutex, or to request another mutex. This captures the idea that, in

well-written code, critical regions have short durations. Based on this idea, we let Sc be

the set of states of a mutex-only system where there is some thread holding a mutex, and

we propose a strategy that waits for outputs only in Sc. We define the critical progress

strategy πc by letting, for all s ∈ S, πc(s) = π∗(s) if s ∈ Sc or s ∈ S!, and πc(s) =
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Figure 8.7: A system where the maximal progress strategy is not winning.

Uniform(Supp(π∗(s)) \ {⊥}) otherwise. The following result shows that, for PMF systems,

πc is an efficient resource manager strategy.

Theorem 37 In a PMF system πc is winning for G2.

Proof. For all states s ∈ Sc ∪ S!, since πc(s) = π∗(s), given π∗ is winning in G2 for PMF

systems by Theorem 35, we have πc is winning in G2. For all states s ∈ S \ (Sc ∪ S!), given

π∗ is winning in G2, all moves in Supp(π∗(s)) are winning. As all threads are waiting for

a resource at s by the definition of Sc, and choosing ⊥ is necessary only when some thread

is holding a resource, we have πc(s) = Uniform(Supp(π∗(s)) \ {⊥}) is winning in G2. �

Efficient strategies for systems with semaphores. A natural extension of πc to systems

with semaphores is a strategy that waits for outputs only when there is at least one thread
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waiting for a resource that is not available (so that another thread must be holding a re-

source, and it may be reasonable to expect an output action in a timely manner). Unfortu-

nately, there are examples showing that such an extension is not winning in general. We

discuss two related strategies that are winning, and efficient, for systems with semaphores.

To obtain our first strategy, we reason as follows. Once a memoryless strategy

π ∈ Π1 is fixed, the game G2 is equivalent to a 2-MDP G2(π). If an end-component in this

2-MDP is not fair, that is, if there is a thread k that is neither finished, nor progresses in

the end component, then it can be seen that thread k must be stuck waiting for an input (a

resource) at all states of the end component. This suggests to skip ⊥ (waiting for outputs)

only when no thread is blocked: in this way, if the strategy differs from π∗ by cutting

⊥, it can do so only in a winning component. Precisely, for s ∈ S we let Succ(s,π∗) =

{t ∈ S | ∃m1 ∈ Γ1(s).∃m2 ∈ Γ2(s).(π∗(m1) > 0 ∧ δ(s,m1,m2)(t) > 0)} be the set of

possible successors of s according to π∗, and we let Sb = {s ∈ S | ∃k ∈ [1..n].∀t ∈

Succ(s,π∗).θ(s, t) 6= k} be the set of states where some thread is blocked. For s ∈ S, we

then define πb by πb(s) = π∗(s) if s ∈ Sb ∪ S!, and πb(s) = Uniform(Supp(π∗(s)) \ {⊥})

otherwise.

Theorem 38 The strategy πb is winning in G2 iff π∗ is winning in G2.

Proof. In one direction, if πb is winning in G2, then not skipping ⊥ in states where none of

the threads are holding a resource is also winning in G2 and hence π∗ is winning in G2. In

the other direction, similar to the proof of Theorem 37, if π∗ is winning in G2, then cutting

⊥ in states where no thread is holding a resource is winning in G2. Hence πb is winning

in G2. �
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Finally, we can obtain an efficient strategy with memory as follows. We say that a thread k

is bypassed whenever it is waiting for an input, and the scheduling strategy does not give

that input. Then, given a bypass bound M ∈ N, we can construct a strategy π
p
M as follows.

For each thread k ∈ [1..n], π
p
M keeps track of the number bk of times for which thread k

has been consecutively bypassed. As long as bk ≤ M for all 1 ≤ k ≤ n, the strategy π
p
M

behaves like πp. When bk > M for some k ∈ [1..n], on the other hand, π
p
M reverts to

behave like π∗, thus sometimes waiting for outputs when there are input actions (resource

grants) that could be taken. The idea, informally, is as follows: if a thread is bypassed for

a large number of consecutive times, it means that some other threads may be holding the

resources it needs to proceed. Favoring output actions (amongwhich are resource releases)

enables the system to reach a state where the bypassed thread can be finally granted the

resource it needs.

Theorem 39 For all M ∈ N, we have that π
p
M is winning in G2 iff π∗ is winning in G2.

Proof. In one direction, consider an arbitrary fixed bound M ∈ N and the resulting strategy

π
p
M that is winning in G2 from a starting state s∗. We show that π∗ is winning in G2. For

all states s ∈ S!, where the only winning move is ⊥, since π
p
M and π∗ will choose ⊥,

π∗ is winning at s. If bi ≤ M for all threads i ∈ {1, . . . , n} for all paths starting at s∗,

then given π
p
M is winning, we can always reach a state t∗i where thread i is enabled with

positive probability. This implies using π∗, which only differs from π
p
M by playing ⊥ with

positive probability, we can again reach t∗ with positive probability. Therefore, we have

π∗ is winning. If bk > M for some thread k ∈ {1, . . . , n} for some path starting at s∗, then

as π
p
M reverts to π∗ and π

p
M is winning, π∗ is winning as well.
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In the other direction, given π∗ is winning in G2 from a starting state s∗, if M = 0,

then as π
p
M is the same as π∗, we have π

p
M is winning in G2. Consider an arbitrary fixed

M > 0. The strategy π
p
M differs from π∗ by cutting ⊥ in states Win(G2) \ S! as long as

bi ≤ M for all threads i ∈ {1, . . . , n}. Since the game always remains in Win(G2) and π
p
M

reverts to π∗ when bk > M for some thread k ∈ {1, . . . , n}, given π∗ is winning, we have

π
p
M is also winning in G2. �

8.4 The Tool

We have developed a prototype tool called CYNTHESIS that realizes the theory

hereby presented. The tool takes as input a C program, and it either produces a warning

that the system is not schedulable (according to the definition in Section 8.2.2), or it outputs

a custom resource manager encoded as a C program that can be compiled and linked to

the original program. The result is an executable that is deadlock-free whenever the OS

scheduler is fair, and the threads do not block for reasons other than resources (such as

infinite loops). The tool is currently tailored to the eCos embedded OS [eco], but it can be

easily modified to work with another OS.

To extract thread interfaces, the tool uses the CIL library [NMRW02] to build a

control-flow graph (CFG) for each thread. For the purpose of this graph, function calls

are treated as inlined. While building the CFG, each time a synchronization primitive is

detected, edges labeled with the appropriate action are added to the thread interface, as

follows: (i) calls to mutex unlock(x) and sem post(x) are represented by an edge labeled

rx!, and (ii) calls to mutex lock(x) and sem wait(x) are represented by a sequence of two
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edges labeled with wx! and gx? respectively. The original calls are also automatically an-

notated with location information, to allow the resource manager to distinguish them at

run-time. The graph is thenminimized to remove transitions that do not involve resources.

Currently, in order for the tool to correctly identify resources, they must be de-

clared as global variables and then used by their original names; we are working to add

alias analysis to the tool to overcome this limitation. Once the thread interfaces are ex-

tracted, the tool solves the game G1.5 and it outputs a custom resource manager in the

form of compilable C code. The resource manager behaves like the strategy π∗, or option-

ally like one of the other winning strategies discussed in Section 8.3. In order to simulate

the behavior of a strategy, the custom manager needs to know which winning moves are

available at any given decision point. In turn, this means that it has to know in which state

of the joint interface the system currently is, and what are the winning moves from that

state. Rather than keeping a copy of the joint interface, which can be of exponential size in

the number of threads, the manager keeps separate copies of the individual thread inter-

faces, along with the value of the resources. With this information, the manager is aware

of all moves; all that remains to encode are the moves that are not part of the winning strat-

egy: to do this, it suffices to store the set of losing states. As the number of losing states

can grow exponentially with the number of threads, we encode the losing states using a

BDD [Bry86], leading to a very compact representation. In Table 1, we report the result of

some experiments, all run on a 2.4GHz Pentium 4 machine with 512Mb of memory. The

threads involved in the test give rise to thread interfaces having between 5 and 12 states;

apart from the resource primitives, the size of the source code of the threads has a negligi-
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Number of threads(n) |MI | Number of bad states BDD nodes Time (sec.)

2 37 3 15 0.05

3 171 18 30 0.07

6 17496 2592 62 39

6 33120 5490 211 334

Table 8.1: Experiments.

ble effect on the running time of the tool, and it is irrelevant to the size of the synthesized

manager and the BDD. The second column reports the number of states in the joint inter-

face, and the last column reports the total time needed to synthesize the manager.

A Case Study

We conducted a more extensive test, consisting in analyzing a multi-threaded

program implementing an ad-hoc network protocol for Lego robots. As illustrated in Fig-

ure 8.8, the program is composed of five threads, represented by ovals in the figure, that

manage four message queues, represented as boxes in the figure.

Threads user and generator add packets to the input queue. The router thread re-

moves packets from the input queue, and dispatches them to the other queues. Packets in

the user queue are intended for the local node, so they are consumed by the user thread.

Packets in the broadcast queue are intended for broadcast, and they are moved to the output

queue by the delay thread, after a random delay, intended to avoid packet collisions dur-
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Figure 8.8: Scheme of an ad-hoc network protocol implementation.

ing broadcast propagations. Packets in the output queue are in transit to another node, so

they are treated by the sender thread. Notice that if the sender fails to send a packet on the

network, it puts it in the broadcast queue (even if it is not a broadcast packet), so that it will

be re-sent after a delay.

Each queue is protected by a mutex, and two semaphores that count the number

of empty and free slots, respectively. Altogether, the program employs 7 mutexes and 8

semaphores. By restricting all queues to having 1 slot, the resulting joint interface contains

400,000 states, and the tool terminates its analysis in about 7 minutes.

The tool found a deadlock that corresponds to the following situation. Suppose

that queues output and broadcast are both full. Suppose also that the sender thread extracts

a packet from output and tries to send it on the network. If the send fails, the thread will

try to insert the packet in the broadcast queue. Since the latter is full, the sender thread will

hang on a semaphore, waiting for an empty slot in broadcast. However, the only way a slot

in broadcast can be emptied is for the delay thread to move a packet to output, which is still

full. Therefore, the senderwill hang forever, and the whole systemwill consequently block.

Interestingly, the tool reports that there is a winning strategy in this situation. The strategy
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consists in “slowing down” the router, preventing it from adding packets to broadcast if

output is full, and vice versa.

224



Chapter 9

Discussion

In this chapter we present our conclusions and discuss possible future directions

for the work presented in this thesis. We highlight possible applications of game relations

and metrics and then cover extensions to our work on protocol synthesis and resource

manager synthesis. We begin with game relations and metrics.

9.1 Game Relations and Metrics

We have shown theoretical applications of game metrics with respect to dis-

counted and long-run average values of games. An interesting question regarding game

metrics is related to their usefulness in real-world applications. We now discuss possible

applications of game metrics.

State space reduction. The kernels of the metrics are the simulation and bisimulation re-

lations. These relations have been well studied in the context of transition systems with

applications in program analysis and verification. For example, in [KKZJ07] the authors
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show that bisimulation based state space reduction is practical and may result in an enor-

mous reduction in model size, speeding up model checking of probabilistic systems.

Security. Bisimulation plays a critical role in the formal analysis of security protocols. If

two instances of a protocol, parameterized by a message m, are bisimilar for messages

m and m′, then the messages remain secret [CNP09]. The authors use bisimulation in

probabilistic transition systems to analyze probabilistic anonymity in security protocols.

Computational Biology. In the emerging area of computational systems biology, the au-

thors of [TK09] use the metrics defined in the context of probabilistic systems [DGJP99,

vBW01a, vBW01b] to compare reduced models of Stochastic Reaction Networks. These reac-

tion networks are used to study intra-cellular behavior in computational systems biology.

The reduced models are Continuous Time Markov Chains (CTMCs), and the comparison

of different reduced models is via the metric distance between their initial states. A central

question in the study of intra-cellular behavior is estimating the sizes of populations of var-

ious species that cohabitate cells. The inter-cellular dynamics in this context is modeled as

a stochastic process, representing the temporal evolution of the species’ populations, rep-

resented by a family (X(t))t≥0 of random vectors. For 0 ≤ i < N, N being the number

of different species, Xi(t) is the population of species Si at time t. In [SW08], the authors

show how CTMCs that model system dynamics can be reduced to Discrete Time Markov

Chains (DTMCs) using a technique called uniformization or discrete-time conversion. The

DTMCs are stochastically identical to the CTMCs and enable more efficient estimation of

species’ populations. An assumption that is made in these studies is that systems are spa-

tially homogeneous and thermally equilibrated; the molecules are well stirred in a fixed
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volume at a constant temperature. These assumptions enable the reduction of these sys-

tems to CTMCs and to DTMCs in some cases.

In the applications we have discussed, non-determinism is modeled probabilisti-

cally. In applications where non-determinism needs to be interpreted demonically, rather

than probabilistically, MDPs or turn-based games would be the appropriate framework

for analysis. If the interaction between various sources of non-determinism needs to be

modeled simultaneously, then concurrent games would be the appropriate framework for

analysis. For the analysis of these general models, our results and algorithms will be use-

ful.

Open Problems. While we have shown polynomial time algorithms for the kernel of the

simulation and bisimulation metrics for MDPs and turn-based games, the existence of a

polynomial time algorithm for the kernel of both the simulation and bisimulation metrics

for concurrent games is an open problem. We have introduced ametric in this thesis, which

we call the total reward metric. While we show that the undiscounted total reward metric

provides a bound for qµ, dµ, discounted, long-run average and total rewards, we are not

aware of an extension to a quantitative calculus that would be a useful generalization of

qµ and dµ and that would be logically characterized by the new metric. This is an open

problem.

9.2 Protocol Synthesis

Fair non-repudiation protocols were invented to address the problem of digital

contract signing over networks. It has been difficult to design these protocols and various
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formal verification methods have been applied to verify their correctness. In this thesis

we have approached the problem of designing these protocols as participant refinements,

using automated synthesis, that satisfy fairness, abuse-freeness and are attack free. This

provides the ability to separate designing the correct restrictions on participant behaviors

from the cryptanalysis of the content of the messages, enabling a modular and structured

approach to the design of protocols. We have shown that traditional co-operative or strictly

adversarial notions of synthesis cannot be used to design these protocols. The right notion

of synthesis is assume-guarantee synthesis based on the existence of secure equilibrium

strategies in three-player turn-based games with a fair scheduler. We have shown that

the solution set, PAGS, of assume-guarantee synthesis includes the KM protocol and not

the ASW or the GJM protocols and that the KM protocol could have been automatically

synthesized from PAGS. Using assume-guarantee analysis, we have presented a symmetric

fair non-repudiation protocol, that is attack-free given a fixed TTP, assuming the channels

between the agents and the TTP are operational. The symmetric non-repudiation protocol

enables R to abort the protocol, thus engendering symmetrical abilities to both O and R.

Using PCS, a cryptographic primitive which provides the designated verifier property, we

can easily ensure that our symmetric protocol does not provide even partial information

to either agent when the protocol is aborted. As an offshoot of our work we have shown

that the TTP is needed for synthesis if we assume that the agents are not co-operative.

Our work is the first application of the theory of controller synthesis to security protocols.

The size of the state space and the efficiency of computing the assume-guarantee solution

makes this approach attractive to the design of all protocols where the agents are assumed
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to be rational, not deviating from the protocol if it hurts their payoff. Further, the sub-

tleties in these protocols and the interplay between the protocol, participant and synthesis

objectives can be effectively analyzed using techniques we present in this thesis. For fu-

ture work, we would like to study the problem of automatic synthesis of multi-party fair

exchange protocols and other security protocols. We would like to study the problem of

synthesizing messages that are impervious to attacks. We would also like to extend the

theory of assume-guarantee synthesis, as needed, to account for imperfect information.

9.3 Synthesis of Resource Managers

The progress objective φ
goal
I states that each thread that is ready makes progress

eventually, but the “eventual” time to make progress can be unbounded. A stronger and

more desirable notion of progress is that of finitary progress, which states that each ready

thread makes progress within bounded time. Let σ ∈ Sω be an infinite path that can be

taken in a joint interface MI ; we take σ[j] for j = (0, 1, 2, . . .) as the sequence of states in

the path σ. Let progressi(s, t) be the predicate that is true for an edge (s, t) if θ(s, t) = i, and

the predicate finali is true over an edge (s, t) ∈ E if the thread i is in a final state in s. The

finitary progress goal φ
goal
I , f can be defined as follows:

φ
goal
I , f =

n
⋂

i=1

(3 f inali ∪ {σ ∈ Sω | ∃b ∈ N . ∀j ≥ 0 . ∃l ≤ j .

(progressi(σ[l], σ[l + 1]) ∧ (j < l ≤ (j + b)))}) .

Intuitively, the winning set of paths for the resource manager is the set of paths such that

in each path for every thread i, progressi(s, t) is true over edges that are never more than
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b apart. We now show that the fairness assumption on inter-thread and intra-thread non-

determinism is not sufficient to ensure finitary progress.

Consider again the example in Figure 8.3. From our earlier analysis of the exam-

ple, the resource manager can give resources b and c to Thread 3 only when either Thread 1

is in its then branch or Thread 2 is in its else branch. As long as Thread 1 and Thread 2 are

in their else and then branches respectively, the resource manager does not have a strategy

to ensure that Thread 3 enters its critical region. A fair strategy to resolve intra-thread

non-determinism is as follows. The strategy is played in rounds. In round i, Thread 1

and Thread 2 collude such that Thread 1 is in the else branch of its conditional statement

and Thread 2 is in the then branch of its conditional statement for at least i executions

of the while loop. Thread 1 then enters its then branch or Thread 2 enters its else branch

once before proceeding to round i + 1. For example, let the conditional expression exp

be power o f 2(y) where y is a variable shared by Thread 1 and Thread 2 that is initially

0 and is incremented by 1 in Thread 1 each time the while loop executes. The function

power o f 2(y) returns 1 if y is a power of 2 and 0 otherwise. For any bound b > 0, there

exists a y > 0 with 2y−1 ≤ b < 2y such that the resourcemanager has no strategy to allocate

resources b and c to Thread 3 for 2y > b executions of the loop in Thread 1 and Thread 2. It

follows that φinter
I ∧ φintra

I ⇒ φ
goal
I , f fails. On the other hand, if Thread 1 and Thread 2 satisfy

the stronger notion of finitary fairness, where both branches of the conditional statement

will be executed within a bound b > 0, then as soon as Thread 1 enters its then branch or

Thread 2 enters its else branch, the resource manager can allocate b and c to Thread 3 and

ensure that Thread 3 makes progress within the bound b thus satisfying its goal φ
goal
I , f . We
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now formulate the finitary fairness assumption on intra-thread non-determinism as:

φintra
I , f =

n
⋂

i=1

{σ ∈ Sω | ∃b ∈ N . ∀j ≥ 0 . ∀u ∈ Si . ∀v ∈ Osucci(u) . ∃l ∈ N .

fromu
i (σ[j], σ[j + 1]) ⇒ takeu,vi (σ[l], σ[l + 1]) ∧ (j < l ≤ (j + b))} .

Intuitively, the finitary assumption φI , f is the set of paths such that in each path, if a thread

visits a state where it has multiple output successors, then each output successor can be ig-

nored at most k times. A similar definition applies to the finitary fairness assumption φinter
I , f

on inter-thread non-determinism. The ammended objective for the automatic synthesis of

resource managers is then:

φ2
f = (φinter

I , f ∧ φintra
I , f ⇒ φ

goal
I , f ) . (9.1)

We would like to study finitary progress under finitary fairness conditions on the

sources of non-determinism for future work.
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A.1 Appendix

Translating protocol models to process models. We now present a translation from the

protocol model introduced in Section 7.1 to the process model introduced in Section 7.3.

We take Moves = M, as the set of process moves, corresponding to the set of all messages

in M. For 1 ≤ i ≤ n, we map each participant Ai−1 to a process Pi as follows:

− Xi = Vi−1 ∪ {Li}, is the set of variables of process Pi that includes all participant

variablesVi−1 and a special variable Li corresponding to line numbers, taking finitely

many values in N,

− for all valuations f ∈ Fi[Xi], we have Γi( f ) = Λi−1( f ↓ Vi−1) and

− δi : Fi[{Li}]×Fi[Xi \ {Li}]×Moves 7→ Fi[{Li}]×Fi[Xi \ {Li}] is the process transi-

tion function that exactly corresponds to the participant transition function Λi−1.

The sets Xi form a partition of X =
⋃n

i=1 Xi. The set of processes Pi, given all possible

behaviors of a fair scheduler Sc, corresponds to the most general exchange program. The

realization of a protocol corresponds to a refinement P′
i � Pi for 1 ≤ i ≤ n, where each

participant A′
i−1 maps to the process P′

i as follows:

− X′
i = Xi = Vi−1 ∪ {Li} is the set of variables of process P′

i ,

− for all valuations f ∈ F ′
i [X

′
i ], we have Γ′

i( f ) = Λ′
i−1( f ↓ Vi−1) and

− for all valuations f ∈ F ′
i [X

′
i ], for all moves m ∈ Moves, we have δ′i( f ,m) =

Λ′
i−1( f (Li), f ↓ Vi−1,m).
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A protocol instance (protocol run) is a trace in [[P′
1 ‖ P′

2 . . . ‖ P′
n ‖ Sc]](v0) for an initial

valuation v0 ∈ F [X]. The specifications of the participants, which were defined as a set of

desired sequences of messages, are subsets of traces in [[P′
1 ‖ P′

2 . . . ‖ P′
n ‖ Sc]](v0). Given

specifications ϕi for process Pi, a Y-attack for Y ⊆ {P1, P2, . . . , Pn} satisfies ϕi for all Pi ∈ Y,

while violating ϕj for at least one process P′
j ∈ ({P1, P2, . . . , Pn} \ Y)′. There are three

participants in a two party fair non-repudiation protocol, the originator O, the recipient

R and the trusted third party TTP. We therefore take n = 3 in modeling two party fair

exchange protocols in the above translation.

We now prove Lemma 12. Given a refinement P′ = (O′, R′, TTP′) � P, we first

characterize the smallest restriction on O′ and R′ that satisfy the implication conditions:

[[O ‖ R′ ‖ TTP ‖ Sc]] ⊆ (ϕO ∧ ϕTTP) ⇒ ϕR; and (A.1)

[[O′ ‖ R ‖ TTP ‖ Sc]] ⊆ (ϕR ∧ ϕTTP) ⇒ ϕO . (A.2)

We show that for all refinements R′ � R, the implication condition (A.1) holds. In order to

characterize the smallest restrictions on O that satisfies the implication condition (A.2), we

recall the following constraints on O. We show that these constraints are both necessary

and sufficient to satisfy (A.2).

AGS constraints on O. We say that a refinement O′ � O satisfies the AGS constraints on O

if O′ satisfies the following constraints:

1. aO1 6∈ ΓO′(v0);

2. EOOO
k 6∈ ΓO′({M1, EOR,ABRO}); and

3. aO1 6∈ ΓO′({M1, EOR,M3}).
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The most flexible refinements O′ � O and R′ � R. We now characterize the most flexible

refinements O′ � O and R′ � R that satisfy the implication conditions (ϕR ∧ ϕTTP) ⇒ ϕO

and (ϕO ∧ ϕTTP) ⇒ ϕR.

Lemma 20 For all refinements R′ � R, the following assertion holds:

[[O ‖ R′ ‖ TTP ‖ Sc]] ⊆ (ϕO ∧ ϕTTP) ⇒ ϕR.

Proof. Consider an arbitrary refinement R′ � R. We have the following cases of sets of

traces of [[O ‖ R′ ‖ TTP ‖ Sc]] for the proof:

− Case 1. Set of traces where m3 has been received. For all traces where m3 has been re-

ceived, ϕR is satisfied. Therefore all these traces satisfy the implication condition,

(ϕO ∧ ϕTTP) ⇒ ϕR.

− Case 2. Set of traces where m3 has not been received. For all traces where m3 has not

been received, the traces where either ϕO or ϕTTP is violated, satisfy the implication

condition (ϕO∧ ϕTTP) ⇒ ϕR trivially. The interesting case are those traces that satisfy

ϕO ∧ ϕTTP but violate ϕR. These are exactly the traces where O does not have EORR
k ,

since m4 is not sent before receiving m3, and R does not have EOOO
k , as otherwise ϕR

would be satisfied. We have following cases that lead to a contradiction:

◦ Case (a). O aborts the protocol. In these traces, since ϕTTP is satisfied, the abort to-

ken must have been sent to both agents, and since neither agent will be sent the

other’s signature and the channels between the agents and the TTP are resilient,

the traces satisfy ϕR, leading to a contradiction.
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◦ Case (b). O or R′ resolve the protocol. In these traces, since ϕTTP is true, the TTP

sends EOOTTP
k to R and EORTTP

k to O and never sends either AO or AR. This

implies, given the channel between the agents and the TTP is resilient, the traces

satisfy ϕR, leading to a contradiction.

◦ Case (c). R′ chooses move ι. In these traces, since ϕO is true, either O aborts the

protocol after sending m1 or she chooses to abort or resolve the protocol after

receivingm2. In either case, given the traces satisfy ϕTTP, by the above argument

ϕR is satisfied as well, irrespective of the behavior of the channel between O and

R. This again leads to a contradiction.

Since we have shown that for all traces, either ϕR is satisfied or satisfaction of ϕO ∧ ϕTTP

implies satisfaction of ϕR, we conclude that for all refinements R′ � R the assertion holds.

�

It follows from Lemma 20, that as R′ can always resolve the protocol in state

{EOO} and all successor states, such that the resulting trace satisfies (ϕO ∧ ϕTTP) ⇒ ϕR,

we have m2 ∈ ΓR′({EOO}). Similarly, m4 ∈ ΓR′({EOO,M2, EOOO
k }) as ϕR is satisfied in all

traces where m3 has been received, thus satisfying (ϕO ∧ ϕTTP) ⇒ ϕR.

In the following lemma, in assertion 1 we show that for all refinements O′ �

O that satisfy the AGS constraints on O, the implication condition (A.2) is satisfied; in

assertion 2 we show that if O′ does not satisfy the AGS constraints on O, the implication

condition (A.2) is violated.

Lemma 21 (The smallest restriction on O′ � O) For all refinements O′ � O, the following

assertions hold:
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1. if O′ satisfies the AGS constraints on O, then

[[O′ ‖ R ‖ TTP ‖ Sc]] ⊆ (ϕR ∧ ϕTTP) ⇒ ϕO.

2. if O′ does not satisfy the AGS constraints on O, then

[[O′ ‖ R ‖ TTP ‖ Sc]] 6⊆ (ϕR ∧ ϕTTP) ⇒ ϕO.

Proof. Consider an arbitrary refinement O′ � O that satisfies the AGS constraints on O. We

have the following cases of sets of traces of [[O′ ‖ R ‖ TTP ‖ Sc]] for the proof:

− Case 1. Set of traces where m4 has been received. In the case of classical co-synthesis, an

adversarial R will never send m4 as that satisfies ϕO unconditionally, but in assume-

guarantee synthesis, from Lemma 20, since all refinements of R satisfy the weaker

condition of (ϕO ∧ ϕTTP) ⇒ ϕR, m4 ∈ ΓR′(〈EOO,M2, EOOO
k 〉). For all traces where

m4 has been received, ϕO is satisfied. Therefore all these traces satisfy the implication

condition (ϕR ∧ ϕTTP) ⇒ ϕO.

− Case 2. Set of traces where m4 has not been received. For all traces where m4 has not

been received, the traces where either ϕR or ϕTTP is violated, satisfy the implication

condition (ϕR ∧ ϕTTP) ⇒ ϕO trivially. The interesting case are those traces that sat-

isfy ϕR ∧ ϕTTP but violate ϕO. These are exactly the traces where O does not have

EORR
k , since m4 has not been received. We have the following cases that lead to a

contradiction:

◦ Case (a). O′ has sent m3. In these traces, since O′ satisfies the AGS constraints

on O, the only choice of moves for O′ are ι or rO1 ; she can wait for R to send m4
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or resolve the protocol. In the set of traces where she eventually receives m4,

by Case 1, the traces satisfy (ϕR ∧ ϕTTP) ⇒ ϕO. If she does not receive m4, she

will eventually resolve the protocol to satisfy ϕO. In the set of traces where she

eventually resolves the protocol, since ϕTTP is satisfied, and R cannot abort the

protocol, the TTP will eventually respond to her request by sending her non-

repudiation evidence and not the abort token. These traces therefore satisfy ϕO,

leading to a contradiction.

◦ Case (b). O′ aborts the protocol before sending m3. Since O′ satisfies the AGS con-

straints on O, she cannot abort the protocol in the initial state v0. Therefore, O
′

must have started the protocol by sending m1. In all these traces, O′ aborts the

protocol after sending m1 but before sending m3 and since O′ satisfies the AGS

constraints on O, she will not send m3 after sending the abort request. Since

these traces satisfy ϕTTP, the abort token must have been sent to both agents,

and since neither agent will be sent the other’s signature and the channels be-

tween the agents and the TTP are resilient, the traces satisfy ϕO, leading to a

contradiction.

◦ Case (c). O′ resolves the protocol before sending m3. In these traces, since ϕTTP

is true, the TTP sends EORTTP
k to O and EOOTTP

k to R and never sends either

AO or AR. This implies, given the channel between the agents and the TTP is

resilient, the traces satisfy ϕO, leading to a contradiction.

◦ Case (d). O′ chooses move ι instead of sending m3. In these traces, since ϕR is true, R

must have resolved the protocol after receiving m1. In this case, given the traces
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satisfy ϕTTP, by the above argument ϕO is satisfied as well. This again leads to

a contradiction.

◦ Case (e). The channel between O and R is unreliable. If either m1 or m2 are not

delivered, then O′ can abort the protocol. If either m3 or m4 are not delivered,

thenO′ can resolve the protocol. In either case, by Case (a), Case (b) andCase (c),

we have ϕO is satisfied even when the channel between O and R is unreliable,

leading to a contradiction.

We conclude that for all O′ that satisfy the AGS constraints on O, we have [[O′ ‖ R ‖ TTP ‖

Sc]] ⊆ (ϕR ∧ ϕTTP) ⇒ ϕO.

For assertion 2, consider an arbitrary refinement O′ � O that does not satisfy the

AGS constraints on O. We consider violation of the constraints on a case by case basis. For

each case we produce a witness trace that violates the implication condition (ϕR ∧ ϕTTP) ⇒

ϕO. We proceed as follows:

− Case 1. aO1 ∈ ΓO′(v0). In a trace where O′ sends an abort request before sending

message m1 in the initial protocol state v0, it is trivially the case that the trace does

not satisfy ϕO but satisfies ϕR. If the TTP satisfies the AGS constraints on the TTP and

sends [aO2 , a
R
2 ] in response, then the trace satisfies ϕTTP. Therefore, the trace violates

(ϕR ∧ ϕTTP) ⇒ ϕO.

− Case 2. EOOO
k ∈ ΓO′(M1,EOO,ABRO). To produce a witness trace we consider a

partial trace that ends in protocol state {M1, EOO,ABRO}; messages m1 and m2 have

been received and aO1 has been sent. Since the channel between O and the TTP is

resilient, the abort request is eventually processed by the TTP. If O′ sends message
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m3 in this state and the TTP responds with move [aO2 , a
R
2 ] to her abort request, then

there exists a behavior of the channel between O and R such that m3 is eventually

delivered and the protocol is aborted. The trace therefore satisfies ϕR ∧ ϕTTP but

violates ϕO; as O cannot get R’s signature after the protocol is aborted and R has her

signature.

− Case 3. aO1 ∈ ΓO′(M1,EOO,M3). To produce a witness trace we consider a partial

trace that ends in protocol state {M1, EOO,M3}; messages m1 and m2 have been

received and m3 has been sent. If O′ aborts the protocol in this state and the TTP

satisfies the AGS constraints on the TTP and responds with move [aO2 , a
R
2 ], then there

exists a behavior of the channel between O and R, where m3 is eventually delivered

to R. The trace satisfies ϕR ∧ ϕTTP but violates ϕO.

We conclude that if O′ does not satisfy the AGS constraints on O, then [[O′ ‖ R ‖ TTP ‖

Sc]] 6⊆ (ϕR ∧ ϕTTP) ⇒ ϕO. �

From Lemma 21, it is both necessary and sufficient that O satisfies the AGS con-

straints on O to ensure the implication condition (A.2).

The maximal refinement P∗ = (O∗,R∗,TTP∗). We recall the definition of the maximal

refinement P∗ = (O∗, R∗, TTP∗) below:

1. O∗ � O satisfies the AGS constraints on O and for all O′ that satisfy the constraints,

we have O′ � O∗;

2. R∗ = R; and

3. TTP∗ � TTP satisfies the AGS constraints on the TTP and for all TTP′ that satisfy the
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constraints, we have TTP′ � TTP∗.

The weak co-synthesis requirement. Let b ∈ N be a bound on the number of times that

O or the TTP may choose the idle move ι when scheduled by Sc. In the following lemma,

for all refinements P′ � P∗ that satisfy the AGS constraints on the TTP, in assertion 1 we

show that if b is finite, then the condition for weak co-synthesis is satisfied; in assertion 2

we show that if b is unbounded, then the condition for weak co-synthesis is violated.

Lemma 22 (Bounded idle time lemma) For all refinements P′ = (O′,R′,TTP′) � P∗ that

satisfy the AGS constraints on the TTP, for all b ∈ N with O′ and TTP′ choosing at most b idle

moves when scheduled by Sc, the following assertions hold:

1. if b is finite, then [[O′ ‖ R′ ‖ TTP′ ‖ Sc]] ⊆ (ϕO ∧ ϕR ∧ ϕTTP).

2. if b is unbounded, then [[O′ ‖ R′ ‖ TTP′ ‖ Sc]] 6⊆ (ϕO ∧ ϕR ∧ ϕTTP).

Proof. For the first assertion, we show that the condition for weak co-synthesis holds

against all possible behaviors of the channel between O and R. We have the following

cases:

− Case 1. Agents abort or resolve the protocol. In all traces where the agents abort or

resolve the protocol, given b is finite and that TTP′ satisfies the AGS constraints on

the TTP, by Lemma 11 (assertion 1), TTP′ will eventually respond to the first and all

subsequent requests such that ϕTTP is satisfied. In all these traces, given the channels

between the agents and the TTP are resilient, both agents get either the abort token

or non-repudiation evidences but never both. This ensures ϕO and ϕR are satisfied.
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− Case 2. The channel between O and R is resilient. In all traces where neither agent

aborts nor resolves the protocol, ϕTTP is satisfied trivially. Further, the only re-

finements of the agents that neither abort nor resolve the protocol are those where

{m1,m3} ∈ MovesO′ and {m2,m4} ∈ MovesR′ . Since b is finite, the only choice of

moves for O′, since she does not abort or resolve the protocol, are m1 in state v0

and m3 in state {M1, EOR}, after choosing at most b idle moves at each state. Simi-

larly, the only choice of moves for R′ are ι or m2 in state {EOO} and ι or m4 in state

{EOO,M2, EOOO
k }. If R

′ never sends m2, then O′ will eventually abort the protocol

after bounded idle time and this case reduces to Case 1. If R′ never sends m4, then

O′ will eventually resolve the protocol after bounded idle time and this case reduces

to Case 1. If R′ sends m2 and m4 eventually, since the channel between O and R is

assumed resilient, messages m1, m2, m3 and m4 are eventually delivered satisfying

ϕO and ϕR.

− Case 3. The channel between O and R is unreliable. Since O′ � O∗, we have aO1 6∈ ΓO′(v0)

and aO1 6∈ ΓO′({M1, EOR,M3}); O
′ can abort the protocol in all other states. There-

fore, O′ satisfies the AGS constraints on O. Since b is finite and O′ cannot resolve the

protocol before initiating it, the only choice of moves for O′ in state v0 is to send m1

eventually. If the channel between O and R does not deliver either messages m1 or

m2, the only choice of moves for O′ is to abort the protocol. If either messages m3 or

m4 are not delivered, then the only choice of moves for O′ is to resolve the protocol.

In both these cases, since O′ chooses to abort or resolve the protocol, by Case 1 the

result follows.
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We conclude that irrespective of the behavior of the channel between O and R, if b is finite,

we have [[O′ ‖ R′ ‖ TTP′ ‖ Sc]] ⊆ (ϕO ∧ ϕR ∧ ϕTTP).

For the second assertion, given an unbounded b, to show that weak co-synthesis

fails, it suffices to show that there exists a behavior of the agents, the TTP and the chan-

nels that violates the condition for weak co-synthesis. Consider a partial trace ending

in protocol state {M1, EOO,M2, EOR,M3, EOOO
k , RES

O}; messages m1, m2 and m3 have

been received, R′ chooses to go idle, never sending m4 and O′ has sent rO1 . Since b

is unbounded, if TTP′ chooses to remain idle forever, then ϕO and ϕTTP are violated

leading to a violation of (ϕO ∧ ϕR ∧ ϕTTP). Therefore, given an unbounded b, we have

[[O∗ ‖ R∗ ‖ TTP∗ ‖ Sc]] 6⊆ (ϕO ∧ ϕR ∧ ϕTTP). �

From Lemma 22, it is both necessary and sufficient that the refinements P′ �

P∗ that satisfy the AGS constraints on the TTP, also satisfy bounded idle time to ensure

weak co-synthesis. While O and the TTP should satisfy bounded idle time, there are no

restrictions on R. Using Lemma 11, Lemma 20, Lemma 21 and Lemma 22 we now present

a proof of Lemma 12.

Proof. (Proof of Lemma 12). In one direction, consider an arbitrary refinement P′ =

(O′, R′, TTP′) ∈ P. We show that the conditions of assume-guarantee synthesis are sat-

isfied as follows:

− The implication condition for O. Since P′ � P∗, we have O′ � O∗, R′ � R∗ and TTP′ �

TTP∗. As aO1 6∈ ΓO∗(v0) and aO1 6∈ ΓO∗(M1, EOR,M3), the refinement P′ satisfies the

AGS constraints on O. Therefore, by Lemma 21 (assertion 1), we have [[O′ ‖ R ‖

TTP ‖ Sc]] ⊆ (ϕR ∧ ϕTTP) ⇒ ϕO.
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− The implication condition for R. By Lemma 20, we have [[O ‖ R′ ‖ TTP ‖ Sc]] ⊆

(ϕO ∧ ϕTTP) ⇒ ϕR.

− The implication condition for the TTP. Since TTP′ � TTP∗ and TTP′ satisfies the AGS

constraints on the TTP, by Lemma 11 (assertion 1), ϕTTP is satisfied irrespective of

the behavior of O and R, which implies [[O ‖ R ‖ TTP′ ‖ Sc]] ⊆ (ϕO ∧ ϕR) ⇒ ϕTTP.

− The weak co-synthesis condition. Given P′ satisfies bounded idle time, by Lemma 22

we have [[O′ ‖ R′ ‖ TTP′ ‖ Sc]] ⊆ (ϕO ∧ ϕR ∧ ϕTTP); weak co-synthesis holds.

Since we have shown that the refinement P′ satisfies all the implication conditions and the

weak co-synthesis condition of assume-guarantee synthesis, we have P′ ∈ PAGS. Hence

P ⊆ PAGS.

In the other direction, consider an arbitrary refinement P′′ = (O′′, R′′, TTP′′) ∈

PAGS. We show that P′′ ∈ P as follows:

− The AGS constraints on O. By Lemma 21, since it is both necessary and sufficient that

a refinement satisfy the AGS constraints on O to ensure the implication condition

(ϕR ∧ ϕTTP) ⇒ ϕO is satisfied, given the implication condition holds, we conclude

that P′′ satisfies the AGS constraints on O. Therefore, O′′ � O∗.

− The AGS constraints on the TTP. By Lemma 11, since it is both necessary and sufficient

that a refinement satisfy the AGS constraints on the TTP to ensure the implication

condition (ϕO ∧ ϕR) ⇒ ϕTTP is satisfied, given the implication condition holds, we

conclude that P′′ satisfies the AGS constraints on the TTP and TTP′′ � TTP∗.
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− The bounded idle time condition. By Lemma 22, since it is both necessary and sufficient

that a refinement satisfy bounded idle time to ensure weak co-synthesis, since weak

co-synthesis holds in this case, we conclude that P′′ satisfies bounded idle time.

− P′′ � P∗. Since we have shown that O′′ � O∗ and TTP′′ � TTP∗, we have P′′ � P∗.

− P∗ � P′′. Since P∗ is the smallest refinement in the set PAGS, given P′′ ∈ PAGS, it must

be the case that P∗ � P′′.

For P′′ ∈ PAGS, as we have shown that P∗ � P′′ � P∗, P′′ satisfies the AGS constraints on

the TTP and satisfies bounded idle time. Thus we have P′′ ∈ P and hence PAGS ⊆ P. The

result follows. �

We now present a proof of Lemma 13. We recall the enhanced AGS constraints on

the TTP below:

1. Abort constraint. If the first request received by the TTP is aO1 , then her response to

that request should be [aO2 , a
R
2 ]; If the first request received by the TTP is aR1 , then her

response to that request should be reqO;

2. Resolve constraint. If the first request received by the TTP is a resolve request, then

her response to that request should be [rO2 , r
R
2 ]; If the TTP receives resO in response

to reqO within bounded idle time, then her response should be [rO2 , r
R
2 ], otherwise it

should be [aO2 , a
R
2 ].

3. Accountability constraint. If the first response from the TTP is [x, y] or the first response

from the TTP is reqO and the next response is [x, y], then for all subsequent abort or

resolve requests her response should be in the set {ι, x, y, [x, y]}.
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Proof. (Proof of Lemma 13). From Protocol 2, since the refinement Os does not abort the

protocol either in the initial state v0 or after sending message m3, we have Os satisfies the

AGS constraints on O. By our definition of the behavior of TTPs, we have TTPs satisfies

the enhanced AGS constraints on the TTP. From the definition of the main protocol in

Protocol 2 and the abort subprotocol in Protocol 3, since the resolve subprotocol is identical

to the KM protocol, we have Os and TTPs satisfy the bounded idle time requirement. We

take A = {O,R, TTP} and show that there is no Y-attack for Y ⊆ {O,R} through the

following cases:

− Case 1. |Y| = 2. In this case Y = {O,R}. We show that [[O ‖ R ‖ TTPs ‖ Sc]] ⊆ ϕTTP.

For all traces in [[O ‖ R ‖ TTPs ‖ Sc]] where R does not abort the protocol, since TTPs

satisfies the enhanced AGS constraints on the TTP, by Lemma 11 (assertion 1), ϕTTP

is satisfied. For all traces where R sends an abort request, the TTP sends reqO. If O

responds with resO within bounded idle time, then the TTP resolves the protocol for

both O and R such that the AGS constraints on the TTP are satisfied. If O does not

send resO within bounded idle time, then the TTP aborts the protocol, such that the

AGS constraints on the TTP are satisfied. For all subsequent abort requests from R,

the TTP response satisfies the AGS constraints on the TTP. All traces therefore satisfy

ϕTTP. Hence, there is no Y-attack in this case.

− Case 2. |Y| = 1. In this case, either Y = {O} or Y = {R}. We have the following cases

towards the proof:

◦ Case (a). Y = {O}. We show that [[O ‖ Rs ‖ TTP ‖ Sc]] ⊆ (ϕO ∧ ϕTTP) ⇒ ϕR;

it will follow that [[O ‖ Rs ‖ TTPs ‖ Sc]] ⊆ (ϕO ∧ ϕTTP) ⇒ ϕR. Consider the
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set of traces in [[O ‖ Rs ‖ TTP ‖ Sc]]. For all traces where R does not abort the

protocol, by Lemma 20, we have ϕO ∧ ϕTTP ⇒ ϕR. For all traces where R aborts

the protocol, if he has received m3, then ϕR is satisfied. For all traces where R

aborts the protocol and message m3 has not been received, if ϕTTP is violated,

then the implication holds and if ϕTTP is satisfied, then either both agents get

abort tokens or their respective non-repudiation evidences, thus satisfying ϕR.

We have shown that all traces satisfy the implication condition ϕO ∧ ϕTTP ⇒ ϕR.

Since we have a fixed TTP that satisfies the AGS constraints on the TTP, we

have ϕTTP is satisfied in all traces by Case 1. As ϕO is satisfied by assumption,

we conclude ϕR is satisfied as well. Therefore, there is no Y-attack in this case.

◦ Case (b). Y = {R}. It can be shown that [[Os ‖ R ‖ TTP ‖ Sc]] 6⊆ (ϕR ∧ ϕTTP) ⇒

ϕO. We show that, by fixing the TTP, we have [[Os ‖ R ‖ TTPs ‖ Sc]] ⊆ (ϕR ∧

ϕTTP) ⇒ ϕO. Consider the set of traces [[Os ‖ R ‖ TTPs ‖ Sc]]. For all traces

where R does not abort the protocol, since O satisfies the AGS constraints on

O, by Lemma 21, we have (ϕR ∧ ϕTTP) ⇒ ϕO. If R aborts the protocol, since

the TTP satisfies the enhanced AGS constraints on the TTP, and the channel

between O and the TTP is operational, reqO must have been received by O.

At this stage, if Os has sent message m3, then the only choice of moves for Os

to satisfy ϕO is resO; a request to resolve the protocol. Since the channels are

operational, there exists a bound on the idle time of the TTP such that both

reqO and resO can be delivered within this bound. Moreover, as TTPs satisfies

the enhanced AGS constraints on the TTP, both O and R will be issued non-
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repudiation evidences and never abort tokens, thus satisfying ϕO. If Os has

not sent message m3, then the only choice of moves for Os to satisfy ϕO are

ι or resO. In all these traces, since TTPs satisfies bounded idle time and the

AGS constraints on the TTP, either both agents get non-repudiation evidences

or abort tokens but never both, thus satisfying ϕO. Therefore, all these traces

satisfy (ϕR ∧ ϕTTP) ⇒ ϕO, which given ϕR is satisfied by assumption and ϕTTP

is satisfied by Case 1, implies ϕO is satisfied as well. There is no Y-attack in this

case.

− Case 2. |Y| = 0. In this case Y = ∅ and (A \ Y)′ = {Os, Rs, TTPs}. Since Ps satisfies

bounded idle time, in all traces where R does not abort the protocol, by Lemma 22,

the condition for weak co-synthesis is satisfied. In all traces where R aborts the pro-

tocol, as TTPs satisfies the AGS constraints on the TTP, she sends reqO. In all these

traces, since TTPs and Os satisfy bounded idle time, and the channels are opera-

tional, Os chooses ι or sends resO and TTPs responds with either abort tokens or

non-repudiation evidences but not both, leading to the satisfaction of ϕO and ϕR.

Since ϕTTP is satisfied by Case 1, all these traces satisfy (ϕO ∧ ϕR ∧ ϕTTP). Therefore,

there is no Y-attack in this case.

The result follows. �

Proof. (Proof of Theorem 31). By Lemma 13, it follows that if the TTP does not change

her behavior, then Ps is attack-free. Further, by the weak co-synthesis condition, we have

[[Os ‖ Rs ‖ TTPs ‖ Sc]] ⊆ (ϕO ∧ ϕR ∧ ϕTTP) and hence by Theorem 25, we have [[Os ‖ Rs ‖

TTPs ‖ Sc]] ⊆ ϕ f ∩ ϕb. Thus Ps satisfies fairness and balance and hence is fair and abuse-
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free. Since [[Os ‖ Rs ‖ TTPs ‖ Sc]] ∩ (3NRO ∧ 3NRR) 6= ∅, the refinement Ps enables an

exchange of signatures and hence is an exchange protocol. We conclude that if the TTP

does not change her behavior, then Ps is an attack-free fair non-repudiation protocol. �

250



Bibliography

[ACC07] Alessandro Armando, Roberto Carbone, and Luca Compagna. Ltl model

checking for security protocols. In CSF, pages 385–396, 2007.
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